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Abstract

We consider holomorphic maps f : U → U for a hyperbolic domain U in the complex plane, such
that the iterates of f converge to a boundary point ζ of U . By a previous result of the authors,
for such maps there exist nice absorbing domains W ⊂ U . In this paper we show that W can
be chosen to be simply connected, if f has doubly parabolic type in the sense of the Baker–
Pommerenke–Cowen classification of its lift by a universal covering (and ζ is not an isolated
boundary point of U). We also provide counterexamples for other types of the map f and give
an exact characterization of doubly parabolic type in terms of the dynamical behaviour of f .
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1. Introduction

In this paper we study iterates fn = f ◦ · · · ◦ f︸ ︷︷ ︸
n times

of a holomorphic map

f : U → U,

where U is a hyperbolic domain in the complex plane C (i.e. a domain whose complement
in C contains at least two points) and f has no fixed points, that is f(z) 6= z for z ∈ U .
In the special case when U is the unit disc D (or, equivalently, the right half-plane H), the
dynamical behaviour of f has been extensively studied, starting from the works of Denjoy,
Wolff and Valiron in the 1920’s and 1930’s (see [?, ?, ?, ?] and a more detailed explanation
in Section ??). In particular, the celebrated Denjoy–Wolff Theorem asserts that under this
assumption, the iterates of f converge almost uniformly (i.e. uniformly on compact subsets of
U) as n→∞ to a point ζ in the boundary of U . Changing the coordinates by a Möbius map,
we can conveniently assume in this case U = H, ζ =∞. Baker and Pommerenke [?, ?] and
Cowen [?] proved that f on H is semi-conjugate to a Möbius map T : Ω→ Ω by a holomorphic
map ϕ : H→ Ω, where the following three cases can occur:
(i) Ω = H, T (ω) = aω for some a > 1 (hyperbolic type)
(ii) Ω = H, T (ω) = ω ± i (simply parabolic type),

(iii) Ω = C, T (ω) = ω + 1 (doubly parabolic type),
(see Section ?? for a precise formulation). The terms ‘simply’ and ‘doubly’ are used due
to the following fact: if f has, respectively, simply or doubly parabolic type and extends
holomorphically to a neighbourhood of infinity in the Riemann sphere, then ∞ becomes a
parabolic fixed point with one or two petals, respectively (see e.g. [?, ?]). An alternative
terminology for simply and doubly parabolic types, used in [?], is ‘parabolic type II’ and
‘parabolic type I’, respectively.

For an arbitrary hyperbolic domain U ⊂ C, the problem of describing the dynamics of a
holomorphic map f : U → U without fixed points is more complicated. To this aim, one can
consider a lift g : H→ H of f by a universal covering π : H→ U . Some results on the dynamics
of f were obtained by Marden and Pommerenke [?] and Bonfert [?], who proved that if f has
no isolated boundary fixed points (i.e. points ζ in the boundary of U in C such that f extends
holomorphically to U ∪ {ζ} with f(ζ) = ζ, see Definition ??), then it is semi-conjugate to a
Möbius map on C or on a hyperbolic domain in C. In 1999, König [?] extended the Baker–
Pommerenke–Cowen result on the semi-conjugacy of f to a Möbius map for the case when
fn →∞ as n→∞ and every closed loop in U is eventually contractible in U under iteration
of f (see Theorem ??).

One can extend the classification of f into the three types (hyperbolic, simply parabolic and
doubly parabolic), defining its type by the type of its lift g (see Section ??). In [?], König

2000 Mathematics Subject Classification Primary 30D05, 37F10, 30D30. Secondary 30F20, 30F45.

Supported by Polish NCN grant decision DEC-2012/06/M/ST1/00168. The second and third authors were
partially supported by the Catalan grant 2009SGR-792, and by the Spanish grant MTM2011-26995-C02-02.



ABSORBING SETS FOR HOLOMORPHIC MAPS Page 3 of ??

characterised the three types of f (under the restriction on eventual contractibility of loops
in U) in terms of the behaviour of the sequence |fn+1(z)− fn(z)|/ dist(fn(z), ∂U) for z ∈ U ,
where ∂U denotes the boundary of U in C and

dist(fn(z), ∂U) = inf
u∈∂U

|fn(z)− u|

(see Theorem ??).
In this paper we present a characterization of maps f of doubly parabolic type in terms

of their dynamical properties in the general case, where f is an arbitrary holomorphic map
without fixed points on a hyperbolic domain U ⊂ C. More precisely, we prove the following.

Theorem A. Let U be a hyperbolic domain in C and let f : U → U be a holomorphic map
without fixed points and without isolated boundary fixed points. Then the following statements
are equivalent:

(a) f has doubly parabolic type,
(b) %U (fn+1(z), fn(z))→ 0 as n→∞ for some z ∈ U ,
(c) %U (fn+1(z), fn(z))→ 0 as n→∞ almost uniformly on U ,
(d) |fn+1(z)− fn(z)|/ dist(fn(z), ∂U)→ 0 as n→∞ for some z ∈ U ,
(e) |fn+1(z)− fn(z)|/ dist(fn(z), ∂U)→ 0 as n→∞ almost uniformly on U ,

where %U denotes the hyperbolic distance in U .

For the other two types of f we prove that if infz∈U limn→∞ %U (fn+1(z), fn(z)) > 0, then f
has hyperbolic type (see Proposition ?? and Remark ??).

Another question we consider in this paper is the existence and properties of absorbing
domains in U for f .

Definition 1.1 Absorbing domain. Let U be a domain in C and let f : U → U be a
holomorphic map. A domain W ⊂ U is called absorbing in U for f , if f(W ) ⊂W and for every
compact set K ⊂ U there exists n ≥ 0, such that fn(K) ⊂W .

The problem of the existence of suitable absorbing domains for holomorphic maps has a
long history and is related to the study of the local behaviour of a holomorphic map near a
fixed point and properties of the Fatou components in the theory of the dynamics of rational,
entire and meromorphic maps. (For basic information about the dynamics of holomorphic
maps we refer to [?, ?].) For instance, if U is a neighbourhood of an attracting fixed point
ζ of f (e.g. if U is the immediate basin of an attracting periodic point ζ of period p of a
meromorphic map f̃ , where f = f̃p|U ), then f is conformally conjugate (by a map φ) to the
map w 7→ f ′(ζ)w (if 0 < |f ′(ζ)| < 1) or w 7→ wk for some integer k > 1 (if f ′(ζ) = 0) near
w = 0, and W = φ−1(D(0, ε)) for a small ε > 0 is a simply connected absorbing domain in U
for f , such that f(W ) ⊂W and

⋂
n≥0 f

n(W ) = {ζ} (see e.g. [?]).
From now on, assume that

f : U → U

is a holomorphic map on a hyperbolic domain U ⊂ C and the iterates of f converge to a
boundary point ζ of U . Changing the coordinates by a Möbius map, we can assume ζ =∞, so

fn →∞ as n→∞

almost uniformly on U . Since the above definition of an absorbing domain is quite wide, (observe
for instance that the whole domain U is always absorbing for f), we introduce a notion of a
nice absorbing domain.
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Definition 1.2 Nice absorbing domain. An absorbing domain W in a domain U ⊂ C
for a holomorphic map f : U → U with fn →∞ is called nice, if

(a) W ⊂ U ,
(b) fn(W ) = fn(W ) ⊂ fn−1(W ) for every n ≥ 1,
(c)

⋂∞
n=1 f

n(W ) = ∅.

An example of a nice absorbing domain is an attracting petal W in a basin U of a parabolic
p-periodic point ζ =∞ for a rational map f̃ , where f = f̃p|U (see e.g. [?]).

The question of the existence of absorbing regions in hyperbolic domains U is particularly
interesting in studying the dynamics of entire and meromorphic maps with Baker domains.
Recall that a p-periodic Baker domain for a transcendental meromorphic map f̃ : C→ C is a
Fatou component U ⊂ C, such that f̃p(U) ⊂ U and f̃pn →∞ as n→∞. A 1-periodic domain
is called invariant.

Note that periodic Baker domains for entire maps are always simply connected (see [?]),
while in the transcendental meromorphic case they can be multiply connected. The dynamical
properties of Baker domains have been studied in many papers, see e.g. [?, ?, ?, ?, ?, ?, ?, ?,
?] and a survey [?].

The Baker–Pommerenke–Cowen results [?, ?, ?] imply that for a holomorphic map f : H→ H
with fn →∞ as n→∞, there exists a nice simply connected absorbing domain W in U for
f , such that the map ϕ, which semi-conjugates f to a Möbius map T : Ω→ Ω, is univalent on
W . Hence, by the use of a Riemann map, one can construct nice simply connected absorbing
domains for f : U → U with fn →∞, if U ⊂ C is simply connected.

The existence of such absorbing regions in non-simply connected hyperbolic domains U ,
in particular Baker domains for transcendental meromorphic maps, was an open question
addressed e.g. in [?, ?, ?], related to the question of the existence of so-called virtual immediate
basins for Newton’s root-finding algorithm for entire functions.

In [?], König showed that if U is an arbitrary hyperbolic domain in C and every closed
loop in U is eventually contractible in U under iteration of f , then there exists a nice simply
connected absorbing domain in U for f . In particular, this holds if U is a p-periodic Baker
domain for a transcendental meromorphic map f̃ with finitely many poles, where f = f̃p|U
(see Theorem ??).

In a recent paper [?], the authors constructed nice absorbing domains for f : U → U with
fn →∞ for an arbitrary hyperbolic domain U ⊂ C (see Theorem ??). In particular, the
construction was used to prove that the Baker domains of Newton’s method for entire functions
are always simply connected.

In this paper we consider the question of the existence of simply connected absorbing domains
W in U for f . In fact, this is equivalent to the condition that every closed loop in U is eventually
contractible in U under iteration of f (see Proposition ??). We prove the following.

Theorem B. Let U be a hyperbolic domain in C and let f : U → U be a holomorphic
map, such that fn →∞ as n→∞ and ∞ is not an isolated point of the boundary of U in the
Riemann sphere C. If f has doubly parabolic type, then there exists a nice simply connected
absorbing domain W in U for f .

Note that the assumption on the point at infinity is necessary. In fact, if ∞ is an isolated
point of the boundary of U in C, then a simply connected absorbing domain cannot exist for
any type of the map f (see Proposition ??).

We also provide counterexamples for maps which are not of doubly parabolic type.
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Theorem C. There exist transcendental meromorphic maps f : C→ C with an invariant
Baker domain U ⊂ C, such that f |U is not of doubly parabolic type and there is no simply
connected absorbing domain W in U for f . The examples are constructed in two cases:
(i) infz∈U limn→∞ %U (fn+1(z), fn(z)) > 0 (f |U has hyperbolic type),

(ii) %U (fn+1(z), fn(z)) 6→ 0 as n→∞ for z ∈ U and infz∈U limn→∞ %U (fn+1(z), fn(z)) = 0.

We also provide examples of simply connected absorbing domains W in U for f of doubly
parabolic type. In all three types of examples, the map f has the form

f(z) = z + 1 +
∑
p∈P

ap
(z − p)2

, ap ∈ C \ {0},

where P is the set of poles of f . Moreover, {∞} is a singleton component of C \ U , in particular
it is a singleton component of the Julia set of f . To our knowledge, these are the first examples of
Baker domains of this kind. A detailed description of the examples is contained in Theorem ??.

The plan of the paper is the following. In Section ?? we present notation, definitions and a
more detailed description of the classical results mentioned in the introduction, together with
some other facts used in the proofs of Theorems A, B, C. In Section ?? we characterize doubly
parabolic type (Theorem A) and in Section ?? we prove Theorem B. The examples described
in Theorem C are constructed in Section ??.

Acknowledgements. We wish to thank the Institut de Matemàtica de la Universitat de
Barcelona (IMUB) for the hospitality during the stay of two of the authors at the Universitat
de Barcelona. We are grateful to the referee for useful comments and remarks.

2. Background

For z ∈ C and A,B ⊂ C we write

dist(z,A) = inf
a∈A
|z − a|, dist(A,B) = inf

a∈A, b∈B
|a− b|.

The symbols A, ∂A denote, respectively, the closure and boundary of A in C. The Euclidean
disc of radius r centred at z ∈ C is denoted by D(z, r) and the unit disc D(0, 1) is simply written
as D.

Let U ⊂ C be a hyperbolic domain, i.e. a domain whose complement in C contains at least
two points. By the Uniformization Theorem, there exists a universal holomorphic covering π
from the right half-plane H onto U . Every holomorphic map f : U → U can be lifted by π to
a holomorphic map g : H→ H, such that the diagram

H g−−−−→ Hyπ yπ
U

f−−−−→ U

commutes. By %U (·) and %U (·, ·) we denote, respectively, the density of the hyperbolic metric
and the hyperbolic distance in U , defined by the use of the hyperbolic metric in H. The disc
of radius r centred at z with respect to the hyperbolic metric in U is denoted by DU (z, r).

Recall the classical Schwarz–Pick Lemma and Denjoy–Wolff Theorem.

Lemma 2.1 Schwarz–Pick’s Lemma [?, Theorem 4.1]. Let U, V be hyperbolic domains
in C and let f : U → V be a holomorphic map. Then

%V (f(z), f(z′)) ≤ %U (z, z′)
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for every z, z′ ∈ U . In particular, if U ⊂ V , then

%V (z, z′) ≤ %U (z, z′),

with strict inequality unless z = z′ or f lifts to a Möbius automorphism of H.

Theorem 2.2 Denjoy–Wolff Theorem [?, Theorem 3.1]. Let g : H→ H be a non-
constant holomorphic map, which is not a Möbius automorphism of H. Then there exists
a point ζ ∈ H ∪ {∞}, such that gn tends to ζ as n→∞ almost uniformly on H.

The following estimate relates the hyperbolic density %U to the quasi-hyperbolic density
1/dist(z, ∂U).

Lemma 2.3 [?, Theorem 4.3]. Let U ⊂ C be a hyperbolic domain. Then

%U (z) ≤ 2

dist(z, ∂U)
for z ∈ U (2.1)

and

%U (z) ≥ 1 + o(1)

dist(z, ∂U) log(1/ dist(z, ∂U))
as z → ∂U. (2.2)

Moreover, if U is simply connected, then

%U (z) ≥ 1

2 dist(z, ∂U)
for z ∈ U.

The above lemma implies the following standard estimate of the hyperbolic distance. We
include the proof for completeness.

Lemma 2.4. Let U be a hyperbolic domain in C and let z, z′ ∈ U . Then

|z − z′|
dist(z, ∂U)

≥ 1− e−%U (z,z′)/2.

Proof. Suppose that there exist z, z′ ∈ U such that

|z − z′|
dist(z, ∂U)

< 1− e−%U (z,z′)/2 (2.3)

and let γ be the straight line segment connecting z and z′. In particular, (??) implies that
|z − z′| < dist(z, ∂U), so γ ⊂ U and |u− z| < dist(z, ∂U) for u ∈ γ. Thus, by (??),

%U (z, z′) ≤
∫
γ

%U (u)|du| ≤ 2

∫
γ

|du|
dist(u, ∂U)

≤ 2

∫
γ

|du|
dist(z, ∂U)− |u− z|

= 2

∫ |z−z′|
0

ds

dist(z, ∂U)− s
= 2 ln

dist(z, ∂U)

dist(z, ∂U)− |z − z′|
= −2 ln

(
1− |z − z′|

dist(z, ∂U)

)
,

which contradicts (??).

The lower bounds from Lemma ?? can be improved in the presence of dynamics. The
following result was proved by Rippon in [?] (actually, it was formulated under an additional
assumption fn →∞ as n→∞, but the proof does not use this).
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Theorem 2.5 [?, Theorem 1]. Let U be a hyperbolic domain in C and let f : U → U be
a holomorphic map without fixed points and without isolated boundary fixed points. Then for
every compact set K ⊂ U there exists a constant C > 0 such that

|fn(z)− fn(z′)|
dist(fn(z), ∂U)

≤ C%U (fn(z), fn(z′))

for every z, z′ ∈ K and every n ≥ 0.

The following result proved by Bonfert in [?] describes a relationship between the dynamical
behaviour of f and its lift g.

Theorem 2.6 [?, Theorem 1.1]. Let U be a hyperbolic domain in C and let f : U → U be
a holomorphic map without fixed points. Let g : H→ H be a lift of f by a universal covering
map π : H→ U . Then

%U (fn+1(z), fn(z))→ 0 ⇐⇒ %H(gn+1(1), gn(1))→ 0

as n→∞ for any z ∈ U .

An obvious consequence of this theorem is that the left hand side of the equivalence is either
satisfied for every z ∈ U or for none.

The next theorem summarizes the results of Baker–Pommerenke–Cowen [?, ?, ?] on the
dynamics of holomorphic maps in H. We use the notation from [?]. (The equivalence of the
Baker–Pommerenke and Cowen approaches were shown by König in [?].)

Theorem 2.7 Cowen’s Theorem [?, Theorem 3.2], see also [?, Lemma 1]. Let g : H→ H
be a holomorphic map such that gn →∞ as n→∞. Then there exist a simply connected
domain V ⊂ H, a domain Ω equal to H or C, a holomorphic map ϕ : H→ Ω, and a Möbius
transformation T mapping Ω onto itself, such that:
(a) V is absorbing in H for g,
(b) ϕ(V ) is absorbing in Ω for T ,
(c) ϕ ◦ g = T ◦ ϕ on H,
(d) ϕ is univalent on V .
Moreover, ϕ and T depend only on g. In fact (up to a conjugation of T by a Möbius
transformation preserving Ω), one of the following cases holds:
(i) Ω = H, T (ω) = aω for some a > 1 (hyperbolic type),

(ii) Ω = H, T (ω) = ω ± i (simply parabolic type),
(iii) Ω = C, T (ω) = ω + 1 (doubly parabolic type).

Remark 2.8. An equivalent description of the three cases can be given by taking
(i) Ω = {z ∈ C : 0 < Im(z) < b} for some b > 0 (hyperbolic type),

(ii) Ω = {z ∈ C : Im(z) > 0} (simply parabolic type),
(iii) Ω = C (doubly parabolic type).
and T (ω) = ω + 1 in all three cases.

The following theorem gathers König’s results from [?].

Theorem 2.9 [?]. Let U be a hyperbolic domain in C and let f : U → U be a holomorphic
map such that fn →∞ as n→∞. Suppose that for every closed curve γ ⊂ U there exists n > 0
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such that fn(γ) is contractible in U . Then there exist a simply connected domain W ⊂ U ,
a domain Ω and a transformation T as in Cowen’s Theorem ??, and a holomorphic map
ψ : U → Ω, such that:

(a) W is absorbing in U for f ,
(b) ψ(W ) is absorbing in Ω for T ,
(c) ψ ◦ f = T ◦ ψ on U ,
(d) ψ is univalent on W .

Moreover,

(i) T has hyperbolic type if and only if

inf
z∈U

inf
n≥0

|fn+1(z)− fn(z)|
dist(fn(z), ∂U)

> 0,

(ii) T has simply parabolic type if and only if

lim
n→∞

|fn+1(z)− fn(z)|
dist(fn(z), ∂U)

> 0 for every z ∈ U and inf
z∈U

lim
n→∞

|fn+1(z)− fn(z)|
dist(fn(z), ∂U)

= 0,

(iii) T has doubly parabolic type if and only if

lim
n→∞

|fn+1(z)− fn(z)|
dist(fn(z), ∂U)

= 0 for every z ∈ U.

Furthermore, if f̃ : C→ C is a meromorphic map with finitely many poles, and U is a
periodic Baker domain of period p, then the above assumptions are satisfied for f = f̃p|U ,
and consequently, there exists a simply connected domain W in U with the properties (a)–(d)
for f = f̃p.

In fact, if under the assumptions of Theorem ??, we take V and ϕ from Cowen’s Theorem ??
for a lift g of f by a universal covering π : H→ U , then π is univalent in V and we can set
W = π(V ) and ψ = ϕ ◦ π−1, which is well defined in U .

Remark 2.10. It follows from results proved in [?] that under the conditions of Cowen’s
Theorem ?? or Theorem ??, one can choose the absorbing domain W to be nice.

Definition 2.11 Isolated boundary fixed point. Let U be a hyperbolic domain in C
and ζ an isolated point of the boundary of U in C. Then there exists a neighbourhood V ⊂ C
of ζ such that V \ {ζ} ⊂ U . Let f : U → U be a holomorphic map. Since f(U) ⊂ U and U is
hyperbolic, f on V \ {ζ} omits at least three values in C, so by Picard’s Theorem, f extends
holomorphically to V . If f(ζ) = ζ, we say that ζ is an isolated boundary fixed point of f .

The following theorem was proved by Bonfert in [?].

Theorem 2.12 [?, Theorem 1.4]. Let U be a hyperbolic domain in C and let f : U →
U be a holomorphic map without fixed points and without isolated boundary fixed points.
Then there exist a domain Υ ⊂ C, a non-constant holomorphic map Ψ : U → Υ and a Möbius
transformation S mapping Υ onto itself, such that

Ψ ◦ f = S ◦Ψ.

Moreover, if %U (fn+1(z), fn(z))→ 0 for z ∈ U , then Υ = C, S(ω) = ω + 1. Otherwise, the
domain Υ is hyperbolic.
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The existence of nice absorbing regions in arbitrary hyperbolic domains was proved by the
authors in [?].

Theorem 2.13 [?, Theorem A]. Let U be a hyperbolic domain in C and let f : U → U be
a holomorphic map, such that fn →∞ as n→∞. Then there exists a nice absorbing domain
W in U for f , such that f is locally univalent on W . Moreover, for every z ∈ U and every
sequence of positive numbers rn, n ≥ 0 with limn→∞ rn =∞, the domain W can be chosen
such that

W ⊂
∞⋃
n=0

DU (fn(z), rn).

Remark 2.14. If f has parabolic type, then W can be chosen such that W ⊂⋃∞
n=0DU (fn(z), bn) for a sequence bn with limn→∞ bn = 0 and bn < b for an arbitrary given

b > 0, see [?, Proposition 3.1].

3. Characterization of doubly parabolic type: Proof of Theorem A

Let U be a hyperbolic domain in C and let f : U → U be a holomorphic map without fixed
points. Consider a universal covering π : H→ U and a lift g : H→ H of the map f by π. Then g
has no fixed points, so by the Denjoy–Wolff Theorem ??, gn → ζ for a point ζ in the boundary
of H in C. Conjugating g by a Möbius map, we can assume ζ =∞. Consider the map T : Ω→ Ω
from Cowen’s Theorem ?? for the map g. By properties of a universal covering, for different
choices of π and g, the suitable maps T are conformally conjugate, so in fact the type of T
does not depend on the choice of π and g. Hence, we can state the following definition.

Definition 3.1 Type of f . Let U be a hyperbolic domain in C, f : U → U a holomorphic
map without fixed points and g : H→ H a lift of f by a universal covering of U . The map f
has hyperbolic, simply parabolic or doubly parabolic type if the same holds for its lift g.

Theorem A. Let U be a hyperbolic domain in C and let f : U → U be a holomorphic map
without fixed points and without isolated boundary fixed points. Then the following statements
are equivalent:

(a) f has doubly parabolic type,
(b) %U (fn+1(z), fn(z))→ 0 as n→∞ for some z ∈ U ,
(c) %U (fn+1(z), fn(z))→ 0 as n→∞ almost uniformly on U ,
(d) |fn+1(z)− fn(z)|/ dist(fn(z), ∂U)→ 0 as n→∞ for some z ∈ U ,
(e) |fn+1(z)− fn(z)|/ dist(fn(z), ∂U)→ 0 as n→∞ almost uniformly on U .

Proof. First we prove (a) ⇒ (b). Since f has doubly parabolic type, we have Ω = C, T (ω) =
ω + 1 in Cowen’s Theorem ?? for a lifted map g : H→ H. We claim that for every ω ∈ C there
exists m ∈ N and a sequence dn > 0 with dn →∞ as n→∞, such that

D(Tn(ω), dn) ⊂ ϕ(V ) for every n ≥ m, (3.1)

for ϕ and V from Cowen’s Theorem ?? for g. Indeed, if (??) does not hold, then D(Tn(ω), d) 6⊂
ϕ(V ) for some d > 0 and infinitely many n, which is impossible, since by the assertion (b) of
Cowen’s Theorem ?? for K = D(ω, d), we have D(Tn(ω), d) = Tn(K) ⊂ ϕ(V ) for sufficiently
large n.



Page 10 of ?? K. BARAŃSKI, N. FAGELLA, X. JARQUE AND B. KARPIŃSKA

Since |Tn+1(ω)− Tn(ω)| = |ω + n+ 1− (ω + n)| = 1 and dn →∞, Lemma ?? implies

%D(Tn(ω),dn)(T
n+1(ω), Tn(ω))→ 0,

as n→∞, so by (??) and the Schwarz–Pick Lemma ??,

%ϕ(V )(T
n+1(ω), Tn(ω)) ≤ %D(Tn(ω),dn)(T

n+1(ω), Tn(ω))→ 0.

By Cowen’s Theorem ??, ϕ is univalent on V , so for ω ∈ ϕ(V ) and z = π((ϕ|V )−1(ω)), by the
Schwarz–Pick Lemma ?? applied to the map π ◦ (ϕ|V )−1, we have

%U (fn+1(z), fn(z)) ≤ %ϕ(V )(T
n+1(ω), Tn(ω))→ 0,

which shows (b).
Now we show (b) ⇒ (a). By Theorem ??, we have %H(gn+1(w), gn(w))→ 0 for some w ∈ H.

Suppose that g is not of doubly parabolic type. Then Ω = H in Cowen’s Theorem ?? for the
map g, so by the Schwarz–Pick Lemma ?? applied to the map ϕ, we have

%H(Tn+1(ϕ(w)), Tn(ϕ(w))) = %H(ϕ(gn+1(w)), ϕ(gn(w))) ≤ %H(gn+1(w), gn(w))→ 0,

which is not possible, since for T (ω) = aω or T (ω) = ω ± i we have

%H(Tn+1(ϕ(w)), Tn(ϕ(w))) = %H(T (ϕ(w)), ϕ(w)) > 0.

Hence, Ω = C, T (ω) = ω + 1 and g has doubly parabolic type.
The implication (c) ⇒ (b) is trivial. To show (b) ⇒ (c), note first that by Theorem ??, the

pointwise convergence holds for every z ∈ U . Take a compact set K ⊂ U and suppose that the
convergence is not uniform on K. This means that there exist sequences zj ∈ K, nj →∞ as
j →∞, and a constant c > 0, such that

%U (fnj+1(zj), f
nj (zj)) > c.

Passing to a subsequence, we can assume zj → z for some z ∈ K. Then %U (zj , z)→ 0, so by
the Schwarz–Pick Lemma ??, for every n ≥ 0

%U (fn(zj), f
n(z)) ≤ %U (zj , z)→ 0

as j →∞. Hence, since %U (fnj+1(z), fnj (z))→ 0 by the pointwise convergence, we have

0 < c < %U (fnj+1(zj), f
nj (zj))

≤ %U (fnj+1(zj), f
nj+1(z)) + %U (fnj+1(z), fnj (z)) + %U (fnj (z), fnj (zj))

≤ 2%U (zj , z) + %U (fnj+1(z), fnj (z))→ 0,

which is a contradiction. This ends the proof of (b) ⇔ (c).
The implication (c) ⇒ (e) follows from Theorem ?? for z′ = f(z) and the implication

(e) ⇒ (d) is trivial. To show (d) ⇒ (b), we use Lemma ?? for the points fn(z), fn+1(z).
In this way we have proved the equivalences (b) ⇔ (c) ⇔ (d) ⇔ (e).

By Theorem A and Theorem ??, we immediately obtain the following.

Corollary 3.2. Let U be a hyperbolic domain in C and let f : U → U be a holomorphic
map without fixed points and without isolated boundary fixed points. Then f has doubly
parabolic type if and only if we have Υ = C, S(ω) = ω + 1 in Theorem ??.

The following proposition gives a sufficient condition for a map f to be of hyperbolic type.
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Proposition 3.3. Let U be a hyperbolic domain in C and let f : U → U be a holomorphic
map without fixed points and without isolated boundary fixed points. If

inf
z∈U

lim
n→∞

%U (fn+1(z), fn(z)) > 0,

then f has hyperbolic type.

Remark 3.4. By the Schwarz–Pick Lemma ??, the sequence %U (fn+1(z), fn(z)) for z ∈ U
is decreasing, so limn→∞ %U (fn+1(z), fn(z)) always exists and

inf
z∈U

lim
n→∞

%U (fn+1(z), fn(z)) > 0 ⇐⇒ inf
z∈U

%U (f(z), z) > 0.

Proof of Proposition ??. In view of Theorem A, to prove the proposition it is sufficient to
show that if f has simply parabolic type, then

inf
z∈U

lim
n→∞

%U (fn+1(z), fn(z)) = 0.

We proceed as in the proof of the implication (a) ⇒ (b) in Theorem A. Let g : H→ H be a
lift of f by a universal covering π : H→ U . Since f has simply parabolic type, we have Ω = H,
T (ω) = ω ± i in Cowen’s Theorem ?? for the map g.

Take a small ε > 0 and ω ∈ H with Re(ω) = 1/ε. Let

Dn = D
(
Tn(ω),

1

2ε

)
for n ≥ 0. Then Dn = Tn(D0) ⊂ H, so Dn ⊂ ϕ(V ) for large n (depending on ε, ω), by the
assertion (b) of Cowen’s Theorem ??. We have |Tn+1(ω)− Tn(ω)| = 1 and dist(Tn(ω), ∂Dn) =
1/(2ε), so Lemma ?? implies

%Dn
(Tn+1(ω), Tn(ω)) ≤ 2 ln

1

1− 2ε
≤ 4ε

1− 2ε
< 5ε

for sufficiently small ε. Since ϕ is univalent on V , by the Schwarz–Pick Lemma ?? for the map
π ◦ (ϕ|V )−1, we have

%U (fn+1(z), fn(z)) ≤ %ϕ(V )(T
n+1(ω), Tn(ω)) ≤ %Dn

(Tn+1(ω), Tn(ω)) < 5ε

for large n, where z = π((ϕ|V )−1(ω)). Hence, for any arbitrarily small ε > 0, there exists z ∈ U
such that %U (fn+1(z), fn(z)) < 5ε for n large enough. It follows that

inf
z∈U

lim
n→∞

%U (fn+1(z), fn(z)) = 0.

Remark 3.5. If the images under fn of any closed curve in U are eventually contractible
in U (e.g. when U is a Baker domain of a meromorphic map with finitely many poles), then
by Theorem ??, one obtains a characterization of all three types of f in terms of its dynamical
behaviour. In the general case, apart from the characterization of doubly parabolic type in
Theorem A, Proposition ?? gives a sufficient condition for f to be of hyperbolic type. It would
be interesting to determine whether the condition is necessary, and to obtain a characterization
of all three types of f in terms of its dynamical behaviour in the general case.

4. Simply connected absorbing domains: Proof of Theorem B

With the goal of proving Theorem B, we present a condition equivalent to the existence of
a simply connected absorbing domain W in U for f .
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Proposition 4.1. Let U be a hyperbolic domain in C and let f : U → U be a holomorphic
map, such that fn →∞ as n→∞. Then the following statements are equivalent:
(a) There exists a simply connected absorbing domain W in U for f .
(b) There exists a nice simply connected absorbing domain W in U for f .
(c) For every closed curve γ ⊂ U there exists n > 0 such that fn(γ) is contractible in U .

Proof. The implication (a) ⇒ (c) follows by the absorbing property of W , the implication
(c) ⇒ (b) is due to Theorem ?? and Remark ??, and the implication (b) ⇒ (a) is trivial.

Definition 4.2. For a compact set X ⊂ C we denote by ext(X) the connected component
of C \X containing infinity. We set K(X) = C \ ext(X).

Before proving Theorem B, we show that if ∞ is an isolated point of the boundary of U ,
then a simply connected absorbing domain W does not exist.

Proposition 4.3. Let U be a hyperbolic domain in C and let f : U → U be a holomorphic
map, such that fn →∞ as n→∞. If ∞ is an isolated point of the boundary of U in C, then
there is no simply connected absorbing domain W in U for f .

Proof. By assumption, U is a punctured neighbourhood of ∞ in C. Since U is hyperbolic
and f(U) ⊂ U , the set f(U) omits at least three points in C, so by the Picard Theorem,
the map f extends holomorphically to U ∪ {∞}. Let V = {z ∈ C : |z| > R} ∪ {∞} for a large
R > 0. Since fn →∞ uniformly on the boundary of V in C, by the openness of fn, the closure
of fn(V ) in C is contained in V for every sufficiently large n. This easily implies that ∞ is an
attracting fixed point of the extended map f . Hence, f in a neighbourhood of∞ is conformally
conjugate (by a map ψ) to the map z 7→ λz for some λ ∈ C, 0 < |λ| < 1 or z 7→ zk for some
integer k ≥ 2 in a neighbourhood of z = 0. Let γ = ψ−1(∂D(0, r)) for a small r > 0. Then for
every n > 0 we have fn(γ) ⊂ ext(γ) and K(fn(γ)) ⊃ K(γ), so fn(γ) is not contractible in U
and we can use Proposition ?? to end the proof.

Now we prove the main result of this section.

Theorem B. Let U be a hyperbolic domain in C and let f : U → U be a holomorphic
map, such that fn →∞ as n→∞ and ∞ is not an isolated point of the boundary of U in C.
If f has doubly parabolic type, then there exists a nice simply connected absorbing domain W
in U for f .

Proof. Note first that f has no fixed points in U . Moreover, we will show that f has no
isolated boundary fixed points. Indeed, suppose that ζ0 is an isolated point of the boundary
of U in C and f extends holomorphically to U ∪ {ζ0} with f(ζ0) = ζ0. By assumption, ζ0 6=
∞. Take a Jordan curve γ0 ⊂ U surrounding ζ0 in a small neighbourhood of ζ0, such that
D \ {ζ0} ⊂ U , where D is the component of C \ γ0 containing ζ0. Since fn →∞ uniformly on
γ0 and ζ0 = fn(ζ0) ∈ fn(D), by the Maximum Principle we obtain

C \ {ζ0} =

∞⋃
n=0

fn(D) \ {ζ0} ⊂
∞⋃
n=0

fn(D \ {ζ0}) ⊂ U,

so in fact U = C \ {ζ0}, which is impossible since U is hyperbolic. Hence, f has no isolated
boundary fixed points.
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Take a closed curve γ ⊂ U . We will show that there exists n > 0 such that fn(γ) is
contractible in U . (By Proposition ??, this will prove the existence of a nice simply connected
absorbing domain W in U for f .) Suppose this is not true. By Theorem ?? for K = γ ∪ f(γ),
there exists a constant C > 0 such that for every z ∈ γ and every n ≥ 0,

|fn+1(z)− fn(z)|
dist(fn(z), ∂U)

≤ C%U (fn+1(z), fn(z)),

so by the assertion (c) of Theorem A, there exists n0 ≥ 0 such that for every z ∈ γ and every
n ≥ n0,

|fn+1(z)− fn(z)| < 1

2
dist(fn(z), ∂U). (4.1)

Take an arbitrary point v ∈ C \ U . By (??), for every z ∈ γ and every n ≥ n0 we have

|fn+1(z)− fn(z)| < 1

2
|fn(z)− v|.

This implies that for n ≥ n0, the point fn+1(z)− v lies in a disc D of center fn(z)− v and
radius 1

2 |f
n(z)− v|. Clearly 0 /∈ D and a simple calculation shows that D is included in a sector

of vertex 0 an angle of measure π/3, symmetric with respect to the straight line containing 0
and fn(z)− v. Hence, there exists a branch Arg of the argument function in D such that in a
neighbourhood of z we have

|Arg(fn+1(z)− v)−Arg(fn(z)− v)| < π

6
.

Taking the analytic continuation of this branch while z goes around γ, we see that the winding
number of fn(γ) around v is the same as the winding number of fn+1(γ) around v. In particular,
v is in a bounded component of C \ fn(γ) if and only if v is in a bounded component of
C \ fn+1(γ). Using this inductively, we show that for every v ∈ C \ U and every m ≥ n ≥ n0,

v ∈ K(fn(γ)) if and only if v ∈ K(fm(γ)). (4.2)

Take n ≥ n0. By assumption, fn(γ) is not contractible in U , so there exists a point v0 ∈
K(fn(γ)) \ U . Since fk →∞ as k →∞ uniformly on γ, there exists m > n such that fm(γ) ∩
K(fn(γ)) = ∅. We cannot have K(fm(γ)) ⊂ ext(fn(γ)), because then we would have v0 /∈
K(fm(γ)), which contradicts (??) for v = v0. Hence, K(fn(γ)) ⊂ K(fm(γ)), so

K(fn(γ)) \ U ⊂ K(fm(γ)) \ U.

On the other hand,

K(fn(γ)) \ U ⊃ K(fm(γ)) \ U,

because otherwise there would exists a point v1 ∈ C \ U , such that v1 ∈ K(fm(γ)) \K(fn(γ)),
which contradicts (??) for v = v1.

We conclude that for every n ≥ n0 there exists m > n, such that

K(fn(γ)) ⊂ K(fm(γ)) and K(fn(γ)) \ U = K(fm(γ)) \ U.

Using this inductively, we construct a strictly increasing sequence nj , j ≥ 0, such that

K(fnj (γ)) ⊂ K(fnj+1(γ)) and K(fnj (γ)) \ U = K(fn0(γ)) \ U (4.3)

for every j. Since fnj →∞ as j →∞ uniformly on γ, (??) implies that
∞⋃
j=0

K(fnj (γ)) = C

and the set

C \ U =

∞⋃
j=0

K(fnj (γ)) \ U = K(fn0(γ)) \ U
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is a compact subset of C. Hence, U contains a punctured neighbourhood of ∞ in C, so ∞ is
an isolated point of the boundary of U in C, which is a contradiction.

5. Examples

Throughout this section, let

f(z) = z + 1 +
∑
p∈P

ap
(z − p)2

, ap ∈ C \ {0}, (5.1)

where P ⊂ C has one of the following three forms:

(i) P = iZ = {im : m ∈ Z},
(ii) P = Z or Z+,

(iii) P = Z + iZ = {j + im : j,m ∈ Z}.
It is obvious that for sufficiently small |ap|, the map (??) is transcendental meromorphic, with
the set of poles equal to P.

Let

P̃ =

∞⋃
j=0

(P − j) = {p− j : p ∈ P, j = 0, 1, . . .}.

(In the case P = Z or P = Z + iZ we have P̃ = P.) The assertions of Theorem C and other
results mentioned in Section ?? are gathered in the following theorem.

Theorem 5.1. For every sufficiently small δ > 0, there exists a map f of the form (??) with
an invariant Baker domain U , such that U ⊃ C \

⋃
p∈P̃ D(p, δ). The cases (i)–(iii) regarding the

form of the set P can be characterised as follows.

– In case (i) we have

%U (fn+1(z), fn(z))→ 0 as n→∞ for z ∈ U

and f |U has doubly parabolic type, so there exists a simply connected absorbing domain
W in U for f .

– In case (ii) we have

%U (fn+1(z), fn(z)) 6→ 0 as n→∞ for z ∈ U,

inf
z∈U

lim
n→∞

%U (fn+1(z), fn(z)) = 0,

and there does not exist a simply connected absorbing domain W in U for f .
– In case (iii) we have

inf
z∈U

lim
n→∞

%U (fn+1(z), fn(z)) > 0,

f |U has hyperbolic type, and there does not exist a simply connected absorbing domain
W in U for f .

Moreover, in all three cases, {∞} is a singleton component of C \ U , in particular it is a
singleton component of the Julia set of f .

Let

e(z) =
∑
p∈P

ap
(z − p)2

= f(z)− (z + 1)
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and notice for further purposes that for all n ≥ 1,

fn(z)− (z + n) =

n−1∑
k=0

e(fk(z)). (5.2)

To prove Theorem ??, we will use the following two lemmas.

Lemma 5.2. For every sufficiently small ε > 0, there exist non-zero complex numbers ap,
p ∈ P, such that for every n ≥ 0 and z0, . . . , zn ∈ C, if dist(z0, P̃) ≥ ε and |zk − z0 − k| < ε/2
for k = 0, . . . , n, then

n∑
k=0

|e(zk)| < ε

2
.

Proof. Take a small ε > 0 and points z0, . . . , zn fulfilling the condition stated in the lemma.
Then zk = z0 + k + ζk, where ζk ∈ C, |ζk| < ε/2 < 1.

First, consider case (iii). Then, writing P 3 p = j + im for j,m ∈ Z, we have

n∑
k=0

|e(zk)| ≤
n∑
k=0

∑
j∈Z

∑
m∈Z

|aj+im|
|zk − j − im|2

. (5.3)

Note that

|zk − j − im| = |z0 + k + ζk − j − im| ≥ |z0 + k − j − im| − |ζk| ≥ ε−
ε

2
=
ε

2
, (5.4)

since |z0 − j + k − im| ≥ dist(z0, P̃) ≥ ε. Let

k0 = [Re(z0)], m0 = [Im(z0)].

We will show that

|zk − j − im| ≥
ε

8
(|k + k0 − j|+ |m−m0|). (5.5)

To prove (??), we note that if |k + k0 − j|+ |m−m0| ≤ 4, then by (??),

|zk − j − im| ≥
ε

2
≥ ε

8
(|k + k0 − j|+ |m−m0|),

which gives (??). Otherwise, |k + k0 − j|+ |m−m0| ≥ 5, so

|zk − j − im| = |z0 + k + ζk − j − im|

≥
√

2

2
(|Re(z0 + k + ζk − j − im)|+ |Im(z0 + k + ζk − j − im)|)

=

√
2

2
(|Re(z0) + k + Re(ζk)− j|+ |Im(z0) + Im(ζk)−m)|)

≥
√

2

2
(|k + k0 − j|+ |m−m0| − |Re(z0)− k0|

− |Im(z0)−m0| − |Re(ζk)| − |Im(ζk)|)

≥
√

2

2
(|k + k0 − j|+ |m−m0| − 4)

≥
√

2

10
(|k + k0 − j|+ |m−m0|),
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which shows (??) for sufficiently small ε. Using (??) together with (??) for k = j − k0 and (??)
for k 6= j − k0, we obtain

n∑
k=0

|e(zk)| <
∑
j∈Z

∑
m∈Z
|aj+im|

 4

ε2
+

64

ε2

∑
k∈Z\{j−k0}

1

(|k + k0 − j|+ |m−m0|)2


≤
∑
j∈Z

∑
m∈Z
|aj+im|

 4

ε2
+

64

ε2

∑
k∈Z\{0}

1

k2

 <
ε

2

if |aj+im| are chosen to be sufficiently small.
The remaining cases (i) and (ii) are proved in the same way as case (iii) by setting,

respectively, j = 0 and m = 0.

For a small ε > 0 let

V = C \
⋃
p∈P̃

D(p, ε), Ṽ = C \
⋃
p∈P̃

D(p, 2ε).

Lemma 5.3. For every ε > 0, there exist non-zero complex numbers ap, p ∈ P, such that
for every z ∈ Ṽ and every n ≥ 0,

|fn(z)− z − n| < ε

2
.

In particular, this implies fn(z) ∈ V for every n ≥ 0.

Proof. Take ε > 0. Obviously, we can assume that it is small enough to apply Lemma ??.
Hence, we can take numbers ap, p ∈ P satisfying the conditions of Lemma ?? for this value
of ε.

Let z ∈ Ṽ . To prove the lemma we show, by induction on n, the following claim:

dist(fn(z), Ṽ ) ≤
n−1∑
k=0

|e(fk(z))| and |fn(z)− z − n| < ε

2
(5.6)

(with the convention
∑−1
k=0 = 0 for n = 0). For n = 0 the claim (??) is trivial. Suppose it holds

for 0, . . . , n. By the definition of e(z),

fn+1(z) = fn(z) + 1 + e(fn(z)),

so by induction,

dist(fn+1(z), Ṽ ) ≤ dist(fn(z) + e(fn(z)), Ṽ )

≤ dist(fn(z), Ṽ ) + |e(fn(z))|

≤
n∑
k=0

|e(fk(z))|

and |fk(z)− z − k| < ε/2 for k = 0, . . . , n. Hence, the points zk = fk(z), k = 0, . . . , n fulfil the
assumptions of Lemma ?? and hence

n∑
k=0

|e(fk(z))| < ε

2
.
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This together with (??) implies

|fn+1(z)− z − n− 1| =

∣∣∣∣∣
n∑
k=0

e(fk(z))

∣∣∣∣∣ ≤
n∑
k=0

|e(fk(z))| < ε

2
,

which proves the claim (??) for n+ 1, completing the induction.
Finally, note that the second part of (??) implies fn(z) ∈ V , since z + n ∈ Ṽ and dist(Ṽ ,C \

V ) = ε, by the definitions of V and Ṽ . This ends the proof of the lemma.

Proof of Theorem ??. Take a small 0 < δ < 1/4. Set ε = δ/2 and consider a map of the
form (??) for the numbers ap, p ∈ P satisfying the conditions of Lemma ?? for this value of ε.
In particular, Lemma ?? implies that fn →∞ as n→∞ almost uniformly on Ṽ . Since Ṽ is
connected, it follows that C \

⋃
p∈P̃ D(p, δ) = Ṽ is contained in an invariant Baker domain U

of f . Note that U ∩ P = ∅ since the poles are contained in the Julia set of f .
Now we characterise cases (i)–(iii). In case (i), we have U ⊃ Ṽ ⊃ {z ∈ C : Re(z) ≥ 2ε}, in

particular 1 ∈ Ṽ ⊂ U . By Lemma ??,

|fn+1(1)− fn(1)| < 1 + ε < 2

and

dist(fn(1), ∂U) ≥ dist(fn(1), ∂Ṽ ) > n+ 1− 5

2
ε > n

for n ≥ 0. Hence, by Lemma ??,

%U (fn+1(1), fn(1)) ≤ 2 ln
1

1− |fn+1(1)− fn(1)|/ dist(fn(1), ∂U)
< 2 ln

1

1− 2/n
→ 0

as n→∞. Therefore, Theorem A implies that %U (fn+1(z), fn(z))→ 0 as n→∞ for z ∈ U
and f |U has doubly parabolic type. It is easy to check that W = {z ∈ C : Re(z) > 1} is a nice
simply connected absorbing domain in U for f .

Now consider case (ii). Then U ⊃ Ṽ ⊃ {z ∈ C : |Im(z)| ≥ 2ε}, in particular ik ∈ Ṽ ⊂ U for
every positive integer k. Hence, by Lemma ??,

1

2
< 1− ε < |fn+1(ik)− fn(ik)| < 1 + ε < 2

and
k

2
< k − 5

2
ε < dist(fn(ik), ∂Ṽ ) ≤ dist(fn(ik), ∂U) < k +

ε

2
< 2k

for n ≥ 0. Hence, by Theorem ?? for K = {ik, f(ik)}, we have

%U (fn+1(ik), fn(ik)) ≥ 1

C

|fn+1(ik)− fn(ik)|
dist(fn(ik), ∂U)

>
1

4Ck
> 0,

so Theorem A implies %U (fn+1(z), fn(z)) 6→ 0 as n→∞ for z ∈ U . Moreover, by Lemma ??,

%U (fn+1(ik), fn(ik)) ≤ 2 ln
1

1− |fn+1(ik)− fn(ik)|/dist(fn(ik), ∂U)
< 2 ln

1

1− 4/k
→ 0

as k →∞, which shows infz∈U limn→∞ %U (fn+1(z), fn(z)) = 0 (cf. Remark ??).
Now consider case (iii). We will show that in this case we have infz∈U %U (f(z), z) > 0. First,

take z ∈ Ṽ . We can choose p ∈ P such that

|z − p| ≤
√

2

2
. (5.7)

Lemma ?? implies that

|f(z)− z| > 1− ε

2
>

1

2
. (5.8)
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Note that p, p+ 1 /∈ U , so setting w = z − p, w′ = f(z)− p and using the Schwarz–Pick
Lemma ??, we obtain

%U (f(z), z) ≥ %C\{p,p+1}(f(z), z) = %C\{0,1}(w,w
′).

Let γ be the hyperbolic geodesic connecting w and w′ in C \ {0, 1}. By (??) and (??), we have
w ∈ D(0,

√
2/2) and |w − w′| > 1/2, so there exists a curve γ̃ ⊂ γ of Euclidean length 1/2,

such that γ̃ ⊂ D(0, (1 +
√

2)/2). By (??), there exists c > 0 such that %C\{0,1}(u) > c for every

u ∈ D(0, (1 +
√

2)/2) \ {0, 1}. Hence,

%C\{0,1}(w,w
′) =

∫
γ

%C\{0,1}(u)du ≥
∫
γ̃

%C\{0,1}(u)du >
c

2
,

which shows

inf
z∈Ṽ

%U (f(z), z) ≥ c

2
. (5.9)

Now take z ∈ U \ Ṽ . If there exists n > 0 such that fn(z) ∈ Ṽ , then by the Schwarz–Pick
Lemma ?? and (??), we have %U (f(z), z) ≥ %U (fn+1(z), fn(z)) ≥ c/2. Hence, we can assume
that fn(z) ∈ U \ Ṽ ⊂

⋃
p∈Z+iZ D(p, 2ε) for every n ≥ 0. Since fn(z)→∞ as n→∞, there

exists k ≥ 0 and p, p′ ∈ Z + iZ, p 6= p′, such that |fk(z)− p| < 2ε, |fk+1(z)− p′| < 2ε, which
implies |fk+1(z)− fk(z)| > 1− 4ε > 1/2. Hence, (??) and (??) are satisfied for fk(z) instead
of z. Repeating the previous arguments, we show %U (fk+1(z), fk(z)) ≥ c/2, so by the Schwarz–
Pick Lemma ??,

%U (f(z), z) ≥ %U (fk+1(z), fk(z)) ≥ c/2,

which implies

inf
z∈U

%U (f(z), z) ≥ c

2
.

By Remark ?? and Proposition ??, f |U has hyperbolic type.
Finally, note that in all three cases (i)–(iii), the boundary of the square

Qk = {z ∈ C : |Re(z)| ≤ k + 1/2, |Im(z)| ≤ k + 1/2}

is contained in Ṽ ⊂ U for every integer k ≥ 0, which shows that {∞} is a singleton component
of C \ U . Moreover, in cases (ii) and (iii), if γ = ∂Q0, then fn(γ) is not contractible in U . To
see this, notice that by Lemma ??, the points of fn(γ) are ε/2-close to the suitable points of
the boundary of the square Q0 + n, which winds once around the pole n of f . Similarly as in
the proof of Theorem B, this implies that fn(γ) winds once around the pole n, so it is not
contractible in U . By Proposition ??, we conclude that in cases (ii) and (iii) there is no simply
connected absorbing domain W in U for f .
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