Approximation of holomorphic maps from Runge domains to affine algebraic varieties

Marcin Bilski 1^{1} and Adam Parusińsk 2^{2}

Abstract

We present a geometric proof of the theorem saying that holomorphic maps from Runge domains to affine algebraic varieties admit approximation by Nash maps. Next we generalize this theorem.

MSC (2010): 32E30, 32S15, 32S45

1 Introduction

After the seminal papers of Artin [2], 3] the fundamental problem of algebraic approximation of holomorphic maps satisfying polynomial equations has been studied by several mathematicians (see e.g. [7], 9], [10, [14, [19], [21, [31). The following result, which can be viewed as a global version of Artin's approximation theorem, is due to L. Lempert (see [21], p. 335).

Theorem 1.1 Let V, W be complex affine algebraic varieties, let $K \subset W$ be a holomorphically convex compact set and let $f: K \rightarrow V$ be a holomorphic map. Then f can be uniformly approximated by a sequence $f_{\nu}: K \rightarrow V$ of Nash maps.
(For the definition of Nash maps see Section 3.2. In the case of V nonsingular Theorem 1.1 had been proved before in 9]. If $W=\mathbf{C}$ and V is arbitrary then it follows from [10.) Artin's approximation theorem is local and its proof uses Weierstrass Preparation. The original proof of Lempert's approximation theorem [21], pp 338-339, relies on the general Néron desingularization, a deep and difficult result of commutative algebra for which the reader is referred to [1], 26], 27], [28], 29], [30].

Theorem 1.1 is expressed in terms of analytic geometry and has had numerous applications in the theory of several complex variables (see [5, 11, [12, [13, [21], [23], [25], 31]). It is natural to ask whether one can replace Néron desingularization by simpler geometric methods. The main purpose of this paper is to present a new geometric proof of Theorem 1.1 based on classical arguments of singularity theory and complex analysis (see Section 4). In the last section, Section 5. we show how our method allows us to generalize Lempert's result.

[^0]Several variants of Artin's approximation theorem turned out to be very useful in singularity theory and complex geometry. It is difficult to give here a full account of this research. Instead we refer the reader to two recent papers [17], [24] and references therein.

Our main results will be preceded by an outline of the proof of Theorem 1.1 where we present the main ideas and explain why the proof is organized in the way it is (see Section (2). The preliminary material is gathered in Section 3.

2 Outline of the proof of Theorem 1.1

First the problem is reduced (by means of standard methods of multidimensional complex analysis) to the case where $W=\mathbf{C}^{n}$ for some integer n, and K is a compact polydisc (see Section (4). Then it is sufficient to prove the following

Theorem 2.1 Let $f: U \rightarrow V$ be a holomorphic map, where $U \subseteq \mathbf{C}^{n}$ is an open polydisc and $V \subseteq \mathbf{C}^{q}$ is an algebraic variety. Then for every open $U_{0} \Subset U$ there is a sequence $f_{\nu}: U_{0} \rightarrow V$ of Nash maps converging uniformly to $\left.f\right|_{U_{0}}$.

Theorem 2.1 will be obtained by reducing to the case when $\operatorname{dim} f^{-1}(\operatorname{Sing}(V))<$ $n-1$ and by applying Lemma 4.1

Throughout the proof the domain on which the relevant functions are defined will be shrunk for several times. For this reason in Section 4 we work with a fixed compact set K, and the functions are defined in some neighborhood of K (which can be changed). In this outline, for simplicity of notation we assume that U has all the properties which actually are obtained after shrinking this domain.

Let $f^{-1}(\operatorname{Sing}(V))_{(n-1)}$ denote the union of all $(n-1)$-dimensional irreducible components of $f^{-1}(\operatorname{Sing}(V))$ and let $\overline{f(U)}^{z}$ denote the Zariski closure of $f(U)$ (i.e. the smallest algebraic set containing $f(U)$). We shall explain the idea of the proof of Theorem 2.1 additionally assuming that $\overline{f(U)}^{z}=V$, and that $f^{-1}(\operatorname{Sing}(V))_{(n-1)}$ has a finite number of irreducible components. Making these assumptions we do not lose generality. (This is because first V can be replaced by $\overline{f(U)}^{z}$. Then one can shrink U to obtain the finiteness condition.) Our aim is to construct a holomorphic map $F_{1}: U \rightarrow V_{1}$ such that: ${\overline{F_{1}(U)}}^{z}=V_{1}$ and $F_{1}^{-1}\left(\operatorname{Sing}\left(V_{1}\right)\right)_{(n-1)}$ has fewer irreducible components than $f^{-1}(\operatorname{Sing}(V))_{(n-1)}$, and if F_{1} can be approximated by Nash maps into V_{1} then f can be approximated by Nash maps into V. When this is accomplished we can replace f by F_{1} and repeat the whole process. Such repetitions lead us to the case solved by Lemma 4.1. application of which finishes the proof.

Let us start with preliminary remarks. First $V \subset \mathbf{C}^{k} \times \mathbf{C}^{q-k}$ can be assumed to be an irreducible normal analytic space with proper projection onto \mathbf{C}^{k}, where $k=\operatorname{dim} V$. A reduction to the case where this assumption is satisfied is standard (for details see the proof of Theorem 2.1 in Section (4). Then the set $\Sigma_{V} \subset \mathbf{C}^{k}$ (defined in Section (3.4) is either empty or purely $(k-1)$-dimensional. (This is because otherwise V would not be locally irreducible contradicting normality.)

Consequently, there is a reduced $N \in \mathbf{C}\left[w_{1}, \ldots, w_{k}\right]$ such that $N^{-1}(0)=\Sigma_{V}$. Let $G=\pi \quad \circ f$, where $\pi: \mathbf{C}^{k} \times \mathbf{C}^{q-k} \rightarrow \mathbf{C}^{k}$ denotes the natural projection. Since $\overline{f(U)}^{z}=V$, we have $G(U) \nsubseteq \Sigma_{V}$. Therefore $(N \circ G)^{-1}(0)$ is either purely ($n-1$)-dimensional or empty. We can assume, shrinking U if needed, that $(N \circ G)^{-1}(0)$ has a finite number of irreducible components.

Now our main tools are Propositions 4.2, 4.3 proved in Sections 4.3, 4.4 respectively, and Corollary 3.8. First, Proposition 4.2 enables us to reduce the problem to the case when

$$
\begin{equation*}
G^{-1}\left(\operatorname{Sing}\left(\Sigma_{V}\right)\right)_{(n-1)} \subseteq f^{-1}(\operatorname{Sing}(V))_{(n-1)} \tag{b}
\end{equation*}
$$

To be more precise, Proposition 4.2 provides us with a suitable linear change of the coordinates in \mathbf{C}^{q} after which (b) holds.

Next we will construct a holomorphic map F_{*} into an algebraic variety V_{*} with $F_{*}^{-1}\left(\operatorname{Sing}\left(V_{*}\right)\right) \subseteq G^{-1}\left(\operatorname{Sing}\left(\Sigma_{V}\right)\right)$ and such that if there is a sequence $F_{*, \nu}$ of Nash maps into V_{*} approximating F_{*}, then there is a sequence G_{ν} of Nash maps into \mathbf{C}^{k} approximating G such that $\left\{\left(N \circ G_{\nu}\right)^{-1}(0)\right\}$ converges to $(N \circ G)^{-1}(0)$ in the sense of chains. (We say that a sequence $\left\{B_{\nu}\right\}$ of purely s-dimensional analytic sets converges to a purely s-dimensional analytic set B in the sense of chains if $\left\{Z_{\nu}\right\}$ converges to Z, where Z_{ν} and Z are chains obtained by assigning multiplicity 1 to all irreducible components of B_{ν} and B, respectively. For the definition of the convergence of chains see Section 3.3.)

Observe that, by Corollary 3.8, the existence of G_{ν} as above implies that there is a sequence f_{ν} of Nash maps into V approximating f. Moreover, by (b), the number of the irreducible components of $F_{*}^{-1}\left(\operatorname{Sing}\left(V_{*}\right)\right)_{(n-1)}$ does not exceed the number of the irreducible components of $f^{-1}(\operatorname{Sing}(V))_{(n-1)}$. Since the former number can be equal to the latter one, in general we cannot define $V_{1}=V_{*}, F_{1}=F_{*}$. However, V_{*} will have a very special description whose modification will allow us to construct V_{1}, F_{1} with all the required properties.

Let us describe how to obtain V_{*}, F_{*} and V_{1}, F_{1}. (Details are presented in the proof of Proposition 4.3) Let A_{1}, \ldots, A_{p} denote the (pairwise distinct) irreducible components of $(N \circ G)^{-1}(0)$. Since U is an open polydisc, we have $N \circ G=u_{1}^{\alpha_{1}} \cdot \ldots \cdot u_{p}^{\alpha_{p}} \bar{R}$, where $\bar{R} \in \mathcal{O}(U)$ is a nowhere vanishing function, u_{1}, \ldots, u_{p} are minimal defining functions for A_{1}, \ldots, A_{p}, and $\alpha_{1}, \ldots, \alpha_{p}$ are positive integers. (Recall that $u \in \mathcal{O}(U)$ is called a minimal defining function for A if $A=u^{-1}(0)$ and for every open subset $D \subseteq U$ and $v \in \mathcal{O}(D)$ with $A \cap D \subseteq v^{-1}(0)$, there is $g \in \mathcal{O}(D)$ such that $v=\left.g \cdot u\right|_{D}$. It is well known that the existence of minimal defining functions is a consequence of universal solvability of the second Cousin problem on U which, if U is a domain of holomorphy, is equivalent to $H^{2}(U, \mathbf{Z})=0$, cf. [18].)

Now define $F_{*}=\left(G, u_{1}, \ldots, u_{p}, \bar{R}\right)$,
$V_{*}=\left\{\left(w_{1}, \ldots, w_{k}, u_{1}, \ldots, u_{p}, \bar{R}\right) \in \mathbf{C}^{k+p+1}: N\left(w_{1}, \ldots, w_{k}\right)=u_{1}^{\alpha_{1}} \cdot \ldots \cdot u_{p}^{\alpha_{p}} \bar{R}\right\}$,
and suppose that there are sequences $G_{\nu}, u_{1, \nu}, \ldots, u_{p, \nu}, \bar{R}_{\nu}$ of Nash maps converging locally uniformly to $G, u_{1}, \ldots, u_{p}, \bar{R}$ such that $N \circ G_{\nu}=u_{1, \nu}^{\alpha_{1}} \cdot \ldots \cdot u_{p, \nu}^{\alpha_{p}} \bar{R}_{\nu}$. Since u_{1}, \ldots, u_{p} are minimal defining functions, $\left\{\left(N \circ G_{\nu}\right)^{-1}(0)\right\}$ converges to
$(N \circ G)^{-1}(0)$ in the sense of chains. Since N is reduced, $F_{*}^{-1}\left(\operatorname{Sing}\left(V_{*}\right)\right) \subseteq$ $G^{-1}\left(\operatorname{Sing}\left(N^{-1}(0)\right)\right)$. The functions $u_{1}, \ldots, u_{p}, \bar{R}$ will be chosen in such a way that ${\overline{F_{*}(U)}}^{z}=V_{*}$.

Let us turn to V_{1}, F_{1}. If $F_{*}^{-1}\left(\operatorname{Sing}\left(V_{*}\right)\right)_{(n-1)}=\emptyset$, then set $V_{1}=V_{*}, F_{1}=F_{*}$. Otherwise one can assume that $A_{1} \subseteq F_{*}^{-1}\left(\operatorname{Sing}\left(V_{*}\right)\right)_{(n-1)}$, and then we will construct V_{1}, F_{1} with

$$
F_{1}^{-1}\left(\operatorname{Sing}\left(V_{1}\right)\right)_{(n-1)} \subseteq \overline{G^{-1}\left(\operatorname{Sing}\left(N^{-1}(0)\right)\right)_{(n-1)} \backslash A_{1}}
$$

(For any $B \subseteq \mathbf{C}^{q}, \bar{B}$ denotes the closure in the Euclidean topology.) The construction will be carried out in α_{1} steps. More precisely, one step will be repeated for α_{1} times, each time with different input data. In each step we modify the lefthand side of the equation $N\left(w_{1}, \ldots, w_{k}\right)=u_{1}^{\alpha_{1}} \cdot \ldots \cdot u_{p}^{\alpha_{p}} \bar{R}$ and add to the system a collection of extra equations of the form $q_{j}=v_{j} u_{1}$, where q_{j} are suitably chosen polynomials and v_{j} are new variables. This operation, which allows us to decrease the power of u_{1} by 1 , can be viewed as some sort of blowing-up. After α_{1} repetitions we obtain a system of polynomial equations $N_{\alpha_{1}}\left(w_{1}, \ldots, w_{k}, v_{1}, \ldots, v_{t_{\alpha_{1}}}\right)=u_{2}^{\beta_{2}} \cdot \ldots \cdot u_{p}^{\beta_{p}} R_{\alpha_{1}}, q_{j}=v_{j} u_{1}$, for $j=1, \ldots, t_{\alpha_{1}}$, which defines some variety containing V_{1} as an irreducible component.

Together with the equations we will introduce new functions corresponding to the variables $v_{j}, R_{\alpha_{1}}$ (also denoted by $v_{j}, R_{\alpha_{1}}$) which will become components of the map F_{1}.

3 Preliminaries

3.1 Runge domains and polynomial polyhedra

A domain of holomorphy $\Omega \subset \mathbf{C}^{n}$ is called a Runge domain if every function $f \in \mathcal{O}(\Omega)$ can be uniformly approximated on every compact subset of Ω by polynomials in n complex variables.

We say that P is a polynomial polyhedron in \mathbf{C}^{n} if there exist polynomials in n complex variables q_{1}, \ldots, q_{s} and real constants c_{1}, \ldots, c_{s} such that

$$
P=\left\{x \in \mathbf{C}^{n}:\left|q_{1}(x)\right| \leq c_{1}, \ldots,\left|q_{s}(x)\right| \leq c_{s}\right\}
$$

The following theorem is a straightforward consequence of Theorem 2.7.3 and Lemma 2.7.4 from [18].

Theorem 3.1 Let $\Omega \subset \mathbf{C}^{n}$ be a Runge domain. Then for every $\Omega_{0} \Subset \Omega$ there exists a compact polynomial polyhedron $P \subseteq \Omega$ such that $\Omega_{0} \subseteq P$.

The following fact from [18] (p. 55) is well known.
Theorem 3.2 Let f be a holomorphic function in a neighborhood of a compact polynomial polyhedron $K \subset \mathbf{C}^{n}$. Then f can be uniformly approximated on K by polynomials in n complex variables.

3.2 Nash maps and sets

Let Ω be an open subset of \mathbf{C}^{n} and let f be a holomorphic function on Ω. We say that f is a Nash function at $x_{0} \in \Omega$ if there exist an open neighborhood U of x_{0} and a polynomial $P: \mathbf{C}^{n} \times \mathbf{C} \rightarrow \mathbf{C}, P \neq 0$, such that $P(x, f(x))=0$ for $x \in U$. A holomorphic function defined on Ω is said to be a Nash function if it is a Nash function at every point of Ω. A holomorphic mapping defined on Ω with values in \mathbf{C}^{N} is said to be a Nash mapping if each of its components is a Nash function.

A subset Y of an open set $\Omega \subset \mathbf{C}^{n}$ is said to be a Nash subset of Ω if and only if for every $y_{0} \in \Omega$ there exists a neighborhood U of y_{0} in Ω and there exist Nash functions f_{1}, \ldots, f_{s} on U such that

$$
Y \cap U=\left\{x \in U: f_{1}(x)=\ldots=f_{s}(x)=0\right\}
$$

The following proposition explains the relation between Nash and algebraic sets (cf. 32]).

Proposition 3.3 Let X be an irreducible Nash subset of an open set $\Omega \subset \mathbf{C}^{n}$. Then there exists an algebraic subset Y of \mathbf{C}^{n} such that X is an analytic irreducible component of $Y \cap \Omega$. Conversely, every analytic irreducible component of $Y \cap \Omega$ is an irreducible Nash subset of Ω.

3.3 Convergence of closed sets and holomorphic chains

Let U be an open subset in \mathbf{C}^{m}. By a holomorphic chain in U we mean a formal $\operatorname{sum} A=\sum_{j \in J} \alpha_{j} C_{j}$, where $\alpha_{j} \neq 0$ for $j \in J$ are integers and $\left\{C_{j}\right\}_{j \in J}$ is a locally finite family of pairwise distinct irreducible analytic subsets of U (see [8], [33], cf. also [4]). The set $\bigcup_{j \in J} C_{j}$ is called the support of A and is denoted by $|A|$ whereas the sets C_{j} are called the components of A with multiplicities α_{j}. The chain A is called positive if $\alpha_{j}>0$ for all $j \in J$. If all the components of A have the same dimension n then A will be called an n-chain.

Below we introduce the convergence of holomorphic chains in U. To do this we first need the notion of the local uniform convergence of closed sets. Let Y, Y_{ν} be closed subsets of U for $\nu \in \mathbf{N}$. We say that $\left\{Y_{\nu}\right\}$ converges to Y locally uniformly if:
(11) for every $a \in Y$ there exists a sequence $\left\{a_{\nu}\right\}$ such that $a_{\nu} \in Y_{\nu}$ and $a_{\nu} \rightarrow a$ in the standard topology of \mathbf{C}^{m},
(21) for every compact subset K of U such that $K \cap Y=\emptyset$ it holds $K \cap Y_{\nu}=\emptyset$ for almost all ν.
Then we write $Y_{\nu} \rightarrow Y$. For details concerning the topology of local uniform convergence see [34].

We say that a sequence $\left\{Z_{\nu}\right\}$ of positive n-chains converges to a positive n-chain Z if:
(1c) $\left|Z_{\nu}\right| \rightarrow|Z|$,
(2c) for each regular point a of $|Z|$ and each submanifold T of U of dimension
$m-n$ transversal to $|Z|$ at a such that the closure \bar{T} (in U) is compact and $|Z| \cap \bar{T}=\{a\}$, we have $\operatorname{deg}\left(Z_{\nu} \cdot T\right)=\operatorname{deg}(Z \cdot T)$ for almost all ν.
Then we write $Z_{\nu} \rightarrow Z$. (By $Z \cdot T$ we denote the intersection product of Z and T (cf. [33). (1c) and the choice of a, T in (2c) imply that the chains $Z_{\nu} \cdot T$ and $Z \cdot T$ for sufficiently large ν have finite supports and the degrees are well defined. Recall that for a chain $A=\sum_{j=1}^{d} \alpha_{j}\left\{a_{j}\right\}, \operatorname{deg}(A)=\sum_{j=1}^{d} \alpha_{j}$.)

When we say that a sequence $\left\{X_{\nu}\right\}$ of purely n-dimensional analytic sets converges to a purely n-dimensional analytic set X in the sense of chains, we mean that the sequence $\left\{Z_{\nu}\right\}$ of n-chains converges to the n-chain Z, where Z_{ν}, Z are obtained by assigning the multiplicity 1 to all irreducible components of X_{ν}, X respectively.

3.4 Analytic sets with proper projection

Let $\pi: \mathbf{C}^{m} \times \mathbf{C}^{s} \rightarrow \mathbf{C}^{m}$ be the natural projection, let Ω be a domain in \mathbf{C}^{m}, and let Y be a purely m-dimensional analytic subset of $\Omega \times \mathbf{C}^{s}$ such that $\left.\pi\right|_{Y}: Y \rightarrow \Omega$ is a proper map. By Σ_{Y} we denote the set of all points $a \in \Omega$ such that the fiber of $\left.\pi\right|_{Y}$ over a does not have the maximal cardinality. Recall that Σ_{Y} (called the discriminant of $\left.\pi\right|_{Y}$) is an analytic subsets of Ω (cf. [8).

For algebraic sets, we need a slightly more general notion. Let $\mathcal{L}\left(\mathbf{C}^{N}, \mathbf{C}^{m}\right)$ denote the vector space of all linear maps from \mathbf{C}^{N} to \mathbf{C}^{m}. Let $V \subset \mathbf{C}^{N}$ be algebraic of pure dimension m and let $A \in \mathcal{L}\left(\mathbf{C}^{N}, \mathbf{C}^{m}\right)$ such that $\left.A\right|_{V}: V \rightarrow \mathbf{C}^{m}$ is a proper map. By $\Sigma_{A} \subset \mathbf{C}^{m}$ we denote the set of points $a \in \mathbf{C}^{m}$ such that the fiber of $\left.A\right|_{V}$ over a does not have the maximal cardinality. Recall that Σ_{A} (called the discriminant of $\left.\left.A\right|_{V}\right)$ is algebraic. Set $s_{A}:=\left(\left.A\right|_{V}\right)^{-1}\left(\operatorname{Sing}\left(\Sigma_{A}\right)\right)$. When A is the natural projection from $\mathbf{C}^{N}=\mathbf{C}^{m} \times \mathbf{C}^{s}$ to \mathbf{C}^{m}, we often write Σ_{V} instead of Σ_{A}.

3.5 Holomorphic maps into algebraic varieties

For any subset B of \mathbf{C}^{q} let \bar{B}^{z} denote the Zariski closure of B i.e. the intersection of all algebraic subvarieties of \mathbf{C}^{q} containing B. For any algebraic subvariety V of \mathbf{C}^{q} by $I(V)$ we denote the ideal of all polynomials $p \in \mathbf{C}\left[y_{1}, \ldots, y_{q}\right]$ such that $V \subseteq p^{-1}(0)$. For any $g_{1}, \ldots, g_{s} \in \mathbf{C}\left[y_{1}, \ldots, y_{q}\right]$ by $I\left(g_{1}, \ldots, g_{s}\right)$ we denote the ideal generated by g_{1}, \ldots, g_{s}.

Lemma 3.4 Let Ω and B be a domain in \mathbf{C}^{n} and an irreducible analytic subset of Ω, respectively, and let $g=\left(g_{1}, g_{2}\right) \in \mathcal{O}\left(\Omega, \mathbf{C}^{q} \times \mathbf{C}^{r}\right)$. Let $\delta, h_{1}, \ldots, h_{t_{1}} \in$ $\mathbf{C}\left[y_{1}, \ldots, y_{q}\right]$ be such that

$$
\overline{g_{1}(B)^{z}} \backslash \delta^{-1}(0)=\left\{y \in \mathbf{C}^{q} \backslash \delta^{-1}(0): h_{j}(y)=0 \text { for } j=1, \ldots, t_{1}\right\},
$$

where $t_{1}=q-\operatorname{dim}{\overline{g_{1}(B)^{\prime}}}^{z}$, and $\left.\delta\right|_{\bar{g}_{1}(B)^{z}} \neq 0$ and for every $a \in{\overline{g_{1}(B)}}^{z} \backslash \delta^{-1}(0)$, the map $\left(h_{1}, \ldots, h_{t_{1}}\right): \mathbf{C}^{q} \rightarrow \mathbf{C}^{t_{1}}$ is a submersion in some neighborhood of a in \mathbf{C}^{q}, and $\delta I\left({\overline{g_{1}(B)}}^{z}\right) \subseteq I\left(h_{1}, \ldots, h_{t_{1}}\right)$. Then there are $t_{2}-t_{1}$ polynomials
$h_{t_{1}+1}, \ldots, h_{t_{2}} \in \mathbf{C}\left[y_{1}, \ldots, y_{q}, y_{q+1}, \ldots, y_{q+r}\right]$, where $t_{2}=q+r-\operatorname{dim} \overline{g(B)}^{z}$, and there is $\hat{\delta} \in \mathbf{C}\left[y_{1}, \ldots, y_{q}, y_{q+1}, \ldots, y_{q+r}\right]$ such that

$$
\overline{g(B)}^{z} \backslash \hat{\delta}^{-1}(0)=\left\{y \in \mathbf{C}^{q} \times \mathbf{C}^{r} \backslash \hat{\delta}^{-1}(0): h_{j}(y)=0 \text { for } j=1, \ldots, t_{2}\right\}
$$

and $\left.\hat{\delta}\right|_{\overline{g(B)}} \neq 0$, and for every $b \in \overline{g(B)}^{z} \backslash \hat{\delta}^{-1}(0)$, the map $\left(h_{1}, \ldots, h_{t_{2}}\right): \mathbf{C}^{q+r} \rightarrow$ $\mathbf{C}^{t_{2}}$ is a submersion in some neighborhood of b in \mathbf{C}^{q+r}, and $\hat{\delta} I\left(\overline{g(B)}^{z}\right) \subseteq$ $I\left(h_{1}, \ldots, h_{t_{2}}\right)$.
Proof of Lemma 3.4. Let us denote $C_{1}={\overline{g_{1}(B)}}^{z}, C_{2}=\overline{g(B)}^{z}$. Since B is irreducible, C_{2} is irreducible as well. Then there are $\hat{\delta}_{1}, \hat{h}_{1}, \ldots, \hat{h}_{t_{2}} \in \mathbf{C}\left[y_{1}, \ldots, y_{q+r}\right]$, such that

$$
C_{2} \backslash \hat{\delta}_{1}^{-1}(0)=\left\{y \in \mathbf{C}^{q} \times \mathbf{C}^{r} \backslash \hat{\delta}_{1}^{-1}(0): \hat{h}_{j}(y)=0 \text { for } j=1, \ldots, t_{2}\right\}
$$

and $\left.\hat{\delta}_{1}\right|_{C_{2}} \neq 0$, and for every $b \in C_{2} \backslash \hat{\delta}_{1}^{-1}(0)$, the map $\left(\hat{h}_{1}, \ldots, \hat{h}_{t_{2}}\right): \mathbf{C}^{q+r} \rightarrow$ $\mathbf{C}^{t_{2}}$ is a submersion in some neighborhood of b in \mathbf{C}^{q+r}, and for every $G \in$ $\mathbf{C}\left[y_{1}, \ldots, y_{q+r}\right]$ with $C_{2} \subseteq G^{-1}(0)$ there are $\hat{r}_{1}, \ldots, \hat{r}_{t_{2}} \in \mathbf{C}\left[y_{1}, \ldots, y_{q+r}\right]$ such that $\hat{\delta}_{1} \cdot G=\sum_{j=1}^{t_{2}} \hat{r}_{j} \hat{h}_{j}$. (See [22], pp. 402-405.)

Let us show that there are $h_{t_{1}+1}, \ldots, h_{t_{2}} \in\left\{\hat{h}_{1}, \ldots, \hat{h}_{t_{2}}\right\}$ with the required properties. Observe that $C_{2} \subseteq C_{1} \times \mathbf{C}^{r}$, which implies that $\hat{\delta}_{1} \cdot h_{i}=\sum_{j=1}^{t_{2}} b_{j, i} \hat{h}_{j}$, for $i=1, \ldots, t_{1}$, where $b_{j, i} \in \mathbf{C}\left[y_{1}, \ldots, y_{q+r}\right]$. Next, $\left.\left(\hat{\delta}_{1} \circ g\right) \cdot\left(\delta \circ g_{1}\right)\right|_{B} \neq 0$. Indeed, otherwise either $\left.\hat{\delta}_{1}\right|_{C_{2}}=0$ or $\left.\delta\right|_{C_{1}}=0$. Consequently, there is $x_{0} \in B$ such that $\left(\hat{\delta}_{1} h_{1}, \ldots, \hat{\delta}_{1} h_{t_{1}}\right)$ is a submersion in a neighborhood of $g\left(x_{0}\right)$, and therefore there are $j_{1}, \ldots, j_{t_{1}}$ such that the determinant $d\left(y_{1}, \ldots, y_{q+r}\right)$ of the matrix $\left[b_{j_{k}, i}\left(y_{1}, \ldots, y_{q+r}\right)\right]_{k=1, \ldots, t_{1} ; i=1, \ldots, t_{1}}$ satisfies $d\left(g\left(x_{0}\right)\right) \neq 0$. This implies that $\left.d\right|_{C_{2}} \neq 0$ and there are $c_{k, i}, d_{l, i} \in \mathbf{C}\left[y_{1}, \ldots, y_{q+r}\right]$, for $k, i=1, \ldots, t_{1}$ and $l \in J=\left\{1, \ldots, t_{2}\right\} \backslash\left\{j_{1}, \ldots, j_{t_{1}}\right\}$ such that $d \cdot \hat{h}_{j_{i}}=\sum_{k=1}^{t_{1}} c_{k, i} h_{k}+\sum_{l \in J} d_{l, i} \hat{h}_{l}$.

Now it is clear that the assertion of the lemma is satisfied with $\hat{\delta}=d \cdot \hat{\delta}_{1} \cdot \delta$ and $\left(h_{1}, \ldots, h_{t_{1}}, h_{t_{1}+1}, \ldots, h_{t_{2}}\right)$, where $h_{k}=\hat{h}_{j_{k}}$, for $k=t_{1}+1, \ldots, t_{2}$ where $\left\{j_{t_{1}+1}, \ldots, j_{t_{2}}\right\}=J$.
Remark 3.5 Let $a_{1}, \ldots, a_{p} \in \mathbf{C}^{q+r} \backslash C_{2}$. Then
(a) In the first paragraph of the proof of Lemma 3.4 $\hat{h}_{1}, \ldots, \hat{h}_{t_{2}}, \hat{\delta}_{1}$ can be chosen so that $\hat{h}_{i}\left(a_{j}\right) \neq 0 \neq \hat{\delta}_{1}\left(a_{j}\right)$ for $i=1, \ldots, t_{2}$ and $j=1, \ldots, p$.
(b) If $h_{i}\left(a_{j}\right) \neq 0 \neq \delta\left(a_{j}\right)$ for $i=1, \ldots, t_{1}$ and $j=1, \ldots, p$ then $h_{t_{1}+1}, \ldots, h_{t_{2}}$ and the $b_{j, i}$'s can be chosen so that $h_{i}\left(a_{j}\right) \neq 0 \neq \hat{\delta}\left(a_{j}\right)$ for $i=1, \ldots, t_{2}$ and $j=1, \ldots, p$.

Proof of Remark 3.5. As for (a), it is sufficient to prove the assertion with $C_{2}, a_{1}, \ldots, a_{p}$ replaced by $\Phi\left(C_{2}\right), \Phi\left(a_{1}\right), \ldots, \Phi\left(a_{p}\right)$, where Φ is any linear isomorphism. Therefore we may assume, applying a linear change of the variables in \mathbf{C}^{q+r} if needed, that $\left.\pi\right|_{C_{2}}: C_{2} \rightarrow \mathbf{C}^{\operatorname{dim}\left(C_{2}\right)+1}$ is a proper map, where π denotes the projection onto the first $\operatorname{dim}\left(C_{2}\right)+1$ coordinates of \mathbf{C}^{q+r}. Moreover, $\pi\left(a_{j}\right) \notin \pi\left(C_{2}\right)$ for every $j=1, \ldots, p$ and the fiber of $\left.\pi\right|_{C_{2}}$ over a consists of one element for every $a \in \operatorname{Reg}\left(\pi\left(C_{2}\right)\right)$. We may also assume that
$\left.\rho\right|_{\pi\left(C_{2}\right)}: \pi\left(C_{2}\right) \rightarrow \mathbf{C}^{\operatorname{dim}\left(C_{2}\right)}$ is a proper map, where ρ denotes the projection onto the first $\operatorname{dim}\left(C_{2}\right)$ coordinates of $\mathbf{C}^{\operatorname{dim}\left(C_{2}\right)+1}$ and that the fibers of $\left.\rho\right|_{\pi\left(C_{2}\right)}$ have maximal cardinality over $\rho\left(\pi\left(a_{j}\right)\right)$ for every $j=1, \ldots, p$.

Let $P \in\left(\mathbf{C}\left[y_{1}, \ldots, y_{\operatorname{dim}\left(C_{2}\right)}\right]\right)\left[y_{\operatorname{dim}\left(C_{2}\right)+1}\right]$ be the irreducible monic polynomial with $P^{-1}(0)=\pi\left(C_{2}\right)$. Then it is well known (cf. [22, pp. 402-405) that one can take $\hat{\delta}_{1}, \hat{h}_{1}, \ldots, \hat{h}_{t_{2}}$ such that $\hat{h}_{1}=P$ and $\hat{\delta}_{1}$ is (a power of) the discriminant of P. Of course, $\hat{h}_{1}, \hat{\delta}_{1}$ satisfy the requirements. Finally, if needed, we can replace \hat{h}_{j}, for $j \geq 2$, by $\hat{h}_{j}+\epsilon_{j} \hat{h}_{1}$ where $\epsilon_{j} \in \mathbf{C}\left(\left|\epsilon_{j}\right|\right.$ small) to obtain (a).

Let us turn to (b) (assuming that we have (a)). In view of (a), the fact that h_{j}, for $j=t_{1}+1, \ldots, t_{2}$, are chosen among $\hat{h}_{1}, \ldots, \hat{h}_{t_{2}}$, and that $\hat{\delta}=d \cdot \hat{\delta}_{1} \cdot \delta$, it is sufficient to observe that the $b_{j, i}$'s can be chosen in such a way that the determinant $d\left(a_{j}\right) \neq 0$ for $j=1, \ldots, p$. This however is obvious because for every $j \notin J, b_{j, i}$ can be replaced by $b_{j, i}+\epsilon_{j, i} \hat{h}_{l}$ for any $l \in J$ and $\epsilon_{j, i} \in \mathbf{C}$ with $\left|\epsilon_{j, i}\right|$ small.

Lemma 3.6 Let K be a compact polydisc in \mathbf{C}^{n} and let $G \in \mathcal{O}\left(K, \mathbf{C}^{k}\right)$ such that $\overline{G(K)}{ }^{z}=\mathbf{C}^{k}$. Let $0 \neq N \in \mathbf{C}\left[y_{1}, \ldots, y_{k}\right]$ and $u_{1}, \ldots, u_{p}, R \in \mathcal{O}(K)$ satisfy $N \circ G=u_{1}^{\alpha_{1}} \cdot \ldots \cdot u_{p}^{\alpha_{p}} R$ for some positive integers $\alpha_{1}, \ldots, \alpha_{p}$. Then there are nowhere vanishing functions $v_{1}, \ldots, v_{p} \in \mathcal{O}(K)$ and there is $S \in \mathcal{O}(K)$ such that $N \circ G=\left(u_{1} v_{1}\right)^{\alpha_{1}} \cdot \ldots \cdot\left(u_{p} v_{p}\right)^{\alpha_{p}} S$ and $\overline{\left(G, u_{1} v_{1}, \ldots, u_{p} v_{p}\right)(K)}{ }^{z}=\mathbf{C}^{k+p}$.

Proof. It is sufficient to show that there are nowhere vanishing $v_{1}, \ldots, v_{p} \in \mathcal{O}(K)$ such that $\overline{\left(G, u_{1} v_{1}, \ldots, u_{p} v_{p}\right)(K)}{ }^{z}=\mathbf{C}^{k+p}$, by which the other assertions follow immediately. In other words, it is sufficient to show that if $g_{1}, \ldots, g_{t} \in \mathcal{O}(K)$ are algebraically independent over \mathbf{C}, then for any $u \in \mathcal{O}(K), u \neq 0$, there is a nowhere vanishing $v \in \mathcal{O}(K)$ such that $g_{1}, \ldots, g_{t}, u \cdot v$ are also algebraically independent.

We have two cases: either g_{1}, \ldots, g_{t}, u are algebraically independent (and there is nothing to prove) or not. In the latter case it is sufficient to show that there is a nowhere vanishing $v \in \mathcal{O}(K)$ such that g_{1}, \ldots, g_{t}, v are algebraically independent over \mathbf{C} because then $g_{1}, \ldots, g_{t}, u \cdot v$ are also such (cf. 20 for basic facts on algebraic extensions). Define a family of one-variable functions: $\chi_{1}(x)=$ $\exp (x)$ and $\chi_{j}(x)=\chi_{j-1}(\exp (x))$ for $j>1$. Then $\left\{\chi_{j}\right\}_{j=1}^{k}$ are algebraically independent for any k. Hence, if g_{1}, \ldots, g_{t} are algebraically independent, there is j such that $g_{1}, \ldots, g_{t}, \chi_{j}$ are also independent (where χ_{j} is treated as an n-variable function; cf. [20] for basic facts on transcendental extensions)

3.6 A discriminant criterion for the existence of algebraic approximations

Let us recall a result from [6] which is one of the main tools in the present paper. Let $U \subset \mathbf{C}^{n}$ be a domain and let $\pi: U \times \mathbf{C}^{k} \rightarrow U$ denote the natural projection. Let $X \subset U \times \mathbf{C}^{k}$ be an analytic subset of pure dimension n with proper projection onto U. Recall that $s\left(\left.\pi\right|_{X}\right)$ denotes the cardinality of the generic fiber in X over U. For any analytic set $C, C_{(n-1)}$ denotes the union of
all $(n-1)$-dimensional irreducible components of C. For the definition of Σ_{X} see Section 3.4

Theorem 3.7 Let $\left\{X_{\nu}\right\}$ be a sequence of purely n-dimensional analytic subsets of $U \times \mathbf{C}^{k}$ with proper projection onto U converging locally uniformly to X such that $s\left(\left.\pi\right|_{X}\right)=s\left(\left.\pi\right|_{X_{\nu}}\right)$ for $\nu \in \mathbf{N}$. Assume that $\left\{\left(\Sigma_{X_{\nu}}\right)_{(n-1)}\right\}$ converges to $\left(\Sigma_{X}\right)_{(n-1)}$ in the sense of holomorphic chains. Then for every analytic subset Y of $U \times \mathbf{C}^{k}$ of pure dimension n such that $Y \subseteq X$ and for every open relatively compact subset \tilde{U} of U there exists a sequence $\left\{Y_{\nu}\right\}$ of purely n-dimensional analytic subsets of $\tilde{U} \times \mathbf{C}^{k}$ converging to $Y \cap\left(\tilde{U} \times \mathbf{C}^{k}\right)$ in the sense of holomorphic chains such that $Y_{\nu} \subseteq X_{\nu}$ for every $\nu \in \mathbf{N}$.

The assumption that $\left\{\left(\Sigma_{X_{\nu}}\right)_{(n-1)}\right\}$ converges to $\left(\Sigma_{X}\right)_{(n-1)}$ in the sense of chains is essential. It is not difficult to observe that otherwise X_{ν} can be (and usually are) irreducible even when X is not. Then, in particular, X can contain the graph Y of some map holomorphic on \tilde{U} whereas X_{ν} do not contain any such graphs. To prove Theorem [2.1, we will use Theorem 3.7 in the case when Y is the graph of a holomorphic map to be approximated by Nash maps.

Let V be a purely m-dimensional algebraic variety in $\mathbf{C}^{m} \times \mathbf{C}^{k}$ with proper projection onto \mathbf{C}^{m}. Assume that $\Sigma_{V}=N^{-1}(0)$, where N is a polynomial in m variables. Let $f: U \rightarrow V$ be a holomorphic map such that $\tilde{f}(U) \nsubseteq N^{-1}(0)$ where \tilde{f} is the map consisting of the first m components of f. Theorem 3.7 implies the following

Corollary 3.8 Let $\tilde{f}_{\nu} \in \mathcal{O}\left(U, \mathbf{C}^{m}\right)$ be a sequence of Nash maps converging to \tilde{f} locally uniformly such that $\left\{\left(N \circ \tilde{f}_{\nu}\right)^{-1}(0)\right\}$ converges to $(N \circ \tilde{f})^{-1}(0)$ in the sense of chains. Then for every analytic subset Y of $U \times \mathbf{C}^{k}$ of pure dimension n such that $Y \subseteq\left(\tilde{f} \times \operatorname{id}_{\mathbf{C}^{\mathrm{k}}}\right)^{-1}(V)$ and for every open relatively compact subset \tilde{U} of U there is a sequence $\left\{Y_{\nu}\right\}$ of purely n-dimensional Nash subsets of $\tilde{U} \times$ \mathbf{C}^{k} converging to $Y \cap\left(\tilde{U} \times \mathbf{C}^{k}\right)$ in the sense of holomorphic chains such that $Y_{\nu} \subseteq\left(\left.\tilde{f}_{\nu}\right|_{\tilde{U}} \times \mathrm{id}_{\mathbf{C}^{\mathrm{k}}}\right)^{-1}(V)$ for every $\nu \in \mathbf{N}$. In particular, there is a sequence $f_{\nu} \in \mathcal{O}(\tilde{U}, V)$ of Nash maps converging to $\left.f\right|_{\tilde{U}}$ uniformly.

Proof. Only the last sentence requires explanation. Let \hat{f} be the map consisting of the last k components of f. Fix open $\tilde{U} \Subset \hat{U} \Subset U$. Since $\operatorname{graph}(\hat{f}) \subseteq(\tilde{f} \times$ $\left.\mathrm{id}_{\mathbf{C}^{\mathrm{k}}}\right)^{-1}(V)$, there are purely n-dimensional Nash sets $Y_{\nu} \subseteq\left(\left.\tilde{f}_{\nu}\right|_{\hat{U}} \times \mathrm{id}_{\mathbf{C}^{\mathrm{k}}}\right)^{-1}(V)$ such that $\left\{Y_{\nu}\right\}$ converges to $\operatorname{graph}(\hat{f}) \cap\left(\hat{U} \times \mathbf{C}^{k}\right)$ in the sense of chains.

The fibers of $\left(\left.\tilde{f}_{\nu}\right|_{\hat{U}} \times \operatorname{id}_{\mathbf{C}^{\mathrm{k}}}\right)^{-1}(V) \subseteq \hat{U} \times \mathbf{C}^{k}$ over \hat{U} are uniformly bounded by some bound independent of ν (which follows by the fact that V has proper projection onto \mathbf{C}^{m} and $\left.\hat{U} \Subset U\right)$. Hence the fibers of Y_{ν} over \hat{U} are also such. This implies, in view of the fact that $\left\{Y_{\nu}\right\}$ converges in the sense of chains to the graph of a map, that the fibers of $Y_{\nu} \cap\left(\tilde{U} \times \mathbf{C}^{k}\right)$ are singletons for almost all ν. In other words, $Y_{\nu} \cap\left(\tilde{U} \times \mathbf{C}^{k}\right)$ is the graph of some (Nash) map $\hat{f}_{\nu}: \tilde{U} \rightarrow \mathbf{C}^{k}$ for almost all ν. Now we can define $f_{\nu}=\left(\left.\tilde{f}_{\nu}\right|_{\tilde{U}}, \hat{f}_{\nu}\right)$.

4 Proof of Theorem 1.1

4.1 Reduction to the case when K is a polydisc

A proof of Theorem 1.1 can be reduced (by means of standard techniques of multidimensional complex analysis) to the case where $W=\mathbf{C}^{n}, K$ is a compact polynomial polyhedron, and $f: D \rightarrow V$, where D is an open neighborhood of K in \mathbf{C}^{n} (see [21], p. 339). Let us assume that this reduction has been done. As we will show below, a modification of the method presented in [21] (p. 339) allows us to assume that K is a compact polydisc.

First, for some m, there are a compact polydisc E in \mathbf{C}^{n+m}, polynomials P_{1}, \ldots, P_{m} and a mapping F of a neighborhood U of E into \mathbf{C}^{q} such that in some neighborhood \tilde{D} of K in D we have $f(z)=F\left(z, P_{1}(z), \ldots, P_{m}(z)\right)$ (cf. [18], p. 55). Moreover, if $Z \subset \mathbf{C}^{n} \times \mathbf{C}^{m}$ denotes the graph of the map $z \mapsto\left(P_{1}(z), \ldots, P_{m}(z)\right)$, then $\tilde{K}=\left(K \times \mathbf{C}^{m}\right) \cap Z \subseteq E$ is a polynomially convex compact subset of Z. We can take U to be an open polydisc. It is clear that in order to approximate f it is sufficient to approximate the map $\left.F\right|_{\tilde{K}}: \tilde{K} \rightarrow V$ by Nash maps into V.

Let Q_{1}, \ldots, Q_{r} be polynomials in q complex variables such that $V=\left\{Q_{1}=\right.$ $\left.\ldots=Q_{r}=0\right\}$. Let \tilde{Z} denote the union of all analytic irreducible components of $Z \cap U$ which have a non-empty intersection with $\tilde{D} \times \mathbf{C}^{m}$. Observe that, for $i=1, \ldots, r, Q_{i} \circ F$ vanishes identically on \tilde{Z}. Pick $\alpha \in \mathcal{O}(U)$ non-vanishing identically on any analytic irreducible component of \tilde{Z} but vanishing identically on the other irreducible components of $Z \cap U$ (cf. [18], p. 192). Then $\alpha(y)$. $Q_{i}(F(y))=0$ for every $y \in Z \cap U$ and $i=1, \ldots, r$. Therefore, in view of Z being algebraic, there are polynomials R_{1}, \ldots, R_{t} in $n+m$ complex variables, vanishing identically on $Z \cap U$, and such that

$$
\alpha(y) \cdot Q_{i}(F(y))=\sum_{j=1}^{t} b_{i, j}(y) R_{j}(y), \text { for } y \in U \text { and } i=1, \ldots, r
$$

with certain holomorphic functions $b_{i, j}$.
In the space $\mathbf{C}^{1+q+n+m+r t}$ with coordinates $x_{1}, w_{1}, \ldots, w_{q}, u_{1}, \ldots, u_{n+m}$, $v_{1,1}, v_{1,2}, \ldots, v_{r, t}$ consider the variety T defined by the equations

$$
x_{1} \cdot Q_{i}(w)=\sum_{j=1}^{t} v_{i, j} R_{j}(u), \text { for } i=1, \ldots, r
$$

By (\square), the image of the map

$$
g: U \ni y \mapsto\left(\alpha(y), F(y), y, b_{i, j}(y)\right) \in \mathbf{C}^{1+q+n+m+r t}
$$

is contained in T.
Now suppose that there is an open polydisc U^{\prime} with $E \subset U^{\prime} \subset U$ such that g can be approximated on U^{\prime} by a Nash map $g^{\prime}(y)=\left(\alpha^{\prime}(y), F^{\prime}(y), y^{\prime}(y), b_{i, j}^{\prime}(y)\right)$ whose image is contained in T. If this approximation is close enough, then $y^{\prime}(y)$ has the inverse \tilde{y} on E close to the identity. Replacing $g^{\prime}(y)$ by $g^{\prime}(\tilde{y}(y))$, we can assume that $y^{\prime}(y)=y$. Consequently, $\alpha^{\prime}(y) \cdot Q_{i}\left(F^{\prime}(y)\right)=0$ for every $y \in \tilde{Z} \cap U^{\prime}$ and every i. But $\alpha^{\prime}(y)$ does not vanish identically on any irreducible component
of $\tilde{Z} \cap U^{\prime}$ if the approximation is close enough. Therefore $Q_{i}\left(F^{\prime}(y)\right)=0$ for every $y \in \tilde{Z} \cap U^{\prime}$ and every i, which implies that $F^{\prime}(\tilde{K}) \subset V$.

Thus in order to obtain the required Nash approximation $\left.F^{\prime}\right|_{\tilde{K}}$ of $\left.F\right|_{\tilde{K}}$ it suffices to approximate $g: E \rightarrow T$, where E is a compact polydisc. Now, we see that to prove Theorem 1.1 it is sufficient to prove Theorem 2.1.

4.2 Proof of Theorem 2.1

First we will focus on the case when $\operatorname{dim} f^{-1}(\operatorname{Sing}(V)) \leq n-2$.
Lemma 4.1 Let $f: U \rightarrow V$ be a holomorphic map, where $U \subseteq \mathbf{C}^{n}$ is a Runge domain and $V \subseteq \mathbf{C}^{q}$ is an algebraic variety. Assume that $\operatorname{dim} f^{-1}(\operatorname{Sing}(\mathrm{~V}))<$ $n-1$. Then for every open $U_{0} \Subset U$ there is a sequence $f_{\nu}: U_{0} \rightarrow V$ of Nash maps converging uniformly to $\left.f\right|_{U_{0}}$.

Proof. For an elementary proof of the lemma for $n=1$ the reader is referred to [10]. Let us assume that $n \geq 2$. For any \mathbf{C}-linear subspace L of \mathbf{C}^{n} let L^{\perp} denote the orthogonal complement of L in \mathbf{C}^{n}. Fix an open set $U_{0} \Subset U$.

Since $\operatorname{dim} f^{-1}(\operatorname{Sing}(V))<n-1$, there are $\epsilon>0,(n-2)$-dimensional linear subspaces $L_{1}, \ldots, L_{t} \subset \mathbf{C}^{n}$ and open bounded balls $B_{j} \subset L_{j}$ and $B_{j}^{\prime} \subset L_{j}^{\perp}$, for $j=1, \ldots, t$, such that $P_{j}:=B_{j}+B_{j}^{\prime} \Subset U$ and $\bar{U}_{0} \subseteq \bigcup_{j=1}^{t} P_{j}$, and $\left(\overline{B_{j}}+\overline{B_{j, \epsilon}^{\prime}}\right) \cap$ $f^{-1}(\operatorname{Sing}(V))=\emptyset$, for $j=1, \ldots, t$, where $B_{j, \epsilon}^{\prime}=\left\{x \in B_{j}^{\prime}: \operatorname{dist}\left(x, \partial B_{j}^{\prime}\right)<\epsilon\right\}$.

Observe that for every $i \neq j$ such that $P_{i} \cap P_{j} \neq \emptyset$ there are open balls $P_{i, j} \subseteq B_{i}, P_{j, i} \subseteq B_{j}$ and open connected sets $l_{i, j} \subseteq B_{i}^{\prime}, l_{j, i} \subseteq B_{j}^{\prime}$ such that $\overline{P_{i, j}+l_{i, j}} \cap f^{-1}(\operatorname{Sing}(V))=\emptyset, \overline{P_{j, i}+l_{j, i}} \cap f^{-1}(\operatorname{Sing}(V))=\emptyset, l_{i, j} \cap B_{i, \epsilon}^{\prime} \neq \emptyset$, $l_{j, i} \cap B_{j, \epsilon}^{\prime} \neq \emptyset$, and $\left(P_{i, j}+l_{i, j}\right) \cap\left(P_{j, i}+l_{j, i}\right) \neq \emptyset$. Indeed, pick $z \in\left(P_{i} \cap P_{j}\right) \backslash$ $f^{-1}(\operatorname{Sing}(V))$. We have $z=u_{i}+v_{i}=u_{j}+v_{j}$ for some $u_{i} \in L_{i}, v_{i} \in L_{i}^{\perp}, u_{j} \in L_{j}$, $v_{j} \in L_{j}^{\perp}$. Next pick $v_{i}^{\prime} \in B_{i, \epsilon}^{\prime}, v_{j}^{\prime} \in B_{j, \epsilon}^{\prime}$. Since $u_{i}+v_{i}^{\prime}, u_{j}+v_{j}^{\prime} \notin f^{-1}(\operatorname{Sing}(V))$, there are a path $k_{i, j} \subset B_{i}^{\prime}$ connecting v_{i}, v_{i}^{\prime} and a path $k_{j, i} \subset B_{j}^{\prime}$ connecting v_{j}, v_{j}^{\prime} such that $\left(u_{i}+k_{i, j}\right) \cap f^{-1}(\operatorname{Sing}(V))=\emptyset=\left(u_{j}+k_{j, i}\right) \cap f^{-1}(\operatorname{Sing}(V))$. Now it suffices to take $P_{i, j}, P_{j, i}$ to be small balls centered at u_{i}, u_{j} in B_{i}, B_{j}, respectively, and $l_{i, j}, l_{j, i}$ to be small neighborhoods of $k_{i, j}, k_{j, i}$ in $B_{i}^{\prime}, B_{j}^{\prime}$, respectively.

Define $E=\bigcup_{j=1}^{t}\left(B_{j}+B_{j, \epsilon}^{\prime}\right) \cup \bigcup_{i, j=1}^{t}\left(P_{i, j}+l_{i, j}\right)$, assuming that $P_{i, j}+l_{i, j}=\emptyset$ if $P_{i} \cap P_{j}=\emptyset$. By the facts that U is a Runge domain, $E \Subset U$ and $f(\bar{E}) \cap \operatorname{Sing}(V)=$ \emptyset, there is a sequence $f_{\nu}: E \rightarrow V$ of Nash maps approximating $\left.f\right|_{E}$ uniformly (cf. 9] p. 334; the idea of the proof is as follows: since $\overline{f(E)} \cap \operatorname{Sing}(V)=\emptyset$, there are an open neighborhood N of $\overline{f(E)}$ in \mathbf{C}^{q} together with a Nash retraction τ of N onto some open neighborhood of $\overline{f(E)}$ in V. Now $\left.f\right|_{E}$ can be approximated by polynomial maps into \mathbf{C}^{q} whose restrictions to E have images in N. These restrictions can be composed with τ yielding the required Nash approximations of $\left.f\right|_{E}$).

Observe that if f_{ν} has a holomorphic extension to $\bigcup_{j=1}^{t} P_{j}$, then the proof will be completed. Indeed, by the maximum principle, if such f_{ν} approximates f on E then it also approximates f on $\bigcup_{j=1}^{t} P_{j}$. Moreover, if f_{ν} is a holomorphic map on $\bigcup_{j=1}^{t} P_{j}$ and a Nash map on E then it is a Nash map on $\bigcup_{j=1}^{t} P_{j}$.

For every j put $E_{j}=\left(B_{j}+B_{j, \epsilon}^{\prime}\right) \cup \bigcup_{k=1}^{t}\left(P_{j, k}+l_{j, k}\right)$ (again assuming $P_{j, k}+$ $l_{j, k}=\emptyset$ if $P_{j} \cap P_{k}=\emptyset$). The Hartogs extension theorem implies that for every j, $\left.f_{\nu}\right|_{E_{j}}$ has an extension $f_{j, \nu}: P_{j} \rightarrow V$ such that $\left.f_{j, \nu}\right|_{\{z\}+B_{j}^{\prime}}$ is a holomorphic map for every $z \in B_{j}$. But then, since $\left.f_{j, \nu}\right|_{B_{j}+B_{j, \epsilon}^{\prime}}$ is a holomorphic map, the Cauchy integral formula implies that $f_{j, \nu}$ is a continuous separately holomorphic map. Hence it is a holomorphic map.

It remains to show that for every $i, j,\left.f_{i, \nu}\right|_{P_{i} \cap P_{j}}=\left.f_{j, \nu}\right|_{P_{i} \cap P_{j}}$. Fix $i \neq j$ such that $P_{i} \cap P_{j} \neq \emptyset$. Since $C=\left(P_{i, j}+l_{i, j}\right) \cap\left(P_{j, i}+l_{j, i}\right) \subseteq E_{i} \cap E_{j} \subseteq P_{i} \cap P_{j}$ we have $\left.f_{j, \nu}\right|_{C}=\left.f_{\nu}\right|_{C}=\left.f_{i, \nu}\right|_{C}$. But $C \neq \emptyset$ and $P_{i} \cap P_{j}$ is connected so $\left.f_{i, \nu}\right|_{P_{i} \cap P_{j}}=$ $\left.f_{j, \nu}\right|_{P_{i} \cap P_{j}}$ and the proof is complete.
Notation. Let K be a connected compact subset of \mathbf{C}^{n} such that int $K \neq \emptyset$ and let $g: K \rightarrow C \subseteq \mathbf{C}^{q}$. By $g_{D}: D \rightarrow C$ we denote a holomorphic map such that $\left.g_{D}\right|_{K}=g$, where D is an open connected neighborhood of K. If g_{D} exists, then g is called holomorphic. If g_{D} is a Nash map then g is called a Nash map. The collection of all holomorphic maps from K to C will be denoted by $\mathcal{O}(K, C)$. For $C=\mathbf{C}$ we write $\mathcal{O}(K)$. A sequence $g_{\nu} \in \mathcal{O}(K, C)$, for $\nu \in \mathbf{N}$, is said to converge to $g \in \mathcal{O}(K, C)$ uniformly if there is an open $D^{\prime} \supset K$ for which there are $g_{D^{\prime}}, g_{\nu, D^{\prime}}, \nu \in \mathbf{N}$, such that $g_{\nu, D^{\prime}}$ converges to $g_{D^{\prime}}$ uniformly. Let $h \in \mathcal{O}\left(D, \mathbf{C}^{q}\right)$ for some open $D \subset \mathbf{C}^{n}$. Let $Y \subset \mathbf{C}^{q}$ be an analytic set. Then by $h^{-1}(Y)_{(n-1)}$ we denote the union of all $(n-1)$-dimensional irreducible components of $h^{-1}(Y)$.
Proof of Theorem 2.1. Fix an open $U_{0} \Subset U$ (which clearly can be assumed to be connected) and a compact polydisc K with $U_{0} \subset K \subset U$. One can assume that $\overline{f(K)}^{z}=V$ (because otherwise V can be replaced by $\overline{f(K)}^{z}$), and that $\left(\left.f\right|_{D}\right)^{-1}(\operatorname{Sing}(V))_{(n-1)} \neq \emptyset$ for every open neighborhood D of K (as otherwise Lemma 4.1 finishes the proof).

Put $F_{0}=\left.f\right|_{K}, V_{0}=V$. We iterate the following process starting from F_{0}. Suppose we have $F_{i} \in \mathcal{O}\left(K, V_{i}\right)$ such that ${\overline{F_{i}(K)}}^{z}=V_{i}, F_{i, D}^{-1}\left(\operatorname{Sing}\left(V_{i}\right)\right)_{(n-1)} \neq \emptyset$, for every open neighborhood D of K, where $V_{i} \subset \mathbf{C}^{q_{i}}$. We will show that there is $F_{i+1} \in \mathcal{O}\left(K, V_{i+1}\right)$, where $V_{i+1} \subset \mathbf{C}^{q_{i+1}}$ is an algebraic variety, such that:
(x) if there is a sequence $F_{i+1, \nu} \in \mathcal{O}\left(K, V_{i+1}\right)$ of Nash maps converging uniformly to F_{i+1}, then there is a sequence $F_{i, \nu} \in \mathcal{O}\left(K, V_{i}\right)$ of Nash maps converging uniformly to F_{i}
(y) $\overline{F_{i+1}(K)}=V_{i+1}$ and there are an open $D \supset K$ and an irreducible component T of $\left(F_{i, D}\right)^{-1}\left(\operatorname{Sing}\left(V_{i}\right)\right)_{(n-1)}$ with $T \cap K \neq \emptyset$ such that

$$
\left(F_{i+1, D}\right)^{-1}\left(\operatorname{Sing}\left(V_{i+1}\right)\right)_{(n-1)} \subseteq \overline{\left(F_{i, D}\right)^{-1}\left(\operatorname{Sing}\left(V_{i}\right)\right)_{(n-1)} \backslash T}
$$

Let us show that once F_{i+1} is constructed, the proof will be completed. Set $C_{i, D^{\prime}}:=\left(F_{i, D^{\prime}}\right)^{-1}\left(\operatorname{Sing}\left(V_{i}\right)\right)_{(n-1)}$. Let $I_{i} \subset \mathcal{O}(K)$ be the ideal of all $\alpha \in \mathcal{O}(K)$ such that $\left.\alpha_{D^{\prime}}\right|_{C_{i, D^{\prime}}}=0$ for some open $D^{\prime} \supset K$. It is well known that for every analytic hypersurface H in an open polydisc D^{\prime} there is $g \in \mathcal{O}\left(D^{\prime}\right)$ such that $H=g^{-1}(0)$ (cf. [18]). This fact and (y) imply that $I_{i} \nsubseteq I_{i+1}$. Therefore if $C_{i, D^{\prime}} \neq \emptyset$ for every i and every open $D^{\prime} \supset K$, then there is an infinite ascending
sequence of ideals in $\mathcal{O}(K)$. But $\mathcal{O}(K)$ is noetherian (cf. [15]) so there must be i_{0} and an open $D^{\prime} \supset K$ such that $C_{i_{0}, D^{\prime}}=\emptyset$ (i.e. $\left.\operatorname{dim} F_{i_{0}, D^{\prime}}^{-1}\left(\operatorname{Sing}\left(V_{i_{0}}\right)\right)<n-1\right)$. Now it is clear that Lemma 4.1 allows us to complete the proof if, given F_{i}, we can construct F_{i+1} satisfying (x) and (y).

Put $k_{i}=\operatorname{dim}\left(V_{i}\right)$. Let us show how to construct F_{i+1}. First observe that V_{i} is irreducible (because K is a polydisc and $V_{i}={\overline{F_{i}(K)}}^{z}$). We can also assume that V_{i} is a normal analytic space. Indeed, if V_{i} is not normal then we can replace V_{i}, F_{i} by $\tilde{V}_{i}, \tilde{F}_{i}$, where $\pi: \tilde{V}_{i} \rightarrow V_{i}$ is the normalization of V_{i}, whereas $\tilde{F}_{i}: K \rightarrow \tilde{V}_{i}$ is a holomorphic map such that $\pi \circ \tilde{F}_{i}=F_{i}$. (The existence of \tilde{F}_{i} is an immediate consequence of the fact that $\left.\pi\right|_{\tilde{V}_{i} \backslash \pi^{-1}\left(\operatorname{Sing}\left(V_{i}\right)\right)}$: $\tilde{V}_{i} \backslash \pi^{-1}\left(\operatorname{Sing}\left(V_{i}\right)\right) \rightarrow V_{i} \backslash \operatorname{Sing}\left(V_{i}\right)$ is a biholomorphism (see [22], pp 343-346).) After this preparation let us construct F_{i+1}. Our main tools are Propositions 4.2 and 4.3 (whose proofs are postponed to Sections 4.34 .4 respectively) and Corollary 3.8. For definitions of Σ_{A}, s_{A} and $\mathcal{L}\left(\mathbf{C}^{N}, \mathbf{C}^{m}\right)$ see Section 3.4

Proposition 4.2 Let V be an algebraic subset of \mathbf{C}^{N} of pure dimension m, and let $U \subset \mathbf{C}^{n}$ be an open polydisc. Let $f: U \rightarrow V$ be a holomorphic map such that $\overline{f(U)}^{z}=V$. Then for every open $U_{0} \Subset U$ there is $A \in \mathcal{L}\left(\mathbf{C}^{N}, \mathbf{C}^{m}\right)$ such that $\left.A\right|_{V}: V \rightarrow \mathbf{C}^{m}$ is a proper map and $\operatorname{dim}\left(\left.f\right|_{U_{0}}\right)^{-1}\left(s_{A} \backslash \operatorname{Sing}(V)\right) \leq n-2$.

By Proposition 4.2, there is a linear $A: \mathbf{C}^{q_{i}} \rightarrow \mathbf{C}^{k_{i}}$ such that $\left.A\right|_{V_{i}}: V_{i} \rightarrow \mathbf{C}^{k_{i}}$ is proper and
(a) $\left(\left.A\right|_{V_{i}} \circ F_{i, D}\right)^{-1}\left(\operatorname{Sing}\left(\Sigma_{A}\right)\right)_{(n-1)} \subseteq F_{i, D}^{-1}\left(\operatorname{Sing}\left(V_{i}\right)\right)_{(n-1)}$, for every sufficiently small open $D \supset K$.

Let $\Phi: \mathbf{C}^{q_{i}} \rightarrow \mathbf{C}^{q_{i}}$ be a linear automorphism such that $A=\pi \circ \Phi$, where π : $\mathbf{C}^{k_{i}} \times \mathbf{C}^{q_{i}-k_{i}} \rightarrow \mathbf{C}^{k_{i}}$ is the natural projection. Then $\Sigma_{A}=\Sigma_{\Phi\left(V_{i}\right)}$. Since $\Phi\left(V_{i}\right)$ is a normal space, $\Sigma_{\Phi\left(V_{i}\right)}$ is purely $\left(k_{i}-1\right)$-dimensional or empty. Therefore there is $N \in \mathbf{C}\left[w_{1}, \ldots, w_{k_{i}}\right]$ such that $N^{-1}(0)=\Sigma_{\Phi\left(V_{i}\right)}$. Set $G=\pi \circ \Phi \circ F_{i}$. Then (a) can be rewritten as follows
(0) $G_{D}^{-1}\left(\operatorname{Sing}\left(N^{-1}(0)\right)\right)_{(n-1)} \subseteq F_{i, D}^{-1}\left(\operatorname{Sing}\left(V_{i}\right)\right)_{(n-1)}$, for every sufficiently small open $D \supset K$.

On the other hand, the facts that $\operatorname{dim}\left(\Phi\left(V_{i}\right)\right)=k_{i}, \Phi\left(V_{i}\right)$ has proper projection onto $\mathbf{C}^{k_{i}}$ and ${\overline{\Phi\left(F_{i}(K)\right)}}^{z}=\Phi\left(V_{i}\right)$ imply that $\overline{G(K)}^{z}=\mathbf{C}^{k_{i}}$. Hence, G, N satisfy the hypotheses of the following

Proposition 4.3 Let $E \subset \mathbf{C}^{n}$ be a compact polydisc with $\operatorname{int}(E) \neq \emptyset$. Let $G \in \mathcal{O}\left(E, \mathbf{C}^{k}\right), N \in \mathbf{C}\left[w_{1}, \ldots, w_{k}\right]$ satisfy $\overline{G(E)}^{z}=\mathbf{C}^{k}, N \neq 0$. Then there are an algebraic subset \tilde{V} of some \mathbf{C}^{q} and $\tilde{f} \in \mathcal{O}(E, \tilde{V})$ with $\overline{\tilde{f}}(E)^{z}=\tilde{V}$ such that:
(1) either $\tilde{f}_{D}^{-1}(\operatorname{Sing}(\tilde{V}))_{(n-1)}=\emptyset$ for some open $D \supset E$ or there are an open $D \supset E$ and an irreducible component T of $G_{D}^{-1}\left(\operatorname{Sing}\left(N^{-1}(0)\right)\right)_{(n-1)}$ with $T \cap E \neq$ \emptyset such that $\tilde{f}_{D}^{-1}(\operatorname{Sing}(\tilde{V}))_{(n-1)} \subseteq \overline{G_{D}^{-1}\left(\operatorname{Sing}\left(N^{-1}(0)\right)\right)_{(n-1)} \backslash T}$,
(2) if there is a sequence $\tilde{f}_{\nu} \in \mathcal{O}(E, \tilde{V})$ of Nash maps converging uniformly to \tilde{f}, then there are a sequence $G_{\nu} \in \mathcal{O}\left(E, \mathbf{C}^{k}\right)$ of Nash maps converging uniformly to
G and an open $D^{\prime} \supset E$ such that $\left\{\left(N \circ G_{\nu, D^{\prime}}\right)^{-1}(0)\right\}$ converges to $\left(N \circ G_{D^{\prime}}\right)^{-1}(0)$ in the sense of chains.

By Proposition 4.3, there are an algebraic subset V_{i+1} of some $\mathbf{C}^{q_{i+1}}$ and $F_{i+1} \in \mathcal{O}\left(K, V_{i+1}\right)$ with ${\overline{F_{i+1}(K)}}^{z}=V_{i+1}$ such that:
(3) either $F_{i+1, D}^{-1}\left(\operatorname{Sing}\left(V_{i+1}\right)\right)_{(n-1)}=\emptyset$ for some open $D \supset K$ or there are an open $D \supset K$ and an irreducible component T of $G_{D}^{-1}\left(\operatorname{Sing}\left(N^{-1}(0)\right)\right)_{(n-1)}$ with $T \cap K \neq \emptyset$ such that $F_{i+1, D}^{-1}\left(\operatorname{Sing}\left(V_{i+1}\right)\right)_{(n-1)} \subseteq \overline{G_{D}^{-1}\left(\operatorname{Sing}\left(N^{-1}(0)\right)\right)_{(n-1)} \backslash T}$, (4) if there is a sequence $F_{i+1, \nu} \in \mathcal{O}\left(K, V_{i+1}\right)$ of Nash maps converging uniformly to F_{i+1}, then there are a sequence $G_{\nu} \in \mathcal{O}\left(K, \mathbf{C}^{k_{i}}\right)$ of Nash maps converging uniformly to G and an open $D^{\prime} \supset K$ such that $\left\{\left(N \circ G_{\nu, D^{\prime}}\right)^{-1}(0)\right\}$ converges to $\left(N \circ G_{D^{\prime}}\right)^{-1}(0)$ in the sense of chains.

Now, by (4) and Corollary 3.8 if there is a sequence $F_{i+1, \nu} \in \mathcal{O}\left(K, V_{i+1}\right)$ of Nash maps converging uniformly to F_{i+1}, then there is a sequence $\bar{F}_{\nu} \in$ $\mathcal{O}\left(K, \Phi\left(V_{i}\right)\right)$ of Nash maps converging uniformly to $\Phi \circ F_{i}$, which clearly implies that (x) is satisfied. As for (y), it is an immediate consequence of (0) and (3). Thus the proof is complete.

4.3 Proof of Proposition 4.2

We follow the notation introduced in subsection 3.4. Throughout the proof we fix a nonempty Zariski open subset T of $\mathcal{L}\left(\mathbf{C}^{N}, \mathbf{C}^{m}\right)$ such that

$$
\pi: V \times T \rightarrow \mathbf{C}^{m} \times T, \quad \pi(x, A)=(A(x), A)
$$

is proper and $\left(\Sigma_{\pi}\right) \cap\left(\mathbf{C}^{m} \times\{A\}\right)=\Sigma_{A} \times\{A\}$, for all $A \in T$, where Σ_{π} denotes the discriminant of π. Then by Bertini Theorem (see for instance [16] Corollary 10.9 and Remark 10.9 .2 , pp. 274-275) replacing T by a smaller nonempty Zariski open subset of $\mathcal{L}\left(\mathbf{C}^{N}, \mathbf{C}^{m}\right)$, if necessary, we have

$$
\operatorname{Sing}\left(\Sigma_{\pi}\right) \cap\left(\mathbf{C}^{m} \times\{A\}\right)=\operatorname{Sing}\left(\Sigma_{A}\right) \times\{A\}, \quad \text { for all } A \in T
$$

Therefore, if we denote $s_{\pi}=\pi^{-1}\left(\operatorname{Sing}\left(\Sigma_{\pi}\right)\right)$, then

$$
\begin{equation*}
s_{\pi} \cap(V \times\{A\})=s_{A} \times\{A\}, \quad \text { for all } A \in T \tag{a}
\end{equation*}
$$

Since dimSing $\left(\Sigma_{A}\right) \leq m-2$ and $\left.A\right|_{V}: V \rightarrow \mathbf{C}^{m}$ is proper for $A \in T$, we have

$$
\begin{equation*}
\operatorname{dim}\left(s_{A}\right) \leq m-2, \text { for all } A \in T \tag{b}
\end{equation*}
$$

For a line L in $\mathcal{L}\left(\mathbf{C}^{N}, \mathbf{C}^{m}\right)$ we put

$$
s_{L}:=\overline{\bigcup_{A \in L \cap T} s_{A}}{ }^{z}
$$

We claim that $\operatorname{dim} s_{L} \leq m-1$. Indeed, $\operatorname{dim}\left(s_{\pi} \cap(V \times(L \cap T)) \leq m-1\right.$ by (a) and (b). The image in V of the standard projection $V \times T \rightarrow V$ of $s_{\pi} \cap(V \times(L \cap T))$
is algebraically constructible (cf. e.g. [22], p. 395) and s_{L} is its Zariski closure. This shows the claim (cf. e.g. [22], pp. 393-394). Finally, for each $x \in \operatorname{Reg}(V)$ there is an $A \in T$ such that $A(x) \notin \Sigma_{A}$, and hence the set of such A is Zariski open dense, so $\bigcap_{A \in T} s_{A} \subset \operatorname{Sing}(V)$. Since the Zariski topology is noetherian
(c) there are $k \in \mathbf{N}$ and $A_{1}, \ldots, A_{k} \in T$ such that $s_{A_{1}} \cap \ldots \cap s_{A_{k}} \subset \operatorname{Sing}(V)$.

Now fix an open polydisc $U_{0} \Subset U$ and set $Y_{A}:=\left(\left.f\right|_{U_{0}}\right)^{-1}\left(s_{A} \backslash \operatorname{Sing}(V)\right)$. For $i \geq 1$ consider the following statement
($\left.\mathrm{c}_{i}\right) \quad$ there are $A_{1}, \ldots, A_{i} \in T$ such that $\operatorname{dim}\left(\bigcap_{j=1}^{i} Y_{A_{j}}\right) \leq n-2$.
By (c), $\left(\mathrm{c}_{k}\right)$ holds. We will prove that $\left(\mathrm{c}_{i}\right) \Rightarrow\left(\mathrm{c}_{i-1}\right)$ for $i \geq 2$, thus showing $\left(\mathrm{c}_{1}\right)$ and hence Proposition 4.2.

Thus suppose that there are $A_{1}, \ldots, A_{i} \in T$ such that $\operatorname{dim}\left(\bigcap_{j=1}^{i} Y_{A_{j}}\right) \leq$ $n-2$. Let L be the line in $\mathcal{L}\left(\mathbf{C}^{N}, \mathbf{C}^{m}\right)$ containing A_{i-1} and A_{i} and let

$$
Y_{L}:=\left(\left.f\right|_{U_{0}}\right)^{-1}\left(s_{L} \backslash \operatorname{Sing}(V)\right)
$$

Since $\overline{f(U)}^{z}=V$ and $\operatorname{dim} s_{L} \leq m-1$ we obtain

$$
\begin{equation*}
\operatorname{dim}\left(Y_{L}\right) \leq \operatorname{dim}\left(\left.f\right|_{U_{0}}\right)^{-1}\left(s_{L}\right) \leq n-1 \tag{d}
\end{equation*}
$$

Let \mathcal{Z} denote the finite family of all $(n-1)$-dimensional analytic irreducible components of Y_{L}. For each $Z \in \mathcal{Z}$ the set \mathcal{A}_{Z} of such $A \in L \cap T$ that

$$
\begin{equation*}
Z \subset \bigcap_{j=1}^{i-2} Y_{A_{j}} \cap Y_{A} \tag{e}
\end{equation*}
$$

is Zariski closed, hence either finite or equal $L \cap T$. Indeed, by definitions of Y_{A} and Y_{L}, \mathcal{A}_{Z} equals the set of such $A \in L \cap T$ that $\overline{f(Z)}{ }^{z} \subset \bigcap_{j=1}^{i-2} s_{A_{j}} \cap s_{A}$. But, by (a), $\bigcap_{j=1}^{i-2} s_{A_{j}} \cap s_{A}$ depends algebraically on A.

If \mathcal{A}_{Z} is finite for every $Z \in \mathcal{Z}$ then there is $A \in L \cap T$ such that (e) fails for every $Z \in \mathcal{Z}$ and then $\operatorname{dim} \bigcap_{j=1}^{i-2} Y_{A_{j}} \cap Y_{A} \leq n-2$ that completes the proof. Thus suppose that there is $Z \in \mathcal{Z}$ for which (e) holds for every $A \in L \cap T$. Then

$$
Z \subset \bigcap_{j=1}^{i-2} Y_{A_{j}} \cap Y_{A_{i-1}} \cap Y_{A_{i}}
$$

that contradicts the assumption $\operatorname{dim}\left(\bigcap_{j=1}^{i} Y_{A_{j}}\right) \leq n-2$.

4.4 Proof of Proposition 4.3

Remark 4.4 The letters $v_{i}, u_{i}, R_{i}, \hat{w}_{i}$, used below denote either (tuples of) variables or (tuples of) functions in x. It will be clear from the context whether a given letter denotes a variable or a function. When we write that a tuple of functions satisfies some equation, we mean that the equation holds true if every variable is replaced by the function denoted by the same letter.

If $(N \circ G)^{-1}(0)=\emptyset$ then define $\tilde{V} \subset \mathbf{C}^{k+1}$ by the equation $N\left(w_{1}, \ldots, w_{k}\right)=R_{0}$ and take $\tilde{f}(x)=\left(G(x), R_{0}(x)\right)=(G(x), N(G(x)))$. Clearly, \tilde{V}, \tilde{f} satisfy the requirements.

Let us assume that $(N \circ G)^{-1}(0) \neq \emptyset$. Clearly it is sufficient to prove the proposition in the case where N is reduced which we also assume.

There are an open polydisc $D \supset E$ and a holomorphic extension G_{D} of G. Let A_{1}, \ldots, A_{p} be all irreducible components of $\left(N \circ G_{D}\right)^{-1}(0)$ intersecting E and let $u_{1}, \ldots, u_{p} \in \mathcal{O}(D)$ be minimal defining functions for A_{1}, \ldots, A_{p} respectively. (Recall that $u \in \mathcal{O}(D)$ is called a minimal defining function for A if $A=u^{-1}(0)$ and for every open subset $U \subseteq D$ and $v \in \mathcal{O}(U)$ with $A \cap U \subseteq v^{-1}(0)$, there is $g \in \mathcal{O}(U)$ such that $v=\left.g \cdot u\right|_{U}$. It is well known that the existence of minimal defining functions is a consequence of universal solvability of the second Cousin problem on D which, if D is a domain of holomorphy, is equivalent to $H^{2}(D, \mathbf{Z})=0$, cf. [18.) Then there are $R_{0} \in \mathcal{O}(D)$ and positive integers k_{1}, \ldots, k_{p} such that $N\left(G_{D}(x)\right)=u_{1}(x)^{k_{1}} \cdot \ldots \cdot u_{p}(x)^{k_{p}} R_{0}(x)$ and $A_{l} \nsubseteq R_{0}^{-1}(0)$, for $l=1, \ldots, p$. By Lemma 3.6, $u_{1}, \ldots, u_{p}, R_{0}$ can be chosen in such a way that ${\overline{\left(G, u_{1}, \ldots, u_{p}\right)(E)}}^{z}=\mathbf{C}^{k+p}$.

Set $Z_{s}=G_{D}^{-1}\left(\operatorname{Sing}\left(N^{-1}(0)\right)\right)_{(n-1)}, Z_{r}=\overline{G_{D}^{-1}\left(N^{-1}(0)\right) \backslash Z_{s}}$. If $A_{j} \nsubseteq Z_{s}$ for every j, then, after shrinking D if needed, we obtain $Z_{s}=\emptyset$. Then define $\tilde{V} \subset \mathbf{C}^{k+p+1}$ by the equation $N\left(w_{1}, \ldots, w_{k}\right)=u_{1}^{k_{1}} \cdot \ldots \cdot u_{p}^{k_{p}} R_{0}$ and take $\tilde{f}(x)=$ $\left(G_{D}(x), u_{1}(x), \ldots, u_{p}(x), R_{0}(x)\right)$. Observe that \tilde{V}, \tilde{f} satisfy (2) of Proposition 4.3 because u_{1}, \ldots, u_{p} are minimal defining functions and $R_{0}^{-1}(0) \cap E=\emptyset$. As for (1), we will show that $\tilde{f}^{-1}(\operatorname{Sing}(\tilde{V}))_{(n-1)}=\emptyset$. Suppose that $\tilde{f}(C) \subset \operatorname{Sing}(\tilde{V})$ for some ($n-1$)-dimensional analytic $C \subset D$. Then $\left.N \circ G_{D}\right|_{C}=0=\left.\frac{\partial N}{\partial w_{j}} \circ G_{D}\right|_{C}$, for $j=1, \ldots, k$. But N is reduced so $G_{D}(C) \subset \operatorname{Sing}\left(N^{-1}(0)\right)$. This contradicts the fact that $Z_{s}=\emptyset$.

If $A_{j} \subseteq Z_{s}$ for some j, then we may assume, renumbering the components, that $j=1$. Put $\hat{w}_{1}=\left(w_{1}, \ldots, w_{k}\right), \hat{w}_{1}(x)=G_{D}(x)$. Now the construction, the aim of which is to remove A_{1} from Z_{s}, consists of k_{1} steps.
Step 1. Define $C_{1}={\overline{\hat{w}_{1}\left(A_{1}\right)}}^{z}$. Then $C_{1} \varsubsetneqq \mathbf{C}^{k}$ is irreducible because $C_{1} \subseteq$ $N^{-1}(0)$ and A_{1} is irreducible. By Lemma 3.4 and 22, pp. 402-405, there are $\delta_{1}, q_{1}, \ldots, q_{t_{1}} \in \mathbf{C}\left[\hat{w}_{1}\right]$, where $t_{1}=k-\operatorname{dim} C_{1}$, such that

$$
C_{1} \backslash \delta_{1}^{-1}(0)=\left\{\hat{w}_{1} \in \mathbf{C}^{k} \backslash \delta_{1}^{-1}(0): q_{1}\left(\hat{w}_{1}\right)=\ldots=q_{t_{1}}\left(\hat{w}_{1}\right)=0\right\}
$$

and $\left.\delta_{1}\right|_{C_{1}} \neq 0$, and for every $a \in C_{1} \backslash \delta_{1}^{-1}(0)$ the map $\left(q_{1}, \ldots, q_{t_{1}}\right): \mathbf{C}^{k} \rightarrow$ $\mathbf{C}^{t_{1}}$ is a submersion in some neighborhood of a in \mathbf{C}^{k}. Moreover, $\delta_{1} I\left(C_{1}\right) \subseteq$ $I\left(q_{1}, \ldots, q_{t_{1}}\right)$. Every irreducible component Z of $\overline{\bigcup_{j=1}^{p}\left(u_{j}^{-1}(0)\right) \backslash Z_{s}}$ satisfies $\hat{w}_{1}(Z) \nsubseteq C_{1}$ because $C_{1} \subseteq \operatorname{Sing}\left(N^{-1}(0)\right)$ and $\hat{w}_{1}(Z) \nsubseteq \operatorname{Sing}\left(N^{-1}(0)\right)$. Therefore, in view of Remark 3.5, we may assume that every such component Z satisfies $\hat{w}_{1}(Z) \nsubseteq \delta_{1}^{-1}(0)$.

The inclusion $C_{1} \subseteq N^{-1}(0)$ implies that $\delta_{1} N=\sum_{j=1}^{t_{1}} q_{j} r_{1, j}$, where $r_{1, j} \in$ $\mathbf{C}\left[\hat{w}_{1}\right]$ and the fact that u_{1} is a minimal defining function implies that there is $v_{j} \in \mathcal{O}(D)$ such that $q_{j}\left(\hat{w}_{1}(x)\right)=v_{j}(x) u_{1}(x)$ for $j=1, \ldots, t_{1}$.

Let \hat{v}_{1} denote the tuple $\left(v_{1}, \ldots, v_{t_{1}}\right)$ of t_{1} variables. Define $N_{1} \in \mathbf{C}\left[\hat{w}_{1}, \hat{v}_{1}\right]$ by the formula

$$
N_{1}\left(\hat{w}_{1}, \hat{v}_{1}\right)=\sum_{j=1}^{t_{1}} v_{j} r_{1, j}\left(\hat{w}_{1}\right)
$$

and observe that

$$
N_{1}\left(\hat{w}_{1}(x), \hat{v}_{1}(x)\right)=u_{1}(x)^{k_{1}-1} u_{2}(x)^{k_{2,2}} \cdot \ldots \cdot u_{p}(x)^{k_{p, 2}} R_{1}(x)
$$

where $R_{1} \in \mathcal{O}(D)$ satisfies $A_{l} \nsubseteq R_{1}^{-1}(0)$ for $l=1, \ldots, p$.
Let $V_{1} \subset \mathbf{C}^{k+t_{1}+p+1}$ be the algebraic variety defined by the system of equations (in the variables $\hat{w}_{1}, \hat{v}_{1}, u_{1}, \ldots, u_{p}, R_{1}$):

$$
\begin{align*}
& N_{1}\left(\hat{w}_{1}, \hat{v}_{1}\right)=u_{1}^{k_{1}-1} u_{2}^{k_{2,2}} \ldots u_{p}^{k_{p, 2}} R_{1} \tag{E,1}\\
& q_{j}\left(\hat{w}_{1}\right)=v_{j} u_{1}, \quad \text { for } j=1, \ldots, t_{1}
\end{align*}
$$

Put $\hat{w}_{2}(x)=\left(\hat{w}_{1}(x), \hat{v}_{1}(x)\right)$, and define $g_{1} \in \mathcal{O}(D)$ by

$$
g_{1}(x)=\left(\hat{w}_{2}(x), u_{1}(x), \ldots, u_{p}(x), R_{1}(x)\right)
$$

If $k_{1}=1$ then $\tilde{f}_{D}=g_{1}, \tilde{V}={\overline{g_{1}(E)}}^{z} \subseteq V_{1}$ satisfy the requirements (see Claims 4.5, 4.6). Otherwise we go to Step 2.

Step 2. Define $C_{2}={\overline{\hat{w}_{2}\left(A_{1}\right)}}^{z}$. Then $C_{2} \varsubsetneqq \mathbf{C}^{k+t_{1}}$ is irreducible because $C_{2} \subseteq$ $N_{1}^{-1}(0)$ and A_{1} is irreducible. Then by Lemma 3.4 there are $\delta_{2}, q_{t_{1}+1}, \ldots, q_{t_{2}} \in$ $\mathbf{C}\left[\hat{w}_{2}\right]$, where $t_{2}=k+t_{1}-\operatorname{dim} C_{2}$, such that

$$
C_{2} \backslash \delta_{2}^{-1}(0)=\left\{\hat{w}_{2} \in \mathbf{C}^{k+t_{1}} \backslash \delta_{2}^{-1}(0): q_{1}\left(\hat{w}_{2}\right)=\ldots=q_{t_{2}}\left(\hat{w}_{2}\right)=0\right\}
$$

and $\left.\delta_{2}\right|_{C_{2}} \neq 0$, and for every $a \in C_{2} \backslash \delta_{2}^{-1}(0)$ the map $\left(q_{1}, \ldots, q_{t_{2}}\right): \mathbf{C}^{k+t_{1}} \rightarrow \mathbf{C}^{t_{2}}$ is a submersion in some neighborhood of a in $\mathbf{C}^{k+t_{1}}$. Moreover, $\delta_{2} I\left(C_{2}\right) \subseteq$ $I\left(q_{1}, \ldots, q_{t_{2}}\right)$. Every irreducible component Z of $\overline{\bigcup_{j=1}^{p}\left(u_{j}^{-1}(0)\right) \backslash Z_{s}}$ satisfies $\hat{w}_{2}(Z) \nsubseteq C_{2}$ because $C_{2} \subseteq C_{1} \times \mathbf{C}^{t_{1}}$ and $\hat{w}_{1}(Z) \nsubseteq C_{1}$. Therefore, in view of Remark 3.5, we may assume that every such component Z satisfies $\hat{w}_{2}(Z) \nsubseteq \delta_{2}^{-1}(0)$.

The inclusion $C_{2} \subseteq N_{1}^{-1}(0)$ implies $\delta_{2} N_{1}=\sum_{j=1}^{t_{2}} q_{j} r_{2, j}$, where $r_{2, j} \in \mathbf{C}\left[\hat{w}_{2}\right]$, and the fact that u_{1} is a minimal defining function implies that there is $v_{j} \in$ $\mathcal{O}(D)$ such that $q_{j}\left(\hat{w}_{2}(x)\right)=v_{j}(x) u_{1}(x)$ for $j=t_{1}+1, \ldots, t_{2}$.

Let \hat{v}_{2} denote the tuple $\left(v_{t_{1}+1}, \ldots, v_{t_{2}}\right)$ of $t_{2}-t_{1}$ variables. Define $N_{2} \in$ $\mathbf{C}\left[\hat{w}_{2}, \hat{v}_{2}\right]$ by the formula

$$
N_{2}\left(\hat{w}_{2}, \hat{v}_{2}\right)=\sum_{j=1}^{t_{2}} v_{j} r_{2, j}\left(\hat{w}_{2}\right)
$$

and observe that

$$
N_{2}\left(\hat{w}_{2}(x), \hat{v}_{2}(x)\right)=u_{1}(x)^{k_{1}-2} u_{2}(x)^{k_{2,3}} \cdot \ldots \cdot u_{p}(x)^{k_{p, 3}} R_{2}(x)
$$

where $R_{2} \in \mathcal{O}(D)$ satisfies $A_{l} \nsubseteq R_{2}^{-1}(0)$ for $l=1, \ldots, p$.

Let $V_{2} \subset \mathbf{C}^{k+t_{2}+p+1}$ be the algebraic variety defined by the system of equations (in the variables $\hat{w}_{2}, \hat{v}_{2}, u_{1}, \ldots, u_{p}, R_{2}$):

$$
\begin{equation*}
N_{2}\left(\hat{w}_{2}, \hat{v}_{2}\right)=u_{1}^{k_{1}-2} u_{2}^{k_{2,3}} \ldots u_{p}^{k_{p, 3}} R_{2}, \tag{E,2}
\end{equation*}
$$

$$
(\mathrm{F}, j) \quad q_{j}\left(\hat{w}_{2}\right)=v_{j} u_{1}, \quad \text { for } j=1, \ldots, t_{2}
$$

(For $j=1, \ldots, t_{1}$, the polynomial q_{j} is precisely the one from Step 1 and it does not really depend on \hat{v}_{1}.) Put $\hat{w}_{3}(x)=\left(\hat{w}_{2}(x), \hat{v}_{2}(x)\right)$ and define $g_{2} \in \mathcal{O}(D)$ by

$$
g_{2}(x)=\left(\hat{w}_{3}(x), u_{1}(x), \ldots, u_{p}(x), R_{2}(x)\right)
$$

If $k_{1}=2$ then $\tilde{f}_{D}=g_{2}, \tilde{V}={\overline{g_{2}(E)}}^{z} \subseteq V_{2}$ satisfy the requirements (see Claims 4.5. (4.6). Otherwise we go to Step 3.

Let us describe Step $\mathrm{i}+1$, assuming that $k_{1}>i$ and we have completed Step $\mathrm{i}(\mathrm{i} \geq 2)$ after which there are an algebraic subvariety $V_{i} \subseteq \mathbf{C}^{k+t_{i}+p+1}$ and a holomorphic map $g_{i}: D \rightarrow V_{i}$ such that the following hold:

$$
g_{i}(x)=\left(\hat{w}_{i+1}(x), u_{1}(x), \ldots, u_{p}(x), R_{i}(x)\right)
$$

$\hat{w}_{i+1}(x)=\left(\hat{w}_{i}(x), \hat{v}_{i}(x)\right) \in \mathbf{C}^{k+t_{i}}$, and $\hat{v}_{i}(x)=\left(v_{t_{i-1}+1}(x), \ldots, v_{t_{i}}(x)\right)$. Moreover, $A_{l} \nsubseteq R_{i}^{-1}(0)$ for $l=1, \ldots, p$.

- V_{i} is defined by the equations (in the variables $\hat{w}_{i}, \hat{v}_{i}, u_{1}, \ldots, u_{p}, R_{i}$):

$$
\begin{align*}
& N_{i}\left(\hat{w}_{i}, \hat{v}_{i}\right)=u_{1}^{k_{1}-i} u_{2}^{k_{2, i+1}} \ldots u_{p}^{k_{p, i+1}} R_{i} \tag{E,i}\\
& q_{j}\left(\hat{w}_{i}\right)=v_{j} u_{1}, \text { for } j=1, \ldots, t_{i} \tag{F,j}
\end{align*}
$$

where $0 \neq N_{i} \in \mathbf{C}\left[\hat{w}_{i}, \hat{v}_{i}\right]$, and $q_{j} \in \mathbf{C}\left[\hat{w}_{i}\right]$ for $j=1, \ldots, t_{i}$.

- There is $\delta_{i} \in \mathbf{C}\left[\hat{w}_{i}\right]$ such that for $C_{i}={\overline{\hat{w}_{i}\left(A_{1}\right)}}^{z} \nsubseteq \mathbf{C}^{k+t_{i-1}}$ the following hold:

$$
C_{i} \backslash \delta_{i}^{-1}(0)=\left\{\hat{w}_{i} \in \mathbf{C}^{k+t_{i-1}} \backslash \delta_{i}^{-1}(0): q_{j}\left(\hat{w}_{i}\right)=0 \text { for } j=1, \ldots, t_{i}\right\}
$$

and $\left.\delta_{i}\right|_{C_{i}} \neq 0$, and for every $a \in C_{i} \backslash \delta_{i}^{-1}(0)$ the map $\left(q_{1}, \ldots, q_{t_{i}}\right): \mathbf{C}^{k+t_{i-1}} \rightarrow$ $\mathbf{C}^{t_{i}}$ is a submersion in some neighborhood of a in $\mathbf{C}^{k+t_{i-1}}$, and $\delta_{i} I\left(C_{i}\right) \subseteq$ $I\left(q_{1}, \ldots, q_{t_{i}}\right)$. Furthermore, $\hat{w}_{i}(Z) \nsubseteq C_{i}$ and $\hat{w}_{i}(Z) \nsubseteq \delta_{i}^{-1}(0)$ for every irreducible component Z of $\overline{\bigcup_{j=1}^{p}\left(u_{j}^{-1}(0)\right) \backslash Z_{s}}$.
Step $i+1$. Define $C_{i+1}={\overline{\hat{w}_{i+1}\left(A_{1}\right)}}^{z}$. Then $C_{i+1} \nsubseteq \mathbf{C}^{k+t_{i}}$ is irreducible because $C_{i+1} \subseteq N_{i}^{-1}(0)$ and A_{1} is irreducible. Then by Lemma 3.4 there are $\delta_{i+1}, q_{t_{i}+1}, \ldots, q_{t_{i+1}} \in \mathbf{C}\left[\hat{w}_{i+1}\right]$, where $t_{i+1}=k+t_{i}-\operatorname{dim} C_{i+1}$, such that

$$
C_{i+1} \backslash \delta_{i+1}^{-1}(0)=\left\{\hat{w}_{i+1} \in \mathbf{C}^{k+t_{i}} \backslash \delta_{i+1}^{-1}(0): q_{1}\left(\hat{w}_{i+1}\right)=\ldots=q_{t_{i+1}}\left(\hat{w}_{i+1}\right)=0\right\}
$$

and $\left.\delta_{i+1}\right|_{C_{i+1}} \neq 0$, and for every $a \in C_{i+1} \backslash \delta_{i+1}^{-1}(0)$ the map $\left(q_{1}, \ldots, q_{t_{i+1}}\right)$: $\mathbf{C}^{k+t_{i}} \rightarrow \mathbf{C}^{t_{i+1}}$ is a submersion in some neighborhood of a in $\mathbf{C}^{k+t_{i}}$. Moreover, $\delta_{i+1} I\left(C_{i+1}\right) \subseteq I\left(q_{1}, \ldots, q_{t_{i+1}}\right)$. Every irreducible component Z of the variety $\overline{\bigcup_{j=1}^{p}\left(u_{j}^{-1}(0)\right) \backslash Z_{s}}$ satisfies $\hat{w}_{i+1}(Z) \nsubseteq C_{i+1}$ because $C_{i+1} \subseteq C_{i} \times \mathbf{C}^{t_{i}-t_{i-1}}$ and
$\hat{w}_{i}(Z) \nsubseteq C_{i}$. Therefore, in view of Remark 3.5 we may assume that every such component Z satisfies $\hat{w}_{i+1}(Z) \nsubseteq \delta_{i+1}^{-1}(0)$.

The inclusion $C_{i+1} \subseteq N_{i}^{-1}(0)$ implies $\delta_{i+1} N_{i}=\sum_{j=1}^{t_{i+1}} q_{j} r_{i+1, j}$, where $r_{i+1, j} \in$ $\mathbf{C}\left[\hat{w}_{i+1}\right]$, and the fact that u_{1} is a minimal defining function implies that there is $v_{j} \in \mathcal{O}(D)$ such that $q_{j}\left(\hat{w}_{i+1}(x)\right)=v_{j}(x) u_{1}(x)$ for $j=t_{i}+1, \ldots, t_{i+1}$.

Let \hat{v}_{i+1} denote the tuple $\left(v_{t_{i}+1}, \ldots, v_{t_{i+1}}\right)$ of $t_{i+1}-t_{i}$ variables. Define $N_{i+1} \in \mathbf{C}\left[\hat{w}_{i+1}, \hat{v}_{i+1}\right]$ by the formula

$$
N_{i+1}\left(\hat{w}_{i+1}, \hat{v}_{i+1}\right)=\sum_{j=1}^{t_{i+1}} v_{j} r_{i+1, j}\left(\hat{w}_{i+1}\right)
$$

and observe that

$$
N_{i+1}\left(\hat{w}_{i+1}(x), \hat{v}_{i+1}(x)\right)=u_{1}(x)^{k_{1}-i-1} u_{2}(x)^{k_{2, i+2}} \cdot \ldots u_{p}(x)^{k_{p, i+2}} R_{i+1}(x),
$$

where $R_{i+1} \in \mathcal{O}(D)$ satisfies $A_{l} \nsubseteq R_{i+1}^{-1}(0)$ for $l=1, \ldots, p$.
Let $V_{i+1} \subset \mathbf{C}^{k+t_{i+1}+p+1}$ be the algebraic variety defined by the system of equations (in the variables $\left.\hat{w}_{i+1}, \hat{v}_{i+1}, u_{1}, \ldots, u_{p}, R_{i+1}\right)$:

$$
\begin{align*}
& N_{i+1}\left(\hat{w}_{i+1}, \hat{v}_{i+1}\right)=u_{1}^{k_{1}-i-1} u_{2}^{k_{2, i+2}} \ldots u_{p}^{k_{p, i+2}} R_{i+1}, \tag{E,i+1}\\
& q_{j}\left(\hat{w}_{i+1}\right)=v_{j} u_{1}, \quad \text { for } j=1, \ldots, t_{i+1} .
\end{align*}
$$

(For $j=1, \ldots, t_{i}$, the polynomial q_{j} was defined in previous steps.) Put $\hat{w}_{i+2}(x)=\left(\hat{w}_{i+1}(x), \hat{v}_{i+1}(x)\right)$ and define $g_{i+1} \in \mathcal{O}(D)$ by

$$
g_{i+1}(x)=\left(\hat{w}_{i+2}(x), u_{1}(x), \ldots, u_{p}(x), R_{i+1}(x)\right) .
$$

If $k_{1}=i+1$ then $\tilde{f}_{D}=g_{i+1}, \tilde{V}={\overline{g_{i+1}(E)}}^{z} \subseteq V_{i+1}$ satisfy the requirements (see Claims (4.5, 4.6). Otherwise we go to Step $\mathrm{i}+2$.

Claim 4.5 The following hold:
(1) ${\overline{g_{k_{1}}(E)}}^{z}$ is an irreducible component of $V_{k_{1}}$. In particular,

$$
\left.\operatorname{Sing}\left(\overline{g_{k_{1}}(E)}\right)^{z}\right) \subseteq \operatorname{Sing}\left(V_{k_{1}}\right) .
$$

(2) Every ($n-1$)-dimensional irreducible component S of $g_{k_{1}}^{-1}\left(\operatorname{Sing}\left(V_{k_{1}}\right)\right)$ with $S \cap E \neq \emptyset$, satisfies

$$
S \subseteq \overline{G_{D}^{-1}\left(\operatorname{Sing}\left(N^{-1}(0)\right)\right) \backslash A_{1}} .
$$

In particular, after shrinking D if necessary, we have

$$
g_{k_{1}}^{-1}\left(\operatorname{Sing}\left(V_{k_{1}}\right)\right)_{(n-1)} \subseteq \overline{G_{D}^{-1}\left(\operatorname{Sing}\left(N^{-1}(0)\right)\right) \backslash A_{1}} .
$$

Proof. Recall that $Z_{s}=G_{D}^{-1}\left(\operatorname{Sing}\left(N^{-1}(0)\right)\right)_{(n-1)}$ and $Z_{r}=\overline{G_{D}^{-1}\left(N^{-1}(0)\right) \backslash Z_{s}}$ and suppose that there is an $(n-1)$-dimensional irreducible component S of $g_{k_{1}}^{-1}\left(\operatorname{Sing}\left(V_{k_{1}}\right)\right)$ with $S \cap E \neq \emptyset$ such that $S \nsubseteq \overline{Z_{s} \backslash A_{1}}$. We consider two cases:
(a) $S \subseteq \bigcup_{j=2}^{p} u_{j}^{-1}(0)$,
(b) $S \nsubseteq \bigcup_{j=2}^{p} u_{j}^{-1}(0)$,
to show that there is $a \in S$ such that $g_{k_{1}}(a) \in \operatorname{Reg}\left(V_{k_{1}}\right)$, which contradicts the hypothesis.

Let us begin with (a). The properties of $u_{1}(x), \ldots, u_{p}(x)$ imply that for the generic $a \in S, u_{1}(a) \neq 0$ hence (in a neighborhood of $g_{k_{1}}(a)$) the system $(\mathrm{F}, j), j=1, \ldots, t_{k_{1}}$, depicts the graph of the rational map $\left(u_{1}, \hat{w}_{1}\right) \mapsto$ $\left(v_{1}\left(u_{1}, \hat{w}_{1}\right), \ldots, v_{t_{k_{1}}}\left(u_{1}, \hat{w}_{1}\right)\right)$. Moreover, the definition of N_{i} and the equations $\left(\mathrm{E}, k_{1}\right),(\mathrm{F}, 1), \ldots,\left(\mathrm{F}, t_{k_{1}}\right)$ and $\delta_{i} N_{i-1}=\sum_{j=1}^{t_{i}} q_{j} r_{i, j}$, for $i=1, \ldots, k_{1}$ (where $N_{0}=N$), imply that for the generic $a \in S$, (in a neighborhood of $\left.g_{k_{1}}(a)\right)$ the variety $V_{k_{1}}$ is described by: $(\mathrm{F}, j), j=1, \ldots, t_{k_{1}}$,

$$
\begin{equation*}
N\left(\hat{w}_{1}\right) \prod_{i=1}^{k_{1}} \delta_{i}\left(\hat{w}_{i}\right)=u_{1}^{k_{1}} u_{2}^{k_{2, k_{1}+1}} \cdot \ldots \cdot u_{p}^{k_{p, k_{1}+1}} R_{k_{1}} \tag{z}
\end{equation*}
$$

Now using (F, j) we can eliminate the variables $v_{1}, \ldots, v_{t_{k_{1}}}$ from (z) to obtain

$$
\begin{equation*}
F\left(u_{1}, \hat{w}_{1}\right) N\left(\hat{w}_{1}\right)=u_{2}^{k_{2, k_{1}+1}} \ldots u_{p}^{k_{p, k_{1}+1}} R_{k_{1}} \tag{*}
\end{equation*}
$$

where F is rational, $\left(u_{1}(a), G_{D}(a)\right) \in \operatorname{dom} F$, and $F\left(u_{1}(a), G_{D}(a)\right) \neq 0$ for the generic $a \in S$. (The last property due to $S \subseteq \overline{\bigcup_{j=1}^{p} u_{j}^{-1}(0) \backslash Z_{s}}$ which implies $\hat{w}_{i}(S) \nsubseteq \delta_{i}^{-1}(0)$ for $i=1, \ldots, k_{1}$.)

Let \hat{V} denote the set defined by $\left(^{*}\right)$. To complete the case (a) it is sufficient to show that $\hat{g}(a) \in \operatorname{Reg}(\hat{V})$, for the generic $a \in S$, where \hat{g} is the map consisting of those components of $g_{k_{1}}$ which correspond to the variables appearing in $\left(^{*}\right)$. By assumptions $N\left(G_{D}(a)\right)=0$ for every $a \in S$. Moreover, by the facts that $S \nsubseteq Z_{s}$ and N is reduced, there is $j \in\{1, \ldots, k\}$ such that $\left.\frac{\partial N}{\partial w_{j}}\right|_{G_{D}(S)} \neq 0$ which clearly implies that $\hat{g}(a) \in \operatorname{Reg}(\hat{V})$ for the generic $a \in S$.

Let us turn to (b). Let \tilde{g} be the map consisting of those components of $g_{k_{1}}$ which correspond to the variables appearing in (E, k_{1}) and let \bar{g} be the map consisting of those components of $g_{k_{1}}$ which correspond to the variables appearing in (F, j) for $j=1, \ldots, t_{k_{1}}$. For the generic $a \in S$, the equation (E, k_{1}) depicts, in a neighborhood of $\tilde{g}(a)$, the graph of the rational function $R_{k_{1}}=$ $R_{k_{1}}\left(\hat{w}_{k_{1}}, \hat{v}_{k_{1}}, u_{2}, \ldots, u_{p}\right)$, and the variable $R_{k_{1}}$ does not appear in any of ($\left.\mathrm{F}, j\right)$, $j=1, \ldots, t_{k_{1}}$. Hence if we show that for every a in an open dense subset of S, the system of equations (F, j), for $j=1, \ldots, t_{k_{1}}$, defines a manifold in a neighborhood of $\bar{g}(a)$, then we obtain a contradiction with the assumption that $g_{k_{1}}(S) \subseteq \operatorname{Sing}\left(V_{k_{1}}\right)$.

We have two cases. If $S \nsubseteq u_{1}^{-1}(0)$, there is nothing to prove because each of the considered equations can be divided by u_{1}. If $S \subseteq u_{1}^{-1}(0)$, then for the generic $a \in S$, the map $\left(u_{1}, \hat{w}_{k_{1}}, \hat{v}_{k_{1}}\right) \mapsto\left(q_{1}\left(\hat{w}_{k_{1}}\right)-v_{1} u_{1}, \ldots, q_{t_{k_{1}}}\left(\hat{w}_{k_{1}}\right)-v_{t_{k_{1}}} u_{1}\right)$ is a submersion in a neighborhood of $\bar{g}(a)$. This is because $\left(q_{1}, \ldots, q_{t_{k_{1}}}\right)$ is a submersion in a neighborhood of $\hat{w}_{k_{1}}(a)$, and $u_{1}(a)=q_{j}\left(\hat{w}_{k_{1}}(a)\right)=0$, for $j=$ $1, \ldots, t_{k_{1}}$.

It remains to check that ${\overline{g_{k_{1}}(E)}}^{z}$ is an irreducible component of $V_{k_{1}}$. We know that $\operatorname{dim}\left({\overline{g_{k_{1}}(E)}}^{z}\right) \geq k+p$ because u_{1}, \ldots, u_{p} has been chosen in such a way that $\overline{\left(G, u_{1}, \ldots, u_{p}\right)(E)}=\mathbf{C}^{k+p}$. So it is sufficient to check that there
is $a \in E$ such that $V_{k_{1}}$ is a $(k+p)$-dimensional manifold in some neighborhood of $g_{k_{1}}(a)$. But this holds for $a \in E$ with $u_{1}(a) \cdot \ldots \cdot u_{p}(a) \neq 0$. Indeed, then in a neighborhood of $g_{k_{1}}(a), V_{k_{1}}$ is the graph of the rational map $\left(u_{1}, \ldots, u_{p}, w_{1}, \ldots, w_{k}\right) \mapsto\left(v_{1}, \ldots, v_{t_{k_{1}}}, R_{k_{1}}\right)$

Claim 4.6 If there is a sequence $g_{k_{1}, \nu} \in \mathcal{O}\left(E, V_{k_{1}}\right)$ of Nash maps converging uniformly to $\left.g_{k_{1}}\right|_{E}$ then there are a sequence $G_{\nu} \in \mathcal{O}\left(E, \mathbf{C}^{k}\right)$ of Nash maps converging uniformly to G and an open neighborhood D^{\prime} of E such that $\{(N \circ$ $\left.\left.G_{\nu, D^{\prime}}\right)^{-1}(0)\right\}$ converges to $\left(N \circ G_{D^{\prime}}\right)^{-1}(0)$ in the sense of chains.

Proof. Let $g_{k_{1}, \nu, D^{\prime}} \in \mathcal{O}\left(D^{\prime}, V_{k_{1}}\right)$ be a sequence of Nash maps converging uniformly to $g_{k_{1}, D^{\prime}}$, where D^{\prime} is an open neighborhood of E in D such that $\left(N \circ G_{D^{\prime}}\right)^{-1}(0)=\left(A_{1} \cup \ldots \cup A_{p}\right) \cap D^{\prime}$, for A_{1}, \ldots, A_{p} introduced in the proof of Proposition 4.3.

The map $g_{k_{1}, \nu, D^{\prime}}$ is of the form:

$$
g_{k_{1}, \nu, D^{\prime}}(x)=\left(\hat{w}_{k_{1}+1, \nu}(x), u_{1, \nu}(x), \ldots, u_{p, \nu}(x), R_{k_{1}, \nu}(x)\right),
$$

where $\hat{w}_{i+1, \nu}(x)=\left(\hat{w}_{i, \nu}(x), \hat{v}_{i, \nu}(x)\right), \hat{v}_{i, \nu}(x)=\left(v_{t_{i-1}+1, \nu}(x), \ldots, v_{t_{i}, \nu}(x)\right)$, for $i=1, \ldots, k_{1}$, where $t_{0}=0$. We check that $G_{\nu, D^{\prime}}(x)=\hat{w}_{1, \nu}(x)$ satisfies the requirements.

Clearly, it is sufficient to show that for every $l \in\{1, \ldots, p\}$ and for the generic point $a \in A_{l} \cap D^{\prime}$ there is a neighborhood U of a in D^{\prime} such that $\left\{\left(N \circ G_{\nu, D^{\prime}}\right)^{-1}(0) \cap U\right\}$ converges to $A_{l} \cap U$ in the sense of chains. Fix $l \in$ $\{1, \ldots, p\}$.

The components of $g_{k_{1}, \nu, D^{\prime}}$ satisfy the equation (E, k_{1}) therefore
$\left(\mathrm{E}, k_{1}, \nu\right) \quad N_{k_{1}}\left(\hat{w}_{k_{1}+1, \nu}(x)\right)=u_{2, \nu}(x)^{k_{2, k_{1}+1}} \ldots u_{p, \nu}(x)^{k_{p, k_{1}+1}} R_{k_{1}, \nu}(x)$,
for every $x \in D^{\prime}, \nu \in \mathbf{N}$.
By the definition of N_{i+1} and by the fact that the components of $g_{k_{1}, \nu, D^{\prime}}$ satisfy the equations $\delta_{i+1} N_{i}=\sum_{j=1}^{t_{i+1}} q_{j} r_{i+1, j},(F, 1), \ldots,\left(F, t_{k_{1}}\right)$, we have

$$
N_{i+1}\left(\hat{w}_{i+2, \nu}(x)\right) u_{1, \nu}(x)=\delta_{i+1}\left(\hat{w}_{i+1, \nu}(x)\right) N_{i}\left(\hat{w}_{i+1, \nu}(x)\right),
$$

for $i=0, \ldots, k_{1}-1, x \in D^{\prime}$, where $N_{0}\left(\hat{w}_{1, \nu}(x)\right)=N\left(\hat{w}_{1, \nu}(x)\right)$. This implies that

$$
N_{k_{1}}\left(\hat{w}_{k_{1}+1, \nu}(x)\right) u_{1, \nu}(x)^{k_{1}}=\tilde{T}_{\nu}(x) N\left(\hat{w}_{1, \nu}(x)\right),
$$

for some $\tilde{T}_{\nu} \in \mathcal{O}\left(D^{\prime}\right)$, which combined with (E, $\left.k_{1}, \nu\right)$ gives

$$
\tilde{T}_{\nu}(x) N\left(\hat{w}_{1, \nu}(x)\right)=u_{1, \nu}(x)^{k_{1}} u_{2, \nu}(x)^{k_{2, k_{1}+1}} \ldots u_{p, \nu}(x)^{k_{p, k_{1}+1}} R_{k_{1}, \nu}(x)
$$

for every $x \in D^{\prime}, \nu \in \mathbf{N}$.
The facts that $A_{l} \subseteq \overline{u_{l}^{-1}(0) \backslash R_{k_{1}}^{-1}(0)}$ and that $\operatorname{dim}\left(u_{l}^{-1}(0) \cap u_{t}^{-1}(0)\right)<n-1$, for every $t \neq l$, clearly imply that for the generic $a \in A_{l} \cap D^{\prime}$ there is an open neighborhood $U \Subset D^{\prime}$ such that $\left(\bigcup_{j \neq l} u_{j}^{-1}(0) \cup R_{k_{1}}^{-1}(0)\right) \cap \bar{U}=\emptyset$. Consequently, for sufficiently large ν, by (α), we have

$$
\left(\tilde{T}_{\nu}(x) N\left(\hat{w}_{1, \nu}(x)\right)\right)^{-1}(0) \cap U=u_{l, \nu}^{-1}(0) \cap U .
$$

Now by the fact that u_{l} is a minimal defining function, $\left\{u_{l, \nu}^{-1}(0) \cap U\right\}$ converges to $A_{l} \cap U$ in the sense of chains. On the other hand, $\left\{\left(N\left(\hat{w}_{1, \nu}(x)\right)\right)^{-1}(0) \cap U\right\}$ converges to $A_{l} \cap U$ locally uniformly and, in view of the last equation, for ν large enough, $\left(N\left(\hat{w}_{1, \nu}(x)\right)\right)^{-1}(0) \cap U \subseteq u_{l, \nu}^{-1}(0) \cap U$ so $\left\{\left(N\left(\hat{w}_{1, \nu}(x)\right)\right)^{-1}(0) \cap U\right\}$ converges to $A_{l} \cap U$ in the sense of chains.

Once we have proved Claims 4.5 4.6, the proof of Proposition 4.3 is also completed.■

5 Generalization of Theorem 2.1

Let $f: U \rightarrow V$ be as in Theorem 2.1. As already mentioned, without loss of generality, we can additionally assume in Theorem [2.1 that $\overline{f(U)}^{z}=V$ and $V \subset \mathbf{C}^{m} \times \mathbf{C}^{k}$ has proper projection onto \mathbf{C}^{m} where $m=\operatorname{dim}(V)$. Write $f=(\tilde{f}, \hat{f})$, where \tilde{f}, \hat{f} denote the first m and the last k components of f, respectively. Then $\tilde{f}(U) \nsubseteq \Sigma_{V}$.

Let $\mathcal{V}(\tilde{f})$ denote the pull-back of V by \tilde{f}, i. e. $\mathcal{V}(\tilde{f})=\left(\tilde{f} \times \operatorname{id}_{\mathbf{C}^{\mathrm{k}}}\right)^{-1}(V)$. Then the fact that $f(U) \subseteq V$ can be equivalently stated as $\operatorname{graph}(\hat{f}) \subset \mathcal{V}(\tilde{f})$. Under these assumptions Theorem 2.1 can be reformulated as follows.
Theorem 2.1' For every open $\tilde{U} \Subset U$ there are a sequence $\tilde{f}_{\nu}: \tilde{U} \rightarrow \mathbf{C}^{m}$ of Nash maps converging uniformly to $\left.\tilde{f}\right|_{\tilde{U}}$ and a sequence M_{ν} of Nash sets of pure dimension n converging to $\operatorname{graph}(\hat{f}) \cap\left(\tilde{U} \times \mathbf{C}^{k}\right)$ in the sense of chains such that $M_{\nu} \subset \mathcal{V}\left(\tilde{f}_{\nu}\right)$ for every ν.
Indeed, in this case, for ν large, (shrinking \tilde{U} slightly we obtain that) M_{ν} is the graph of a map that defines the second part \hat{f}_{ν} of $f_{\nu}=\left(\tilde{f}_{\nu}, \hat{f}_{\nu}\right)$, cf. the proof of Corollary 3.8. But the method of the proof gives that \tilde{f} can be approximated by Nash maps \tilde{f}_{ν} in such a way that all purely n-dimensional analytic sets (in particular all graphs of maps holomorphic on U) contained in $\mathcal{V}(\tilde{f})$ can be simultaneously approximated in the sense of chains by Nash sets contained in $\mathcal{V}\left(\tilde{f}_{\nu}\right)$. More precisely, the following generalization of Theorem 2.1' holds.

Theorem 5.1 Let U be an open polydisc in \mathbf{C}^{n} and let $V \subset \mathbf{C}^{m} \times \mathbf{C}^{k}$ be an algebraic variety of pure dimension m with proper projection onto \mathbf{C}^{m}. Let $\tilde{f}: U \rightarrow \mathbf{C}^{m}$ be a holomorphic map such that $\tilde{f}(U) \nsubseteq \Sigma_{V}$. Then for every open $\tilde{U} \Subset U$ there is a sequence $\tilde{f}_{\nu}: \tilde{U} \rightarrow \mathbf{C}^{m}$ of Nash maps converging uniformly to $\left.\tilde{f}\right|_{\tilde{U}}$ such that for every analytic set $M \subset \mathcal{V}(\tilde{f})$ of pure dimension n there is a sequence M_{ν} of Nash sets of pure dimension n converging to $M \cap\left(\tilde{U} \times \mathbf{C}^{k}\right)$ in the sense of chains such that $M_{\nu} \subset \mathcal{V}\left(\tilde{f}_{\nu}\right)$ for every ν.

Proof. Let N_{1}, \ldots, N_{s} be polynomials in m complex variables such that $\Sigma_{V}=$ $\left\{N_{1}=\ldots=N_{s}=0\right\}$. Shrinking U if needed we can assume that $\tilde{f}^{-1}\left(\Sigma_{V}\right)$ has finitely many, say $p,(n-1)$-dimensional irreducible components. Denote these components by C_{1}, \ldots, C_{p}. Let u_{1}, \ldots, u_{p} be minimal defining functions for C_{1}, \ldots, C_{p}, respectively. Then there are $R_{j} \in \mathcal{O}(U)$ and $k_{j, i} \in \mathbf{N}$, for
$j=1, \ldots, s$ and $i=1, \ldots, p$, such that $N_{j} \circ \tilde{f}=R_{j} u_{1}^{k_{j, 1}} \cdot \ldots \cdot u_{p}^{k_{j, p}}$, and every R_{j} does not vanish identically on any C_{i}.

Fix open \tilde{U}, \hat{U} with $\tilde{U} \Subset \hat{U} \Subset U$. By Theorem 2.1. there are Nash maps $\tilde{f}_{\nu}, R_{j, \nu}, u_{i, \nu}$ approximating \tilde{f}, R_{j}, u_{i}, respectively, on \hat{U} and such that $N_{j} \circ \tilde{f}_{\nu}=$ $R_{j, \nu} u_{1, \nu}^{k_{j, 1}} \cdot \ldots \cdot u_{p, \nu}^{k_{j, p}}$, for $j=1, \ldots, s$. Now $X=\mathcal{V}(\tilde{f}) \cap\left(\hat{U} \times \mathbf{C}^{k}\right), X_{\nu}=\mathcal{V}\left(\tilde{f}_{\nu}\right)$ satisfy the assumptions of Theorem 3.7. Application of this theorem completes the proof

Acknowledgements. We wish to thank Professor Wojciech Kucharz for reading an early version of this manuscript and for helpful comments. We also thank Dr Jakub Byszewski for a helpful discussion.

References

[1] André, M.: Cinq exposés sur la désingularization, manuscript, École Polytechnique Fédérale de Lausanne, 1992
[2] Artin, M.: On the solutions of analytic equations, Invent. Math. 5, 277-291 (1968)
[3] Artin, M.: Algebraic approximation of structures over complete local rings, Publ. I.H.E.S. 36, 23-58 (1969)
[4] Barlet, D.: Espace analytique réduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finie, Fonctions de plusieurs variables complexes, II, Sém. François Norguet, 1974-1975, Lecture Notes in Math., 482, pp. 1-158, Springer, Berlin 1975
[5] Bilski, M.: Approximation of analytic sets with proper projection by algebraic sets, Constr. Approx. 35, 273-291 (2012).
[6] Bilski, M.: Algebraic approximation of analytic sets and mappings, J. Math. Pures Appl. 90, 312-327 (2008)
[7] Bochnak, J., Kucharz, W.: Approximation of holomorphic maps by algebraic morphisms, Ann. Polon. Math. 80, 85-92 (2003)
[8] Chirka, E.: Complex analytic sets. Kluwer Academic Publ., Dordrecht-BostonLondon 1989
[9] Demailly, J.-P., Lempert, L., Shiffman, B.: Algebraic approximation of holomorphic maps from Stein domains to projective manifolds, Duke Math. J. 76, 333-363 (1994)
[10] van den Dries, L.: A specialization theorem for analytic functions on compact sets, Nederl. Akad. Wetensch. Indag. Math. 44, 391-396 (1982)
[11] Drinovec Drnovšek, B., Forstnerič, F.: Strongly pseudoconvex domains as subvarieties of complex manifolds. Amer. J. Math. 132, 331-360 (2010)
[12] Drinovec Drnovšek, B., Forstnerič, F.: Holomorphic curves in complex spaces. Duke Math. J. 139, 203-253 (2007)
[13] Fatabbi, G., Tancredi, A.: On the factoriality of some rings of complex Nash functions. Bull. Sci. Math. 126, 61-70 (2002)
[14] Forstnerič, F.: Holomorphic flexibility properties of complex manifolds, Amer. J. Math. 128, 239-270 (2006)
[15] Frisch, J.: Points de platitude d'un morphisme d'espaces analytiques complexes. Invent. Math. 4, 118-138 (1967)
[16] Hartshorne, R.: Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York, 1977
[17] Hauser, H., Rond, G.: Artin Approximation. Preprint: homepage.univie.ac.at/herwig.hauser/
[18] Hörmander, L.: An introduction to complex analysis in several variables. NorthHolland, Amsterdam-New York-Oxford-Tokyo 1990
[19] Kucharz, W.: The Runge approximation problem for holomorphic maps into Grassmannians, Math. Z. 218, 343-348 (1995)
[20] Lang, S.: Algebra. Revised third edition. Graduate Texts in Mathematics, 211. Springer-Verlag, New York, 2002
[21] Lempert, L.: Algebraic approximations in analytic geometry, Invent. Math. 121, 335-354 (1995)
[22] Łojasiewicz, S.: Introduction to complex analytic geometry. Birkhäuser, Basel 1991
[23] Marinescu, G., Yeganefar, N.: Embeddability of some strongly pseudoconvex $C R$ manifolds, Trans. Amer. Math. Soc. 359, 4757-4771 (2007)
[24] Mir, N.: Algebraic approximation in CR geometry. J. Math. Pures Appl. 98, 72-88 (2012)
[25] Napier, T., Ramachandran, M.: The $L^{2} \bar{\partial}-m e t h o d$, weak Lefschetz theorems, and the topology of Kähler manifolds, J. Amer. Math. Soc. 11, 375-396 (1998)
[26] Ogoma, T.: General Néron desingularization based on the idea of Popescu. J. of Algebra 167, 57-84 (1994)
[27] Popescu, D.: General Néron desingularization. Nagoya Math. J. 100, 97-126 (1985)
[28] Popescu, D.: General Néron desingularization and approximation. Nagoya Math. J. 104, 85-115 (1986)
[29] Spivakovsky, M.: A new proof of D. Popescu's theorem on smoothing of ring homomorphisms. J. Amer. Math. Soc., 12, 381-444 (1999)
[30] Swan, R.: Néron-Popescu desingularization. Algebra and geometry (Taipei, 1995), 135-192, Lect. Algebra Geom., 2, Internat. Press, Cambridge, MA, 1998
[31] Tancredi, A., Tognoli, A.: On the relative Nash approximation of analytic maps, Rev. Mat. Complut. 11, 185-201 (1998)
[32] Tworzewski, P.: Intersections of analytic sets with linear subspaces, Ann. Sc. Norm. Super. Pisa 17, 227-271 (1990)
[33] Tworzewski, P.: Intersection theory in complex analytic geometry, Ann. Polon. Math., 62.2 177-191 (1995)
[34] Tworzewski, P., Winiarski, T.: Continuity of intersection of analytic sets, Ann. Polon. Math. 42, 387-393 (1983)

[^0]: ${ }^{1}$ Department of Mathematics and Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, Poland; e-mail: marcin.bilski@im.uj.edu.pl
 ${ }^{2}$ Laboratoire J.-A. Dieudonné, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 02, France; e-mail: adam.parusinski@unice.fr

 The authors were partially supported by ANR project STAAVF (ANR-2011 BS01 009);
 M. Bilski was partially supported by the NCN grant 2011/01/B/ST1/03875.

