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PRYMS OF NON-CYCLIC TRIPLE COVERINGS AND LOG

CANONICAL MODELS OF THE SPIN MODULI SPACE OF GENUS 2

HERBERT LANGE AND ANGELA ORTEGA

Abstract. We show that the moduli spaces of non-cyclic triple covers of genus 2 curves
and that of even spin curves of genus 2 are birationally isomorphic via the Prym map.
We describe the log canonical models of the moduli space of S+

2 and use this to extend
the above birational map.

1. Introduction

In recent years, the log minimal model program has been carried out completely for
the moduli space M g in low genera and in many cases these models have also a modular
meaning. For instance, in [16] the Deligne-Mumford compactification and the GIT com-
pactification of M2 are realized as log minimal models of M 2. In this paper we study the

log canonical models of the moduli space S
+

2 of even spin curves of genus 2. Our initial
motivation was to find out if the birational morphism, induced by the Prym map, between
the moduli space Rnc

2,3 of non-cyclic étale triple coverings of genus 2 curves and S+
2 ([22],

[23]) could be related to a new modular compactification of the spin moduli space. In
order to state our theorems let us recall some previous results.
Let f : Y → X be a non-cyclic étale 3-fold covering of a smooth projective curve X

of genus 2. Its Prym variety P (f) := (KerNm f)0 is a Jacobian surface with principal
polarization Ξ, giving rise to a map Pr : Rnc

2,3 → J2 into the moduli space of canonically
polarized Jacobian surfaces. In [22] we showed that this map is finite of degree 10 onto
its image which is an open set in J2. We also proved that the Prym map is not surjective
and determined its image explicitly.
In [23] we extended this map to a proper map which is surjective onto the moduli

space A2 of principally polarized abelian surfaces. To be more precise, we denote by
S3 := 〈σ, τ | σ3 = τ 2 = (στ)2 = 1〉 the symmetric group of order 6 and let S3M 2 denote
the moduli space of admissible S3-covers of stable curves of genus 2, as defined in [1]. We
consider the following open subspace

S3M̃2 :=

{
[h : Z → X ] ∈ S3M 2

∣∣∣∣
pa(Z) = 7 and for any node z ∈ Z,
the stabilizer Stab(z) is of order 3

}
.

For all [h : Z → X ] ∈ S3M̃2 the Prym variety of f : Y := Z/〈τ〉 → X is a principally
polarized abelian surface, independent of the involution τ ∈ S3. This defines a Prym

map Pr : S3M̃2 → A2 which is proper, surjective and finite of degree 10.
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The description of the fibres of the Prym map suggests that there is a close relation

between the space S3M̃2 and the moduli space S+
2 of even spin curves of genus 2. We

define the following open subspace

S3M̂2 :=
{
[h : Z → X ] ∈ S3M̃2

∣∣ X irreducible
}
.

Then our first result is

Theorem 1. There is a canonical isomorphism α : S3M̂2 → S+
2 .

This is true even on the level of moduli stacks (see Theorem 3.1). We then consider
the question whether one can extend this isomorphism to a regular map defined on the

whole of S3M̃2 with values in some compactification of S+
2 . For this we work out the log

canonical models of the compactification S
+

2 of S+
2 , as defined by Cornalba in [8]. We

denote by S
+

2 (respectively S+
2 ) the moduli stack corresponding to S

+

2 (respectively S+
2 )

and by δ := S
+

2 \ S+
2 the boundary divisor. The log canonical models of S

+

2 with respect
to K

S
+
2
+ ǫδ are defined by

S
+

2 (ǫ) := Proj

(⊕

n≥0

Γ(S
+

2 , n(KS
+
2
+ ǫδ))

)
,

for ǫ ∈ Q ∩ [0, 1]. The fact that sections of invertible sheaves on S
+

2 are pullbacks of

sections of the corresponding sheaves on S
+

2 implies that the log canonical model of S
+

2

with respect to K
S
+
2
+ ǫδ can be identified with the log canonical model S

+

2 (ǫ) of S
+

2 with

respect to the corresponding divisor in S
+

2 (see Corollary 6.4).
The following theorem (see the end of Sections 6 and 9) is analogous to the correspond-

ing result of Hassett’s for M 2 (see [16, Theorem 4.10]).

Theorem 2. Consider the log canonical model of S
+

2 with respect to K
S
+
2
+ ǫδ, that

is, the log canonical model of S
+

2 with respect to the corresponding divisor in S
+

2 .

(1) For ǫ > 57
25

we have S
+

2 (ǫ) ≃ S
+

2 .

(2) For 49
25

< ǫ ≤ 57
25

we have S
+

2 (ǫ) ≃ S+
2

inv
, where S+

2

inv
denotes the invariant

theoretical compactification (for the definition see Section 7).
(3) For ǫ = 49

25
we get a point; the log canonical divisor fails to be effective for ǫ < 49

25
.

The invariant theoretical compactification of S+
2 is the Proj of certain ring of invariants

arising from the parametrization of binary sextic forms together with a partition of the
roots into two sets of three elements. Concerning the extension of the map α to the whole

of S3M̃2 we finally obtain (see Propositions 4.2 and 10.1):

Theorem 3.

(1) The construction defining the isomorphism α : S3M̂2 → S+
2 does not extend to

S3M̃2.
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(2) The isomorphism α : S3M̂2 → S+
2 extends to a regular map S3M̃2 → S+

2

inv
.

The paper is organized as follows. In Section 2 we recall the definitions of the main
moduli stacks and spaces which are used in the sequel. In Section 2 the proof of Theorem
1 is given. In Section 4 we show Theorem 3 (1). In Section 5 we compute the nef cone

of S
+

2 and apply this in Section 6 to prove Theorem 2 (1). In Section 7 and 8 we study

the invariant-theoretical compactification S+
2

inv
and the canonical map S

+

2 → S+
2

inv
and

use this in Section 9 to give a proof of Theorem 2 (2) and 2 (3). Finally, in Section 10 we
prove Theorem 3 (2).

We work over an algebrically closed field k of characteristic zero. Moduli spaces are
denoted by capital bold letters, the corresponding moduli stacks by the corresponding
cursive letters. Divisors on a coarse moduli space are denoted by capital Latin letters,
divisors on a moduli stack by small Greek letters. We denote a divisor and its class in
the rational Picard group by the same letter.

We thank I. Dolgachev for the hint leading to Remark 7.2. The second author is
thankful to G. Farkas for helpful and stimulating discussions.

2. The moduli stacks

2.1. The stacks of S3-coverings of genus-2 curves. Let S3M2 denote the moduli
stack of étale Galois covers of smooth curves of genus 2 with Galois group the symmetric
group S3 of order 6 ([2, Theorem 17.2.11]) and its compactification S3M2 of S3M2 by
admissible S3-covers as constructed in [1] (see also [2, Chapter 17]).

We consider the following open substack S3M̂2 of S3M2 associated to the functor
F : Sch/C → Ens defined by

S 7→

{
[h : Z → X over S] ∈ S3M2

∣∣∣∣
for all s ∈ S, pa(Zs) = 7,Xs is irreducible,
for any node z ∈ Zs, Stab(z) is of order 3

}
.

Note that S3M̂2 is a smooth Deligne-Mumford stack of dimension 3. The functor F

admits a coarse moduli space denoted by S3M̂2.
According to [23] the stack admits a stratification

S3M̂2 = S3M2 ⊔ R2 ⊔R1.

Here R2 (respectively R1) denotes the locally closed substack of S3M̂2 where Xs admits
exactly one node (respectively two nodes) for all s. The index refers to the dimension

of the substack. Similarly, there is a stratification S3M̂2 = S3M2 ⊔ R2 ⊔ R1 for the
corresponding moduli spaces.

2.2. The stacks of genus-2 spin curves. Recall that a smooth spin curve of genus 2
is a pair (C, κ) with C a smooth curve of genus 2 and κ a theta characteristic on C, i.e.
a line bundle on C whose square is the canonical bundle. This definition extends in the
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obvious way to families of spin curves. Let S2 denote the moduli stack of smooth spin
curves of genus 2. It is associated to the functor G : Sch/C → Ens defined by

S 7→

{
pairs (C → S, κS)

∣∣∣∣
C → S is a smooth curve of genus 2 over S,
κS is a theta characteristic of C over S

}
.

The moduli stack S2 is a smooth Deligne-Mumford stack which decomposes into two
irreducible components S+

2 and S−
2 depending on the parity of the theta characteristic.

Thus a spin curve (C, κ) is in S+
2 (respectively S−

2 ) if and only if h0(κ) is an even (respec-
tively odd) number. Moreover, the forgetful map S2 → M2 onto the moduli stack M2 of
(smooth) curves of genus 2 is of degree 10 over S+

2 (respectively 6 over S−
2 ). The functor

G admits a coarse moduli space denoted by S2. Clearly we have S2 = S+
2 ⊔ S−

2 .

We recall now the compactification S2 of S2 constructed by Cornalba in [8] (in fact,
the construction works for arbitrary genus, we only need the genus-2 case). A rational

component E ⊂ X of a nodal curve X is called exceptional if #(E ∩ X \E) = 2. The

curve X is called quasi-stable if #(E ∩ X \ E) ≥ 2 for any smooth rational component
E ⊂ X and any two exceptional components are disjoint. A (generalized) spin curve
of genus 2 is a triple (X, κ, β), where X is a quasi-stable curve of (arithmetic) genus 2,
κ ∈ Pic1(X) is a line bundle such that κE = OE(1) for every exceptional component
E ⊂ X , and β : κ⊗2 → ωX is a sheaf homomorphism which is generically non-zero along
each non-exceptional component of X .
When X is smooth, κ is an ordinary theta characteristic and β is an isomorphism.

A family of spin curves over a base scheme S consists of a triple (X
f
→ S, η, β) where

f : X → S is a flat family of quasi-stable curves, η ∈ Pic(X ) is a line bundle and
β : η⊗2 → ωX is a sheaf homomorphism, such that at every point s ∈ S the restriction
(Xs, ηs, βs) is a spin curve of genus 2. The compactification S2 is the stack associated to

the functor G : S 7→ {(X
f
→ S, η, β)}. Again one has the obvious decomposition

S2 = S
+

2 ⊔ S
−

2

depending on the parity of h0(C, κ).

Let us describe the boundary components of S
+

2 respectively S
+

2 . Denote by π : S
+

2 →
M 2 the forgetful map [X, κ, β] 7→ [C], where C is the stable model of X is obtained from
X by contracting all the exceptional components.
If [X, κ, β] ∈ π−1([X1∪yX2]) where X1 and X2 are elliptic curves intersecting transver-

sally in a point y, then necessarily

X := X1 ∪y1 E ∪y2 X2,

where E is an exceptional component such that X1 ∩ E = {y1} and X2 ∩ E = {y2} with
π(yi) = y for i = 1 and 2. Moreover,

κ = (κX1 , κX2, κE = OE(1)) ∈ Pic1(X),

with theta characteristics κXi
on Xi for i = 1 and 2. The condition h0(X, κ) ≡ 0 mod 2

implies that κX1 and κX2 have the same parity. We denote

A1 := closure of

{
(X, κ, β) ∈ S

+

2

∣∣∣∣
X and κ as above with h0(κXi

) = 0 for i = 1, 2
and β = the obvious map (i.e. zero on E)

}



5

and

B1 := closure of

{
(X, κ, β) ∈ S

+

2

∣∣∣∣
X and κ as above with κXi

= OXi
for i = 1, 2

and β = the obvious map (i.e. zero on E)

}
.

If [X, κ, β] ∈ π−1([C]) with C an irreducible one-nodal curve, ν : C̃ → C denotes the
normalization of C, and

C = C̃/y1 ∼ y2

where y1 and y2 map to the node y of C, then there are two possibilities, namely

X = C or X = C̃ ∪{y1,y2} E

with E an exceptional component. In the first case let κ
C̃
:= ν∗(κ). Then κ⊗2

C̃
= K

C̃
(y1+

y2) and there is only one choice of gluing the fibres κC̃(y1) and κC̃(y2) to get κ such that
h0(X, κ) ≡ 0 mod 2. We denote

A0 := closure of
{
(X, κ, β) ∈ S

+

2

∣∣ X = C, κ as above and β the obvious map
}
.

If [X, κ, β] ∈ π−1([C]) with X = C̃∪{y1,y2}E, then κC̃ := κ⊗O
C̃
is a theta characteristic

on C̃ and κ|E = OE(1). Since H
0(X,ωX) ≃ H0(C̃, ωC̃), it follows that κC̃ is an even theta

characteristic on the elliptic curve C̃. We denote

B0 := closure of

{
(X, κ, β) ∈ S

+

2

∣∣∣∣
X = C̃ ∪{y1,y2} E, κ as above

and β the obvious map

}
.

We denote by α0, β0, α1, β1 the corresponding divisors of the stack S
+

2 . All in all, we have

S
+

2 = S+
2 ⊔ A0 ⊔ B0 ⊔A1 ⊔B1 and S

+

2 = S+
2 ⊔ α0 ⊔ β0 ⊔ α1 ⊔ β1.

3. The isomorphism S3M̂2 → S+
2

Let J2 be the open substack of the stack of canonically polarized Jacobians of smooth
curves of genus 2. In [23] we showed that the Prym map

Pr : S3M̂2 → J2

is a finite surjective morphism of degree 10. The description of the fibres of Pr hints

that there is a relation between the spaces S3M̂2 and S
+

2 . Note that the forgetful map
S+
2 → M2 is also of degree 10. The idea is, to associate to each admissible non-cyclic

S3-covering [Z → X ] ∈ S3M̂2 the theta divisor of the corresponding Prym variety P (f)
of the induced covering f : Y = Z/〈τ〉 → X , which in this case is a smooth genus 2
curve C, together with the theta characteristic arising from a naturally defined 6:1 map
C → P1.

Theorem 3.1. There is a canonical isomorphism of stacks

α : S3M̂2 → S+
2 .
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Proof. Let [h : Z → X over S] ∈ S3M̂2. So the group S3 = 〈σ, τ〉 acts on Z over S. The
quotient Y := Z/〈τ〉 is an admissible cover of degree 3 of X over S. Let

f : Y → X

denote the induced morphism. For any closed point s ∈ S we associated in [22] and [23]
a smooth curve C(s) and a theta characteristic κ(s) on C(s) in the following way: Let

f̃(s) : Ỹ(s) → X̃ (s) denote the normalization of the map f(s) : Y(s) → X (s). The curve

Ỹ(s) is hyperelliptic of genus 4 (respectively 3 or 2 if X (s) has 1 or 2 nodes) and there is
a commutative diagram (see [22, proof of Theorem 5.1] in the smooth case and [23, proof
of Theorem 9.1] in the nodal case)

(3.1) Ỹ(s) //

f̃(s)
��

P1

f̄(s)

��

C(s)
ϕ(s)

oo

ψ(s)
~~⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦

X̃ (s) // P1

where the horizontal maps of the square are the hyperelliptic coverings (respectively a
suitable double cover in the nodal case) and C(s) is a smooth curve of genus 2, which is a
theta divisor of the principal polarization of the Prym variety of the covering f(s), with
hyperelliptic cover ϕ(s). To be more precise, in any case (X (s) smooth or not) there are

6 Weierstrass points q1, · · · , q6 of Ỹ(s) and 2 ramification points p1 and p2 of the double

cover X̃ (s) → P1 such that

f(s)(q1) = f(s)(q2) = f(s)(q3) = p1 and f(s)(q4) = f(s)(q5) = f(s)(q6) = p2.

We can then consider the Prym variety of f(s) as a subvariety of Pic2(Ỹ(s)) and the

symmetric product Ỹ(s)
(2)

as an open subset of Pic2(Ỹ(s)) in the usual way. In the
smooth case the curve C(s) is given as (see [22, Section 4.5])

C(s) = {OY (y + z) ∈ Pic2(Y ) | f(y) = f(ιY z), z 6= y}

with the reduced subscheme structure, where we write f for f(s) and ιY denotes the
hyperelliptic involution of Y . In the nodal case there is a slight modification of this
definition for which we refer to [23, Section 8]. With this notation the curve C(s) in any
case irreducible and smooth of genus 2. Its Weierstrass points are the 6 points of C(s):

ω1 = [q1 + q2], ω2 = [q1 + q3], ω3 = [q2 + q3], ω4 = [q4 + q5], ω5 = [q4 + q6], ω6 = [q5 + q6]

(see [22, Proposition 4.18] and [23, Remark 8.9]). The composed map ψ(s) is the morphism
given by the pencil generated by the 2 divisors 2ω1 + 2ω2 + 2ω3 and 2ω4 + 2ω5 + 2ω6.
Clearly, the linearly equivalent divisors ω1 + ω2 − ω3 and ω4 + ω5 − ω6 of C(s) define an
even theta characteristic κ(s) on C(s) which is uniquely and canonically determined by
the covering f(s).
By construction the pair (C(s), κ(s)) depends algebraically on s. Hence we get a family

of pairs

α(h : Z → X ) := (C, κ) ∈ S+
2
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over S with Cs = C(s) and similarly for κ. Clearly the family is flat as a family of smooth
curves.
Conversely, let [(C, κ) over S] ∈ S+

2 . So for every closed point s ∈ S, the curve
C(s) := Cs is a smooth curve of genus 2 and κ(s) := κs an even theta characteristic on
it. Recall that if W = {ω1, . . . , ω6} are the Weierstrass points of C(s), the even theta
characteristics are of the form κ(s) = OC(s)(ωi + ωj − ωk) ≃ OC(s)(ωl + ωm − ωn) where
ωi, ωj, ωk are different points of W and ωl, ωm, ωn their complement in W . Hence κ(s)
determines a partition of W into 2 complemetary subsets of 3 elements of W . We use
the associated divisors 2ωi+2ωj +2ωk and 2ωl+2ωm+2ωn to define a degree 6 covering
ψ(s) : C(s) → P1 which certainly factorizes via the hyperelliptic covering ϕ(s) : C(s) → P1

and a degree 3 covering f(s) : P1 → P1. So we get the right hand triangle of diagram
(3.1).
The map f(s) is certainly unramified at the 6 points ωi = ϕ(ωi) and maps ωi, ωj

and ωk to p1 and ωl, ωm and ωn to p2 say. According to the Hurwitz formula, f(s)
is of ramification degree 4. Suppose first that f(s) is simply ramified. Let ω7, . . . , ω10

denote the ramification points and p3, . . . , p6 the corresponding branch points. Then
define hyperelliptic curves Y(s) with ramification points over ω1, . . . , ω10 and X (s) with
ramification points over p1, . . . , p6.
Now suppose f(s) is simply ramified at ω7 and ω8 and doubly ramified at ω9 and let

p3, p4 as well as p5 the corresponding branch points. In this case, define hyperelliptic
curves Y(s) with ramification points over ω1, . . . , ω8 and a node over ω9 and a curve X (s)
of genus 1 with ramification points over p1, . . . , p4 and a node over p5.
Finally, suppose f(s) is doubly ramified at ω7 and ω8 and let p3, p4 denote the corre-

sponding branch points. Then define hyperelliptic curves Y(s) with ramification points
over ω1, . . . , ω6 and nodes over ω7 and ω8 and a curve X (s) of genus 0 with ramification
points over p1 and p2 and nodes over p3 and p4.
Looking at the ramification one immediately checks that in any case the map f(s) lifts

to an admissible covering f(s) : Y(s) → X (s). So we obtain a commutative diagram,
whose normalization is diagram (3.1). Moreover, it is clear from the constuction that the
diagram varies algebraically with s ∈ S. So we get a family f : Y → X over S. Since
in any case the coverings fs = f(s) are not Galois, the Galois closure h : Z → X of
f : Y → X over S is an admissible S3-cover over S. Clearly we obtain an element

β((C, κ)) := [h : Z → X over S] ∈ S3M̂2

over S. It is easy to verify that β is inverse to α.

It remains to check that isomorphisms in the category S3M̂2 are mapped by α to
isomorphisms in the category S+

2 and conversely. This follows from the fact that the
maps α and β are determined completely by the Weierstrass points and the ramifications
of the involved coverings and under isomorphisms these are mapped to Weierstrass points
and ramifications of the same type. �

As mentioned above, both stacks S3M̂2 and S+
2 admit coarse moduli spaces S3M̂2 and

S+
2 . Since an isomorphism of stacks induces an isomorphism of the associated coarse

moduli spaces, we obtain as an immediate consequence the following corollary.
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Corollary 3.2. The isomorphism α : S3M̂2 → S+
2 induces an isomorphism of moduli

spaces S3M̂2 → S+
2 , also denoted by α.

4. Non-extension of the construction defining α

In [23] we considered the following subscheme of the moduli scheme S3M 2 of admissible
S3-covers of stable curves of genus 2:

S3M̃2 :=

{
[h : Z → X ] ∈ S3M 2

∣∣∣∣
pa(Z) = 7 and for any node z ∈ Z
the stabilizer Stab(z) is of order 3

}

and we showed that

S3M̃2 = S3M̂2 ⊔ S

where S is the closed subscheme of S3M̃2 consisting of reducible S3-coverings. In this

section we study the question whether the isomorphism α : S3M̂2 → S+
2 extends to a

morphism S3M̃2 → S
+

2 .

Lemma 4.1. There is a non-empty open set U ⊂ S such that α extends to a holomorphic

map S3M̂2 ⊔ U → S
+

2 .

Note that S3M̂2 ⊔ U is open in S3M̃2 with complement of codimension ≥ 2.

Proof. The moduli space S3M 2 of admissible G-covers of stable curves of genus 2 is a

normal projective variety (see [2]). So the open subvariety S3M̃2 is also normal. Hence its
singular locus is of codimension ≥ 2. Now α defines a rational map α from the smooth

variety (S3M̃2)reg to S
+

2 . Since any such rational map extends to a holomorphic map in
codimension 1 (see [14, p.491]), this implies the assertion. �

However we have,

Proposition 4.2. The construction giving the isomorphism α : S3M̂2 → S+
2 does not

extend to S3M̃2.

In order to see what we have to show, let us recall the definition of the map α in
the smooth case. Let Z → X be an étale S3-covering of a smooth curve X of genus 2
and f : Y → X a corresponding non-cyclic étale degree-3 covering. Let hX denote the
hyperelliptic line bundle on X and Θ the canonical theta divisor in Pic3(Y ) given by the
image of the map Y (3) → Pic3(Y ). If q is one of the 2 Weierstrass points of Y such that
f−1(f(q)) consists of 3 Weierstrass points, we consider the following translate of Θ:

Θq := Θ− q ⊂ Pic2(Y ).

Let Nm : Pic2(Y ) → Pic2(X) be the norm map. We define P̃ as the following translate
of the Prym variety P of f :

P̃ := Nm−1(hX) ⊂ Pic2(Y ).

Then we have ([22, Corollary 4.12])

P̃ ∩Θq = Ξ1 ∪ Ξ2 ∪ Ξ3,
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where the Ξi are algebraically equivalent divisors, each of them defining the principal

polarization of P̃ and thus pairwise isomorphic smooth curves of genus 2. If α(f) = (C, κ),
by definition one has

C = Ξ1.

For the proof of Proposition 4.2 the theta characteristic κ is not relevant.

Now, let f : Y → X be the non-cyclic degree-3 covering given by a general element of
S. So Y = Y1 ∪y0 Y2 and X = X1 ∪x0 X2 with smooth curves Yi of genus 2 (respectively
Xi of genus 1) intersecting transversally in the point y0 (respectively x0) and f = f1∪y0 f2
with non-cyclic degree-3 covers fi : Yi → Xi totally ramified in the point y0i (= y0) ∈ Yi
for i = 1, 2 (we denote the point y0 by y0i when considered as a point of Yi). In order to

prove Proposition 4.2, we will show that, defining P̃ and Θq in the same way as in the

smooth case, the intersection P̃ ∩Θq is not proper, i.e. not a divisor in P̃ . We need first
some preliminaries.
Let q0i , . . . , q

5
i denote the Weierstrass points of Yi for i = 1, 2. Then y0 is necessarily

one of these points, say y0 = q01 = q02. For i = 1, 2, the hyperelliptic involution of Xi

lifts to an involution on Yi, which induce an involution on Y . Thus we get the following
commutative diagram

(4.1) Y = Y1 ∪y0 Y2
γ=γ1∪y0γ2

2:1
//

3:1f=f1∪x0f2

��

P1 ∪γ(y0) P
1

3:1 f=f1∪γ(y0)
f2

��

X = X1 ∪x0 X2

δ=δ1∪x0δ2

2:1
// P1 ∪δ(x0) P

1

where γi and δi are the hyperelliptic coverings. It follows that the image of any Weierstrass
point under the map fi is a ramification point of δi. Since δi admits 4 ramification points,
say p0i , . . . , p

3
i , we conclude that there is one point pji such that f−1

i (pji ) consists of 3

Weierstrass points and 3 points pji such that f−1(pji ) contains only one Weierstrass point.
Without loss of generality we may assume that

f(q1i ) = f(q2i ) = f(q3i ) = p1i

and
f(q4i ) = p2i , f(q5i ) = p3i and f(q0i ) = p0i = x0i.

The normalization of Y (respectively X) is given by nY = ιY1 ∪ ιY2 (respectively
nX = ιX1 ∪ ιX2) where ιYi (respectively ιXi

) denote the canonical embeddings Yi → Y
(respectively Xi → X). They induce canonical isomorphisms of the Picard varieties

(4.2) n∗
Y : Pic(Y ) → Pic(Y1)× Pic(Y2) and n∗

X : Pic(X) → Pic(X1)× Pic(X2).

In the sequel we identify both sides, i.e. denote the elements of Pic(Y ) and Pic(X) by
pairs (L1, L2) with Li ∈ Pic(Yi) (respectively Pic(Xi)).
Now Pic3(Y ) consists of infinitely many components, however there are only 2 com-

ponents namely Pic(2,1)(Y ) and Pic(1,2)(Y ) (with the obvious notation) which admit a
canonical theta divisor (see [5, Proposition 2.2]; these are also the only balanced compo-
nents in the sense of Caporaso’s compactified Picard varieties [8]). Since the situation is
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symmetric in Y1 and Y2, we work only with Pic(2,1)(Y ). Then the canonical theta divisor
is

Θ := {L ∈ Pic(2,1)(Y ) = Pic2(Y1)× Pic1(Y2) | h
0(L) ≥ 1}

with reduced subscheme structure. The following lemma is shown by using Riemann-Roch
formula.

Lemma 4.3. With the identifications Y1 + y01 = {OY1(y1 + y01) | y1 ∈ Y1} and Y2 =
{OY2(y2) | y2 ∈ Y2} we have

Θ =
[
(Y1 + y01)× Pic1(Y2)

]
∪
[
Pic2(Y1)× Y2

]
.

If a family of smooth S3-coverings degenerates to the map f : Y → X described above,
the Weierstrass point q chosen for the translate of Θ, specializes to one of the points qi1 or
qi2 with i = 1, 2 or 3. In the latter case Θ− qi2 is a divisor of Pic(2,0) which is not balanced.
So we need to work with one of the qi1, say q = q11 and define

Θq := Θ− q ∈ Pic(1,1)(Y ).

There is exactly one line bundle of degree 2 with h0 = 2 in Pic(1,1)(Y ), respectively

Pic(1,1)(X), namely

hY = (OY1(q01),OY2(q02)), respectively hX = (OX1(p01),OX2(p02)).

If Nmf : Pic2(Y ) → Pic2(X) denotes the norm map we define, as in the smooth case,

P̃ as the following translate of the Prym variety P of f :

P̃ := Nm−1
f (hX) ⊂ Pic(1,1)(Y ).

Lemma 4.4. The intersection Θq ∩ P̃ contains the 3 pairwise disjoint curves

Σi := {(OY1(q
i
1 + y01 − q),OY2(y02 + y2 − y′2)) | y2 ∈ Y2, y

′
2 ∈ f−1

2 f2(y2)}

for i = 1, 2, 3 which are 3 : 1-coverings of Y2.

Proof. According to Lemma 4.3 we have Σi ⊂ Θq. By the identifications (4.2), Nmf =
Nmf1 ×Nmf2 and one computes

Nmf((OY1(q
i
1 + y01 − q),OY2(y02 + y2 − ιY2(y2)) =

= (OX1(p1 + x01 − p1),OX2(x02 + f2(y2)− f2(y2))

= (OX1(x01),OX2(x02)) = hX .

So Σi ⊂ P̃ . The curves Σi are pairwise disjoint, since q = q11 and the line bundles
OX1(q

i
1 + y01 − q11) are pairwise different. The last assertion follows from the fact that f2

is a 3 : 1-covering and hence there are 3 preimages y′2 ∈ f−1
2 f2(y2). �

Proof of Proposition 4.2. We may consider Pic(1,1)(Y ) as an abelian variety and P̃ as
an abelian subvariety, since both contain the distinguished point hY . According to [23,
Proposition 5.3],

P̃ = P1 × P2

with elliptic curves Pi = Prym(fi) for i = 1, 2 and canonical principal polarization. On
the other hand, the principal polarization of Pic(1,1)(Y ) is defined by the divisor Θq. So
if the construction of α would extend to the closed subvariety S, the divisor Θq would
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restrict to a divisor defining the threefold of the canonical principal polarization of P̃ .
Being pairwise disjoint, the curves Σi would define the canonical principal polarization
i.e. would be isomorphic to P1 × {0} ∪ {0} × P2. But this contradicts Lemma 4.4 since,
the curve Y2 being of genus 2, any 3:1 covering is of arithmetic genus > 2 and hence Σi
cannot define a principal polarization. �

5. The nef cone of S
+

2

In this section we compute the cone of numerically effective divisors of S
+

2 in the rational

Picard group PicQ(S
+

2 ). For this we consider the moduli space M 0,[3,3] of stable curves

of genus 0 with 6 unordered marked points partitioned into 2 sets of 3 points. If M 0,6

denotes the usual moduli space of stable 6-pointed curves of genus 2 and

G := (S3 ×S3)⋊ 〈τ〉

where the first S3 acts on the numbers 1, 2, 3, the second on the numbers 4, 5, 6 and
τ = (14)(25)(36), then

M 0,[3,3] =M 0,6/G.

Here we consider the numbers as indices of the marked points. We use the fact (see [20,
Lemma 20]) that there is a canonical isomorphism

M0,[3,3] ≃ S
+

2 .

In the sequel we often identify both spaces and denote corresponding divisors by the same

letter. Moreover, the composed map M 0,6 → S
+

2 maps the boundary of M 0,6 onto the

boundary of S
+

2 ([20]).
Recall that the boundary of M 0,6 consists of divisors ∆S, where S ⊂ {1, . . . , 6} with

|S|, |Sc| ≥ 2. Each ∆S is the closure of the points corresponding to reducible curves with
one node and where S points are marked in one component. We denote the class of ∆S

in PicQ(M 0,6) by the same letter.
The divisors in M 0,[3,3] can be regarded as the divisors in M 0,6 which are invariant

under the action of G. The isomorphism M0,[3,3] ≃ S
+

2 is defined in a natural way by
associating to a rational curve with six marked points the admissible double covering
ramified over those points ([20]). Moreover, it maps the following G-invariant divisors

into the boundary divisors of S
+

2 (see [20, table in section 3.1]) :

∆11 :=
∑

S∈OrbG(12)

∆S 7→ A0(5.1)

∆12 :=
∑

S∈OrbG(14)

∆S 7→ B0(5.2)

∆c
123 :=

∑

S∈OrbG(124)

∆S 7→ A1(5.3)

∆123 := ∆{1,2,3} 7→ B1(5.4)

In order to see the G-invariance of these divisors, use the fact that if {i1, . . . , i6} =
{1, . . . , 6}, then ∆{i1,i2,i3} = ∆{i4,i5,i6}. When we consider the G-invariant classes ∆11,∆12,
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∆c
123 and ∆123 as elements of PicQ(M 0,[3,3]), we denote them respectively by A0, B0, A1

and B1. According to [20] the classes A0, B0, A1 and B1 generate the Q-vector space
PicQ(M 0,[3,3]).

In order to compute the nef cone of M0,[3,3] we introduce some F -curves. An F -curve

in M 0,6 is obtained as the image of the map ν :M0,4 → M0,6 defined by attaching one 3-
pointed curve at one of the 4 marked points or two 2-pointed curves at two of the marked
points ([13, end of Section 2]). Note that, as a complete intersection curve in M0,6, the
curve F always consists of 3 irreducible components, in the first case the attached curve is
semistable with 2 irreducible components, whereas in the the second case the 2 attached
curves are irreducible.
We consider the following F -curves. Let Γ1 (respectively Γ2) denote the curve in M 0,6

whose elements are constructed by attaching to a spine labelled with the subset {1, 2, 3}
(respectively {1, 2, 4}) of {1, . . . , 6} to a 4th point a rational curve consisting of 2 compo-
nents where the component directly attached to the spine is labelled with 4 (respectively
3) and the other curve with 5 and 6 (see Figure 1). This defines a curve in M 0,6, since the
4th point of the spine moves freely, whereas the other components have 3 marked points:
the nodes and the labelled points.
Let Γ3 be the curve constructed by attaching two 2-pointed irreducible curves to the

spine where exactly one of the attaching points moves and the 2 points on the spine are
labelled with {1, 2}. Similarly, we define Γ4 (respectively Γ5) by attaching two 2-pointed
curves and where the labelled points on the spine are {1, 4} and one tail is labelled with
{2, 3} (respectively {2, 5}) (see Figure 1).
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Γ Γ

1 2

4 53
Γ

o

o

o

o
o

o

o

o o

x x
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Figure 1. Generic points of the F-curves

In principle one should consider the orbit of an F -curve under the action of the group
G, but in order to determine the inequalities defining the nef-cone it will be sufficient to
intersect the divisors with a representative of the orbit.

Lemma 5.1. A rational divisor class aA0 + bB0 + cA1 + dB1 of S
+

2 is nef (respectively
ample) if and only if the corresponding class D := a∆11 + b∆12 + c∆c

123 + d∆123 of M 0,6
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satisfies

(D · Γi) ≥ 0 (respectively > 0)

for i = 1, . . . , 5.

Proof. The class of D being G-invariant, D is nef as a divisor of M 0,[3,3] if and only if it

is nef as a divisor of M 0,6. Hence according to [18, Theorem 1.3] D is nef if and only if it
intersects any F -curve of M 0,6 non-negatively. Since D is G-invariant, it suffices to check
this for a representative of the G-orbits of F -curves. Now it is easy to check that there are
exactly 6 G-orbits with representatives Γ1, . . . ,Γ5 and Γ′

2. Here Γ′
2 differs from Γ2 only

by labelling the middle component with 5 (instead of 3) and the last component with 3
and 6 (instead of 5 and 6). However, by [18, Lemma 4.3] Γ′

2 is numerically equivalent to
Γ2. So this implies the assertion on the nefness and also on the ampleness of the divisor
class. �

Lemma 5.2. The intersection numbers of the divisors ∆11, . . . ,∆123 with Γi are

(∆11 · Γ1) = 3, (∆12 · Γ1) = 0, (∆c
123 · Γ1) = 0, (∆123 · Γ1) = −1;

(∆11 · Γ2) = 1, (∆12 · Γ2) = 2, (∆c
123 · Γ2) = −1, (∆123 · Γ2) = 0;

(∆11 · Γ3) = 0, (∆12 · Γ3) = −1, (∆c
123 · Γ3) = 2, (∆123 · Γ3) = 0;

(∆11 · Γ4) = −2, (∆12 · Γ4) = 1, (∆c
123 · Γ4) = 1, (∆123 · Γ4) = 1;

(∆11 · Γ5) = 0, (∆12 · Γ5) = −1, (∆c
123 · Γ5) = 2, (∆123 · Γ5) = 0;

Proof. This follows by an immediate computation using [18, Lemma 4.3] which gives the
intersection numbers of any boundary divisor with any F -curve of M0,n. �

From this we immediately conclude the following criterion for a rational divisor class

on M 0,[3,3] = S
+

2 to be nef or ample.

Proposition 5.3. A Q-divisor D ≡ aA0 ++bB0 + cA1 + dB1 is nef (respectively ample)
if and only if the following inequalities are satisfied

3a ≥ d, a+ 2b ≥ c, 2c ≥ b and b+ c+ d ≥ 2a

(respectively all inequalities are strict).

Proof. According to Lemma 5.2 and the identifications (5.1), . . . , (5.4) we have

(D · Γ1) = 3a− d, (D · Γ2) = a + 2b− c,

(D · Γ3) = (Γ · Γ5) = −b+ 2c, (D · Γ4) = −2a + b+ c+ d.

So Lemma 5.1 implies the assertion. �

Remark 5.4. According to [20] the vector space PicQ(S
+

2 ) = PicQ(M 0,[3,3]) is of dimension
3. Hence there is a non-trivial relation

aA0 + bB0 + cA1 + dB1 = 0

between the classes Ai and Bi. Intersecting with the curves Γi we get the system of
equations

3a = d, a + 2b = c, 2c = b, b+ c+ d = 2a.
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This gives the relation

(5.5) 3A0 − 2B0 − A1 + 9B1 = 0.

in PicQ(S
+

2 ). Note that this is different from the relation proved in [20, Lemma 21 (ii)].

Since PicQ(S
+

2 ) is of dimension 3, (5.5) implies that {A0, B0, B1} is a basis of PicQ(S
+

2 ).
In terms of this basis Proposition 5.3 can be rephrased as

Corollary 5.5. A divisor D = aA0 + bB0 + cB1 of S
+

2 is nef (respectively ample) if and
only if

b ≤ 0 and max(
1

3
c,−2b) ≤ a ≤

1

2
(b+ c).

6. Proof of part (1) of Theorem 2

As in Section 2 let S
+

2 and M2 denote the corresponding moduli stacks of S
+

2 and M 2.
Consider the following commutating diagram:

S
+

2

q̃
//

π̃
��

S
+

2

π

��

M2
q

// M2

where π (resp. π̃) is the forgetful map [(C, κ)] 7→ [C] and q̃ and q are the natural maps.

The first aim is to give a formula for the class K
S
+
2
in terms of divisors in S

+

2 .

Let E ⊂ M2 the locus of the bielliptic curves. Any bielliptic curve C ∈ E has an
equation of the form

(6.1) y2 = (x2 − x21)(x
2 − x22)(x

2 − x23).

Thus the Weierstrass points of C are ±x1,±x2,±x3. Let ρ denote the bielliptic involution
in C.

Lemma 6.1. The preimage of the bielliptic locus E in S
+

2 decomposes as

π∗(E) = Ẽ ∪ Ẽ ′

where Ẽ represents the spin curves (C, κ) with C admitting a bielliptic involution ρ such

that ρ∗(κ) = κ. Moreover the map π : Ẽ 7→ E is finite of degree 4 . In particular Ẽ is the

bielliptic locus of S
+

2 .

Proof. Given a bielliptic curve [C] ∈ E with equation (6.1) and Weierstrass points
±x1,±x2,±x3, it suffices to check that there are exactly 4 even theta characteristics
on C which are invariant under the action of ρ.
We set x′i := −xi for i = 1, 2, 3. The involution ρ acts on the Weierstrass points by

xi 7→ x′i. The even theta characteristics on C are of the form

p1 + p2 − p3 ∼ p4 + p5 − p6

where {p1, . . . , p6} is the set of Weierstrass points. Using this equivalence is easy to verify
that exactly the following theta characteristics are fixed by ρ:

x1 + x2 − x3, x1 + x2 − x′3, x1 + x′2 − x3 x′1 + x2 − x3.
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Thus the action of ρ decomposes π∗E into to divisors: Ẽ where ρ fixes the theta char-

acteristics and Ẽ ′ where ρ permutes non-trivially the remaining 6 theta characteristics,
which are

xi + x′i − xj , 1 ≤ i, j ≤ 3, i 6= j.

�

Recall that M2 \M2 = ∆0 ∪∆1, where ∆0 (respectively ∆1) is the closure of the locus
of irreducible nodal curves (respectively of the reducible curves) of genus 2.

Lemma 6.2. The forgetful map π : S
+

2 → M 2 is simply ramified on B0 and unramified
everywhere else in codimension 1.

Proof. Clearly π is étale of degree 10 over the smooth locus of M2. We have π−1(∆0) =
A0 ∪B0. From the construction of the divisor A0 we obtain that deg(π|A0) = 4 (since an
elliptic curve admits exactly 4 theta characteristics). Over a semistable curve C̃ ∪y1,y2 R

with g(C̃) = 1 and R a rational component there are exactly 3 even theta characteristics
(since an elliptic curve admits exactly 3 even theta characteristics). From deg(π|B0) = 6
we deduce that π is simply ramified in B0. One verifies that π is étale over ∆1 since
π−1(∆1) = A1 ∪B1, deg(π|A1) = 9 and π maps B1 isomorphically onto ∆1. �

We use the previous lemmas to compute the class of K
S
+
2
.

Lemma 6.3.

K
S
+
2
= q̃∗(K

S
+
2
+

1

2
(A1 +B1) +

1

2
Ẽ).

where Ẽ denotes the spin bielliptic locus of S
+

2 .

Proof. The map q̃ is ramified along the locus of points in S
+

2 which admits an automor-
phism group bigger than 〈ι〉 with ι the hyperelliptic involution. It suffices to compute
the codimension-one components of this locus. In [16] the locus of such curves have been
computed for M 2. It consists of the locus of bielliptic curves plus the boundary divisor
∆1. One immediately checks that the automorphism group of a general spin curve in
π−1(∆1) = A1 ∪ B1 is abelian of order 4. This together with the Lemma 6.1 proves the
lemma. �

From the proof we also get that the boundary class δ of the stack S
+

2 is given by

(6.2) δ = q̃∗(A0 +B0 +
1

2
A1 +

1

2
B1).

So we get as an immediate consequence

Corollary 6.4. (Ramification formula for q̃): For every ǫ ∈ Q,

K
S
+
2
+ ǫδ = q̃∗

(
K
S
+
2
+ ǫ(A0 +B0) +

ǫ+ 1

2
(A1 +B1) +

1

2
Ẽ

)
.

Proposition 6.5. The divisor K
S
+
2
+ ǫδ is nef (respectively ample) if and only if ǫ ≥ 57

25

(respectively the inequality is strict).
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Proof. From [16, Section 4.2 and Proposition 3.6] we have

KM2
≡ −

11

5
∆0 −

16

5
∆1, E ≡ 3∆0 + 12∆1.

Since by Lemma 6.2 we have π∗∆0 = A0 + 2B0 and π∗∆1 = A1 +B1, we get

K
S
+
2

= π∗(−
11

5
∆0 −

16

5
∆1) +B0

= −
11

5
A0 −

17

5
B0 −

16

5
A1 −

16

5
B1.

Moreover by Lemma 6.1 and the fact that π is étale of degree 10 over M2 we get

Ẽ =
4

10
π∗(E)

=
4

10
(π∗(3∆0 + 12∆1)) =

6

5
A0 +

12

5
B0 +

24

5
A1 +

24

5
B1

So Corollary 6.4 implies K
S+
2

+ ǫδ = q̃∗F with

(6.3) F = (ǫ−
8

5
)A0 + (ǫ−

11

5
)B0 + (

ǫ

2
−

3

10
)A1 + (

ǫ

2
−

3

10
)B1.

The inequalities of Proposition 5.3 applied to F give the following conditions for the
class F to be ample:

ǫ >
9

5
, ǫ >

57

25
(the last two inequalities do not impose conditions on ǫ). �

Let us recall the definition of a log canonical model. Let X be a normal projective
variety and D =

∑n

i=1 aiDi a Q-divisor such that KX +D is Q-Cartier and 0 ≤ ai ≤ 1.

Definition 6.6. The pair (X,D) is a strict log canonical model if KX+D is ample, (X,D)
has log canonical singularities, and X \ ∪iDi has canonical singularities.

We will also need the following proposition, whose proof we refer to [19, 20.2, 20.3]):

Proposition 6.7. Let Y be a smooth variety and f : Y → X be a finite dominant
morphism to a normal variety X. Let D =

∑
i=1 aiDi, 0 ≤ ai ≤ 1 be a Q-divisor

containing all the divisorial components of the branch locus of f . Let D̄ be a Q-divisor on
Y such that supp(f−1(D)) = supp(D̄) and f ∗(KX +D) = KY + D̄. Then (X,D) has log
canonical singularities along D if and only if (Y, D̄) has log canonical singularities along
D̄.

Proof of Theorem 2(1). Proposition 6.5 shows the required ampleness of the divisor F . In

order to verify the singularity conditions of S
+

2 we will use the results in [16, Theorem 4.10].

Consider the finite map π : S
+

2 → M 2. We have that M 2 has canonical singularities away

from ∆0 and ∆1 ([16]). Since π|
S
+
2

is étale, it follows that S
+

2 has canonical singularities

away from π−1(∆0 ∪∆1) = A0 ∪B0 ∪A1 ∪B1. In particular it has canonical singularities

away from the boundary divisors A0, B0, A1, B1 and Ẽ.
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Since M2 has log canonical singularities along ∆0,∆1 and E ([16]), by Proposition

6.7 S
+

2 has log canonical singularities along π−1(∆0 ∪ ∆1 ∪ E) and hence also along

A0 ∪B0 ∪A1 ∪ B1 ∪ Ẽ, since M 2 is smooth at E and π is étale over E. �

7. The invariant-theoretical compactification of S+
2

Let C be a smooth projective curve of genus 2 over k. Let F4
2 denote the 4-dimensional

vector space over F2 equipped with a fixed symplectic form. The group of 2-division
points JC[2] of the Jacobian of C is isomorphic to F4

2 and admits a canonical symplectic
form, the Weil form. A curve of genus 2 with a level-2 structure consists of a pair (C, ϕ)
with a curve C of genus 2 and a level-2 structure ϕ, that is a symplectic isomorphism
ϕ : F4

2 → JC[2]. Let M2(2) denote the coarse moduli space of such pairs. It can be
constructed as follows:
The hyperelliptic covering C → P1 is ramified exactly in the 6 Weierstrass points

p1, . . . , p6 with images x1, . . . x6 ∈ P1. It is well-known (see [11]) that a level-2 structure
on C is equivalent to an order of the set of Weierstrass points of C. Denote by

∆6 = {(x1, . . . , x6) ∈ (P1)6 | xi = xj for some i 6= j}

the diagonal of the sixfold cartesian product (P1)6 of P1. Then

M2(2) ≃
[
(P1)6 \∆6

]
// SL2(k)

where SL2(k) acts in the usual way on P1 and diagonally on (P1)6. The forgetful map

M2(2) → M2, (C, ϕ) 7→ C

onto the coarse moduli space M2 of smooth curves of genus 2 corresponds to the quotient
map [

(P1)6 \∆6

]
// SL2(k) →

{[
(P1)6 \∆6

]
// SL2(k)

}
/S6

where the action of the symmetric group S6 is induced by its permutation action on (P1)6.
Recall from [24] that an even theta characteristic on C is the line bundle given by

a divisor pi1 + pi2 − pi3 where the pij are different Weierstrass points and pj1 + pj2 −
pj3 defines the same theta characteristic if and only if either {j1, j2, j3} = {i1, i2, i3} or
{i1, i2, i3, j1, j2, j3} = {1, . . . , 6}. This implies that the even theta characteristics of C
are in a natural bijective correspondence with the 3-element subsets of the set {1, . . . , 6}
modulo the involution {i1, i2, i3} 7→ {1, . . . , 6}\{i1, i2, i3}. In order to construct the coarse
moduli space S+

2 of even spin curves of genus 2 consider again the subgroup

G := (S3 ×S3)⋊ 〈τ〉

of S6 as defined at the beginning of Section 5.
Clearly the stabilizer of an even theta characteristic given by {i1, i2, i3} is conjugate to

G. Hence we obtain an isomorphism

(7.1) S+
2

≃
−→M2(2)/G =

{[
(P1)6 \∆6

]
// SL2(k)

}
/G.

In [11, p.17] it is shown that a natural compactification ofM2(2), the invariant-theoretical

compactification, which we denote byM2(2)
inv

, is isomorphic to the Segre cubic threefold.
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In P5 = P5(t0, . . . , t5) the Segre cubic is given by the equations

(7.2) s1 :=

5∑

i=0

ti = 0 and s3 :=

5∑

i=0

t3i = 0

where S6 acts by permuting the coordinates. In other words,

(7.3) M2(2)
inv

= Proj (k[t0, . . . , t5]/(s1, s3)) .

Together with (7.1) this implies the existence of a natural compactification S+
2

inv
, the

invariant-theoretical compactification of S+
2 , given by

(7.4) S+
2

inv
= Proj

(
(k[t0, . . . , t5]/(s1, s3))

G
)
.

Here (k[t1, . . . , t5]/(s1, s3))
G denotes the ring of invariants in C[t0, . . . , t5]/(s1, s3) where

the first S3 acts by permuting t0, t1, t2, the second S3 by permuting t3, t4, t5 and τ by
exchanging ti and ti+3 for i = 0, 1, 2.
The canonical map M2(2) →M2 factorizes as

M2(2)
f

//

##❋
❋❋

❋❋
❋❋

❋
S+
2

g
~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

M2

where g is étale of degree 10. If we denote by sk = sk(t0, . . . , t5) :=
∑5

j=0 t
k
j for k =

1, . . . , 6, the corresponding rings of invariants are

k[t0, . . . , t5]/(s1, s3) ⊃ (k[t0, . . . , t5]/(s1, s3))
G ⊃ (k[t0, . . . , t5]/(s1, s3))

S6 = k[s2, s4, s5, s6]

where the last equality holds since S6 acts by permuting the ti. Taking the Proj of these
rings gives the commutative diagram

(7.5) M2(2)
inv f̄

//

##❍
❍❍

❍❍
❍❍

❍❍
S+
2

inv

ḡ||②②
②②
②②
②②

M
inv

2

which compactifies the above diagram by (7.3) and (7.4). Note that, since the ring
extensions are finite, the maps f̄ and ḡ are everywhere defined and finite. According to

the following remark, M
inv

2 is the classical invariant theoretical compactification of M2.

Remark 7.1. With the above coordinates we have

M
inv

2 = Proj (k[s2, s4, s5, s6]) = P(2, 4, 5, 6).

On the other hand, in terms of the invariant of binary sextics (see [17] or [16]),

M
inv

2 = Proj(k[A,B,C,D]) = P(1, 2, 3, 5)

where A,B,C,D are the classical invariants degree 2,4,6,10 respectively. By [9, Proposi-
tion of Delorme] there is a natural isomorphism

P(2, 4, 5, 6) ≃ P(1, 2, 3, 5).
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Remark 7.2. The ring of invariants (k[t0, . . . , t5]/(s1, s3))
G was explicitly computed by

A. Clebsch in [6, Section 61]. For a modern version see [21, Section 4]. We do not need
the explicit form of the ring.

Remark 7.3. The map ḡ is of degree

deg ḡ =
|S6|

|G|
=

720

72
= 10

which coincides with the fact that every smooth curve of genus 2 admits exactly 10 even
theta characteristics.

In [11] the variety M2(2)
inv

is interpreted as the moduli space of semistable ordered
sets of 6 points in P1. As such, the strictly semistable sets are given by the 10 singular

points ofM2(2)
inv

. Here we consider M2(2)
inv

as the moduli space of semistable curves of
genus 2 with level-2 structure. We want to determine the image of the boundary divisor

M2(2)
inv

\M2(2) in S
+
2

inv
.

Let D2(2), D
+
2 and D2 the boundary divisors ofM2(2)

inv
, S+

2

inv
andM

inv

2 , i.e. D2(2) is

the closed subscheme M2(2)
inv

\M2(2) of M2(2)
inv

, etc. The above two diagrams induce
the following diagram of finite surjective maps

D2(2)
f̄

//

""❊
❊❊

❊❊
❊❊

❊
D+

2

ḡ
}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

D2

We clearly have

D2(2) = ∆6 =
⋃

1≤i<j≤6

Dij with Dij = {(x1, . . . , x6) ∈ (P1)6 | xi = xj}.

Denoting

Ainv0 := f̄(D12) and Binv
0 := f̄(D14),

we have

Proposition 7.4. The divisor D+
2 consists of the 2 irreducible components

D+
2 = Ainv0 ∪Binv

0 ,

where Ainv0 (respectively Binv
0 ) is the closure of points parametrizing irreducible spin curves

with one node (repectively spin curves with one exceptional component and irreducible
stable reduction).

Proof. The group G acts on the set of components of D2(2) with 2 orbits represented
by D12 and D14 which gives the first assertion. The geometric interpretation of the
components follows from [20] as in (5.1) and (5.2) above. This explains also the notation.

�
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According to [10, remark after Theorem 9.4.10, p.526] the boundary divisor D2(2) of

M2(2)
inv

= Proj(k[t0, . . . , t5)/(s1, s3)) is given by the 15 planes in the Segre cubic with
equations

ti + tj = tk + tl = tm + tn = 0

where {i, j, k, l,m, n} = {1, . . . , 6}. The group G acts on them with 2 orbits represented
by the planes Π1 with equations t0 + t3 = t1 + t4 = t2 + t5 = 0 and Π2 with equations
t0 + t1 = t2 + t3 = t4 + t5 = 0. The orbit of Π1 consists of 6 planes, whereas the orbit of
Π2 consists of 9 planes. Comparing with (5.1) and (5.2) this implies

f ∗(Ainv0 ) = OrbG(Π1) and f ∗(Binv
0 ) = OrbG(Π2)

or equivalently

Ainv0 = f(Π1) and Binv
0 = f(Π2)

since the natural map M2(2) →M2(2)
inv

is G-equivariant.

The Segre cubic threefold M2(2)
inv

contains exactly 10 singular points i.e. nodes (see
[11, Example 2 p.31]). Their coordinates are (±1, . . . ,±1) where exactly half of them are
positive. Here the equation is taken in the S6-invariant form (7.2). Denoting

ainv1 := f(1, 1,−1, 1,−1,−1) and binv1 := f(1, 1, 1,−1,−1,−1).

we have

Proposition 7.5. The point ainv1 (respectively binv1 ) in S+
2

inv
represents all stable spin

curves with 2 smooth genus-1 components connected by one exceptional component with
even (respectively odd) theta characteristics on the elliptic curves.

Proof. The group G acts on 10 singular points of M2(2)
inv

with orbits represented by
(1, 1,−1, 1,−1,−1) and (1, 1, 1,−1,−1,−1). The orbit of (1, 1,−1, 1,−1,−1) consists of
9 singular points whereas (1, 1, 1,−1,−1,−1) is a fixed point under the action. Comparing
with (5.3) and (5.4) and the definition of A1 and B1 gives the assertion. �

8. The map S
+

2 → S+
2

inv

We have constructed two compactifications of the moduli space S+
2 of smooth even spin

curves of genus 2, namely the moduli space S
+

2 of generalized even spin curves of genus 2

and the invariant theoretical compactification S+
2

inv
. They fit into the following diagram

S
+

2

π

��

S+
2

inv

g

��

M2
f2

// M
inv

2

where π denotes the forgetful map, g the map of diagram (7.5), and f2 is the canonical
holomorphic map constructed in [4, Theorem 1.1].
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Proposition 8.1. There is a canonical holomorphic map f2 : S
+

2 → S+
2

inv
making the

following diagram commutative:

(8.1) S
+

2

f2
//

π

��

S+
2

inv

g

��

M2
f2

// M
inv

2

Moreover, f2 contracts the divisor A1 to the point ainv1 , the divisor B1 to the point binv1 ,

and is biholomorphic on S
+

2 \ (A1 ∪B1).

Proof. Both spaces S
+

2 and S+
2

inv
are compactifications of S+

2 , which gives a canonical

birational map f2 making (8.1) commutative. The boundary of S
+

2 consists of the divisors

A0, B0, A1, B1 and the boundary of S+
2

inv
consists of the divisors Ainv0 , Binv

0 and the points
ainv1 , binv1 . The spaces A0 \ (A1 ∪ B1) and A

inv
0 \ (ainv1 ∪ binv1 ) (respectively B0 \ (A1 ∪ B1)

and Binv
0 \ (ainv1 ∪ binv1 )) parametrize the same objects. Hence the map f2 extends to them.

On the other hand, the divisors A1 and B1 lie over the boundary divisor ∆1 of M 2

whereas the points ainv1 and binv1 lie over the boundary point pss (see [3, Corollary 5.3]) of

M
inv

2 . Since f2 contracts ∆1 to pss, the last assertion follows from Proposition 7.5. �

9. Proof of part (2) and (3) of Theorem 2

For the sake of abbreviation let Y := S+
2

inv
and X :=M

inv

2 be the coarse moduli spaces
and we denote by q̃ : Y → Y and q : X → X the corresponding moduli stacks. We have
the following commutative diagram:

Y
q̃

//

g̃

��

Y

g

��

X
q

// X

where g denotes the forgetful map of diagram 8.1 and g̃ the corresponding map on the
stack level. Recall from Proposition 7.4 that the boundary of Y is D+

2 = Ainv0 ∪ Binv
0 .

Similarly the boundary of Y is D+
2 = αinv0 + βinv0 .

Since PicQ(S
+

2 ) is generated by A0, B0, A1, B1 with one relation (5.5), we deduce by
means of Proposition 8.1 that Pic(Y ) is generated by the classes Ainv0 and Binv

0 with the
relation

(9.1) 3Ainv0 = 2Binv
0 .

It follows from Lemma 6.2 and Proposition 8.1 that the map g : Y → X is simply ramified
in Binv

0 and unramified elsewhere in codimension 1. It is well known that PicQ(X) is
generated by the class of the boundary ∆0. Hence

g∗(∆0) = Ainv0 + 2Binv
0 .
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Further we deduce from Lemma 6.1 and the fact that the bielliptic locus of X is given by
the class 3∆0 (see [16]), that the bielliptic locus of Y is given by the class

Ẽ =
2

5
· 3g∗(∆0) =

24

5
Ainv0 .

As for Corollary 6.4 we obtain the following formula for q̃ : Y → Y . For every ǫ ∈ Q

KY + ǫD+
2 = q̃∗

(
π∗KX +B0 +

1

2
Ẽ + ǫ(D+

2 )

)

holds. Using the relation (9.1) and noting that according to [16] we have

KX = −
11

5
∆0,

we get the following ramification formula for q̃ : Y → Y .

Proposition 9.1. For every ǫ ∈ Q we have

KY + ǫ(D+
2 ) = q̃∗

(
(−

49

10
+

5

2
ǫ)Ainv0

)
.

Proof of parts (2) and (3) of Theorem 2. Proposition 9.1 implies that the class (−49
10

+
5
2
ǫ)Ainv0 is nef (respectively ample) if and only if ǫ ≥ 49

25
(respectively ǫ > 49

25
).

It remains to check the singularity conditions of Y . Note first that the boundary of Y

is Ainv0 ∪Binv
0 . Moreover, the divisors A0 and B0 intersect non-trivially in S

+

2 , Proposition
8.1 implies that the contraction points ainv1 and binv1 are contained in Ainv0 ∪ Binv

0 . Hence
the proof is the same as in the proof of part (1) of Theorem 2 in Section 6. �

10. Proof of part (2) of Theorem 3

Recall that α is a canonical isomorphism α : S3M̂2 → S+
2 and S3M̃2 the partial com-

pactification S3M̃2 = S3M̂2⊔S of [23], with S the closed subscheme of S3M̃2 consisting of
reducible S3-coverings. In Section 4 we proved that the construction of the map α does

not extend to a holomorphic map S3M̃2 → S
+

2 . However, we show the following

Proposition 10.1. The map α : S3M̂2 → S+
2 extends to a holomorphic map α : S3M̃2 →

S+
2

inv
which contracts the divisor S to the point ainv1 in S+

2
inv

.

Proof. According to Lemma 4.1 the map α extends to a birational map α̃ : S3M̃2 → S+
2

induced by the construction in Section 3 defined on S3M̂2 ∪ U with U ⊂ S a non-empty
open set. Since the image of the the map α degenerates to a product of elliptic curves

when a covering in S3M̂2 degenerates to a spin curve in S, i.e. with underlying reducible
curve, the image α̃(U) is contained in A1 ∪B1.
Consider (Xt, κt) ∈ S+

2 a family of even spin smooth curves in the image of α degenerat-
ing to an admissible covering X0 = C1 ∪C2 with C1, C2 elliptic curves and C1 ∩C2 = {p}
in the following way. If κt = OXt

(ω1,t − ω2,t + ω3,t) for some Weierstrass points ωi,t,
i = 1, 2, 3, then each element in the family comes with a 6:1 map ψt : Xt → P1 given
by the pencil 〈2ω1,t + 2ω2,t + 2ω3,t, 2ω4,t + 2ω5,t + 2ω6,t〉 ⊂ |3KXt

| (see Section 3). The
Weierstrass points ωi,t specialize to points ωi,0 lying on the component C1 for i = 1, 2, 3
and on C2 for i = 4, 5, 6. One checks that such admissible covering X0 → P1 ∪ P1
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must be totally ramified at the node p, which is the neutral element for both elliptic
curves and the 6:1 map C1 → P1 (respectively C2 → P1 ) is determined by the pen-
cil 〈2ω1,0 + 2ω2,0 + 2ω3,0, 6p〉 (respectively 〈2ω4,0 + 2ω5,0 + 2ω6,0, 6p〉 ). Then the theta
characteristic κt specializes to κ0 = (κC1 , κC2) where κC1 = OC1(ω1,0 − ω2,0 + ω3,0 − p)
and κC2 = OC2(ω4,0 − ω5,0 + ω6,0 − p). Clearly these 2-torsion points are non-trivial, so
(X0, κ0) ∈ A1. We conclude that α̃(U) ⊂ A1.

Since A1 is contracted to the point ainv1 in S2
inv

under the map f 2, there exists a map

ᾱ well defined on S3M̃2 making commutative the following diagram:

S3M̃2
α̃

//❴❴❴❴

ᾱ

��
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
S
+

2

f2

��

S2
inv

and such that ᾱ(S) = {ainv1 }. �
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24 HERBERT LANGE AND ANGELA ORTEGA

[20] S. Krug, Geometry of moduli spaces of spin and prym curves of small genus, Thesis, Hannover
Universität (2012).

[21] V. Krishnamoorthy, T. Shaska, H. Völklein: Invariants of binary forms. arXiv:1209.0446v1
(2012).

[22] H. Lange, A. Ortega: Prym varities of triple coverings. Int. Math. Res. Notices 22 (2011),
5045–5075.

[23] H. Lange, A. Ortega: Compactification of the Prym map for non cyclic triple coverings. Int. J
Math. 24, No. 3, 1350015 (2013).

[24] D. Mumford: Tata Lectures on Theta II, Progress in Math. 43, Birkhäuser (1984).
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