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Abstract

We consider the following singularly perturbed nonlinear elliptic problem:

−ε2∆u + V (x)u = f(u), u ∈ H1(RN),

where N ≥ 3 and the nonlinearity f is of critical growth. In this paper,
we construct a solution uε of the above problem which concentrates at an
isolated component of positive local minimum points of V as ε → 0 under
certain conditions on f . Our result completes the study made in some very
recent works in the sense that, in those papers only the subcritical growth was
considered.

1 Introduction

In this paper, we shall be concerned with the existence and concentration of pos-
itive solutions for the following singular perturbed elliptic problem with critical
growth:

− ε2∆v + V (x)v = f(v), v > 0, v ∈ H1(RN), (1.1)

where N ≥ 3. For ε > 0 sufficiently small, these standing waves are referred to
as semi-classical states. In the sequel, we assume that the potential function V
satisfies the following conditions:

(V1) V ∈ C(RN ,R) and 0 < V0 := infx∈RN V (x);

∗This work is supported by NSFC(10871109, 11025106, 10771212)
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(V2) There is a bounded domain O such that

m :≡ inf
x∈O

V (x) < min
x∈∂O

V (x).

In 2007, Byeon and Jeanjean [7] considered the concentration phenomenon
of the above problem (1.1) and developed a new variational method to explore
what are the essential features which guarantee the existence of localized ground
states. The considered the following conditions:

(f1) f ∈ C(R,R) such that f(t) = 0 for t ≤ 0 and limt→0 f(t)/t = 0;

(f2) there exists p ∈ (1, (N + 2)/(N − 2)) such that lim supt→∞ f(t)/tp < ∞;

(f3) there exists T > 0 such that m
2 T

2 < F (T ) :≡
∫ T

0 f(t)dt.

Let
M ≡ {x ∈ O : V (x) = m}.

Theorem A (see [7]) Suppose that (V 1)-(V 2) and (f1)-(f3).Then for sufficiently
small ε > 0, (1.1) admits a positive solution vε, which satisfies

(i) there exists a maximum point xεof vε such that limε→0 dist(xε,M) = 0
and for any such xε,wε(x) ≡ vε(εx+ xε) converges (up to a subsequence)
uniformly to a least energy solution of

−∆u +mu = f(u), u > 0, u ∈ H1(RN ), (1.2)

(ii) vε(x) ≤ C exp(− c
ε |x− xε|) for some c, C > 0.

In [7], Byeon and Jeanjean believed that (f1)-(f3) are almost optimal for the
subcritical case. Hypotheses (f1)-(f3) are called Berestycki-Lions conditions,
which were firstly proposed in a classical paper [2] to guarantee the existence of
ground states of (1.2) in the subcritical case. It follows from Pohozaev’s identity
(cf.[29]), that (f3) is necessary and that for f(u) = up with p ≥ N+2

N−2 , there

exists no nontrivial solutions in H1(RN ). Thus, Berestycki-Lions conditions are
almost optimal for the existence of solutions for (1.2) (cf. [7]).

Since in (f2) above, p ∈ (1, (N + 2)/(N − 2)) characteristics the problem to
be of subcritical growth. A natural open problem which has not been settled
before the case of critical growth, is whether the results like Theorem A hold if f
is of critical growth? The purpose of this paper is to complete the study for such
an open problem with critical exponent growth. Before making more comments
on the background of such singularly perturbed nonlinear elliptic problems, we
state the main result of this paper first. It is well known, the critical exponent
growth makes the problem very tough, more assumptions are of course needed.
We now assume that f ∈ C(R,R) and satisfies:

(F1) limt→0
f(t)
t = 0.
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(F2) limt→∞
f(t)

t
N+2
N−2

= κ > 0.

(F3) There exist C > 0 and p < 2∗ such that f(t) ≥ κt
N+2
N−2 + Ctp−1 for t ≥ 0.

The main theorem of this paper reads as

Theorem 1.1. Let p > 2, N ≥ 4 or p > 4, N = 3 and suppose that (V 1)-
(V 2) and (F1)-(F3). Then for sufficiently small ε > 0, (1.1) admits a positive
solution vε, which satisfies

(i) there exists a maximum point xεof vε such that limε→0 dist(xε,M) = 0
and for any such xε,wε(x) ≡ vε(εx+ xε) converges (up to a subsequence)
uniformly to a least energy solution of

−∆u +mu = f(u), u > 0, u ∈ H1(RN ), (1.3)

(ii) vε(x) ≤ C exp(− c
ε |x− xε|) for some c, C > 0.

Remark 1.1. Without loss of generality, in the present paper we can assume
that V0 = κ = 1.

Remark 1.2. To ensure the existence of ground states to (1.3), the assumption
(F3) plays a crucial role. Without (F3), the assumptions (F1)-(F2) can not
guarantee the existence of ground states of (1.3). We can give a counterexample,
i.e., f(s) = κ|s|2

∗−2s. Then f satisfies the assumptions (F1)-(F2) except (F3).
But it is easy to verify with the help of Pohozǎev’s identity that (1.3) has no
nontrivial solutions.

In the study of singularly perturbed problems, the limit problem (1.3) plays
a crucial role. In [19], Jeanjean and Tanaka showed under the Berestycki-Lions
conditions (f1)-(f3) that the subcritical problem (1.3) exists a least energy so-
lution, which is also a mountain pass solution. Due to the lack of compact
embedding of H1(RN ) →֒ L2∗(RN ), for critical nonlinearity f , the existence
of ground states of problem (1.3) becomes rather complicated. Very recently,
Alves, Souto and Montenegro [26] studied the existence of ground state solu-
tions for problem (1.3) with critical growth in R

N (N ≥ 2). For N ≥ 3, they
assume that f ∈ C(R,R) and satisfies

(G1) limt→0+
f(t)
t = 0;

(G2) lim supt→∞
f(t)

t2∗−1 ≤ 1;

(G3) 2F (t) ≤ tf(t) for all t ≥ 0;

(G4) There exist λ > 0 and 2 < p < 2∗ such that f(t) ≥ λtp−1 for t ≥ 0.

They established the existence of the ground state to (1.3). But the proof in
[26] strongly depends on large λ, that is, problem (1.3) has a ground state if
λ > λ0, where λ0 is a positive constant and a complicated explicit formula of λ0
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is given there. For small λ > 0, it still remains unknown that whether problem
(1.3) has a ground state. In [36], we proved that problem (1.3) has a ground
state with the assumptions (F1)-(F3). Meanwhile, we show that a ground state
of (1.3) is a mountain pass solution. More properties are also claimed.

Now let us say more on the background for problems like (1.1). In recent
years, singularly perturbed problems have been widely studied by many re-
searchers, and related results can been seen in [7, 8, 9, 10, 11, 13, 15, 22, 23, 24,
32]. By denoting u(x) = v(εx) and Vε(x) = V (εx), (1.1) is equivalent to

−∆u+ Vε(x)u = f(u), u > 0, u ∈ H1(RN). (1.4)

An interesting class of solutions of (1.1) are families of solutions which concen-
trate and develop spike layers around certain point in Ω as ε → 0. To study
the concentration phenomena of solutions for problem (1.1), the problem (1.3)
plays an important role which is called the limit problem of (1.4).

Recall that Floer and Weinstein [17] first studied the existence of single
peak solutions for N = 1 and f(s) = s3. They construct a single peak solution
which concentrates around any given non-degenerate critical point of V . In
higher dimension, for f(s) = |s|p−2s, p ∈ (2, 2∗), Oh [27] established a similar
result as in [17]. In [17, 27], their arguments are based on a Lyapunov-Schmidt
reduction, for which they needed to characterize the kernel of the linearized
operator L := −∆+V (x0)−f ′(U), where U is the ground state of the following
autonomous problem: for fixed x0 ∈ R

N ,

−∆u + V (x0)u = f(u), in R
N , v ∈ H1(RN ). (1.5)

Moreover, they also required some monotonicity condition of nonlinearity f and
uniqueness condition of ground states of (1.5). Precisely, they assumed that
f ∈ C0,1(R,R) and

(H1) f(t)/t is non-decreasing on (0,∞);

(H2) there exists a unique radially symmetric solution U ∈ H1,2(RN ) for ∆u−
u + f(u) = 0, u > 0 in R

N such that if ∆V − V + f ′(U)V = 0 and
V ∈ H1,2(RN ), then V =

∑n
i=1 ai

∂U
∂xi

for some a1, · · · , an ∈ R.

Subsequently, when ground states of (1.5) are unique and non-degenerate, Am-
brosetti, Badiale and Cinglani [1] consider concentration phenomena at isolated
local minima and maxima with polynomial degeneracy.

However we remark that the uniqueness and non-degeneracy of the ground
state solutions of the limit equation (1.3) are, in general, rather difficult to
prove. They are known so far only for a rather restricted class of nonlinearities
f . In [30], without the uniqueness and non-degeneracy condition, Rabinowitz
proves, by a mountain pass argument, the existence of positive solutions of (1.1)
for small ε > 0 whenever

lim inf
|x|→∞

V (x) > inf
RN

V (x).

4



In [31], with (V 1)-(V 2) Wang proves that these solutions concentrate around
the global minimum points of V as ε → 0. Later, Del Pino and Felmer [13]
introduced a penalization approach and proved a localized version of the re-
sult by Rabinowitz and Wang. They prove the existence of a single-peak solu-
tion which concentrates around the minimum points of V in O, providing that
the nonlinearity f satisfies (f1)-(f2), (H1) and the so-called globalAmbrosetti-

Rabinowitz condition ((A-R) for short): for some µ > 2, 0 < µ
∫ t

0
f(s)ds <

tf(t), t > 0. Recently, it has been shown in [19, 7] that (H1) and (A-R) are not
necessary.

To sum up, for the critical case, the concentration phenomenon of problem
(1.1) has not been studied so far by variational methods. Thus similar to the
subcritical case, when f is critical, it seems natural to expect that there also
exists a corresponding solution to the singularly perturbed problem (1.1) for
small ε > 0 and the similar concentration phenomenon occurs. In the present
paper, we will adopt the ideas of Byeon [7] to find solutions of problem (1.1) in
some neighborhood of the set of ground states for problem (1.3). But it should
be stressed that the compactness is the main difficulty in extending the quoted
results to critical problems. For critical variational problem, (PS)-condition
fails. About this aspect, we refer to [4, 6, 31, 25, 33] and the references therein.
Therefore, the method of Byeon [7] is not used directly and some more tricks
are given.

2 Proof of Theorem (1.1)

To study (1.1), it suffices to study (1.4). Let Hε be the completion of C∞
0 (RN )

with respect to the norm

‖u‖ε =

(∫

RN

|∇u|2 + Vεu
2

) 1
2

.

We define a norm ‖ · ‖ on H1(RN ) by

‖u‖2 =

∫

RN

|∇u|2 + V0u
2.

Since infRN V (x) = V0 > 0, we have Hε ⊂ H1(RN ). For any set B ⊂ R
N and

ε > 0, we define Bε ≡ {x ∈ R
N : εx ∈ B}. For u ∈ Hε, let

Pε(u) =
1

2

∫

RN

|∇u|2 + Vεu
2 −

∫

RN

F (u).

Fixing an arbitrary µ > 0, we define

χε(x) =

{
0, if x ∈ Oε,

ε−µ, if x ∈ R
N \Oε,
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and

Qε(u) =

(∫

RN

χεu
2dx− 1

)2

+

.

The functional Qε will act as a penalization to force the concentration phenom-
ena to occur inside O. This type of penalization was first introduced in [10].
Finally, let Γε : Hε → R be given by

Γε(u) = Pε(u) +Qε(u).

It is standard to show that Γε ∈ C1(Hε). From now on we may assume that
f(t) = 0 for t ≤ 0. In this case any critical point of Γ is positive by the maximum
principle. Clearly a critical point of Pε corresponds to a solution of (1.4). To
find solutions of (1.4) which concentrate in O as ε → 0, we shall search critical
points of Γε for which Qε is zero.

First, we study some properties of the solutions of (1.3). Without loss of
generality, we may assume that 0 ∈ M. For any set B ⊂ R

N and δ > 0, we
define Bδ ≡ {x ∈ R

N |dist(x,B) ≤ δ}. As we already mentioned, the following
equations for a > 0 are limiting equations of (1.4)

−∆u+ au = f(u), u > 0, u ∈ H1(RN ). (2.1)

We define an energy functional for the limiting problems (2.1) by

La(u) =
1

2

∫

RN

|∇u|2 + au2 −

∫

RN

F (u), u ∈ H1(RN ),

where F (s) =
∫ s

0
f(t)dt. In [36], we proved that, if p > 2, N ≥ 4 or p > 4, N = 3

and (F1)-(F3) hold, there exists a least energy solution of (2.1) for any a > 0.
Moreover, each such solution U of (2.1) satisfies Pohozaev’s identity

N − 2

2

∫

RN

|∇U |2 dx = N

∫

RN

(
F (U)−

a

2
U2

)
dx, (2.2)

and so ∫

RN

|∇U |2 dx = NLa(U). (2.3)

Let Sa be the set of least energy solutions U of (2.1) satisfying U(0) =
maxx∈RN U(x). The following result on Sa was proved in [12].

Proposition 2.1. (see [12, Proposition 2.1])

(1) For any U ∈ Sa, U is radially symmetric and ∂U
∂r < 0 for all r > 0.

(2) Sa is compact in H1(RN ).

(3) 0 < inf{‖U‖∞ : U ∈ Sa} ≤ sup{‖U‖∞ : U ∈ Sa} < ∞.

(4) There exist C, c > 0, independent of U ∈ Sa, such that |DαU(x)| ≤
C exp(−c|x|), x ∈ R

N for |α| = 0, 1.
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Let Em = Lm(U) for U ∈ Sm and 10δ = dist(M, Oc). We fix a β ∈ (0, δ)
and a cut-off ϕ ∈ C∞

0 (RN ) such that 0 ≤ ϕ ≤ 1, ϕ(x) = 1 for |x| ≤ β and
ϕ(x) = 0 for |x| ≥ 2β. Let ϕε(y) = ϕ(εy), y ∈ R

N and for each x ∈ Mβ and
U ∈ Sm, we define

Ux
ε (y) := ϕε

(
y −

x

ε

)
U
(
y −

x

ε

)
.

We will find a solution near the set

Xε := {Ux
ε (y) | x ∈ Mβ, U ∈ Sm}.

for sufficiently small ε > 0. We note that 0 ∈ M and define

Wε(y) = ϕε(y)U(y),

where U ∈ Sm is arbitrary but fixed. Setting Wε,t(y) = ϕε(y)U(yt ), we see that
Γε(Wε,t) = Pε(Wε,t) for t ≥ 0. By (2.2), for Ut(x) = U(xt ) we have

Lm(Ut) =

(
tN−2

2
−

(N − 2)tN

2N

)∫

RN

|∇U |2.

Thus, there exists t0 > 1 such that Lm(Ut) < −2 for t ≥ t0.
Finally, we define a min-max value Cε:

Cε := inf
γ∈Φε

max
s∈[0,1]

Γε(γ(s)),

where Φε := {γ ∈ C([0, 1], Hε) : γ(0) = 0, γ(1) = Wε,t0}. We can check that
Γε(γ(1)) < −2 for any ε > 0 sufficiently small. Let γε(s) = Wε,st0 for s ∈ (0, 1]
and γε(0) = 0. We denote

Dε := max
s∈[0,1]

Γε(γε(s)).

Recalling that in [36], the authors proved that, for equation (1.3) the mountain
pass level corresponds to the least energy level. Then similar as in [7], we can
prove that

Proposition 2.2. lim
ε→0

Cε = lim
ε→0

Dε = Em.

Now define
Γα
ε := {u ∈ Hε : Γε(u) ≤ α}

and for a set A ⊂ Hε and α > 0, let

Aα := {u ∈ Hε : inf
v∈A

‖u− v‖ε ≤ α}.

The following lemma was introduced in [31] and will be used in the following
proof.
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Lemma 2.1. ([31]) Let R be a positive number and {un} a bounded sequence
in H1(RN ). If

lim
n→∞

sup
x∈RN

∫

B(x,R)

|un|
2∗ = 0,

then un → 0 in L2∗(RN ) as n → ∞.

To continue our proof, we need the following lemma from Benci and Cerami
[3].

Lemma 2.2. (see [3, Lemma 2.7]) Let {um} ⊂ H1
loc(R

N ) be a sequence of
functions such that

um ⇀ 0 weakly in H1(RN ).

Suppose that there exist a bounded open set Q ⊂ R
N and a positive constant

γ > 0 such that
∫

Q

|∇um|2 dx ≥ γ > 0,

∫

Q

|um|2
∗

≥ γ > 0.

Moreover suppose that

∆um + |um|2
∗−2um = χm,

where χm ∈ H−1(RN ) and

|〈χm, φ〉| ≤ εm‖φ‖H1(RN ), ∀φ ∈ C∞
0 (U),

where U is an open neighborhood of Q and εm is a sequence converging to 0.
Then there exist a sequence of points {ym} ⊂ R

N and a sequence of positive
numbers {σm} such that

vm(x) := σ(N−2)/2
m um(σmx+ ym)

converges weakly in D1,2(RN ) to a nontrivial solution v of

−∆u = |u|2
∗−2u, u ∈ D1,2(RN ).

Moreover,
ym → ȳ ∈ Q and σm → 0.

The following proposition is very important, and its proof is much more
delicate in case of critical growth.

Proposition 2.3. Let {εi}
∞
i=1 be such that limi→∞ εi = 0 and {uεi} ⊂ Xd

εi
such that

lim
i→∞

Γεi(uεi) ≤ Em and lim
i→∞

Γ
′

εi(uεi) = 0.

Then for sufficiently small d > 0, there exits, up to a subsequence, {yi}
∞
i=1 ⊂

R
N , x ∈ M, U ∈ Sm such that

lim
i→∞

|εiyi − x| = 0 and lim
i→∞

‖uεi − ϕεi (· − yi)U(· − yi)‖εi = 0.
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Proof. For convenience, we write ε for εi. By the definition of Xd
ε , there exist

{Uε} ⊂ Sm and {xε} ⊂ Mβ with

‖uε − ϕε(· −
xε

ε
)Uε(· −

xε

ε
)‖ε ≤ d.

Since Sm and Mβ are compact, there exist Z ∈ Sm, x ∈ Mβ such that Uε → Z
in H1(RN ) and xε → x. Thus, for small ε > 0,

‖uε − ϕε(· −
xε

ε
)Z(· −

xε

ε
)‖ε ≤ 2d. (2.4)

Step 1. We claim that

lim inf
ε→0

sup
y∈Aε

∫

B(y,1)

|uε|
2∗ = 0,

where Aε = B(xε

ε , 3βε ) \ B(xε

ε , β
2ε ). If the claim is true, by Lemma 2.1 we see

that
uε → 0 in L2∗(Bε),

where Bε = B(xε

ε , 2β
ε ) \B(xε

ε , βε ).
By Lemma 2.1, assume by contradiction that there exists r > 0, such that

lim inf
ε→0

sup
y∈Aε

∫

B(y,1)

|uε|
2∗ = 2r > 0,

then there exists yε ∈ Aε such that for small ε > 0,
∫
B(yε,1)

|uε|
2∗ ≥ r. Note

that yε ∈ Aε and there exists x0 ∈ M4β ⊂ O such that εyε → x0. Let
vε(y) = uε(y + yε), then, for ε small,

∫

B(0,1)

|vε|
2∗ ≥ r (2.5)

and up to a subsequence, vε → v weakly in H1(RN ) and v satisfies

−∆v + V (x0)v = f(v) in R
N .

Case 1. If v 6≡ 0, then for sufficiently large R > 0,

lim inf
ε→0

∫

B(yε,R)

|∇uε|
2 ≥

1

2

∫

RN

|∇v|2 =
N

2
LV (x0)(v).

By definition, LV (x0)(v) ≥ EV (x0). Now recalling from [36] that Ea > Eb if
a > b. Then since x0 ∈ O, we have V (x0) ≥ m and lim infε→0

∫
B(yε,R)

|∇uε|
2 ≥

N
2 Em > 0, which is a contradiction with (2.4) if d is small enough.

Case 2. If v ≡ 0, i.e., vε ⇀ 0 weakly in H1(RN ), then vε → 0 strongly in
Lq
loc(R

N ) for q ∈ [2, 2∗). Thus, by (2.5) and Sobolev’ embedding theorem, there
exists C > 0 (independent of ε) such that, for ε small,

∫

B(0,1)

|∇vε|
2 ≥ Cr

2
2∗ > 0. (2.6)

9



Now, we claim that
lim
ε→0

sup
φ∈C∞

0
(Ω)

‖φ‖=1

|〈ρε, φ〉| = 0, (2.7)

where Ω = B(0, 2), ρε ∈ H−1(RN ) and ρε = ∆vε + |vε|
2∗−2vε. For ε > 0

small enough, it is easy to check that
∫
RN χεuεφ(· − yε) ≡ 0 uniformly for any

φ ∈ C∞
0 (Ω). Thus, for any φ ∈ C∞

0 (Ω) and ‖φ‖ = 1,

〈ρε, φ〉 =

∫

RN

Vεuεφ(· − yε)− 〈Γ′
ε(uε), φ(· − yε)〉

−

∫

RN

(
f(uε)− |uε|

2∗−2uε

)
φ(· − yε)

:=J1 + J2 + J3. (2.8)

First, since supy∈Ω Vε(y + yε) < ∞ uniformly for small ε and vε → 0 strongly

in L2
loc(R

N ), we have

|J1| ≤ sup
y∈Ω

Vε(y + yε)

(∫

Ω

|vε|
2

) 1
2
(∫

Ω

|φ|2
) 1

2

→ 0 as ε → 0, uniformly for φ ∈ C∞
0 (Ω), ‖φ‖ = 1.

Second, by (F1)-(F2), we see that lim|s|→0 g(s)/|s| = lim|s|→∞ g(s)/|s|2
∗−1 = 0,

where g(s) = f(s)− |s|2
∗−2s. Let g̃(s) = |g(s)|

2∗

2∗−1 , then

lim
s→0

g̃(s)

|s|
2∗

2∗−1

= 0 and lim
s→∞

g̃(s)

|s|2∗
= 0.

Since vε ⇀ 0 weakly in H1(RN ), supε>0

∫
Ω |vε|

2∗

2∗−1 + |vε|
2∗ < ∞. Then, it

follows from vε → 0 strongly in L2
loc(R

N ) and the compactness lemma of Strauss
[34] that g̃(vε) → 0 strongly in L1(Ω) as ε → 0. Thus, by Lebesgue dominated
convergence theorem,

lim
ε→0

|J3| ≤ lim
ε→0

(∫

Ω

g̃(vε)

) 2∗−1
2∗

(∫

Ω

|φ|2
∗

) 1
2∗

= 0

uniformly for φ ∈ C∞
0 (Ω), ‖φ‖ = 1. Combining these with Γ′

ε(uε) → 0, we see
that the claim (2.7) is true. By Lemma 2.2, we see from (2.5)-(2.7) that, there
exists ỹε ∈ R

N and σε > 0, such that ỹε → ỹ ∈ B(0, 1), σε → 0 and

wε(y) := σ
N−2

2
ε vε(σεy + ỹε)

converges weakly to w in D1,2(RN ), where w is a nontrivial solution of −∆v =

|v|2
∗−2v in D1,2(RN ). Then there exists R > 0, such that

∫
B(0,R)

|∇w|2 ≥ S
N
2

2 .

Hence, for ε > 0 small enough,

lim inf
ε→0

∫

B(yε,2)

|∇uε|
2 ≥ lim inf

ε→0

∫

B(ỹε,σεR)

|∇vε|
2 ≥

∫

B(0,R)

|∇w|2 ≥
S

N
2

2
,
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which is a contradiction with (2.4) if d > 0 is small enough. Therefore, Step 1
is proved.

Step 2. Let u1
ε(y) = ϕε(y − xε

ε )uε(y), u
2
ε = uε − u1

ε. We claim that, for small
d > 0, Γε(u

2
ε) ≥ 0 and

Γε(uε) ≥ Γε(u
1
ε) + Γε(u

2
ε) + o(1), as ε → 0.

Similarly as in [7, Proposition 4], for small d > 0, Γε(u
2
ε) ≥ 0. By (F1), for any

δ > 0, there exits Cδ > 0 such that |F (s)| ≤ δ|s|2 + Cδ|s|
2∗ for s ∈ R. Then by

uε → 0 strongly in L2∗(Bε) which has been proved in Step 1, we have

lim sup
ε→0

∣∣∣∣
∫

RN

F (uε)− F (u1
ε)− F (u2

ε)

∣∣∣∣ = lim sup
ε→0

∣∣∣∣
∫

Bε

F (uε)− F (u1
ε)− F (u2

ε)

∣∣∣∣

≤ lim sup
ε→0

∫

Bε

δ|uε|
2 + Cδ|uε|

2∗

≤Cδ,

where C is a positive constant (independent of ε, δ). Since δ is arbitrary,∫
RN F (uε) − F (u1

ε) − F (u2
ε) = o(1) as ε → 0. Then the claim can be proved

similarly as in [7, Propostion 4]. We omit the details.

Step 3. Let wε(y) := u1
ε(y + xε

ε ) = ϕε(y)uε(y + xε

ε ). Up to a subsequence,
wε ⇀ w weakly in H1(RN ), wε → w a.e. in R

N . Now, we claim that

wε → w strongly in L2∗(RN ).

By Lemma 2.1, assume by contradiction that there exists r > 0, such that

lim inf
ε→0

sup
z∈RN

∫

B(z,1)

|wε − w|2
∗

= 2r > 0.

Then, there exists zε ∈ R
N such that lim infε→0

∫
B(zε,1)

|wε − w|2
∗

> r.

Case 1. {zε} is bounded, i.e., |zε| ≤ a for some a > 0. Then for ε small,

∫

B(0,a+1)

|vε|
2∗ > r, (2.9)

where vε = wε − w and vε ⇀ 0 weakly in H1(RN ). Similar as in Step 1, there
exists C > 0 (independent of ε) such that, for ε small,

∫

B(0,a+1)

|∇vε|
2 ≥ Cr

2
2∗ > 0. (2.10)

Now, we claim that
lim
ε→0

sup
φ∈C∞

0
(Ω)

‖φ‖=1

|〈ρε, φ〉| = 0, (2.11)

11



where Ω = B(0, a + 2), ρε ∈ H−1(RN ) and ρε = ∆vε + |vε|
2∗−2vε. For ε > 0

small enough, it is easy to check that
∫
RN χεuεφ(· −

xε

ε ) ≡ 0 uniformly for any
φ ∈ C∞

0 (Ω). Thus, we see that for ε small and any φ ∈ C∞
0 (Ω),

〈Γ′
ε(uε), φ(· −

xε

ε
)〉 =

∫

RN

∇wε∇φ+ Vε(y +
xε

ε
)wεφ− f(wε)φ.

Then, ∫

RN

∇wε∇φ+ Vε(y +
xε

ε
)wεφ− f(wε)φ = o(1), (2.12)

uniformly for φ ∈ C∞
0 (Ω), ‖φ‖ = 1. Noting that wε ⇀ w weakly in H1(RN ) and

xε → x, by a standard way we can see that w satisfies −∆w(y) + V (x)w(y) =
f(w(y)) in R

N . Thus,

∫

RN

∇w∇φ + V (x)wφ − f(w)φ = 0, for φ ∈ C∞
0 (Ω). (2.13)

Moreover, by elliptic estimates w ∈ L∞(RN ). Then it follows that

∫

RN

|wε|
2∗−2wεφ− |vε|

2∗−2vεφ− |w|2
∗−2wφ = o(1), (2.14)

uniformly for φ ∈ C∞
0 (Ω), ‖φ‖ = 1. It follows from (2.12)-(2.14) that

〈ρε, φ〉 =

∫

Ω

(
V (εy + xε)wε − V (x)w

)
φ+

∫

Ω

(
g(w)− g(wε)

)
φ+ o(1)

=: K1 +K2, (2.15)

where g(s) = f(s) − |s|2
∗−2s and o(1) → 0 as ε → 0 uniformly for φ ∈

C∞
0 (Ω), ‖φ‖ = 1. Noting that wε → w strongly in L2(Ω) and xε → x, it is

easy to check that K1 = o(1) as ε → 0 uniformly for φ ∈ C∞
0 (Ω), ‖φ‖ = 1. In

the following, we will show that

lim
ε→0

∫

Ω

|g(wε)− g(w)|
2∗

2∗−1 = 0. (2.16)

Since wε → w weakly in H1(RN ), supε>0

∫
Ω
|wε|

2∗

2∗−1 + |wε|
2∗ < ∞, similar

as in Step 1, g̃(wε) → g̃(w) strongly in L1(Ω) as ε → 0. Thus, by Lebesgue
dominated convergence theorem, (2.16) is proved. Then,

lim
ε→0

|K2| ≤ lim
ε→0

(∫

Ω

|g(wε)− g(w)|
2∗

2∗−1

) 2∗−1
2∗

(∫

Ω

|φ|2
∗

) 1
2∗

= 0.

Therefore, (2.11) follows from (2.15). By Lemma 2.2 again, we see from (2.9)-
(2.11) that, there exist z̃ε ∈ R

N and σε > 0, such that z̃ε → z̃ ∈ B(0, a+ 1),
σε → 0 and

w̃ε(y) := σ
N−2

2
ε vε(σεy + z̃ε)

12



converges weakly to w̃ in D1,2(RN ), where w̃ is a nontrivial solution of −∆w̃ =
|w̃|2

∗−2w̃ in D1,2(RN ). Then,

∫

RN

|∇w̃|2 ≤ lim inf
ε→0

∫

RN

|∇w̃ε|
2 = lim inf

ε→0

∫

RN

|∇vε|
2

= lim inf
ε→0

∫

RN

|∇wε|
2 − |∇w|2.

Noting that
∫
RN |∇w̃|2 ≥ S

N
2 , we see that lim infε→0

∫
RN |∇wε|

2 ≥ S
N
2 . It

follows that lim infε→0

∫
RN |∇uε|

2 ≥ S
N
2 . By (2.4), we have

(∫

RN

|∇Z|2
) 1

2

= lim
ε→0

(∫

RN

|∇(ϕεZ)|
2

) 1
2

≥ lim inf
ε→0

(∫

RN

|∇uε|
2

) 1
2

− 2d

≥
(
S

N
2

) 1
2

− 2d.

Recalling that Em < S
N
2

N , we see that
∫
RN |∇Z|2 > NEm for small d > 0, which

is a contradiction, since Z ∈ Sm.

Case 2. {zε} is unbounded. Without loss of generality, limε→0 |zε| = ∞.
Then, lim infε→0

∫
B(zε,1)

|wε|
2∗ ≥ r, i.e.,

lim inf
ε→0

∫

B(zε,1)

|ϕε(y)uε(y +
xε

ε
)|2

∗

≥ r.

Since ϕ(y) = 0 for |y| ≥ 2β, we see that |zε| ≤
3β
ε for ε small. If |zε| ≥

β
2ε for ε

small, then zε ∈ B(0, 3β
ε ) \B(0, β

2ε ) and by Step 1, we get that

lim inf
ε→0

∫

B(zε,1)

|wε|
2∗ ≤ lim inf

ε→0
sup

z∈B(0, 3β
ε
)\B(0, β

2ε )

∫

B(z,1)

|uε(y +
xε

ε
)|2

∗

= lim inf
ε→0

sup
z∈Aε

∫

B(z,1)

|uε|
2∗

=0,

which is a contradiction. Thus, |zε| ≤
β
2ε for ε small. Assume that εzε → z0 ∈

B(0, β
2 ) and w̃ε = wε(y+ zε) ⇀ w̃ weakly in H1(RN ). If w̃ 6≡ 0, we can see that

w̃ satisfies
−∆w̃(y) + V (x+ z0)w̃(y) = f(w̃(y)) in R

N .

Similar as in Step 1, we get a contradiction if d > 0 is small enough. Thus,
w̃ ≡ 0, i.e., w̃ε → 0 weakly in H1(RN ). Meanwhile,

∫

B(0,1)

|w̃ε|
2∗ ≥ r > 0 (2.17)

13



and there exists C > 0 (independent of ε) such that, for ε small,

∫

B(0,1)

|∇w̃ε|
2 ≥ Cr

2
2∗ > 0. (2.18)

Now, we claim that
lim
ε→0

sup
φ∈C∞

0
(Ω)

‖φ‖=1

|〈ρ̃ε, φ〉| = 0, (2.19)

where Ω = B(0, 2), ρ̃ε ∈ H−1(RN ) and ρ̃ε = ∆w̃ε + |w̃ε|
2∗−2w̃ε. For ε > 0

small enough, it is easy to check that
∫
RN χεuεφ(· − zε −

xε

ε ) ≡ 0 and w̃ε(y) =
uε(y + zε + xε

ε ) uniformly for any y ∈ Ω and φ ∈ C∞
0 (Ω). Thus, for any

φ ∈ C∞
0 (Ω) and ‖φ‖ = 1,

〈ρ̃ε, φ〉 =

∫

RN

Vεuεφ(· − zε −
xε

ε
)− 〈Γ′

ε(uε), φ(· − zε −
xε

ε
)〉

−

∫

RN

(
f(uε)− |uε|

2∗−2uε

)
φ(· − zε −

xε

ε
).

Similar as in Step 1, (2.19) is true. By Lemma 2.2 again, we see from (2.17)-
(2.19) that, there exist ỹε ∈ R

N and σε > 0, such that ỹε → ỹ ∈ B(0, 1), σε → 0
and

ŵε(y) := σ
N−2

2
ε w̃ε(σεy + ỹε)

converges weakly to ŵ in D1,2(RN ), where ŵ is a nontrivial solution of −∆v =
|v|2

∗−2v in D1,2(RN ). Note that there exists R > 0, such that
∫
B(0,R) |∇ŵ|2 ≥

S
N
2

2 . Then, for ε > 0 small enough,

lim inf
ε→0

∫

B(zε+
xε
ε
,2)

|∇uε|
2 ≥ lim inf

ε→0

∫

B(ỹε,σεR)

|∇w̃ε|
2 ≥

∫

B(0,R)

|∇ŵ|2 ≥
S

N
2

2
,

which is a contradiction with (2.4) if d > 0 is small enough. Therefore, wε →
w strongly in L2∗(RN ).

Step 4. By Step 3, we deduce that

lim
ε→0

∫

RN

F (wε) dx =

∫

RN

F (w) dx.

Then similarly as in [7, Proposition 4], there exist U ∈ Sm and yε ∈ R
N , such

that limε→0 |εyε − x| = 0 and limε→0 ‖uε − ϕε(· − yε)U(· − yε)‖ε = 0. This
completes the proof.

Proposition 2.4. For sufficiently small ε > 0 and sufficiently large R >
0, there exists a sequence {uR

n,ε}
∞
n=1 ⊂ Xd

ε ∩ H1
0 (B(0, R

ε )) ∩ ΓDε
ε such that

|Γ′
ε(u

R
n,ε)| → 0 in

(
H1

0 (B(0, R
ε ))

)∗
.
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Proof. By Proposition 2.3, the proof can be done similarly as in [7, 8] and the
details are omitted here.

Proposition 2.5. For sufficiently small ε, d > 0, Γε has a nontrivial critical
point uε ∈ Xd

ε ∩ ΓDε
ε .

Proof. Let ε > 0 be fixed, small enough and

d ∈

(
0,

1

2
(

N

N − 2
)

N−2
4 S

N
4

)
.

Step 1. For sufficiently large R > 0, we claim that Γε has a nontrivial critical
point uR

ε ∈ Xd
ε ∩H1

0 (B(0, R
ε ))∩ΓDε

ε . Proposition 2.4 implies that for some R0 >

0 and any R > R0, there exists a sequence {uR
n,ε}

∞
n=1 ⊂ Xd

ε ∩H1
0 (B(0, R

ε ))∩ΓDε
ε

such that |Γ′
ε(u

R
n,ε)| → 0 in

(
H1

0 (B(0, R
ε ))

)∗
. Since Xd

ε is bounded, we can

assume that uR
n,ε ⇀ uR

ε weakly in H1
0 (B(0, R

ε )) as n → ∞. Then it can be

proved by a standard way that Γ′
ε(u

R
ε ) = 0 in H1

0 (B(0, R
ε )). We write that

uR
n,ε = vRn,ε+wR

n,ε with vRn,ε ∈ Xε and ‖wR
n,ε‖ε ≤ d. Since Sm is compact, taking

a subsequence if it is necessary, we can assume that vRn,ε → vRε ∈ Xε strongly

in H1
0 (B(0, R

ε )) and wR
n,ε → wR

ε weakly in H1
0 (B(0, R

ε )) as n → ∞. Then we

have that uR
ε = vRε + wR

ε with ‖wR
ε ‖ε ≤ d, i.e., uR

ε ∈ Xd
ε . Now, we will prove

that uR
ε ∈ ΓDε

ε . From the weak convergence of uR
n,ε to uR

ε in H1
0 (B(0, R

ε )) and
Brezis-Lieb lemma, we see that as n → ∞,

‖∇uR
n,ε‖

2
2 = ‖∇(uR

n,ε − uR
ε )‖

2
2 + ‖∇uR

ε ‖
2
2 + o(1),

‖uR
n,ε‖

2∗

2∗ = ‖uR
n,ε − uR

ε ‖
2∗

2∗ + ‖uR
ε ‖

2∗

2∗ + o(1).

Then, by lims→∞
f(s)−s2

∗
−1

s2∗−1 = 0, we get that as n → ∞,

∫

RN

F (uR
n,ε)− F (uR

n,ε − uR
ε )− F (uR

ε ) = o(1).

Meanwhile, by the compactness embedding of H1
0 (B(0, R

ε )) →֒ Lq(B(0, R
ε ))(q ∈

[2, 2∗)), we get

∫

RN

(
F (uR

n,ε − uR
ε )−

1

2∗
|uR

n,ε − uR
ε |

2∗
)

= o(1).

Thus, using the Sobolev’s inequality, we get that for any n large,

Dε ≥ Γε(u
R
n,ε)

≥ Γε(u
R
ε ) +

1

2
‖wR

n,ε − wR
ε ‖

2 −
1

2∗
‖wR

n,ε − wR
ε ‖

2∗

2∗ + o(1)

≥ Γε(u
R
ε ) +

1

2
‖wR

n,ε − wR
ε ‖

2 −
1

2∗
S−N/(N−2)‖wR

n,ε − wR
ε ‖

2∗ + o(1)

= Γε(u
R
ε ) + ‖wR

n,ε − wR
ε ‖

2
(1
2
−

1

2∗
S−N/(N−2)‖wR

n,ε − wR
ε ‖

4/(N−2)
)
+ o(1)
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≥ Γε(u
R
ε ) + o(1).

Letting n → +∞, we get that Γε(u
R
ε ) ≤ Dε, that is, u

R
ε ∈ ΓDε

ε .

Step 2. We claim that for d ∈ (0, 12S
N
4 ), {uR

ε } is bounded in L∞(RN ) uniformly
for large R > 0 . To the contrary, we assume that there exist R0, Rn > 0
satisfying Rn > R0 and limn→∞ ‖uRn

ε ‖L∞(RN ) = ∞, where {uRn
ε } ⊂ Xd

ε ∩ ΓDε
ε .

By the definition of Xd
ε , there exist {Un} ⊂ Sm and {yn} ⊂ Mβ with

‖uRn
ε − ϕε(· −

yn
ε
)Un(· −

yn
ε
)‖ε ≤ d.

Since Sm is compact, up to a subsequence, there exists U ∈ Sm such that
Un → U in H1(RN ). Then

‖uRn
ε − ϕε(· −

yn
ε
)U(· −

yn
ε
)‖ε

≤ d+ ‖ϕε(· −
yn
ε
)Un(· −

yn
ε
)− ϕε(· −

yn
ε
)U(· −

yn
ε
)‖ε

=: d+ In.

It follows from Un → U in H1(RN ) that limn→∞ In = 0, which implies that
lim supn→∞ ‖uRn

ε − ϕε(· −
yn

ε )U(· − yn

ε )‖ε ≤
3d
2 . Then we write

uRn
ε = vRn

ε + wRn
ε and ‖vRn

ε ‖ε ≤ 2d,

for n large enough, where vRn
ε ∈ Hε and wRn

ε = ϕε(·−
yn

ε )U(·− yn

ε ). Meanwhile,
since f(t) = 0 for t ≤ 0, it follows form the Maximum Principle that uRn

ε > 0 in
B(0, Rn

ε ) and −∆uRn
ε + uRn

ε ≤ f(uRn
ε ) in B(0, Rn

ε ). Due to elliptic estimates,

uRn
ε ∈ C1,α(B(0, Rn

ε )) for some α ∈ (0, 1). We extend uRn
ε ∈ H1

0 (B(0, Rn

ε )) to

uRn
ε ∈ H1(RN ) by zero outside B(0, Rn

ε ). Then, there exists znε ∈ B(0, Rn

ε ) such
that uRn

ε (znε ) = maxx∈RN uRn
ε (x) for n = 1, 2, · · · . We define

wn(x) ≡
1

ln
uRn
ε (l

− 2
N−2

n x+znε ), w0
n(x) ≡

1

ln
wRn

ε (l
− 2

N−2
n x+znε ) with ln ≡ uRn

ε (znε ).

Then, wn satisfies

−∆wn + (ln)
− 4

N−2wn − (ln)
−N+2

N−2 f(lnwn)

= −4(ln)
− 4

N−2

(∫

RN

χε(x)(u
Rn
ε )2dx− 1

)

+

χε(l
− 2

N−2
n x+ znε )wn in R

N .

Note that {
∫
RN χε(u

Rn
ε )2} and {‖uRn

ε ‖ε} are uniformly bounded for n. Then,
we deduce from (F2) and elliptic estimates that wn converges locally uniformly
to the unique radial positive solution w0 of

∆w0 + w
N+2
N−2

0 = 0, w0(0) = max
x∈RN

w0(x) = 1 in R
N .
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It is well known that w0(x) =
(

N(N−2)
N(N−2)+|x|2

)N−2
2

; thus w0 ∈ L2∗(RN ) and

|∇w0| ∈ L2(RN ). Note that ‖wn−w0
n‖2∗ = ‖uRn

ε −wRn
ε ‖2∗ = ‖vRn

ε ‖2∗ ≤ 2d√
S
for

n large enough. Then for any fixed R > 0, we have ‖wn−w0
n‖L2∗(B(0,R)) ≤

2d√
S
.

Recall that ‖w0
n‖L∞ ≤ ‖U‖L∞/ln → 0 as n → ∞, letting n → ∞ we deduce that

‖w0‖L2∗(B(0,R)) ≤ 2d√
S
. This means that ‖w0‖2∗ ≤ 2d√

S
; but this is impossible

since d ∈ (0, 12S
N
4 ). Thus {uR

ε } is bounded in L∞(RN ) uniformly for R > R0.

Step 3. We claim that uR
ε → uε strongly in Hε, where Γ′

ε(uε) = 0, uε ∈
Xd

ε ∩ ΓDε
ε . By Step 2 and elliptic estimates (see [18]), we see that there exists

C > 0 (independent R) such that for any B(y, 2) ⊂ B(0, R
ε ), supB(y,1) u

R
ε ≤

C‖uR
ε ‖L2(B(y,2)). Thus, by Qε(u

R
ε ) is uniformly bounded for R > R0, we see

that there exists C > 0 (independent R) such that

0 < uR
ε ≤ Cε

µ
2 for |y| ≥ 2 +

R0

ε
,R > R0. (2.20)

Since uR
ε ∈ Xd

ε , we can assume uR
ε ⇀ uε weakly in H1

ε (R
N ) as R → ∞.

Next, we shall prove that uR
ε → uε strongly in H1

ε (R
N ) as R → ∞. First, we

claim that the sequence {uR
ε }R>R0 has exponential decay at infinity. By (2.20)

and (F1), for sufficiently small and fixed ε > 0, we have |f(uR
ε )| ≤

1
2u

R
ε for

|y| ≥ 2+ R0

ε , R > R0. It follows from the Maximum Principle that 0 < uR
ε (y) ≤

C exp(− 1
2 |y|) for |y| ≥ 2+ R0

ε , R > R0. Therefore, by Step 2 there exists C > 0
(independent R) such that

0 < uR
ε (y) ≤ C exp(−

1

2
|y|) for y ∈ R

N , R > R0. (2.21)

Second, we claim that

lim
δ→∞

∫

RN\B(0,δ)

|∇uR
ε |

2 + Vε|u
R
ε |

2 = 0, (2.22)

uniformly for R > R0. Choosing a cutoff function φδ ∈ C∞(RN ), 0 ≤ φδ ≤
1, |∇φδ| ≤ 2

δ and φδ(y) = 0, |y| ≤ δ, φδ(y) = 1, |y| ≥ 2δ, it follows from
〈Γ′

ε(u
R
ε ), φδu

R
ε 〉 = 0 that

∫

RN\B(0,2δ)

|∇uR
ε |

2 + Vε|u
R
ε |

2

≤
1

δ

∫

RN\B(0,δ)

|∇uR
ε |

2 + |uR
ε |

2 +

∫

RN\B(0,δ)

|f(uR
ε )u

R
ε |. (2.23)

Thus, (2.22) immediately follows form (2.21),(2.23) and the fact that {‖uR
ε ‖ε}R>R0

is uniformly bounded. Third, we shall prove that Γ′
ε(uε) = 0 in Hε(R

N ) and
uR
ε → uε strongly in Hε(R

N ). By (2.22) we see that limδ→∞ ‖uR
ε ‖RN\B(0,δ) = 0.

Then by uR
ε → uε weakly in Hε(R

N ), we get that uR
ε → uε strongly in

Lq(RN )(2 ≤ q < 2∗). Since {uR
ε } is bounded in L∞(RN ) uniformly for R > R0,
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we see that ‖uε‖∞ < ∞. So uR
ε → uε strongly in Lq(RN )(2 ≤ q ≤ 2∗). There-

fore, by a standard way we can prove the claim.
Finally, since Sm is compact, it is easy to see that 0 6∈ Xd

ε for d > 0 small
enough. Thus, uε 6≡ 0. This completes the proof.

Now, we prove Theorem 1.1. We start with the following Lemma 2.3 due to
Brézis and Kato [5] and Lemma 2.4 due to Gilbarg and Trudinger [18].

Lemma 2.3. [5] Let Ω ⊂ R
N and q ∈ L

N
2 (RN ) be a nonnegative function.

Then for every ε > 0, there exists a constant σ(ε, q) > 0 such that
∫

Ω

q(x)u2 ≤ ε

∫

Ω

|∇u|2 + σ(ε, q)

∫

Ω

u2, for all u ∈ H1(Ω).

Lemma 2.4. [18] Suppose that t > N, g ∈ L
t
2 (Ω) and u ∈ H1

0 (Ω) satisfies (in
the weak sense)

−∆u+ u ≤ g(x),

where Ω is an open subset of RN . Then for any ball B2R(y) ⊂ Ω,

sup
BR(y)

u ≤ C
(
‖u+‖L2(B2R(y)) + ‖g‖

L
t
2 (B2R(y))

)
,

where C only depends on N, t and R.

Completion of the proof for Theorem 1.1

Proof. By Proposition 2.5, there exist d > 0 and ε0 > 0, such that Γε has a
nontrivial critical point uε ∈ Xd

ε ∩ ΓDε
ε for ε ∈ (0, ε0).

Step 1. We claim that for d > 0 small, there exists ρ > 0 (independent of ε)
such that ‖uε‖∞ ≥ ρ for ε ∈ (0, ε0) and uε > 0 in R

N . Since f(t) = 0 for t ≤ 0,
we see that uε ≥ 0 and −∆uε + uε ≤ f(uε) in R

N . In the following, we use the
Moser iteration technique (see [18]) to prove that there exists C > 0 such that

‖uε‖∞ < C, uniformly for ε ∈ (0, ε0). (2.24)

If (2.24) is ture, then it follows from weak Harnark inequality (see [18]) that uε >
0 in R

N . Thus, from (V 1) and (F1), it is easy to see that infε∈(0,ε0) ‖uε‖∞ > 0.
To the contrary, we assume that (2.24) is false, i.e., there exist εn, dn > 0

satisfying lim
n→∞

dn = lim
n→∞

εn = 0 and lim
n→∞

‖uεn‖L∞(RN ) = ∞, where {uεn} ⊂

Xdn
εn ∩Γ

Dεn
εn . By the definition of Xdn

εn , there exist {Un} ⊂ Sm and {yn} ⊂ Mβ
εn

with
‖uεn − (ϕεnUn)(· − yn)‖εn ≤ dn.

Since Sm is compact, up to a subsequence, there exists U ∈ Sm such that
Un → U in H1(RN ). Then

‖uεn − (ϕεnU)(· − yn)‖εn

≤ dn + ‖(ϕεnUn)(· − yn)− (ϕεnU)(· − yn)‖εn

=: dn + In.
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It follows from Un → U in H1(RN ) that In → 0 as n → ∞, which implies that
limn→∞ ‖uεn − (ϕεnU)(· − yn)‖εn = 0. By Sobolev’s embedding theorem, for
any µ > 0, there exists n0 ∈ N such that

‖u2∗−2
εn − (ϕεnU)2

∗−2(· − yn)‖
L

N
2 (RN )

≤ µ for n ≥ n0. (2.25)

For convenience, we write n for εn. For any k ∈ N and p > 0, consider Ak =
{x ∈ R

N : un ≤ k}, Bk = R
N \Ak and define vk by

vk = u2p+1
n in Ak, vk = k2pun, in Bk.

Thus, vk ∈ H1(RN ), 0 ≤ vk ≤ u2p+1
n and

∇vk = (2p+ 1)u2p
n ∇un in Ak, ∇vk = k2p∇un, in Bk.

So, using vk as a test function, we have
∫
RN ∇un∇vk ≤

∫
RN f(un)vk, i.e.

(2p+ 1)

∫

Ak

u2p
n |∇un|

2 + k2p
∫

Bk

|∇un|
2 =

∫

RN

f(un)vk.

By (F1)-(F2), there exists C > 0 such that f(t) ≤ Ct + 2t2
∗−1 for all t > 0.

Thus, we get

(2p+ 1)

∫

Ak

u2p
n |∇un|

2 + k2p
∫

Bk

|∇un|
2 ≤

∫

RN

(C + 2u2∗−2
n )unvk. (2.26)

We define
wk ≡ up+1

n in Ak, wk ≡ kpun in Bk.

Then w2
k = unvk ≤ u2p+2

n and

∇wk = (p+ 1)up
n∇un in Ak, ∇wk = kp∇un, in Bk.

Thus we get
∫

RN

|∇wk|
2 = (p+ 1)2

∫

Ak

u2p
n |∇un|

2 + k2p
∫

Bk

|∇un|
2. (2.27)

Combining (2.26) and (2.27), we see that

2p+ 1

(p+ 1)2

∫

RN

|∇wk|
2 ≤

∫

RN

(C + 2u2∗−2
n )w2

k. (2.28)

For any µ > 0 given above, it follows from Lemma 2.3 and (2.25) that
∫

RN

u2∗−2
n w2

k =

∫

RN

u2∗−2
0 w2

k +

∫

RN

(
u2∗−2
n − u2∗−2

0

)
w2

k

≤ µ

∫

RN

|∇wk|
2 + σ(µ, U)

∫

RN

w2
k + µ‖wk‖

2
L2∗(RN )

≤
1 + S

S
µ

∫

RN

|∇wk|
2 + σ(µ, U)

∫

RN

w2
k,
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where S is the best Sobolev’s constant. Then, choosing µ = S(2p+1)
4(S+1)(p+1)2 , we

get from (2.28) that ∫

RN

|∇wk|
2 ≤ C̃p

∫

RN

|wk|
2, (2.29)

where C̃p = 2(p+1)2

2p+1 (C + 2σ(µ, U)). That is, for any p > 0, there exists np ∈ N

such that
∫

RN

|∇wk|
2 ≤ C̃p

∫

RN

|wk|
2 for any k > 0 and n ≥ np. (2.30)

If un ∈ L2(p+1)(RN ) for some p ≥ 2, by Sobolev’s embedding theorem and
(2.30), we have (∫

Ak

w2∗

k

) 2
2∗

≤ SC̃p

∫

RN

w2
k.

Therefore, for any p ≥ 2 satisfying {un}
∞
n=1 ⊂ L2(p+1)(RN ), there exists C̃p >

0, np ∈ N such that

(∫

Ak

u2∗(p+1)
n

) 2
2∗

≤ SC̃p

∫

RN

u2(p+1)
n ,

for any k > 0 and n ≥ np. Now, let k → ∞, we have

(∫

RN

u2∗(p+1)
n

) 2
2∗

≤ SC̃p

∫

RN

u2(p+1)
n . (2.31)

That is, for any p ≥ 2 satisfying un ⊂ L2(p+1)(RN ) for n large enough, there
exist Cp > 0, np ∈ N, such that for n ≥ np, un ∈ L2∗(p+1)(RN ) and

‖un‖L2∗(p+1)(RN ) ≤ Cp‖un‖L2(p+1)(RN ). (2.32)

In the following, we will use an iteration argument. Let p1 be a positive constant
such that 2(p1 + 1) = 2∗. Noting that {un} ⊂ L2∗(RN ), by (2.32), there exist
C1 > 0, n1 ∈ N, such that for n ≥ n1, un ∈ L2∗(p1+1)(RN ) and

‖un‖L2∗(p1+1)(RN ) ≤ C1‖un‖L2(p1+1)(RN ).

Choosing p2 satisfying 2(p2 + 1) = 2∗(p1 + 1), we see that p2 > p1 and un ⊂
L2(p2+1)(RN ) for n ≥ n1. Thus, by (2.32), there exist C2 > 0, n2 ∈ N and
n2 ≥ n1, such that for n ≥ n2, un ∈ L2∗(p2+1)(RN ) and

‖un‖L2∗(p2+1)(RN ) ≤ C2‖un‖L2(p2+1)(RN ).

Continuing with this iteration, we get a consequence {Ck} and two increasing
sequences {nk} and {pk}, where 2(pk+1+1) = 2∗(pk +1), such that for n ≥ nk,
un ∈ L2∗(pk+1)(RN ) and

‖un‖L2∗(pk+1)(RN ) ≤ Ck‖un‖L2(pk+1)(RN ).
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Obviously, pk =
(

N
N−2

)k−1

2∗ − 1. It follows that, for any p ≥ 2 there exist

Cp > 0 and np ∈ N such that for n ≥ np,

‖un‖Lp(RN ) ≤ Cp‖un‖L2∗(RN ). (2.33)

On the other hand, by (F1)-(F2), |f(t)| ≤ C(|t| + |t|2
∗−1) for all t and some

C > 0. By (2.33), there exists n0 ∈ N, such that for n ≥ n0,

‖f(un)‖LN (RN ) ≤ C0

(
‖un‖L2∗(RN ) + ‖un‖

2∗−1
L2∗ (RN )

)
(2.34)

for some C0 > 0. By Lemma 2.4, there exist nN ∈ N such that, for any y ∈ R
N ,

sup
B1(y)

un ≤ C
(
‖un‖L2(B2(y)) + ‖f(un)‖LN (B2(y))

)
, for n ≥ nN , (2.35)

where C only depends on N . Obviously, {‖un‖2}, {‖un‖2∗} are bounded uni-
formly for n. Then we see that supn≥nN

‖un‖L∞(RN ) < ∞, which is a contra-
diction. Therefore, the claim (2.24) is concluded.

Step 2. There exist M > 0 (independent of ε) and yε ∈ R
N , such that

0 < wε(y) ≤ M exp

(
−
|y|

2

)
, for y ∈ R

N , ε ∈ (0, ε0), (2.36)

where wε(y) = uε(y + yε). By Proposition 2.3, for small d > 0 there exist
{yε} ⊂ R

N , x ∈ M, U ∈ Sm such that

lim
ε→0

|εyε − x| = 0 and lim
ε→0

‖uε − U(· − yε)‖ε = 0.

Then for any σ > 0, there exists R > 0 (independent of ε), such that

sup
ε∈(0,ε0)

∫

RN\B(0,R)

w2
ε ≤ σ.

Moreover, since Γ′
ε(uε) = 0 and {uε} is bounded in L∞(RN ) uniformly for

ε ∈ (0, ε0), there exists C > 0 (independent of ε), such that −∆wε ≤ Cwε in R
N .

Then by elliptic estimates (see [18]), there exists C > 0 (independent of ε), such

that supB(y,1) wε ≤ C‖wε‖L2(B(y,2)) for any y ∈ R
N . Then, 0 < wε(y) ≤ Cσ

1
2

for ε ∈ (0, ε0), |y| ≥ R+2. Thus, the claim can be proved by Maximum Principle.

Step 3. We claim that Qε(uε) = 0 for small ε > 0. Since limε→0 εyε = x ∈ M,
εyε ∈ M5δ for small ε and there is C > 0 such that |y| ≤ Cdist(y,M5δ) for
y ∈ R

N \O. Thus there is C > 0 such that

∫

RN

χε(uε)
2 ≤ Cε−µ

∫

RN\Oε

exp (−
1

2
|x− yε|)dx

= Cε−µ−N

∫

RN\O
exp (−

1

2ε
|y − εyε|)dy
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≤ Cε−µ−N

∫

RN\O
exp (−

1

2ε
dist(y,M5δ))dy

≤ Cε−µ−N

∫

RN\B(0,δ)

exp (−
1

Cε
|y|)dy

−→ 0, as ε → 0,

i.e., Qε(uε) = 0 for small ε > 0. Therefore, uε is a critical point of Pε and a
solution of (1.4).

Step 4. We shall prove that there exists z0, xε ∈ R
N , such that maxRN vε =

vε(xε), limε→0 dist(xε,M) = 0 and limε→0 ‖vε(ε·+xε)−U(·+z0)‖ε = 0. Assume
that zε ∈ R

N such that ‖wε‖∞ = wε(zε), then by Step 1 and (2.36), we see that
{zε} ⊂ R

N is bounded. Up to a subsequence, we can assume that zε → z0 as
ε → 0. Let x̃ε = yε + zε, then maxRN uε = uε(x̃ε). Thus, let xε = εyε + εzε, we
see that maxRN vε = vε(xε) and limε→0 xε = limε→0 εyε = x ∈ M. Finally, it is
easy to check that vε(ε ·+xε) → U(·+ z0) strongly in Hε(R

N ) as ε → 0. This
completes the proof.
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