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GLOBAL ESTIMATES FOR KERNELS OF NEUMANN

SERIES AND GREEN’S FUNCTIONS

MICHAEL FRAZIER, FEDOR NAZAROV, AND IGOR E. VERBITSKY

Abstract. We obtain global pointwise estimates for kernels of
the resolvents (I − T )−1 of integral operators

Tf(x) =

∫

Ω

K(x, y)f(y)dω(y)

on L2(Ω, ω) under the assumptions that ||T ||L2(ω)→L2(ω) < 1 and
d(x, y) = 1/K(x, y) is a quasi-metric. Let K1 = K and Kj(x, y) =∫
ΩKj−1(x, z)K(z, y) dω(z) for j ≥ 1. Then

K(x, y)ecK2(x,y)/K(x,y) ≤

∞∑

j=1

Kj(x, y) ≤ K(x, y)eCK2(x,y)/K(x,y),

for some constants c, C > 0.
Our estimates yield matching bilateral bounds for Green’s func-

tions of the fractional Schrödinger operators (−△)α/2 − q with
arbitrary nonnegative potentials q on R

n for 0 < α < n, or on
a bounded non-tangentially accessible domain Ω for 0 < α ≤ 2.
In probabilistic language, these results can be reformulated as ex-
plicit bilateral bounds for the conditional gauge associated with
Brownian motion or α-stable Lévy processes.
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1. Introduction

This paper is dedicated to bounds for kernels of resolvents
(I − T )−1 of integral operators

(1.1) Tf(x) =

∫

Ω

K(x, y)f(y) dω(y)

and their applications to estimates for Green’s functions of Schrödinger
operators and related quantities. Throughout, ω is a positive measure
on Ω.

We consider the formal Neumann series

(I − T )−1 = I +
∞∑

j=1

T j

and the associated kernels K1 = K and

(1.2) Kj(x, y) =

∫

Ω

Kj−1(x, z)K(z, y) dω(z)

for j ≥ 2, of the operators T j. Define the formal Green’s function
H : Ω× Ω → (0,+∞] by

H(x, y) =
∞∑

j=1

Kj(x, y).

Let ‖T‖ = ‖T‖L2(ω)→L2(ω) denote the operator norm of T on L2(ω).
We will consider the class of quasi-metric kernels, which have been

considered previously in several papers, for example [KV] and [H]. A
quasi-metric kernel K on a measure space (Ω, ω) is a measurable func-
tion from Ω× Ω into (0,∞] such that

(i) K is symmetric: K(x, y) = K(y, x) for all x, y ∈ Ω,
and
(ii) d = 1/K satisfies the quasi-triangle inequality

(1.3) d(x, y) ≤ κ(d(x, z) + d(z, y))
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for all x, y, z ∈ Ω, for some κ > 0, called the quasi-metric constant for
K.

Our main theorem is the following.

Theorem 1.1. Let (Ω, ω) be a σ-finite measure space. Let K be a
quasi-metric kernel on Ω. Suppose ‖T‖ < 1. Then there exists c =
c(κ) > 0 and C = C(κ, ‖T‖) > 0 such that

(1.4) K(x, y)ecK2(x,y)/K(x,y) ≤ H(x, y) ≤ K(x, y)eCK2(x,y)/K(x,y).

It is well-known (see Lemma 2.1) that if ‖T‖ > 1, then H(x, y) =
+∞ for all x and y. In the critical case ‖T‖ = 1, the lower bound still
holds, but there are examples where H is finite a.e. and also examples
where H = +∞ a.e., although K2 is finite a.e.

Kernels of the form K(x, y) =
∑

Q cQχQ(x)χQ(y), where the sum

is over all dyadic cubes in R
n, were considered in [FV1], in connection

with a discrete model of the Schrödinger equation (see Remark 2.8).
Such kernels are quasi-metric with quasi-metric constant 1. Estimates
of the form of inequality (1.4) were obtained in [FV1], under a Carleson
condition on the sequence of scalars {cQ}. (A sharp constant in the
Carleson condition is established below; see Remark 2.8.)

In [FV2], estimate (1.4) and (1.7), (1.8) below were obtained under
stronger assumptions.

Estimate (1.4) immediately extends (see Corollary 3.3) to the more
general class of quasi-metrically modifiable kernels. A map K : Ω ×
Ω → (0,∞] is quasi-metrically modifiable with constant κ if there

exists a measurable function m : Ω → (0,∞) such that K̃(x, y) =
K(x, y)/(m(x)m(y)) is a quasi-metric kernel on Ω with quasi-metric
constant κ. We call m a modifier of K.

Our main application is to the fractional Schrödinger operator

Lα = (−△)α/2 − q

with nonnegative potential q ∈ L1
loc(Ω) in some (possibly unbounded)

domain Ω ⊆ R
n. Let G(x, y) = G(α)(x, y) be the Green’s kernel asso-

ciated with the fractional Laplacian (−∆)α/2 on Ω (see [L], [BBK], [H]
for references and definitions). We note that G(x, y) is non-negative
and symmetric on R

n × R
n, and G(x, y) = 0 if x ∈ (Ω)c, y ∈ R

n. For
regular domains Ω, this is true if x ∈ Ωc. For the sake of simplicity we
will assume throughout the paper that domains Ω are open and con-
nected, so that G(x, y) > 0 in Ω× Ω, although most estimates remain
true without the connectedness assumption.
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By Gf we denote the corresponding Green potential operator, that
is,

Gf(x) =

∫

Ω

G(x, y)f(y) dy, x ∈ Ω.

For appropriate f and Ω, we have Gf = 0 in Ωc and (−△)α/2Gf = f
in Ω. More generally,

Gµ(x) =

∫

Ω

G(x, y) dµ(y), x ∈ Ω,

where µ is a Borel measure on Ω.
Let q be a non-negative, locally integrable function on Ω. Let

dω(x) = q(x)dx.

Let G1 = G and define Gj inductively for j ≥ 2 by

Gj(x, y) =

∫

Ω

Gj−1(x, z)G(z, y) dω(z).

The minimal Green’s function associated with the fractional Schrö-
dinger operator Lα = (−△)α/2 − q is

(1.5) G(x, y) =
∞∑

j=1

Gj(x, y).

The corresponding Green’s operator is

Gf(x) =

∫

Ω

G(x, y)f(y) dy.

Formally, u = Gf is the solution of the integral equation

u(x) =

∫

Ω

G(x, y) u(y) dω(y) +Gf(x), x ∈ Ω, a.e. in Ω,

and hence, by applying G, to the Schrödinger equation

Lαu = (−△)α/2u− qu = f.

Theorem 1.2 below, which yields estimates for G like those for H
in Theorem 1.1, is applicable in the following cases.

(1) If Ω = R
n and 0 < α < n, then G is the classical Riesz kernel

G(α)(x, y) = cn,α|x− y|α−n, which is a quasi-metric kernel.
(2) If Ω is a ball or half-space, then for all 0 < α < n, G = G(α)

is a quasi-metrically modifiable kernel with modifier m(x) = δ(x)α/2,
where δ(x) is the distance from x to the boundary ∂Ω. This is easy to
see from the concrete form of Green’s kernel in these cases.
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(3) If Ω is a bounded domain with C1,1 boundary then

(1.6) G(α)(x, y) ≈
δ(x)α/2 δ(y)α/2

|x− y|n−α(|x− y|+ δ(x) + δ(y))α/2
,

where “≈” means that the ratio of the two sides is bounded above and
below by positive constants depending only on Ω, holds for 0 < α ≤ 2,
α < n. Hence G = G(α) is a quasi-metrically modifiable kernel with
modifier m(x) = δ(x)α/2.

(4) If Ω is a bounded domain satisfying the boundary Harnark
principle and 0 < α ≤ 2, then G = G(α) is quasi-metrically modifiable
with modifier m(x) = min(1, G(x, x0)), for x0 ∈ Ω, with a quasi-metric
constant κ independent of x0. In particular, this procedure is applicable
when Ω is a bounded Lipschitz domain, or more generally an NTA
(non-tangentially accessible) domain. In fact, for 0 < α < 2, it suffices
to assume that Ω is merely an interior NTA domain which obeys the
interior corkscrew condition. This class of Ω coincides with the class of
uniform (or κ-fat) domains. See [An], [BBK], [H], [K], [FV2], p. 118,
for references and further discussion.

For the examples just listed, the following bilateral estimate follows
immediately from the extension of Theorem 1.1 to the case of quasi-
metrically modifiable kernels. Our upper estimate is new even in the
classical case α = 2; the lower estimate is known for 0 < α ≤ 2 in the
cases (1)-(4) discussed above (see [GH], and the literature cited there).

Theorem 1.2. Let Ω ⊆ R
n, n ≥ 2. Assume that the Green’s kernel

G for (−∆)α/2 on Ω is quasi-metrically modifiable. Let q ∈ L1
loc(Ω) be

non-negative, and set dω = qdx. Define G by (1.5). Then there exists
a positive constant c = c(Ω, α) such that

(1.7) G(x, y) ≥ G(x, y)e cG2(x,y)/G(x,y).

If, in addition, ‖T‖ < 1, where T is the operator
Tf(x) =

∫
Ω
G(x, y)f(y)dω(y), then there exists a positive constant C =

C(Ω, α, ‖T‖) such that

(1.8) G(x, y) ≤ G(x, y)eCG2(x,y)/G(x,y).

When α = 2, there is a precise probabilistic formula

(1.9) G(x, y)/G(x, y) = Ex,y

[
e
∫ ζ

0
q(Xt) dt

]
,

where Xt is the Brownian path, with properly rescaled time, starting
at x, and Ex,y is the conditional expectation conditioned on the event
that Xt hits y before exiting Ω, and ζ is the time when Xt first hits y.

The expression Ex,y

[
e
∫ ζ

0
q(Xt) dt

]
is called the conditional gauge, or the
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Feynman-Kac functional of the conditioned process (see [AS], [CZ]).
Recently, similar formulas have been established in the case 0 < α < 2
for the conditional gauge associated with an α-stable Lévy process (see
[BBK]). However, our approach is more general and covers even some
cases with α > 2 (in particular, Ω = R

n) for which there seems to be
no probabilistic interpretation.

This probabilistic approach yields the lower bound (1.7) with c = 1,
by applying Jensen’s inequality in (1.9). On the other hand, the upper
estimate (1.8), which can be rewritten as

(1.10) Ex,y

[
e
∫ ζ

0
q(Xt) dt

]
≤ eC Ex,y[

∫ ζ

0
q(Xt) dt],

seems to be new. It would be interesting to see if it has a probabilistic
proof.

Some nonlinear analogues of Theorem 1.2 for quasilinear equations
of the p-Laplace type with natural growth terms are obtained in [JV1],
[JV2]. However, they are less precise and do not determine sharp con-
stants in the conditions on q.

In Section 2, we prove Theorem 1.1. We discuss further results con-
cerning integral operators with quasi-metric or quasi-metrically modi-
fiable kernels in Section 3.

2. Estimates for Kernels of Neumann Series

Lemma 2.1. Let (Ω, ω) be a σ-finite measure space, and let K : Ω ×
Ω → (0,∞] be a symmetric kernel on Ω. Define T by (1.1). Let
K1 = K and define Kj by (1.2) for j ≥ 2. If ‖T‖ > 1, then for every
x, y ∈ Ω,

H(x, y) =
∞∑

j=1

Kj(x, y) = +∞.

Proof. Suppose there exist x0, y0 ∈ Ω such that H(x0, y0) < ∞. Then

∫

Ω

H(x0, z)K(z, y0) dω(z) =

∫

Ω

∞∑

j=1

Kj(x0, z)K(z, y0) dω(z)

=

∞∑

j=1

Kj+1(x0, y0) < H(x0, y0) < ∞.

Since K(z, y0) > 0 for all z ∈ Ω, we see that H(x0, z) < ∞ for a.e. z.
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Let f(x) = H(x0, x). Then by the symmetry of H ,

Tf(x) =

∫

Ω

K(x, z)H(z, x0) dω(z) =
∞∑

j=1

∫

Ω

K(x, z)Kj(z, x0) dω(z)

=

∞∑

j=1

Kj+1(x, x0) < H(x, x0) = H(x0, x) = f(x).

Since 0 < f(x) < ∞ a.e., Schur’s Lemma implies that ‖T‖ ≤ 1.
�

We turn to the proof of the lower estimate for H in Theorem 1.1. It
is only meaningful for ‖T‖ ≤ 1, by the previous lemma, but the proof
does not involve ‖T‖.

We say that d is a quasi-metric with quasi-metric constant κ, on
a nonempty set Ω, if d : Ω × Ω → [0,∞) is not identically 0 and
satisfies d(x, y) = d(y, x) and the quasi-triangle inequality (1.3) for all
x, y, z ∈ Ω.

We will use the fact that κ ≥ 1/2. To see this fact, select x ∈ Ω. If
d(x, x) > 0, applying (1.3) with x = y = z gives κ ≥ 1/2. If d(x, x) = 0,
then there must exist y ∈ Ω such that d(x, y) > 0, and applying (1.3)
with z = x implies that κ ≥ 1. Note that κ = 1/2 is attained in the
case where d is constant.

Lemma 2.2. (Ptolemy) Let d be a quasi-metric with constant κ on a
set Ω. Suppose y1, y2, y3, y4 ∈ Ω. Let a = d(y1, y2), b = d(y2, y3), c =
d(y3, y4), d = d(y4, y1), s = d(y2, y4), and t = d(y1, y3). Then

st ≤ 4κ2max(ac, bd).

Proof. Without loss of generality, assume a = min(a, b, c, d). Then

s ≤ κ(a + d) ≤ 2κd and t ≤ κ(a + b) ≤ 2κb.

Hence st ≤ 4κ2bd. �

Lemma 2.3. Let (Ω, ω) be a σ-finite measure space, and let K be a
quasi-metric kernel on Ω. Let K1 = K and define Kj by (1.2) for
j ≥ 2. Then for c = (4κ2)−1,

(2.1)
∞∑

j=1

Kj(x, y) ≥ K(x, y)ecK2(x,y)/K(x,y).

Proof. Let d = 1/K. We can assume d(x, y) > 0 for all x, y. To see
this, for n ∈ N, let K(n) = min(K, n). Then K(n) is a quasi-metric
with the same quasi-metric constant as for K, corresponding to dn =
max(d, 1/n). Using (2.1) for K(n) yields the result for K. Note that
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at points where K(x, y) = ∞ or K2(x, y) = ∞, both sides of (2.1) are
infinite.

Fix (x, y) ∈ Ω. For z ∈ Ω, define

F (z) =
d(x, z)

d(y, z)
.

For j ≥ 2, let

Aj = {(z1, . . . , zj−1) ∈ Ωj−1 : F (z1) ≤ F (z2) ≤ · · · ≤ F (zj−1)}.

For z = (z1, . . . , zj−1) ∈ Aj , we have

d(x, zm+1)d(y, zm) ≥ d(x, zm)d(y, zm+1)

for m = 1, . . . , j − 2, and hence, by Lemma 2.2,

d(zm, zm+1)d(x, y) ≤ 4κ2d(x, zm+1)d(y, zm).

Therefore, letting dωj−1(z) = dω(z1)dω(z2) · · ·dω(zj−1), we get

Kj(x, y) =

∫

Ωj−1

1

d(x, z1)

1

d(z1, z2)
· · ·

1

d(zj−2, zj−1)

1

d(zj−1, y)
dωj−1(z)

≥

(
d(x, y)

4κ2

)j−2 ∫

Aj

1

d(x, z1)

1

d(z1, y)

1

d(x, z2)

1

d(z2, y)
· · ·

· · ·
1

d(x, zj−1)

1

d(zj−1, y)
dωj−1(z).

This last integral is invariant under permutations of the indices
1, . . . , j − 1 in the definition of Aj , and hence has value at least 1

(j−1)!

times the integral over all of Ωj−1, which splits and gives the value
K2(x, y)

j−1. Therefore

Kj(x, y) ≥ c−1K(x, y)
(cK2(x, y)/K(x, y))j−1

(j − 1)!
,

with c−1 = 4κ2 ≥ 1. We sum these estimates over j ≥ 2 and add
K(x, y) = K1(x, y) to obtain

∞∑

j=1

Kj(x, y) ≥ K(x, y)ecK2(x,y)/K(x,y).

�

Now we turn to the upper estimate of H in Theorem 1.1. The
following lemma is standard (see [Hei], Proposition 14.5), except for
the value of the constants, which we will use. As indicated in the proof
in [Hei] (pp. 111-112), the inequality below holds with β ≥ 2 log2(2κ)
and C = (2κ)2. Notice that in the proof in [Hei] the quasi-ultra-metric
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condition d(x, y) ≤ Kmax[d(x, z), d(y, z)] is used in place of (1.3), so
the constant K should be replaced with 2κ.)

Lemma 2.4. [Hei] Let d be a quasi-metric with constant κ on set Ω.
Then there exists a quasi-metric D with constant 1 such that

(2.2) Dβ ≤ d ≤ CDβ

for β = 2 log2(2κ) and C = (2κ)2.

Note that D may not be a metric because we may have D(x, x) > 0
or D(x, y) = 0 for x 6= y. The proof in [Hei] can easily be adapted to
this case.

Lemma 2.5. (Inverse Ptolemy) Let D be a quasi-metric with constant
1 on a set Ω. Let y1, y2, y3, y4 ∈ Ω. Let a = D(y1, y2), b = D(y2, y3), c =
D(y3, y4), d = D(y4, y1), s = D(y2, y4), and t = D(y1, y3). Suppose the
inequality

ac ≥ τ 2bd

holds with some τ > 1. Then

st ≥ (1− τ−1)2ac.

Proof. Without loss of generality, a ≥ c. Since a2 ≥ ac ≥ τ 2bd, either
a ≥ τb or a ≥ τd. We can assume a ≥ τb. Then

t ≥ a− b ≥ (1− τ−1)a.

Simce ac ≥ τ 2bd, either a ≥ τd or c ≥ τb. In the first case,

s ≥ a− d ≥ (1− τ−1)a ≥ (1− τ−1)c.

In the second case,

s ≥ c− b ≥ (1− τ−1)c.

Hence we always have the estimate

st ≥ (1− τ−1)a(1− τ−1)c = (1− τ−1)2ac.

�

Corollary 2.6. Let d be a quasi-metric with constant κ on a set Ω,
and let D be the quasi-metric with constant 1 determined in Lemma
2.4. Let x, y, u, v ∈ Ω. Suppose that for some τ > 1,

D(x, v)

D(y, v)
≥ τ 2

D(x, u)

D(y, u)
.

Then

d(x, y)d(u, v) ≥ (1− τ−1)2β(2κ)−4d(x, v)d(y, u).



10 MICHAEL FRAZIER, FEDOR NAZAROV, AND IGOR E. VERBITSKY

Proof. The result can be immediately obtained by raising both sides of
the estimate in Lemma 2.5 to the power β and applying the bilateral
inequality (2.2) for d and Dβ. �

We now turn to the proof of the upper estimate in Theorem 1.1.
Define the quasi-metric d = 1/K. Let D be the quasi-metric with
constant 1 determined in Lemma 2.4. By considering min(K, n) as
in the proof of Lemma 2.3 and applying the monotone convergence
theorem, we can assume D(x, y) > 0 for all x, y ∈ Ω. Fix x, y ∈ Ω and
define the function F by

(2.3) F (z) =
D(x, z)

D(y, z)
, z ∈ Ω,

and f by

(2.4) f(z) =
1√

d(x, z)d(y, z)
, z ∈ Ω.

Fix τ > 1 and j ≥ 2. The heart of the proof is the following pointwise
estimate.

Lemma 2.7. Let τ > 1, and let F and f be defined by (2.3) and (2.4)
respectively. For every chain of points z1, z2, . . . , zj−1 in Ω, there exists
a subset

M = {m1, m2, . . . , mℓ} ⊆ {1, . . . , j − 2},

with cardinality |M |, with m1 < m2 < · · · < mℓ such that

(2.5) F (zmk
) < F (zmk+1

) for all k = 1, 2, . . . , ℓ− 1,

and

(2.6) A ≤ (2κ)2C(τ, κ)|M |τβ(j−2−|M |)d(x, y)|M |B,

where

A =
1

d(x, z1)

1

d(z1, z2)
· · ·

1

d(zj−2, zj−1)

1

d(zj−1, y)

and

B = f(z1)
1

d(z1, z2)
· · ·

1

d(zm1−1, zm1
)
f(zm1

)

×

ℓ−1∏

k=1

[
f(zmk+1)

1

d(zmk+1, zmk+2)
· · ·

1

d(zmk+1−1, zmk+1
)
f(zmk+1

)

]

× f(zmℓ+1)
1

d(zmℓ+1, zmℓ+2)
· · ·

1

d(zj−2, zj−1)
f(zj−1).
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Proof. For m = 1, . . . , j − 1, define

Φ(m) = min
k≥m

F (zk).

Then Φ is nondecreasing. Let

M = {m ∈ {1, 2, . . . , j − 2} : Φ(m+ 1) ≥ τ 2Φ(m)}.

Notice that F (zm) ≥ Φ(m) and F (zm) = Φ(m) for m ∈ M . Hence
F (zm) is increasing for m ∈ M , because Φ is increasing, so (2.5) holds.
For m ∈ M ,

F (zm+1) ≥ Φ(m+ 1) ≥ τ 2F (zm).

We have

A

B
=

√
d(y, z1)

d(x, z1)

[
∏

m∈M

√
d(x, zm)d(y, zm)d(x, zm+1)d(y, zm+1)

d(zm, zm+1)

]√
d(x, zj−1)

d(y, zj−1)
.

The estimate F (zm+1) ≥ τ 2F (zm) means that the conditions of Corol-
lary 2.6 hold for the points x, y, zm, zm+1 for every m ∈ M . Thus

d(x, y)d(zm, zm+1) ≥ (1− τ−1)2β(2κ)−4d(x, zm+1)d(y, zm).

Hence

A

B
≤

[
(2κ)4

(1− τ−1)2β

]|M |

d(x, y)|M |

×

√
d(y, z1)

d(x, z1)

[
∏

m∈M

√
d(x, zm)d(y, zm+1)

d(x, zm+1)d(y, zm)

]√
d(x, zj−1)

d(y, zj−1)
.

By the equivalence of d and Dβ, we can estimate the last quantity by

A

B
≤
[
(2κ)2

]|M |+1
[

(2κ)4

(1− τ−1)2β

]|M |

d(x, y)|M |

×

[
D(y, z1)

D(x, z1)

(
∏

m∈M

D(x, zm)D(y, zm+1)

D(x, zm+1)D(y, zm)

)
D(x, zj−1)

D(y, zj−1)

]β/2

= (2κ)2
[

(2κ)6

(1− τ−1)2β

]|M |

d(x, y)|M |

[
1

F (z1)

(
∏

m∈M

F (zm)

F (zm+1)

)
F (zj−1)

]β/2

Note that F (z1) ≥ Φ(1), F (zj−1) = Φ(j − 1), and recall that for every
m ∈ M , we have F (zm) = Φ(m) and F (zm+1) ≥ Φ(m + 1). Hence we
can estimate the product

1

F (z1)

(
∏

m∈M

F (zm)

F (zm+1)

)
F (zj−1)
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by

1

Φ(1)

(
∏

m∈M

Φ(m)

Φ(m+ 1)

)
Φ(j − 1) =

Φ(m1)

Φ(1)

Φ(m2)

Φ(m1 + 1)
· · ·

Φ(j − 1)

Φ(mℓ + 1)
.

We now observe that the inequality Φ(m+1) ≤ τ 2Φ(m) holds for every
m ∈ [1, m1−1]∪[m1+1, m2−1]∪· · ·∪[mℓ+1, j−1], i.e., for m /∈ M , so
Φ(m1) ≤ τ 2(m1−1)Φ(1),Φ(m2) ≤ τ 2(m2−m1−1)Φ(m1+1), and so on up to
Φ(j− 1) ≤ τ 2(j−1−mℓ−1)Φ(mℓ +1). Therefore the last product does not
exceed τ 2(j−2−|M |). Combining these estimates we get the conclusion of
the lemma with C(τ, κ) = (2κ)6(1− τ−1)−2β. �

Proof of Theorem 1.1. Let F and f be defined by (2.3) and
(2.4) respectively. Integrating the estimate (2.6) with respect to ωj−1

and summing over all possible choices of M , we arrive at the inequality

Kj(x, y) ≤ (2κ)2
j−2∑

ℓ=0

C(τ, κ)ℓτβ(j−1−ℓ)d(x, y)ℓ

×
∑

1≤m1<m2<···<mℓ≤j−2

Ij(m1, m2, · · · , mℓ),

for j ≥ 2, where

Ij(m1, m2, · · · , mℓ)

=

∫

{F (zm1
)<F (zm2

)<···<F (zmℓ
)}

(
fTm1−1f

)
(zm1

)

(
ℓ−1∏

k=1

(
fTmk+1−mk−1f

)
(zmk+1

)

)
(
fT j−1−mℓ−1f

)
(zj−1)

dω(zm1
) · · ·dω(zmℓ

) dω(zj−1).

Let α ∈ (1, ‖T‖−1). Define S =
∑

k≥0 α
kT k. Since f ≥ 0, we have the

pointwise inequality

T kf ≤ α−kSf

for all k ≥ 0. Thus

Ij(m1, . . .mℓ) ≤ α−(j−2−ℓ)

∫

{F (zm1
)<F (zm2

)<···<F (zmℓ
)}

g(zm1
) · · · g(zmℓ

)g(zj−1) dω(zm1
) · · · dω(zmℓ

) dω(zj−1)

≤
α−(j−2−ℓ)

ℓ!
‖g‖ℓ+1

L1(ω),
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where g = fSf . The last inequality is true because the integral is
invariant with respect to the permutations of m1, . . . , mℓ in the domain
of integration.

Note that

‖g‖L1(ω) ≤ ‖S‖‖f‖2L2(ω) = ‖S‖K2(x, y).

Putting these estimates together, we obtain

Kj(x, y) ≤ (2κ)2K2(x, y)

j−2∑

ℓ=0

(
j − 2

ℓ

)
(τβα−1)j−2−ℓC(τ, κ)ℓ

ℓ!

(
K2(x, y)

K(x, y)

)ℓ

.

If 0 < ρ < 1, then for each ℓ ≥ 0,

(2.7)
∞∑

j=ℓ

(
j

ℓ

)
ρj−ℓ =

1

(1− ρ)ℓ+1
,

by differentiating (1 − ρ)−1 =
∑∞

j=0 ρ
j a total of ℓ times. Select τ > 1

such that ρ ≡ τβα−1 < 1. Using (2.7),

∞∑

j=2

Kj(x, y) ≤
(2κ)2

1− τβα−1
K2(x, y) exp

(
C(τ, κ)

1− τβα−1

K2(x, y)

K(x, y)

)
.

To complete the proof of the upper bound in (1.4), it remains only to
use the elementary inequality 1+CV eCV ≤ e2CV , valid for all C, V > 0.

�

Remark 2.8. Theorem 1.1 is applicable to the discrete model of the
Schrödinger equation considered in [FV1]. Let ω be a Borel measure on
R

n, and let Q denote the family of dyadic cubes in R
n. For a sequence

s = {sQ}Q∈Q of positive scalars, we consider an operator T defined by
(1.1) with kernel

K(x, y) =
∑

Q∈Q

sQ
ω(Q)

χQ(x)χQ(y),

where the sum is taken over all dyadic cubes Q such that ω(Q) 6= 0.
This is a quasi-metric kernel with constant κ = 1 (moreover, d(x, y) =
1/K(x, y) is an ultra-metric; that is, d(x, y) ≤ max(d(x, z), d(z, y))).
Note that, for g ∈ L2(ω),

〈Tg, g〉 =
∑

Q∈Q

sQ
ω(Q)

(∫

Q

gdω

)2

≤ ||T || · ||g||2L2(ω).
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Define the discrete Carleson norm of s = {sQ}Q∈Q by

‖s‖ω = sup
Q∈Q

ω(Q)−1
∑

P∈Q:P⊆Q

sP ω(P ).

Then ‖s‖ω ≤ ||T || ≤ 4‖s‖ω, where the constant 4 is sharp (see [NTV],
Theorem 3.3). Consequently, by Theorem 1.1 estimate (1.4) holds if
‖s‖ω < 1

4
, where the constant 1

4
is sharp as well. Indeed, (1.4) yields

||T || ≤ 1 by Schur’s lemma, and so 1
4
cannot be replaced by any larger

constant in view of Theorem 3.3 in [NTV].
Such estimates of the corresponding Green’s function were obtained

earlier in [FV1] by a different method, with 1
12

in place of 1
4
, along with

estimates of solutions to the discrete Schrödinger equation u = Tu+f .

3. Further Results on Quasi-metric and Quasi-metrically

Modifiable Kernels

Let T be defined by (1.1) where K : Ω × Ω → (0,+∞] is a non-
negative kernel. The minimal positive solution u0 of the equation u =
Tu+ 1 is obviously given by u0 = 1 +

∑∞
j=1 T

j1. Our next result is a
bilateral pointwise estimate of u0. In the case where K is the Green’s
function G of (−∆)α/2, the function u0 = G1 is of interest in the study
of Schrödinger equations.

Theorem 3.1. Let (Ω, ω) be a σ-finite measure space. Suppose that
K is a quasi-metric kernel with constant κ on (Ω, ω), and T is the
corresponding integral operator. Then there exists c = c(κ) > 0 such
that the minimal positive solution u0 of the equation u = Tu+1 satisfies

(3.1) u0 ≥ ecT1.

If ‖T‖ < 1, then there exists C = C(κ, ‖T‖) > 0 such that

(3.2) u0 ≤ eCT1.

Proof. We first consider the case where Ω is bounded with respect to
d = 1/K, that is, when D = supx,y∈Ω d(x, y) < +∞. We will add
a point z to Ω which is far away from all other points. That is, we
choose z 6∈ Ω and consider the space Ω∗ = Ω ∪ {z} with quasi-metric
d∗ defined by d∗(x, y) = d(x, y) if x, y ∈ Ω, d∗(x, z) = d∗(z, x) = D
for all x ∈ Ω, and d(z, z) = 0. Then d∗ is a quasi-metric on Ω∗ with
quasi-metric constant κ∗ = max(κ, 1). We also extend ω to a measure
ω∗ on Ω∗ by setting ω∗|Ω = ω, and ω∗({z}) = 0.

Note that the iterates K∗
j of K∗ = 1/d∗ with respect to ω∗ agree

with the iterates Kj of K with respect to ω on Ω×Ω since ω∗({z}) = 0,
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and that the norm of the integral operator with the kernel K∗ on
(Ω∗, ω∗) is the same as ||T ||.

For all x ∈ Ω,

K∗
2 (x, z)

K∗(x, z)
= D

∫

Ω∗

K∗(x, y)K∗(y, z) dω∗(y) =

∫

Ω

K(x, y) dω(y) = T1(x)

and

u0(x) = 1+

∞∑

j=1

∫

Ω

Kj(x, y) dω(y) = 1+D

∞∑

j=1

∫

Ω∗

K∗
j (x, y)K

∗(y, z) dω∗(y)

= DK∗(x, z) +D
∞∑

j=2

K∗
j (x, z) = D

∞∑

j=1

K∗
j (x, z).

Hence, applying the lower estimate in Theorem 1.1 on the space Ω∗ we
get, for all x ∈ Ω,

(3.3) u0(x) ≥ DK∗(x, z)ecK
∗

2
(x,z)/K∗(x,z) = ecT1(x).

Similarly, the upper estimate in Theorem 1.1 gives, for all x ∈ Ω,

(3.4) u0(x) ≤ DK∗(x, z)eCK∗

2
(x,z)/K∗(x,z) = eCT1(x).

For Ω not bounded with respect to d, select x0 ∈ Ω and let Ωn =
{x ∈ Ω : d(x, x0) < n}. Let ωn be the restriction of ω to Ωn, and let
dn and K(n) be the restrictions of d and K to Ωn × Ωn respectively.
Then K(n) is a quasi-metric kernel on Ωn. The corresponding integral
operator Tn defined by

Tnf(x) =

∫

Ωn

K(n)(x, y)f(y) dωn(y) =

∫

Ω

K(x, y)χΩn
(y) dω(y)

satisfies
‖Tn‖L2(Ωn)→L2(Ωn) ≤ ‖T‖L2(Ω)→L2(Ω),

and Tn1 → T1 pointwise as n → ∞.

Let T j
n be the jth iterate of Tn and letK

(n)
j be the kernel of T j

n. Then

K
(n)
j (x, y) is non-decreasing in n and converges to Kj(x, y) pointwise

as n → ∞, for each j ∈ N, by the monotone convergence theorem. Let

u
(n)
0 = 1+

∑∞
j=1 T

j
n1. By the monotone convergence theorem, u

(n)
0 → u0

pointwise as n → ∞.
Applying the estimates for the bounded space Ωn, and passing to

the limit as n → ∞, we see that estimates (3.1) and (3.2) hold in the
unbounded case as well. �

We now turn to characterizing the kernels for which
∑∞

j=1Kj(x, y)

is pointwise equivalent to K(x, y).



16 MICHAEL FRAZIER, FEDOR NAZAROV, AND IGOR E. VERBITSKY

Theorem 3.2. Let (Ω, ω) be a σ-finite measure space. Suppose K :
Ω×Ω → (0,+∞] is a quasi-metric kernel with constant κ, and that K
is not identically ∞. Let T be the integral operator corresponding to K
and let u0 be the minimal positive solution of the equation u = Tu+1.
Then the following statements are equivalent:

(a) There exists C1 > 0 such that
∑∞

j=1Kj(x, y) ≤ C1K(x, y) for
all x, y ∈ Ω.

(b) ‖T‖ < 1 and K2(x, y) ≤ C2K(x, y) for all x, y ∈ Ω, for some
C2 > 0 (or, equivalently, supx∈Ω T1(x) < +∞).

(c) supx∈Ω u0(x) < +∞.

Proof. We first show that the condition K2 ≤ C2K is equivalent to the
boundedness of T1. Notice that by the quasi-metric property of K,

K(x, z)K(y, z) ≤ κK(x, y)[K(x, z) +K(y, z)].

Hence,

K2(x, y) =

∫

Ω

K(x, z)K(y, z)dω(z)

≤ κK(x, y)

∫

Ω

K(x, z)dω(z) + κK(x, y)

∫

Ω

K(y, z)dω(z)

= κK(x, y)[T1(x) + T1(y)],

so that the boundedness of T1 implies that K2 ≤ C2K.
Now suppose K2 ≤ C2K. Fix x ∈ Ω. Suppose first that
(1) 0 < supy∈Ω d(x, y) = D < +∞. Pick any y ∈ Ω with d(x, y) >

D
2
. Then

d(y, z) ≤ κ[d(x, y) + d(x, z)] ≤ 3κd(x, y)

for all z ∈ Ω, and so K(y, z) ≥ 1
3κ
K(x, y). It follows that

K2(x, y) =

∫

Ω

K(x, z)K(y, z)dω(z) ≥
1

3κ
K(x, y)T1(x),

whence T1(x) ≤ 3κC2.
Now suppose that
(2) supy∈Ω d(x, y) = +∞. Then there is a sequence yn ∈ Ω such

that 0 < rn = d(x, yn) → +∞ as n → ∞. For every z ∈ B(x, rn), we
have

d(yn, z) ≤ κ[d(x, yn) + d(x, z)] ≤ 2κd(x, yn).
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Hence,

K2(x, yn) ≥

∫

B(x,rn)

K(x, z)K(yn, z)dω(z)

≥
1

2κ
K(x, yn)

∫

B(x,rn)

K(x, z)dω(z),

and consequently
∫
B(x,rn)

K(x, z)dω(z) ≤ 2κC2 for all n ∈ N. Passing

to the limit as n → ∞, we get T1(x) ≤ 2κC2.
Now Theorem 1.1 shows that (b) implies (a), and Theorem 3.1

shows that (b) implies (c).
If u0 is bounded by C, then by Theorem 3.1, T1 is bounded. From

u0 = Tu0 + 1, we obtain

Tu0 = u0 − 1 ≤

(
1−

1

C

)
u0.

Hence ‖T‖ ≤ 1− 1/C < 1, by Schur’s Lemma. So (c) implies (b).
It remains to show that (a) implies (b). Condition (a) trivially

implies K2 ≤ C2K, and hence we have that T1 is bounded. It remains
to show that (a) implies ||T || < 1. Since the kernel of T is positive, T
is bounded on L∞(ω), and by duality on L1(ω). Thus by interpolation
T is a bounded operator on L2(ω). Comparing kernels and using (a),
there exists C so that for all n,

‖T n‖ ≤ ‖T + T 2 + · · ·+ T n‖ ≤ C.

Since the kernel of T is symmetric, T is self-adjoint, so ||T || coincides
with the spectral radius r(T ) on L2(ω). Hence it suffices to show that
‖T n‖ < 1 for some n. If not, given n we can select f such that ‖f‖ = 1
and ‖T nf‖ > 1/2. We can assume f ≥ 0. Then for all m ≤ n

‖Tmf‖ ≥
1

2C
.

Then

‖(T + T 2 + · · ·+ T n)f‖2 ≥
n∑

j=1

‖T jf‖2 ≥
n

4C2
,

since all inner products in the expansion of the left side are non-
negative. For n large enough, this inequality contradicts ‖T + T 2 +
· · ·+ T n‖ ≤ C.

�
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Remarks. 1. The condition supx∈Ω T1(x) < +∞ can be expressed
in a “geometric form”

sup
x∈Ω

∫ +∞

0

ω(B(x, t))

t2
dt < +∞,

where B(x, t) = {y ∈ Ω : d(x, y) < t}. Indeed,

T1(x) =

∫

Ω

K(x, y)dω(y) =

∫

Ω

dω(y)

d(x, y)

=

∫

Ω

∫ ∞

d(x,y)

dt dω(y)

t2
=

∫ +∞

0

ω(B(x, t))

t2
dt.

2. The condition supx∈Ω T1(x) < +∞ can be replaced with
||T1||L∞(ω) < +∞, which in its turn is equivalent to ||T ||L1(ω)→L1(ω) <
+∞.

Indeed, let E = {x : T1(x) ≤ ||T1||L∞(ω)}. Then ω(Ω \ E) = 0, so
E is non-empty. Fix any point x ∈ Ω. Then the following two cases are
possible: (i) infy∈E d(x, y) = 0. In this case, for every ǫ > 0, there exists
y ∈ E such that d(x, y) < ǫ, and therefore d(y, z) ≤ κ (d(x, z) + ǫ),
whence ∫

Ω

dω(z)

d(x, z) + ǫ
≤ κT1(y) ≤ κ||T1||L∞(ω).

Passing to the limit as ǫ → 0, we obtain T1(x) ≤ κ||T1||L∞(ω).
(ii) D = infy∈E d(x, y) > 0. Then choose any point y ∈ E with

d(x, y) ≤ 2D. Note that for all z ∈ E,

d(y, z) ≤ κ (d(x, y) + d(x, z)) ≤ κ (2D + d(x, z)) ≤ 3κd(x, z).

Thus in this case

T1(x) =

∫

E

dω(z)

d(x, z)
≤ 3κ

∫

E

dω(z)

d(y, z)
= 3κT1(y) ≤ 3κ||T1||L∞(ω).

3. Let B denote the space of all bounded functions on Ω with
norm ||u||B = supx∈Ω |u(x)|. Suppose T is an integral operator with
quasi-metric kernel. Clearly T : B → B is bounded if and only if
supx∈Ω T1(x) < +∞. Under this additional assumption, W. Hansen
[H] showed that condition (a) of Theorem 3.2 is equivalent to r(T )B < 1,
where r(T )B is the spectral radius of T in B. This result is a conse-
quence of Theorem 3.2 above. Moreover, for operators T with quasi-
metric kernels which are bounded on B, we have r(T )B = ||T ||.

Indeed, ||T ||B→B ≥ ||T ||L∞(ω)→L∞(ω) = ||T ||L1(ω)→L1(ω). Using in-

terpolation, and the formula r(T )B = limn→∞ ||T n||
1/n
B→B we see that

r(T )B ≥ r(T )L2(ω) = ||T ||. By an argument similar to that used in the
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proof of Theorem 3.2 (with B, or L∞(ω), in place of L2(ω)) it follows
that (a) implies r(T )B < 1. Thus, the condition r(T )B < 1 is equivalent
to ||T || < 1 for operators T with quasi-metric kernels bounded on B.
To prove that r(T )B = ||T ||, it remains to notice that, for ǫ > 0, the
operator Tǫ = (||T ||+ ǫ)−1T satisfies ||Tǫ|| < 1, and hence r(Tǫ)B < 1,
which yields r(T )B < ||T ||+ǫ. Conversely, Sǫ = (r(T )B+ǫ)−1T satisfies
r(Sǫ)B < 1 which gives ||Sǫ|| < 1, that is, ||T || < r(T )B + ǫ. Letting
ǫ → 0 yields r(T )B = ||T ||.

We will now extend our results to a wider class of quasi-metrically
modifiable kernels. It turns out that in many interesting applications
the quasi-metric property fails but the quasi-metric modifiability holds.
Let K be a quasi-metrically modifiable kernel on a measure space

(Ω, ω), with modifier m, so that K̃(x, y) = K(x, y)/(m(x)m(y)) is a
quasi-metric kernel.

We also consider the measure dω̃ = m2dω and the operator T̃
defined by

T̃ f(x) =

∫

Ω

K̃(x, y)f(y) dω̃(y).

Various properties of a quasi-metrically modifiable kernel K and the

corresponding integral operator T can be reduced to those of K̃ and T̃ .
The following properties are straightforward, and we leave their proofs
to the reader.

(a) K̃j(x, y) =
Kj(x,y)

m(x)m(y)
for all j ∈ N.

(b) If f ∈ L2(ω), then f̃ = f
m

∈ L2(ω̃).

(c) T̃ j f̃ = T jf
m

, for all j ∈ N.

(d) T̃ j1 = T jm
m

, for all j ∈ N.

(e) ||T̃ ||L2(ω̃) = ||T ||L2(ω).

Applying Theorem 1.1 to K̃ and T̃ , and rewriting the conclusions in
terms of K and T , we deduce that Theorem 1.1 remains valid verbatim
for quasi-metrically modifiable kernels, which we state as the following
corollary.

Corollary 3.3. Let (Ω, ω) be a σ-finite measure space, and let K be a
quasi-metrically modifiable kernel on Ω with constant κ. Let K1 = K
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and define Kj by (1.2) for j ≥ 2. Then there exists c > 0, depending
only on κ, such that (2.1) holds.

Define T by (1.1). If ‖T‖L2(ω)→L2(ω) < 1, then there exists C > 0,
depending only on κ and ‖T‖, such that

∞∑

j=1

Kj(x, y) ≤ K(x, y)eCK2(x,y)/K(x,y).

Theorem 3.1 becomes a statement concerning the minimal positive
solution u0, defined by u0 = m +

∑∞
j=1 T

jm, of the equation u =
Tu+m, where m is the quasi-metric modifier. We obtain estimates for
u0 in the next corollary which is deduced by applying Theorem 3.1 to

u0/m = 1 +
∑∞

j=1 T̃
j1.

Corollary 3.4. Suppose K is a quasi-metrically modifiable kernel with
modifier m and constant κ on (Ω, ω). Define T by (1.1). Then there
exists c > 0 depending only on κ such that

(3.5) u0 ≥ mec(Tm)/m.

If ‖T‖ < 1, then there exists C > 0 depending only on κ and ‖T‖ such
that

(3.6) u0 ≤ meC(Tm)/m.

Moreover, u0 ≈ m if and only if ||T || < 1, and Tm ≤ Cm.

The next corollary is a direct analogue of Theorem 3.2 for quasi-
metrically modifiable kernels, proved by reducing to the quasi-metric
case via (a) - (e) above.

Corollary 3.5. Let (Ω, ω) be a σ-finite measure space. Suppose K :
Ω × Ω → (0,+∞] is quasi-metrically modifiable with constant κ and
modifier m, and that K is not identically ∞. Let T be the integral
operator corresponding to K and let u0 be the minimal positive solu-
tion of the equation u = Tu + m. Then the following statements are
equivalent:

(a) There exists C1 > 0 such that
∑∞

j=1Kj(x, y) ≤ C1K(x, y) for
all x, y ∈ Ω.

(b) ‖T‖ < 1 and K2(x, y) ≤ C2K(x, y) for all x, y ∈ Ω, for some
C2 > 0 (or, equivalently, supx∈Ω(Tm(x))/m(x) < +∞).

(c) supx∈Ω(u0(x)/m(x)) < +∞.

In conclusion of this section we discuss an intrinsic characterization
of the class of quasi-metrically modifiable kernels. Recall that a positive
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symmetric kernel K is quasi-metrically modifiable with modifier m > 0
if and only if d(x, y) = m(x)m(y)D(x, y), where D(x, y) = 1/K(x, y),
is a quasi-metric. Then D satisfies the Ptolemy inequality:

D(y1, y3)D(y2, y4) ≤ 4κ2 (D(y1, y2)D(y3, y4) +D(y1, y4)D(y2, y3))

for all y1, y2, y3, y4 ∈ Ω. Indeed, by Lemma 2.2, we have such an
inequality for d. Using the relation between d and D and cancelling
the term m(y1)m(y2)m(y3)m(y4) yields the Ptolemy inequality for D.

On the other hand, suppose K is a postive, symmetric kernel with
the property that for some w ∈ Ω, K(x, w) < ∞ for all x, such that
D = 1/K satisfies the Ptolemy inequality

D(x, y)D(z, w) ≤ C (D(x, z)D(y, w) +D(x, w)D(y, z))

for all x, y, z ∈ Ω. Then dividing by D(x, w)D(y, w)D(z, w) yields

D(x, y)

D(x, w)D(y, w)
≤ C

(
D(x, z)

D(x, w)D(z, w)
+

D(y, z)

D(y, w)D(z, w)

)
.

Hence m(x) = 1/D(x, w) = K(x, w) is a quasi-metric modifier for K.
More generally, if ω({x : K(x, w) = ∞}) = 0, then {x : K(x, w) = ∞}
can be deleted from Ω without significant effect, and the contrary case is
somewhat degenerate. Such observations about quasi-metric modifiers
were first noticed by Hansen and Netuka [HN] (Proposition 8.1).
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