arXiv:1209.3074v1 [math.AP] 14 Sep 2012

Standing Waves for nonlinear
Schrodinger Equations involving critical
growth *

Jianjun Zhang & Zhijie Chen & Wenming Zou
Department of Mathematical Sciences, Tsinghua University,

Betjing 100084, China

Abstract
We consider the following singularly perturbed nonlinear elliptic problem:
—&?Au+ V(z)u = f(u), uc HY(RY),

where N > 3 and the nonlinearity f is of critical growth. In this paper,
we construct a solution u. of the above problem which concentrates at an
isolated component of positive local minimum points of V' as ¢ — 0 under
certain conditions on f. Our result completes the study made in some very
recent works in the sense that, in those papers only the subcritical growth was
considered.

1 Introduction

In this paper, we shall be concerned with the existence and concentration of pos-
itive solutions for the following singular perturbed elliptic problem with critical
growth:

—2Av+V(x)w = f(v), v>0, ve HY(RY), (1.1)

where N > 3. For ¢ > 0 sufficiently small, these standing waves are referred to
as semi-classical states. In the sequel, we assume that the potential function V'
satisfies the following conditions:

(V1) V € C(RM,R) and 0 < Vj := infcpnv V(2);
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(V2) There is a bounded domain O such that

= inf i .
=RV < V)

In 2007, Byeon and Jeanjean [7] considered the concentration phenomenon
of the above problem (1)) and developed a new variational method to explore
what are the essential features which guarantee the existence of localized ground
states. The considered the following conditions:

(f1) f € C(R,R) such that f(t) =0 for t <0 and limy_,q f(t)/t = 0;
(f2) there exists p € (1, (N + 2)/(N — 2)) such that limsup,_, o f(t)/t? < oo;
(f3) there exists T > 0 such that 272 < F(T) := [, f(t)dt.

Let
M={ze€O0:V(x)=m}.

Theorem A (see [7]) Suppose that (V1)-(V2) and (f1)-(f3). Then for sufficiently
small e > 0, (LI) admits a positive solution ve, which satisfies

(i) there exists a mazimum point x.of ve such that lime_,o dist(xe, M) = 0
and for any such ., we(z) = ve(ex + xc) converges (up to a subsequence)
uniformly to a least energy solution of

—Au+mu= f(u), u>0, uec HRY), (1.2)

(ii) ve(z) < Cexp(—<|r — xc|) for some c,C > 0.

In [7], Byeon and Jeanjean believed that (f1)-(f3) are almost optimal for the
subcritical case. Hypotheses (f1)-(f3) are called Berestycki-Lions conditions,
which were firstly proposed in a classical paper |2] to guarantee the existence of
ground states of (I.2) in the subcritical case. It follows from Pohozaev’s identity
(cf.[29]), that (f3) is necessary and that for f(u) = u? with p > {2, there
exists no nontrivial solutions in H*(RY). Thus, Berestycki-Lions conditions are
almost optimal for the existence of solutions for (I2) (cf. [7]).

Since in (f2) above, p € (1, (N + 2)/(N — 2)) characteristics the problem to
be of subcritical growth. A natural open problem which has not been settled
before the case of critical growth, is whether the results like Theorem A hold if f
is of critical growth? The purpose of this paper is to complete the study for such
an open problem with critical exponent growth. Before making more comments
on the background of such singularly perturbed nonlinear elliptic problems, we
state the main result of this paper first. It is well known, the critical exponent
growth makes the problem very tough, more assumptions are of course needed.
We now assume that f € C'(R,R) and satisfies:

(F1) limeo 22 = 0.



(F2) lim_yeo 52 =k > 0.

tN—2

N+2

(F3) There exist C > 0 and p < 2* such that f(t) > kt~¥-2 + CtP~! for t > 0.

The main theorem of this paper reads as

Theorem 1.1. Let p > 2,N > 4 or p > 4, N = 3 and suppose that (V1)-
(V2) and (F1)-(F3). Then for sufficiently small ¢ > 0, (LI) admits a positive

solution v., which satisfies

(i) there exists a mazimum point x.of ve such that lime_,o dist(xe, M) = 0
and for any such . ,w.(x) = ve(ex + xc) converges (up to a subsequence)
uniformly to a least energy solution of

— Au+mu= f(u), u>0, ue H(RY), (1.3)

(ii) ve(z) < Cexp(—£|x — xc|) for some c,C > 0.

Remark 1.1. Without loss of generality, in the present paper we can assume
that Vo = k = 1.

Remark 1.2. To ensure the existence of ground states to (L3)), the assumption
(F3) plays a crucial role. Without (F'3), the assumptions (F1)-(F2) can not
guarantee the existence of ground states of (L3)). We can give a counterexample,
i.e., f(s) = k|s|* ~2s. Then f satisfies the assumptions (F1)-(F2) except (F3).
But it is easy to verify with the help of Pohozdev’s identity that (L3) has no
nontrivial solutions.

In the study of singularly perturbed problems, the limit problem (3] plays
a crucial role. In [19], Jeanjean and Tanaka showed under the Berestycki-Lions
conditions (f1)-(f3) that the subcritical problem (3]) exists a least energy so-
lution, which is also a mountain pass solution. Due to the lack of compact
embedding of H'(RN) — L2 (RY), for critical nonlinearity f, the existence
of ground states of problem (L[3]) becomes rather complicated. Very recently,
Alves, Souto and Montenegro [26] studied the existence of ground state solu-
tions for problem (L3)) with critical growth in RV (N > 2). For N > 3, they
assume that f € C(R,R) and satisfies

(G1) lim,_,o+ £ =0;

(G2) limsup,_, tf*(t,)l <1
(G3) 2F(t) < tf(¢) for all t > 0;
(G4) There exist A > 0 and 2 < p < 2* such that f(t) > XP~! for t > 0.

They established the existence of the ground state to ([L3]). But the proof in
[26] strongly depends on large A, that is, problem (L3 has a ground state if
A > Ao, where )\g is a positive constant and a complicated explicit formula of Ay



is given there. For small A > 0, it still remains unknown that whether problem
(T3) has a ground state. In [36], we proved that problem (3] has a ground
state with the assumptions (F})-(F3). Meanwhile, we show that a ground state
of (3] is a mountain pass solution. More properties are also claimed.

Now let us say more on the background for problems like (IIJ). In recent
years, singularly perturbed problems have been widely studied by many re-
searchers, and related results can been seen in [7] [8] @} 10} [1T], 13, [15] 22| 23| 24]
32]. By denoting u(x) = v(ez) and V.(z) = V(ex), (L)) is equivalent to

— Au+Vo(z)u = f(u), u>0, ue H(RY). (1.4)

An interesting class of solutions of (IT]) are families of solutions which concen-
trate and develop spike layers around certain point in 2 as ¢ — 0. To study
the concentration phenomena of solutions for problem (I]), the problem (T3]
plays an important role which is called the limit problem of (T4).

Recall that Floer and Weinstein [I7] first studied the existence of single
peak solutions for N = 1 and f(s) = s3. They construct a single peak solution
which concentrates around any given non-degenerate critical point of V. In
higher dimension, for f(s) = |s[P72s,p € (2,2*), Oh [27] established a similar
result as in [17]. In [I7) 27], their arguments are based on a Lyapunov-Schmidt
reduction, for which they needed to characterize the kernel of the linearized
operator L := —A+V(xzg)— f'(U), where U is the ground state of the following
autonomous problem: for fixed zg € R,

— Au+V(zo)u= f(u), nRY, ve HRY). (1.5)

Moreover, they also required some monotonicity condition of nonlinearity f and
uniqueness condition of ground states of ([H]). Precisely, they assumed that
f € C*(R,R) and

(H1) f(¢)/t is non-decreasing on (0, 00);

(H2) there exists a unique radially symmetric solution U € HL2(RY) for Au —
u+ f(u) = 0,u > 0 in RY such that if AV —V + f/(U)V = 0 and
Ve HY2(RN), then V =3" | aig—gi for some ay,--- ,a, € R.

Subsequently, when ground states of (IL3]) are unique and non-degenerate, Am-
brosetti, Badiale and Cinglani [I] consider concentration phenomena at isolated
local minima and maxima with polynomial degeneracy.

However we remark that the uniqueness and non-degeneracy of the ground
state solutions of the limit equation (L3 are, in general, rather difficult to
prove. They are known so far only for a rather restricted class of nonlinearities
f. In [30], without the uniqueness and non-degeneracy condition, Rabinowitz
proves, by a mountain pass argument, the existence of positive solutions of (L))
for small ¢ > 0 whenever

liminf V(z) > iRan V(z).

|| =00



In [31], with (V1)-(V2) Wang proves that these solutions concentrate around
the global minimum points of V' as ¢ — 0. Later, Del Pino and Felmer [13]
introduced a penalization approach and proved a localized version of the re-
sult by Rabinowitz and Wang. They prove the existence of a single-peak solu-
tion which concentrates around the minimum points of V' in O, providing that
the nonlinearity f satisfies (f1)-(f2), (H1) and the so-called global Ambrosetti-
Rabinowitz condition ((A-R) for short): for some p > 2,0 < ufotf(s)ds <
tf(t),t > 0. Recently, it has been shown in [19][7] that (H1) and (A-R) are not
necessary.

To sum up, for the critical case, the concentration phenomenon of problem
(CI) has not been studied so far by variational methods. Thus similar to the
subcritical case, when f is critical, it seems natural to expect that there also
exists a corresponding solution to the singularly perturbed problem (1) for
small € > 0 and the similar concentration phenomenon occurs. In the present
paper, we will adopt the ideas of Byeon [7] to find solutions of problem (IIJ) in
some neighborhood of the set of ground states for problem (I3]). But it should
be stressed that the compactness is the main difficulty in extending the quoted
results to critical problems. For critical variational problem, (PS)-condition
fails. About this aspect, we refer to [4] [6, Bl 25| [33] and the references therein.
Therefore, the method of Byeon [7] is not used directly and some more tricks
are given.

2 Proof of Theorem (.1

To study (L)), it suffices to study (L4). Let H. be the completion of C5°(RY)
with respect to the norm

2
lu|le = </ |Vul? —|—V5u2) )
RN

We define a norm || - || on H}(RY) by
lull? :/ Vul? + Vou?.
RN
Since infgn V(z) = Vo > 0, we have H. C HY(RY). For any set B C RV and
e > 0, we define B. = {z € RY : ez € B}. For u € H,, let

1
P.(u) = 5 /RN |Vu|? + Vou? — /RN F(u).

Fixing an arbitrary p > 0, we define

0, if ze€O;,
Xe() _{

e7H if 2 € RN\ O,



and
2

Q-(u) = (/RN ot — 1>+.

The functional Q. will act as a penalization to force the concentration phenom-
ena to occur inside O. This type of penalization was first introduced in [10].
Finally, let I'c : H. — R be given by

Te(u) = Pe(u) + Qc(u).

It is standard to show that I'. € C'(H.). From now on we may assume that
f(t) =0for ¢t < 0. In this case any critical point of I" is positive by the maximum
principle. Clearly a critical point of P. corresponds to a solution of (L4]). To
find solutions of (L4)) which concentrate in O as € — 0, we shall search critical
points of I'. for which Q. is zero.

First, we study some properties of the solutions of ([[3]). Without loss of
generality, we may assume that 0 € M. For any set B C RY and 6 > 0, we
define B® = {x € R¥|dist(z, B) < §}. As we already mentioned, the following
equations for a > 0 are limiting equations of (L4)

—Au+tau= f(u), u>0, uec H(RY). (2.1)
We define an energy functional for the limiting problems (ZI)) by

1
Lo(u) = —/ Vul> +au? — [ F(u), uwe H (RY),
2 RN RN
where F(s fo t)dt. In [36], we proved that, if p > 2,N >4orp>4,N =3
and (F 1) (F3) hold, there exists a least energy solution of ([2.1]) for any a > 0.
Moreover, each such solution U of ([2)) satisfies Pohozaev’s identity
N -2

—/ |VU|? dx = N
RN

: (F(U) - gw) dz, (2.2)

RN
and so

/ |VU|*dx = NLy(U). (2.3)
RN

Let S, be the set of least energy solutions U of 2] satisfying U(0) =
max,ecrn U(z). The following result on S, was proved in [12].
Proposition 2.1. (see [12, Proposition 2.1])
(1) For any U € S, U is radially symmetric and %—[7{ <0 for all v > 0.
(2) S, is compact in H'(RN).
(3) 0 <inf{||U]|loo : U € Sa} < sup{||U]|loo : U € Sa} < 0.
(4)

4) There exist C,c > 0, independent of U € S,, such that |D*U(x)| <

Cexp(—clz|), z € RN for |a| =0, 1.



Let E,, = L, (U) for U € S,,, and 106 = dist(M,0°). We fix a g € (0,9)
and a cut-off p € C§°(RY) such that 0 < p < 1,p(z) = 1 for |z| < B and
@(x) = 0 for |z| > 2B. Let o.(y) = ¢(cy),y € RY and for each 2 € M? and
U € S,,, we define

UZ(y) == o= (y—E)U(y— E)
We will find a solution near the set

X, :={U%y) |z e MP,U € S,,}.
for sufficiently small € > 0. We note that 0 € M and define

We(y) = 0 (1)U (y),

where U € S,, is arbitrary but fixed. Setting W ;(y) = - (y)U(¥), we see that
I.(W..) = P.(W.,) for t > 0. By (22)), for Uy(xz) = U(%) we have

t

Thus, there exists ¢y > 1 such that L,,(U;) < —2 for t > &,.
Finally, we define a min-max value C:

Ce = inf Jnax, Le(v(s)),

where @, := {y € C([0,1], H.) : v(0) = 0,7(1) = W4, }. We can check that
I.(y(1)) < =2 for any € > 0 sufficiently small. Let v.(s) = We &, for s € (0,1]
and v.(0) = 0. We denote

D, = T .
e Srél[%ﬁ] <(7=(5))

Recalling that in [36], the authors proved that, for equation (IL3]) the mountain
pass level corresponds to the least energy level. Then similar as in [7], we can
prove that

Proposition 2.2. lim C. = lim D, = E,,.
e—0 e—0

Now define
e :={uwe H,:T(u) <a}

and for a set A C H; and o > 0, let

A ={ueH.: Jgg lu—v|e < a}.

The following lemma was introduced in [3I] and will be used in the following
proof.



Lemma 2.1. ([31)]) Let R be a positive number and {u,} a bounded sequence
in H'(RN). If

lim sup / lun)? =0,
N0 2ecRN JB(z,R)
then u, — 0 in L (RN) as n — oc.

To continue our proof, we need the following lemma from Benci and Cerami
3].

Lemma 2.2. (see [3, Lemma 2.7]) Let {u,} C H}_ (RY) be a sequence of
functions such that
Um — 0 weakly in H*(RY).

Suppose that there exist a bounded open set Q@ C RN and a positive constant
v > 0 such that

/|Vum|2dx27>0, /|um|2*27>0.
Q Q

Moreover suppose that
Aum + |um|2*72um = Xm>
where Xm € H-Y(RY) and

|(Xm, )| < eml|dllmrr), Vo€ C5o(U),

where U is an open neighborhood of Q and €, is a sequence converging to 0.
Then there exist a sequence of points {ym} C RY and a sequence of positive
numbers {om,} such that

O () = oD 20, (o + Ym)
converges weakly in DV2(RY) to a nontrivial solution v of
—Au=|u)* "2u, ue DYARV).

Moreover, .
Ym = YE€Q and op — 0.

The following proposition is very important, and its proof is much more
delicate in case of critical growth.

Proposition 2.3. Let {&;}32, be such that lim; oo, = 0 and {u.,} C X2
such that )

lim I';, (ue,) < Eyy and lim T'_ (u,) = 0.

71— 00 1—> 00

Then for sufficiently small d > 0, there exits, up to a subsequence, {y;}$2; C
RN 2 € M,U € S,, such that

lim [eiy; — 2| =0 and lim [ue, = ¢e, (- = y:)U( = 4i)le; =0
i—00 1—00



Proof. For convenience, we write ¢ for &;. By the definition of X2, there exist
{U.} C S,, and {z.} C M# with

Z xT
e = pe(- = )0 = Z)e <

Since S, and M? are compact, there exist Z € S,,,,z € M? such that U. — Z
in H'(RY) and x. — z. Thus, for small £ > 0,

Te

lue = el = =)2(- = =)l < 2d. (2.4)

Step 1. We claim that

lim inf sup/ lu-|* =0,
=0 yea. JB(y,1)

where A. = B(%=, %) \ B(%, %) If the claim is true, by Lemma 2] we see
that
us — 0 in L? (B.),

where B, = B(%=,22)\ B(%=,2).

e’ € e’ e

By Lemma 2] assume by contradiction that there exists r > 0, such that

lim inf sup / lue|?” = 2r > 0,
€20 yeA. JB(y,1)

then there exists y. € A, such that for small ¢ > 0, fB(y 1 luc|?” > r. Note

that y. € A. and there exists zg € M* C O such that ey. — x9. Let
Ve (y) = ue(y + ye), then, for € small,

/ |2 > 7 (2.5)
B(0,1)

and up to a subsequence, v. — v weakly in H*(RY) and v satisfies
—Av +V(zg)v = f(v) in RV,
Case 1. If v # 0, then for sufficiently large R > 0,
1 N
o 25 = 2 _ YV -
llinlélf - |[Vue|* > 5 /RN |V 5 Ly (g4)(v)

By definition, Ly (z,)(v) > Ey(z,). Now recalling from [36] that E, > Ej if
a > b. Then since zg € O, we have V(x9) > m and liminf._,q fB(y R) Vu|? >
%Em > 0, which is a contradiction with (Z4]) if d is small enough.

Case 2. If v =0, i.e., v. — 0 weakly in H*(RY), then v, — 0 strongly in
L (RN) for g € [2,2*). Thus, by ([2.5) and Sobolev’ embedding theorem, there
exists C' > 0 (independent of ) such that, for e small,

/ IVoe|> > Cre= > 0. (2.6)
B(0,1)



Now, we claim that

lim sup [{pe, )| =0, 2.7
tim sup (-0 .7
llpll=1

where Q = B(0,2),p. € H-'(RY) and p. = Av. + |v-|* 2v.. For ¢ > 0
small enough, it is easy to check that fRN Xeue (- — ye) = 0 uniformly for any
¢ € C§°(92). Thus, for any ¢ € CF*(Q2) and ||¢|| = 1,

(Pe, @) :/]RN Veued(- — ye) — <F;(’UJ5),(J5( —Ye))

a /]RN (f(us) - |u5|2*72u5)¢(- — Ye)
=J1 + Jo + Js. (2.8)

First, since sup,cq Ve(y + ye) < oo uniformly for small ¢ and ve — 0 strongly
in L2 (R™N), we have

loc
1 1
2 2 2 2
|Mszm%(/m)(/w>
yeQ Q Q

— 0 as e — 0, uniformly for ¢ € C5°(Q2), 4] = 1.

Second, by (F'1)-(£'2), we see that lim|; o g(s)/[s| = lim| 00 g(s)/|s|>~+ =0,
where g(s) = f(s) — |s|* ~2s. Let §(s) = |g(s)|%, then
lim 9(s) 0 and lim 9()

2% - *
%1 85— 00 |S|2

=0.

s—0 |S

Since v — 0 weakly in H'(R"Y), sup.-q [o [ve| T + |v|?” < oo. Then, it
follows from v. — 0 strongly in L? (R") and the compactness lemma of Strauss
[34] that g(v.) — 0 strongly in L'(2) as ¢ — 0. Thus, by Lebesgue dominated
convergence theorem,

*

27 —1 1

= N\ 77
lim |J5| < lim (/ g(vs)) < |¢]? ) =0
e—0 e—0 Q Q

uniformly for ¢ € C§°(2), ||¢|| = 1. Combining these with I'.(u.) — 0, we see
that the claim (2.7 is true. By Lemma [2.2] we see from (2.5)-([271) that, there
exists . € RY and 0. > 0, such that §. — 7 € B(0,1), 0. — 0 and
N—2
We(y) 1= 0c * ve(0:Y + Je)
converges weakly to w in DV2(R¥), where w is a nontrivial solution of —Av =

N
|v]?" =20 in DY2(RY). Then there exists R > 0, such that s [Vw|? > 22
Hence, for € > 0 small enough,

0,R)

gy
liminf/ |Vu|> > liminf/ |Vue|? Z/ |Vwl|? > ’ ,
=20 JB(y..2) 20 JB(je,0R) B(0,R) 2

10




which is a contradiction with ([24) if d > 0 is small enough. Therefore, Step 1
is proved.

Step 2. Let ul(y) = pe(y — Z=)uc(y),u? = ue — ul. We claim that, for small
d>0,T.(u?) >0 and

To(us) > To(ul) +To(u?) 4+ o(1), as € — 0.
Similarly as in [7, Proposition 4], for small d > 0, T'-(u2) > 0. By (F1), for any

§ > 0, there exits Cs > 0 such that |F(s)| < 6|s|? + Cs|s|>” for s € R. Then by
ue — 0 strongly in L?" (B.) which has been proved in Step 1, we have

F(ue) = F(uz) — F(uZ)
RN

lim sup
e—0

=lim sup
e—0

§limsup/ Suc)?® + Csluc*
e—0 B.

[ Pt - Pl - P
B.

<Cs,
where C' is a positive constant (independent of e,d). Since 0 is arbitrary,

Jan F(ue) = F(ul) — F(u2) = o(1) as ¢ — 0. Then the claim can be proved
similarly as in [7, Propostion 4]. We omit the details.

Step 3. Let we(y) := ul(y + %) = (y)uc(y + Z=). Up to a subsequence,
we — w weakly in H'(RV), w. — w a.e. in RV, Now, we claim that

we — w strongly in L (RV).

By Lemma 2.1] assume by contradiction that there exists r > 0, such that

lim inf sup / lwe —w|? = 2r > 0.
B(z,1)

e—0 2ERN

Then, there exists z. € RY such that liminf._, fB(Z 1 |we — w|2* > 7.

Case 1. {z:} is bounded, i.e., |z:| < a for some a > 0. Then for ¢ small,

/ 0.2 > 7, (2.9)
B(0,a+1)

where v. = w. —w and v. — 0 weakly in H'(R"). Similar as in Step 1, there
exists C' > 0 (independent of ) such that, for e small,

/ Vo2 > Cree > 0. (2.10)
B(0,a+1)
Now, we claim that
lim sup |(p.,6)] =0, (2.11)
e—0 $eCge (@)
llpll=1

11



where Q = B(0,a +2),p. € H-'(RY) and p. = Av. + |[v|> ~2v.. For e > 0
small enough, it is easy to check that fRN Xeue (- — =) = 0 uniformly for any
¢ € C§°(€2). Thus, we see that for € small and any ¢ € C5(£2),

(Ti(ue), 60— ) = || VueVot+Valy + Fhwed = f(we)o,
Then,
[, Y0+ Vely+ 2= ) = of0), (2.12)

uniformly for ¢ € C§°(9),||¢|| = 1. Noting that w. — w weakly in H*(R") and
xe — x, by a standard way we can see that w satisfies —Aw(y) + V(z)w(y) =
f(w(y)) in RN, Thus,

/]RN VwVe + V(z)wd — f(w)p =0, for ¢ e C5°(N). (2.13)
Moreover, by elliptic estimates w € L>(R"). Then it follows that
J e o e e P e R C N CAT)
uniformly for ¢ € C5°(Q2), ||¢]] = 1. It follows from (Z.12)-@2.14) that

(perd) = / (Viey + zo)we — V()w)d + / (9(w) — 9(w2))é + o(1)

Q
: Ky + Ko, (2.15)

where g(s) = f(s) — |s|> “2s and o(1) — 0 as ¢ — 0 uniformly for ¢ €
Cs°(Q), |4 = 1. Noting that w. — w strongly in L?(Q) and z. — =, it is
easy to check that K1 = o(1) as ¢ — 0 uniformly for ¢ € C5°(Q2),||¢| = 1. In
the following, we will show that

lim /Q l9(w2) — g(w)| #=T =0, (2.16)

e—0

Since w. — w weakly in H*(RY), sup_, [, |w;._-|23—*1 + |we[* < oo, similar
as in Step 1, j(we) — g(w) strongly in L*(Q)) as ¢ — 0. Thus, by Lebesgue
dominated convergence theorem, (ZI6) is proved. Then,
1
* 2%
2 ) =0.

=) (he

Therefore, (2.I1)) follows from ([Z.I5)). By Lemma [22] again, we see from (2.9))-
2II) that, there exist z. € RY and o. > 0, such that Z. — Z € B(0,a+ 1),
o, — 0 and

i 1] < B ([ low) ~ o(w)
e—0 e—0 Q

Ua(asy + 55)

12



converges weakly to @ in DV?(RY), where w is a nontrivial solution of —Aw =
|@|?" ~2@ in DV2(RY). Then,

/ | V|2 ghmmf/ |V, |? :hminf/ |V |?
RN e—0 RN e—0 RN
= 1iminf/ |Vw,|*> — |[Vw|?.
e—0 RN
Noting that [ [V@|? > S% . we see that liminf._,g Jan [Vwe? > ST, It
follows that liminf. o [~ [Vue|? > S%. By (24), we have

1 1 1
2 2 2
(/ |VZ|2) = lim (/ |V(¢EZ)|2> zliminf</ |Vu5|2> —2d
RN e—0 RN e—0 RN

N

> (s%)" —2a

N

Recalling that E,, < %, we see that fRN |VZ|? > NE,, for small d > 0, which
is a contradiction, since Z € S,,.

Case 2. {z.} is unbounded. Without loss of generality, lim._,o |zc| = oo.
Then, liminf, .o fB(Z n lwe|?” >, ie.,

“mmf/ e (Wusly + 2P > 1
B(stl) €

e—0

Since (y) = 0 for |y| > 23, we see that |z.| < % for € small. If |z.| > % for e
small, then z. € B(0, %) \ B(0, £) and by Step 1, we get that

) 2e
. . 2* . . Te 2%
hrnlnf/ |wel]® <liminf sup / |ue(y + —)]
=0 JB(z1) 20 LeB(0,22)\B(0,£) / B(21) €
o

=lim inf sup/ e
€70 z2eA. JB(z,1)

:O,

which is a contradiction. Thus, |z:| < % for € small. Assume that ez. — 29 €

B(0, g) and W, = w.(y + z.) — W weakly in H(RY). If w # 0, we can see that

w satisfies
—Ad(y) + V(z + 20)i(y) = f(w(y)) in RY.

Similar as in Step 1, we get a contradiction if d > 0 is small enough. Thus,
W =0, i.e., w. — 0 weakly in H!(RY). Meanwhile,

/ e >r >0 (2.17)
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and there exists C' > 0 (independent of ¢) such that, for e small,

/ V. |> > Cree > 0. (2.18)
B(0,1)
Now, we claim that
lim su De, =0, 2.19
liy s [(7.0) (2.19)
lloll=1

where Q = B(0,2),p. € H'(RY) and p. = A, + |w:|* ~%iw.. For e > 0
small enough, it is easy to check that [in Xcuc¢(- — 2e — Z=) = 0 and w.(y) =
uc(y + ze + %=) uniformly for any y € Q and ¢ € C§°(2). Thus, for any
¢ € C5°(€2) and [|9]| = 1,

(Pes ) = | Veued(- — 2e = =) = (TL(ue), ¢(- — 2e — =)
RN € €
- [ () = P o - 2 - )
RN €
Similar as in Step 1, (Z19) is true. By Lemma again, we see from (2I7)-

(Z19) that, there exist §. € RY and o, > 0, such that . — § € B(0,1), 0. — 0
and

N-—2

We(y) =0 * We(0cy + Fe)
converges weakly to @ in DV2(RY), where @ is a nontrivial solution of —Av =
|v|> ~2v in DV2(RYN). Note that there exists R > 0, such that fB(O R) |Vw|? >

N
STZ. Then, for € > 0 small enough,

N
2

liminf/ |V > > liminf/ | Ve | 2/ |Va|* > 5 ,
e20 JB(zet 2 2) <20 JB(ge,0.R) B(0.R) 2

which is a contradiction with (24) if d > 0 is small enough. Therefore, w. —
w strongly in L?" (RVN).

Step 4. By Step 3, we deduce that

lim F(we)dx = F(w) dz.

e—0 RN ]RN
Then similarly as in [7, Proposition 4], there exist U € S,, and y. € RY, such
that lime0 |eye — 2| = 0 and lime_o [|ue — ©e(- — Ye)U(- — ye)||le = 0. This
completes the proof. O

Proposition 2.4. For sufficiently small ¢ > 0 and sufficiently large R >
0, there exists a sequence {uff_}>o, c X2 N HY(B(0,£)) N TP such that
ITL(uyf )| = 0 in (Hg(B(0, £)))".

Ve
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Proof. By Proposition 23] the proof can be done similarly as in [7, 8] and the
details are omitted here. O

Proposition 2.5. For sufficiently small e,d > 0, Tz has a nontrivial critical
point ue € Xg N F?f.

Proof. Let € > 0 be fixed, small enough and

1, N ~n—2 N

Step 1. For sufficiently large R > 0, we claim that I'. has a nontrivial critical
point uff € X¢NH}(B(0, £))NTP=. Proposition 24limplies that for some Ry >
0 and any R > Ry, there exists a sequence {uf _}>2, ¢ X¢nH{(B(0,£))nr>-
such that [IZ(uf )| — 0 in (HZ(B(0,£)))". Since X is bounded, we can
assume that wf_ — uf weakly in Hj(B(0, £)) as n — oco. Then it can be

proved by a standard way that T'L(uf) = 0 in H}(B(0, £)). We write that
uff. = ol +wh, withof_ e X, and |wf_||c <d. Since S, is compact, taking
a subsequence if it is necessary, we can assume that U,]EE — vl € X_ strongly
in Hj(B(0,£)) and wf, — wf weakly in H}(B(0,£)) as n — co. Then we
have that uff = vff + wf with ||[wl|. < d, ie., uff € X2, Now, we will prove
: R
that uff € T'P<. From the weak convergence of uf_ to uf in H}(B(0,£)) and
Brezis-Lieb lemma, we see that as n — oo,

IVul |3 = IV (upy . — w5 + [ Vul'||5 + o(1),
% + ||uf % + o(1).

g I3 = llun  — u

2% -1
Then, by lims_, e 70(55)2_*78,1 =0, we get that as n — oo,

[ PR = Pl o) = Pf) = o).

Meanwhile, by the compactness embedding of H} (B(0, £)) < L(B(0,£))(q €
(2,2%)), we get

1 .
[ (P -l - Gt =) o),
RN
Thus, using the Sobolev’s inequality, we get that for any n large,
D. > T, (ufia)

1 1 .
> T (uf) + gl —wf? =l — wl3 +o(1)

1

1 _ _ .
2 Te(uf!) + 5 lfle — wFI? = 525~ ull, — wFF 4 o(1)
1 1 _ _
= Do) + e = w5 = 528N wll, — wF V) 1 o(1)

15



> T (ull) + o(1).
Letting n — +o0, we get that I'.(u®) < D., that is, uff € T'D=.

Step 2. We claim that for d € (0, %S%), {uf*} is bounded in L>°(RY) uniformly
for large R > 0 . To the contrary, we assume that there exist Ry, R, > 0
satisfying R, > Ro and lim, e |uf" || oo (mn) = 00, where {uft"} ¢ XI N TD=.
By the definition of X¢, there exist {U,} C S,, and {y,,} C M? with

lue™ — @e(- — ?)Un( - ?)”a <d.

Since S, is compact, up to a subsequence, there exists U € S, such that
U, — U in H*(RY). Then

It follows from U, — U in H*(RY) that lim,, o I,, = 0, which implies that
limsup,, . [[uff" — pe(- — L2)U(- — L2)||. < 22, Then we write

uftr = pfn wlfte and [Jof|. < 2d,

for n large enough, where vfi» € H, and wfir = ¢, (-—42)U(-—%=). Meanwhile,
since f(t) = 0 for t <0, it follows form the Maximum Principle that uf» > 0 in
B(0, %) and —Aulftr +ufin < f(uf) in B(0, %) Due to elliptic estimates,
uftn € CY(B(0, £2)) for some « € (0,1). We extend ufi» € H}(B(0, £2)) to
uftn € HY(RV) by zero outside B(0, £). Then, there exists 2 € B(0, £=) such

that uft"(2) = max,cpn ult"(z) for n =1,2,--- . We define

1 2 1 _
wp(x) = l—uf” (In " 2x+27), wd(2) = l—wf" (In ¥ 2z+2") with 1, = ult(27).

Then, w,, satisfies

4 _ N+42

- Awn + (ln)_N72 Wy — (ln) Nﬁzf(lnwn)

2

= _4(ln)—ﬁ </ Xs(I)(U§")2d$ - 1) Xs(lrjmx + 20w, in RY.
RN i

Note that {fx xe(uff*)?} and {||uf||} are uniformly bounded for n. Then,
we deduce from (F2) and elliptic estimates that w,, converges locally uniformly
to the unique radial positive solution wg of

N+2

Awy +wy > =0, we(0) = max wo(z) =1 in RV,
zE

16



N-—2

It is well known that wo(z) = (%) ¢ thus we € L¥ (RY) and

|Vwg| € L2(RY). Note that ||w,, —w?||o- = |[uffr —wBn (g = ||[vfi ]2 < \2/—% for

n large enough. Then for any fixed R > 0, we have ||w,, — w?z||L2*(B(O,R)) < \2/—%.

Recall that ||wl|| e < ||U||p/ln — 0asn — oo, letting n — oo we deduce that
lwoll L2+ (B(0,R)) < \2/—%. This means that ||wplle» < \2/—%; but this is impossible

since d € (0, %S%). Thus {uf*} is bounded in L>°(RY) uniformly for R > Ry.

Step 3. We claim that uf — wu. strongly in H., where I'.(u.) = 0,u. €

g
X3 NTP-. By Step 2 and elliptic estimates (see [I8]), we see that there exists
C > 0 (independent R) such that for any B(y,2) C B(0,£), SUpp(y.1) US <
Cllul | L2(B(y,2))- Thus, by Q-(uf) is uniformly bounded for R > Ry, we see
that there exists C' > 0 (independent R) such that

R
0<ulf <Ce% for |yl >2+ —=,R> Ry. (2.20)
5
Since uff € X¢, we can assume uff — u. weakly in HI(RY) as R — oo.

Next, we shall prove that uff — u. strongly in H1(RY) as R — oco. First, we
claim that the sequence {uf*} r~ r, has exponential decay at infinity. By (Z.20)
and (F1), for sufficiently small and fixed ¢ > 0, we have |f(uff)| < fuf for

ly| > 2+ %, R > Ry. Tt follows from the Maximum Principle that 0 < uZ(y) <

Cexp(—3lyl) for ly| > 2+ %, R > Rg. Therefore, by Step 2 there exists C' > 0
(independent R) such that

1
0 <uli(y) < Cexp(—§|y|) for y € RV, R > Ry. (2.21)
Second, we claim that

lim IVul > + Vo |[uf|? = 0, (2.22)
6—00 JRN\B(0,8)

uniformly for R > Ry. Choosing a cutoff function ¢5 € C®(RY),0 < ¢5 <
1,[Vgs| < 2 and 65(y) = O]yl < 6,6s(y) = 1,]y| > 24, it follows from
(TL(ul), psuf) = 0 that

Lo Tl Vgl
RN\ B(0,25)

S BRI\ SN 7 Ve

§ JrRN\B(0,5) RN\ B(0,5)
Thus, ([222) immediately follows form ([Z.21)),([Z23) and the fact that {||uf||:}r>r,
is uniformly bounded. Third, we shall prove that I'.(u.) = 0 in H.(RY) and
uff — u. strongly in H.(RY). By ([222) we see that lims_oc |uf |z~ p(0,5) = 0.
Then by uf — wu. weakly in H.(RY), we get that uff — wu. strongly in
LIRN)(2 < ¢ < 2%). Since {ul'} is bounded in L>°(RY) uniformly for R > Ry,
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we see that [|uc||c < 00. So uf — u. strongly in LY(RY)(2 < ¢ < 2*). There-
fore, by a standard way we can prove the claim.

Finally, since S,,, is compact, it is easy to see that 0 ¢ X for d > 0 small
enough. Thus, u. #Z 0. This completes the proof. o

Now, we prove Theorem [[.Il We start with the following Lemma 2.3l due to
Brézis and Kato [B] and Lemma [Z4] due to Gilbarg and Trudinger [I§].

Lemma 2.3. [5] Let @ ¢ RN and ¢ € L= (RN) be a nonnegative function.
Then for every € > 0, there exists a constant o(e,q) > 0 such that

/q(az)u2 SE/ |Vu|2—|—a(s,q)/ u?, for all uwe HY(Q).
Q Q Q

Lemma 2.4. [18] Suppose that t > N, g € Lz () and u € HL(Q) satisfies (in
the weak sense)
—Au+u < g(x),

where ) is an open subset of R™. Then for any ball Bagr(y) C Q,

+
BS:(I?)/)U = (”u ||L2(B2R(y)) + ”gHL%(Bma(y))) ’

where C only depends on N,t and R.
Completion of the proof for Theorem [I.1]

Proof. By Proposition 2] there exist d > 0 and ¢ > 0, such that I'. has a
nontrivial critical point u. € X¢NTP= for e € (0,e).

Step 1. We claim that for d > 0 small, there exists p > 0 (independent of ¢)
such that ||uc|lee > p for € € (0,£0) and u. > 0 in RY. Since f(t) =0 for t <0,
we see that ue > 0 and —Au, +u. < f(ue) in RY. In the following, we use the
Moser iteration technique (see [I8]) to prove that there exists C' > 0 such that

lte|loo < C, uniformly for € € (0, &p). (2.24)

If (224)) is ture, then it follows from weak Harnark inequality (see [I8]) that u. >
0 in RY. Thus, from (V1) and (F1), it is easy to see that inf.e(o.c,) [|te/|oo > 0.
To the contrary, we assume that (2Z24)) is false, i.e., there exist e,,,d, > 0

satisfying nhﬁrr;o dy = nlirrgo en = 0 and nlirrgo l|te, || oo rvy = 00, where {uc,} C

Xn NTE" . By the definition of X there exist {U,} C Sy, and {y,} C M&
with

[ue, = (e, Un)(- = yn)lle, < dn.
Since S,, is compact, up to a subsequence, there exists U € S,, such that
U, — U in H*(RY). Then

||u5n - (SOEnU)( - y”l)”an
< dn + (e, Un) (- = Yn) = (0, U)(- = yn)lle,
=:d, + I,.
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It follows from U,, — U in H*(RY) that I,, — 0 as n — oo, which implies that
limy, o0 |Jtte, — (02, U)(- = yn)|le, = 0. By Sobolev’s embedding theorem, for
any p > 0, there exists ng € N such that

[u2, 7 = (e, U)* 2(- — )l <y for n > no. (2.25)

LY (RN)

For convenience, we write n for ¢,. For any k£ € N and p > 0, consider Ay, =
{z € RN :u, <k}, By =RN \ A and define vj, by

v = uipﬂ in Ay, v, =k*u,, in B.
Thus, v, € HY(RY),0 < v < u?PH! and
Vur = (2p + 1)u*Vu, in Ag, Vo, = k*Vu,, in By.

So, using vx as a test function, we have [,y VunVur < [on f(un)uvk, ie.
(2p+ 1)/ w2 |V, |? + kzp/ |Vun,|* = / fun)vg.
Apg By RN

By (F1)-(F2), there exists C' > 0 such that f(t) < Ct + 2t* ! for all t > 0.
Thus, we get

(2p+1)/ uip|vun|2+k2p/ |Vun|2§/ (C +2u2 2)u,vp. (2.26)
Ak Bk RN

We define
wy = uﬁ"’l in Ag, wg = kPu, in By.
Then w? = uyv; < w?Pt? and
k n

Vwg = (p+ D)ubVu, in Ax, Vwg =kPVu,, in Bj.

Thus we get

/ |Vwk|2:(p—|—1)2/ uip|vun|2+k21’/ |V, |2 (2.27)
RN

Ak Bk

Combining (2:26) and (2:27), we see that

2+ 1 .
(pp+ o /RN Vw2 < /RN(C+2u,% 22, (2.28)

For any p > 0 given above, it follows from Lemma and (2.23) that

2% -2, 2 2%—2 2 2% -2 2*—2) 2
/Nun wk:/Nuo wk—i-/N(un — Uy )wk
R R R

<[ Vol olut) [ okl )
RN RN

1+ S
< TM/ |Vwk|2+0(ﬂa U)/ wl%7
RN RN
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S(2p+1)
4(S+1)(p+1)2>

/RN |Vag|? < C, /RN lwg |2, (2.29)

(C +20(u,U)). That is, for any p > 0, there exists n, € N

where S is the best Sobolev’s constant. Then, choosing p = we

get from (2.28)) that

~ 2 1 2
where C), = (2’; erl)

such that

/ |V |? < ép/ lwg|? for any k > 0 and n > n,,. (2.30)
RN RN

If u, € L*PtD(RN) for some p > 2, by Sobolev’s embedding theorem and

[230), we have
2
* 2% ~
(/ w? ) < S5C, wi
Apg RN

Therefore, for any p > 2 satisfying {u,}52, c L2P+D(RN), there exists C, >

(),np (S Ii SU.Ch tlla.t
</Alc " ( )>

for any £ > 0 and n > n,. Now, let k¥ — oo, we have

2

) < Sép/ ui(p+1),
RN

)

2

(/ ui*(’”'l))w < Sép/ w2y, (2.31)
RN RN

That is, for any p > 2 satisfying u,, ¢ L*®+D(RN) for n large enough, there
exist C, > 0,n, € N, such that for n > n,, u, € L2 ®+*D(RY) and

||un||L2*<p+1)(RN) < Op||un||L2<p+1>(RN). (2.32)

In the following, we will use an iteration argument. Let p; be a positive constant
such that 2(p; + 1) = 2*. Noting that {u,} C L?> (RV), by (Z33), there exist
Cy > 0,n; €N, such that for n > ny, u, € L¥ @ +D(RN) and

l[tn | L2+ @1+ vy < Crlltn | L2140 vy

Choosing p satisfying 2(p2 + 1) = 2*(p1 + 1), we see that ps > p; and u, C
L2w2A (RN for n > ny. Thus, by @32), there exist Cy > 0,n2 € N and
ns > nq, such that for n > ns, u, € Lz*(m"’l)(RN) and

||un||L2*(P2+1)(]RN) < C2||un||L2(P2+1)(]RN)'

Continuing with this iteration, we get a consequence {Cj} and two increasing
sequences {ny} and {pi}, where 2(pg4+1+ 1) = 2*(px + 1), such that for n > ny,
u, € L¥ P+ (RN and

[unll p2* @irv @vy < Crllunll p2win @y
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N2
Cp > 0 and n, € N such that for n > n,,

k—1
Obviously, pr = (L) 2* — 1. It follows that, for any p > 2 there exist

unllLe@yy < Cpllunl| L2 @)y (2.33)

On the other hand, by (F'1)-(F2), |f(t)] < C(|t| + |t for all ¢t and some

C > 0. By [233), there exists ng € N, such that for n > ny,

2*—1)

17 ley < Co (lunll o ooy + i) (234)
for some Cy > 0. By Lemma 24} there exist ny € N such that, for any y € RV,

BSU(P) un < C (llunllL2soy)) + I1f ()l Ly (By(y))) 5 for n>ny, (2.35)
1y

where C only depends on N. Obviously, {|un|2}, {||un]l2<} are bounded uni-
formly for n. Then we see that sup,,,,  l[unll L@~y < 0o, which is a contra-
diction. Therefore, the claim ([224) is concluded.

Step 2. There exist M > 0 (independent of ) and y. € RY, such that
0 < we(y) < M exp <—|i2|) , for y e RY e € (0,¢0), (2.36)

where we(y) = u.(y + y:). By Proposition 23] for small d > 0 there exist
{y} C RN, 2 € M,U € S, such that

lim |ey: — 2| = 0 and lim [lu. — U(- - yc)]| = 0.
e—0 e—0

Then for any o > 0, there exists R > 0 (independent of ¢), such that

sup / wf <o.
e€(0,e0) JRN\B(0,R)

Moreover, since I'.(u.) = 0 and {u.} is bounded in L>*(R") uniformly for
e € (0,20), there exists C' > 0 (independent of ¢), such that —Aw. < Cw, in RY.
Then by elliptic estimates (see [18]), there exists C' > 0 (independent of ¢), such
that supp(, 1y we < Cllwe|lL2(B(y,2)) for any y € RN, Then, 0 < w.(y) < Co?

fore € (0,e0), |y| > R+2. Thus, the claim can be proved by Maximum Principle.

Step 3. We claim that Q.(us) = 0 for small ¢ > 0. Since lim._,gey. =z € M,
eye € M?®® for small € and there is C' > 0 such that |y| < Cdist(y, M>°) for
y € RN\ O. Thus there is C' > 0 such that

_ 1
/ xg(ua)2 < Ce ”/ exp (—§|$ — ye|)dz
RN RN\O,

e 1
—ce N [ exp (=gl = cud)dy
RN\O €
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1
< e N / exp (= —dist(y, M®))dy
RN\O 2e

1
< Cs‘”‘N/ exp (——==y[)dy
RN\ B(0,5) Ce

— 0, as € =0,

i.e., Q-(uc) = 0 for small ¢ > 0. Therefore, u. is a critical point of P. and a

solution of (T4).

Step 4. We shall prove that there exists zg,z. € RY, such that maxgy v. =
Ve (2 ), lime o dist(xe, M) = 0 and lim. ¢ ||ve(e-4+2)—U(-4+20)||e = 0. Assume
that z. € RY such that ||w.||eo = we(2:), then by Step 1 and (Z.36]), we see that
{zc} C RY is bounded. Up to a subsequence, we can assume that z. — 2o as
e — 0. Let 2. = y. + 2., then maxp~ v, = u.(2:). Thus, let z. = ey, + 2., we
see that maxgny v = ve(z:) and lim._,¢ z. = lim._,¢ ey. = z € M. Finally, it is
easy to check that v.(e - +x.) — U(- + 20) strongly in H.(RY) as ¢ — 0. This

completes the proof. o
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