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HARMONIC MANIFOLDS AND THE VOLUME OF TUBES ABOUT CURVES

BALÁZS CSIKÓS AND MÁRTON HORVÁTH

Abstract. H. Hotelling proved that in the n-dimensional Euclidean or spherical space, the volume of a tube
of small radius about a curve depends only on the length of the curve and the radius. A. Gray and L. Vanhecke
extended Hotelling’s theorem to rank one symmetric spaces computing the volumes of the tubes explicitly
in these spaces. In the present paper, we generalize these results by showing that every harmonic manifold
has the above tube property. We compute the volume of tubes in the Damek–Ricci spaces. We show that
if a Riemannian manifold has the tube property, then it is a 2-stein D’Atri space. We also prove that a
symmetric space has the tube property if and only if it is harmonic. Our results answer some questions posed
by L. Vanhecke, T. J. Willmore, and G. Thorbergsson.

1. Introduction

In 1939 H. Hotelling [1] showed that in the n-dimensional Euclidean or spherical space, the volume of a tube
of small radius about a curve depends only on the length of the curve and the radius. Hotelling’s result
was generalized in different directions. H. Weyl [2] proved that the volume of a tube of small radius about
a submanifold of a Euclidean or spherical space depends only on intrinsic invariants of the submanifold and
the radius. A. Gray and L. Vanhecke [3] extended Hotelling’s theorem to rank one symmetric spaces.

In the present paper, we are interested in the widest class of connected Riemannian manifolds to which
Hotelling’s theorem can be extended. The problem of finding this class was raised during private discussions
of the first author with G. Thorbergsson at the University of Cologne in 2013. The question is motivated by
a new characterization of harmonic manifolds given by the authors [4]. Harmonic manifolds were introduced
by E. T. Copson and H. S. Ruse [5] as Riemannian manifolds having a non-constant radially symmetric
harmonic function in the neighborhood of any point. They proved that this condition holds if and only if
small geodesic spheres have constant mean curvature. By the results of the paper [4], connected harmonic
manifolds are characterized also by the property that the volume of the intersection of two geodesic balls
of small equal radius depends only on the radius and the distance between the centers of the balls. As we
shall see in Section 3, this characterization implies that every connected harmonic manifold has Hotelling’s
tube property. It seems to be a reasonable conjecture that the converse is also true, that is, Hotelling’s tube
property is true only in harmonic manifolds. A weaker form of this conjecture, saying that a symmetric
space has the tube property if and only if it is harmonic, was proposed by G. Thorbergsson.

The structure and the main results of the paper are the following. In Section 2, we compute a formula
for the volume of tubes about a curve in a general Riemannian manifold. This formula is not new, an
equivalent formula appears also in [6]. The formula gives the volume as an integral with respect to the
arc length parameter of the curve, where the integrand is the sum of two terms, one of which depends
only on the velocity vector of the curve, while the other depends on both the velocity and the acceleration
vectors. L. Vanhecke and T. J. Willmore [6] proved that the second term vanishes in D’Atri spaces and
conjectured that if the second term vanishes for all curves, then the space must be a D’Atri space. Recall
that a Riemannian manifold is called a D’Atri space if its local geodesic symmetries are volume preserving.
At the end of Section 2, we prove this conjecture, and as a consequence, we obtain that a Riemannian
manifold has the tube property if and only if it is a D’Atri space and satisfies the tube property for tubes
about geodesic curves (Theorem 1).

The main result of Section 3 is Theorem 2, claiming that every connected harmonic manifold has the tube
property.
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There are two known classes of harmonic manifolds: two-point homogeneous spaces and Damek–Ricci
spaces. These examples exhaust all homogeneous harmonic manifolds according to J. Heber [7]. Two-point
homogeneous spaces are the Euclidean and the rank one symmetric spaces. For these spaces, the volume of
tubes about curves were computed explicitly in [3]. We complete the picture by computing the volume of
tubes about curves in the Damek–Ricci spaces in Section 4.

In Sections 5 and 6, we prove some facts supporting the conjecture that the tube property can hold only
in harmonic manifolds. Harmonic manifolds are real analytic Riemannian manifolds, and they can be
characterized among real analytic Riemannian manifolds by a sequence {Lk | k ≥ 2} of curvature conditions,
known as Ledger conditions, see [8] and [9, section 6.8]. It would be enough to show that the tube property
implies even Ledger conditions {L2k | k ≥ 1} for two independent reasons. First, L. Vanhecke [10] proved
that the odd Ledger conditions follow from the even ones. The second reason is that D’Atri spaces satisfy all
Ledger conditions of odd order. Conditions L2 and L4 are equivalent to the requirement that the manifold
is 2-stein. The main result of Section 5 is Theorem 4, claiming that every connected Riemannian manifold
having the tube property is 2-stein. In particular, such a manifold is Einstein.

In Section 6, first we adapt the formula for the volume of tubes about curves for the special case of geodesic
curves in a symmetric space. Slightly different, but equivalent forms of some of our formulae were obtained
by X. Gual-Arnau and A. M. Naveira [11], [12]. In the second part of the section, we verify the above
conjecture within the class of symmetric spaces (Theorem 5). 2-stein symmetric spaces were classified by
P. Carpenter, A. Gray, and T. J. Willmore [13]. According to the classification, besides the harmonic
symmetric spaces, the family of 2-stein symmetric spaces contains 23 dual pairs of irreducible symmetric
spaces. Though it would be possible to show the failure of the tube property for each non-harmonic example
in the list one by one, we shall present a shorter argument that rules out all of them together. The theorem
extends obviously to locally symmetric spaces.

Throughout the paper, every manifold is assumed to be connected and of class C∞. By the Kazdan–DeTurck
theorem [14], the geodesic normal coordinate systems on an Einstein space provide a real analytic atlas, with
respect to which the Riemannian metric is real analytic. In fact, the same is true for Riemannian manifolds
satisfying the third Ledger condition, in particular for D’Atri spaces, see [15]. Consequently, Riemannian
manifolds having the tube property have a natural real analytic structure. This implies, for example, that
the volume of a tube about a geodesic in such a space is a real analytic function of the radius.

2. Volume of tubes and D’Atri spaces

Let (M,g) be a Riemannian manifold. Denote by Exp: TM → M its exponential map, and by Expp : TpM →
M the restriction of Exp to the tangent space at p ∈ M . Let ∇ be the Levi-Civita connection of M . For a
vector field X along a curve γ, we shall use the notation X ′ for the covariant derivative ∇γ′X.

Definition. For a smooth injective regular curve γ : [a, b] → M and r > 0, set

T (γ, r) = {v ∈ TM | ∃t ∈ [a, b] such that v ∈ Tγ(t)M,v ⊥ γ′(t), and ‖v‖ ≤ r}.

Assume that r is small enough to guarantee that the exponential map is defined and injective on T (γ, r).
Then we define the tube of radius r about γ by

T (γ, r) = Exp(T (γ, r)).

Definition. We say that a Riemannian manifold has the tube property if there is a function V : [0,∞) → R

such that

vol(T (γ, r)) = V (r)lγ

for any smooth injective regular curve γ of length lγ and any sufficiently small r.

Consider a smooth injective unit speed curve γ : [0, l] → M and an orthonormal frame E1, . . . , En along γ
such that En(t) = γ′(t). Denote by Bn−1

r the closed ball of radius r about the origin in R
n−1 and by Sn−2

r

its boundary sphere. Parameterize the tube T (γ, r) by the map r : Bn−1
r × [0, l] → M defined by the formula

(1) r(x1, x2, . . . , xn) = Expγ(xn)(x1E1(xn) + · · · + xn−1En−1(xn)).
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The volume of the tube is

(2) vol(T (γ, r)) =

∫

Bn−1
r ×[0,l]

‖∂1r ∧ · · · ∧ ∂nr‖(x) dx.

To calculate the partial derivatives of the map r at a point x = (x1, . . . , xn) ∈ Bn−1
r × [0, l], consider

the Jacobi fields Jx
1 , . . . , J

x
n along the geodesic ηx : [0, 1] → M , ηx(s) = r(sx1, . . . , sxn−1, xn), such that

Jx
i (0) = 0 and Jx

i
′(0) = Ei(xn). As these Jacobi fields give the differential of the exponential map, we have

∂ir(x) = Jx
i (1) for i = 1, . . . , n − 1.

For the nth partial derivative, consider the geodesic variation Γ(t, s) = r(sx1, . . . , sxn−1, xn+ t). The vector
field Jx(s) = ∂1Γ(0, s) is a Jacobi field along the geodesic ηx, such that Jx(0) = γ′(xn) and Jx′(0) =
x1E

′
1(xn) + · · · + xn−1E

′
n−1(xn). This Jacobi field gives the partial derivative of the map r with respect to

its nth variable by ∂nr(x1, . . . , xn) = Jx(1).

Decompose the Jacobi field Jx into the sum of the Jacobi fields Ĵx, J̌x given by the initial conditions
Ĵx(0) = γ′(xn), Ĵ

x′(0) = 0 and J̌x(0) = 0, J̌x′(0) = x1E
′
1(xn)+ · · ·+xn−1E

′
n−1(xn). We can decompose the

Jacobi field J̌x as

J̌x =

n
∑

i=1

(

n−1
∑

j=1

xjg(E
′
j(xn), Ei(xn))

)

Jx
i .

Write x in the form x = (ρy1, . . . , ρyn−1, yn), where ‖(y1, . . . , yn−1)‖ = 1, ρ ≥ 0, and set y = (y1, . . . , yn).
Then we have

ηx(s) = ηy(ρs), ρJx
i (s) = Jy

i (ρs) for 1 ≤ i ≤ n,

Jx(s) = Jy(ρs), Ĵx(s) = Ĵy(ρs), J̌x(s) = J̌y(ρs).

The volume density function appearing in (2) can be expressed as

‖∂1r ∧ · · · ∧ ∂nr‖(x) = ‖Jx
1 ∧ · · · ∧ Jx

n−1 ∧ Jx‖(1)
= ‖Jx

1 ∧ · · · ∧ Jx
n−1 ∧ Ĵx + Jx

1 ∧ · · · ∧ Jx
n−1 ∧ J̌x‖(1)

=

{

ρ1−n‖Jy
1 ∧ · · · ∧ Jy

n−1 ∧ Ĵy + Jy
1 ∧ · · · ∧ Jy

n−1 ∧ J̌y‖(ρ) if ρ > 0,

1 if ρ = 0.

Extend Ei(xn) to a parallel vector field e
y
i along ηy. If ρ is small, then

(Jy
1 ∧ · · · ∧ Jy

n−1 ∧ Ĵy)(ρ) = ρn−1(ey1 ∧ · · · ∧ eyn)(ρ) +O(ρn+1),

and

Jy
1 ∧ · · · ∧ Jy

n−1 ∧ J̌y =

(

n−1
∑

j=1

yjg(E
′
j(xn), En(xn))

)

Jy
1 ∧ · · · ∧ Jy

n ,

where

(Jy
1 ∧ · · · ∧ Jy

n )(ρ) = ρn(ey1 ∧ · · · ∧ eyn)(ρ) +O(ρn+2),

thus

ρn−1‖∂1r ∧ · · · ∧ ∂nr‖(x) = ‖Jy
1 ∧ · · · ∧ Jy

n−1 ∧ Ĵy‖(ρ) +
(

n−1
∑

j=1

yjg(E
′
j(xn), En(xn))

)

‖Jy
1 ∧ · · · ∧ Jy

n ‖(ρ).

The orthogonality of the vector fields Ei and En = γ′ gives the equation g(E′
i, γ

′) + g(Ei, γ
′′) = 0, hence

n−1
∑

j=1

yjg(E
′
j(xn), En(xn)) = −g

(

n−1
∑

j=1

yjEj(xn), γ
′′(xn)

)

.

The volume density function ω : U → R of the exponential map of M is defined on the domain U ⊂ TM
of the exponential map Exp by the following condition: if p ∈ M , then the pull-back of the Riemannian
volume measure by Expp is ω|TpM∩U times the Lebesgue measure on TpM . It is known that

ω(x1E1(xn) + · · ·+ xn−1En−1(xn)) = ‖Jx
1 ∧ · · · ∧ Jx

n‖(1) = ρ−n‖Jy
1 ∧ · · · ∧ Jy

n ‖(ρ).
Denote the left hand side of this equation by ω(x).
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Let J̃x be the Jacobi field along ηx defined by the conditions J̃x(0) = En(xn) and J̃x(1) = 0. Ĵx can be
decomposed as

Ĵx = J̃x −
n
∑

i=1

g(J̃x′(0), Ei(xn))J
x
i .

Using this decomposition, we obtain
(

Jx
1 ∧ · · · ∧ Jx

n−1 ∧ Ĵx
)

(1) = −g(J̃x′(0), En(xn))
(

Jx
1 ∧ · · · ∧ Jx

n

)

(1).

If ρ is small, then g(J̃x′(0), En(xn)) = −1/ρ+O(1) < 0, thus the volume of the tube is

(3) vol(T (γ, r)) =

∫ l

0

∫

Bn−1
r

(

−g(J̃x′(0), γ′(xn))− g

(

n−1
∑

i=1

xiEi(xn), γ
′′(xn)

))

ω(x) dx.

Differentiating the function t 7→ vol(T (γ|[0,t], r)) at t = xn, we obtain that in a manifold having the tube
property with function V , equation

(4) V (r) =

∫

Bn−1
r

(

−g(J̃x′(0), γ′(xn))− g

(

n−1
∑

i=1

xiEi(xn), γ
′′(xn)

))

ω(x) dx1 . . . dxn−1

holds for any unit speed curve γ : [0, l] → M and any xn ∈ [0, l].

Let u ∈ TpM be an arbitrary unit tangent vector at a point p ∈ M . Define Bn−1
r (u) to be the (n− 1)-ball

Bn−1
r (u) = {w ∈ TpM | g(u,w) = 0 and ‖w‖ ≤ r}.

For w ∈ Bn−1
r (u), let J̃w

u denote the Jacobi field along the geodesic curve t 7→ Exp(tw) defined by J̃w
u (0) = u

and J̃w
u (1) = 0. J̃w

u is uniquely defined as r is small.

Since for any choice of u,v ∈ TpM satisfying ‖u‖ = 1 and g(u,v) = 0, we can find a unit speed curve
γ : [0, l] → M and a parameter xn ∈ (0, l) such that γ(xn) = p, γ′(xn) = u, and γ′′(xn) = v, (4) gives

(5) V (r) = −
∫

Bn−1
r (u)

g(J̃w
u

′(0),u)ω(w) dw −
∫

Bn−1
r (u)

g(w,v)ω(w) dw.

If the manifold M and the radius r are fixed, then the first integral of the right hand side of (5) depends
only on the vector u, while the second only on u and v. Substituting v = 0 into (5), we obtain

(6) V (r) = −
∫

Bn−1
r (u)

g(J̃w
u

′(0),u)ω(w) dw,

which implies

(7) 0 =

∫

Bn−1
r (u)

g(w,v)ω(w) dw

for any allowed choice of u and v. Equation (5) characterizing spaces with the tube property is equivalent
to the pair of equations (6) and (7). Finding the geometrical meaning of the latter equations leads us to the
following theorem.

Theorem 1. A Riemannian manifold has the tube property if and only if it is a D’Atri space and satisfies

the tube property for geodesic curves.

Proof. As γ′′ ≡ 0 for geodesic curves, equation (6) holds in a Riemannian manifold if and only if the manifold
has the tube property for geodesics.

As the density function ω is even for D’Atri spaces, and the linear function ℓv : TpM → R, ℓv(w) = g(w,v)
is odd, (7) holds in every D’Atri space.

It remains to show that (7) implies that the space is D’Atri. If we have
∫

Bn−1
r (u) ℓv(w)ω(w) dw = 0 for

all linear functions ℓv, where u ⊥ v, then the equation holds also without the orthogonality assumption.
Differentiation with respect to r gives that

(8)

∫

Sn−2
r (u)

ℓv(w)ω(w) dw = 0,
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where Sn−2
r (u) is the boundary sphere of Bn−1

r (u), and dw stands for integration with respect to the
hypersurface measure of the sphere Sn−2

r (u). Denote by Bn
r (p) ⊂ TpM the ball of radius r about the origin

of TpM , and by Sn−1
r (p) its boundary sphere. Equation (8) means that the Funk transform of the restriction

of the function ℓvω onto Sn−1
r (p) is 0. It is known that a smooth function on a sphere is in the kernel of

the Funk transform if and only if it is odd (see Theorem 1.7 in [16, p. 93]). This implies that ℓvω is an odd
function on the sphere Sn−1

r (p). As this is true for any small r, we conclude that ℓvω is an odd function
on the ball Bn−1

r (p). As ℓv is an arbitrary linear function, we have that ω is an even function on the ball
Bn−1

r (p). This means that the manifold is a D’Atri space. �

Remark. L. Vanhecke and T. J. Willmore conjectured in [6, p. 38] that if equation

(9) vol(T (γ, r)) =

∫ l

0

∫

Bn−1
r

−g(J̃x′(0), γ′(xn))ω(x) dx

holds for an arbitrary unit speed curve γ, then the space is D’Atri. Comparing (9) to (3), we see that (9)
implies

0 =

∫ l

0

∫

Bn−1
r

−g

(

n−1
∑

i=1

xiEi(xn), γ
′′(xn)

)

ω(x) dx.

Differentiating with respect to l at l = xn and choosing γ so that γ(xn) = p, γ′(xn) = u and γ′′(xn) = v,
we obtain that (7) holds in the space. As we have seen, this implies that the space is D’Atri.

The general formula for the volume of a tube about a curve can be simplified in the case of a geodesic curve.
First of all, as γ′ is parallel for a geodesic, we may choose the orthonormal frame E1, . . . , En to be parallel.
Then the Jacobi fields J̌x are equal to zero. Writing x in the form x = (ρu, t), where u ∈ Sn−2

1 is a unit
vector, ρ ≥ 0 and setting y = (u, t), we obtain

(10) vol(T (γ, r)) =

∫

Bn−1
r ×[0,l]

‖Jx
1 ∧· · ·∧Jx

n−1∧Ĵx‖(1) dx =

∫ l

0

∫ r

0

∫

Sn−2

1

1

ρ
‖Jy

1 ∧· · ·∧J
y
n−1∧Ĵy‖(ρ) dudρdt.

3. Tube property in harmonic manifolds

The main goal of this section is to prove the following theorem.

Theorem 2. Every connected harmonic manifold has the tube property.

Proof. Let (M,g) denote a connected harmonic manifold. As a harmonic manifold is a D’Atri space, it is
enough to prove the tube property for geodesic curves of M by Theorem 1. This reduces to showing that
the integral on the right hand side of (6) does not depend on the unit tangent vector u.

When the exponential map of M is defined on the closed Euclidean ball Bn
r (p) ⊂ TpM , then Br(p) =

Exp(Bn
r (p)) is the geodesic ball of radius r centered at p. A geodesic half-ball is the exponential image of a

Euclidean half-ball in a tangent space centered at the origin.

Definition. For a tangent vector v ∈ TpM \ {0} and a radius r less than the injectivity radius of M at p,
we define the half-ball Hr(v) by the formula

Hr(v) = Exp({w ∈ TpM | g(v,w) ≥ 0 and ‖w‖ ≤ r}).
Proposition 1. In a D’Atri space, the volume of a small geodesic half-ball depends only on the radius.

Proof. The volume preserving geodesic reflection in p maps the half-ball Hr(v) onto its complementary
half-ball Hr(−v). Consequently, a geodesic half-ball has the same volume as its complementary half-ball.
We also know that in a D’Atri space, the volume of a small geodesic ball depends only on the radius of the
ball [17]. Hence the volume of a half-ball also depends only on the radius. �

Fix an arbitrary unit tangent vector u ∈ TpM and consider the unit speed geodesic curve γ in M , starting
at γ(0) = p with initial velocity γ′(0) = u. Let

Nr(t) = {q ∈ M | ∃τ ∈ [0, t], d(q, γ(τ)) ≤ r}
be the r-neighborhood of γ([0, t]), where t > 0 is a small number, d is the intrinsic metric of M induced by
g.
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Lemma 1. Nr(t) can be decomposed into the non-overlapping union of two geodesic half-balls and a tube as

follows

Nr(t) = Hr(−γ′(0)) ∪ T (γ|[0,t] , r) ∪Hr(γ
′(t)).

Proof. The inclusion ⊇ is trivial. If q ∈ Nr(t), then let γ(τ), τ ∈ [0, t] be the closest point of γ([0, t]) to q,
and let η be the shortest geodesic connecting γ(τ) to q. If τ = 0, then by the formula for the first variation
of arclength, η has to enclose with γ an obtuse or right angle, therefore q ∈ Hr(−γ′(0)). Similarly, τ = t
gives q ∈ Hr(γ

′(t)). Finally, if 0 < τ < t, then the variation formula implies that η is orthogonal to γ,
consequently q ∈ T (γ|[0,t] , r). �

Lemma 1 gives that vol(Nr(t)) = vol(Hr(−γ′(0)))+vol(T (γ|[0,t] , r)+vol(Hr(γ
′(t))). This equality, equation

(3) and Proposition 1 yield that

(11) −
∫

Bn−1
r (u)

g(J̃w
u

′(0),u)ω(w) dw =
d

dt
vol(T (γ|[0,t] , r))

∣

∣

∣

∣

t=0

=
d

dt
vol(Nr(t))

∣

∣

∣

∣

t=0

.

Consider the domain Er(t) = Br(γ(0)) ∪ Br(γ(t)).

Lemma 2. We have

Nr(t) ⊇ Er(t) ⊇ Hr(−γ′(0)) ∪ T (γ|[0,t] , r − t/2) ∪Hr(γ
′(t)).

Proof. The first inclusion is a corollary of the definition of Nr(t). To show the second one, choose a point q
in Hr(−γ′(0)) ∪ T (γ|[0,t] , r − t/2) ∪ Hr(γ

′(t)). It is clear that if q is in one of the half-balls Hr(−γ′(0)) or

Hr(γ
′(t)), then q ∈ Er(t). If q ∈ T (γ|[0,t] , r − t/2), then there is a τ ∈ [0, t] such that d(q, γ(τ)) ≤ r − t/2.

If τ ≤ t/2, then the triangle inequality gives

d(q, γ(0)) ≤ d(q, γ(τ)) + d(γ(τ), γ(0)) ≤ (r − t/2) + t/2 = r,

thus q ∈ Br(γ(0)) ⊆ Er(t). Similarly, if τ ≥ t/2, then q ∈ Br(γ(t)) ⊆ Er(t). �

The above two lemmata give that

|vol(Nr(t))− vol(Er(t))| ≤ vol(T (γ|[0,t] , r))− vol(T (γ|[0,t] , r − t/2))

= −
∫ t

0

∫ r

r−t/2

∫

Sn−2
ρ (γ′(τ))

g(J̃w
γ′(τ)

′(0), γ′(τ))ω(w) dw dρdτ.

By the mean value theorem for integration, there is a point (τ̄ , ρ̄) in the rectangle [0, t] × [r − t/2, r] such
that

∫ t

0

∫ r

r−t/2

∫

Sn−2
ρ (γ′(τ))

g(J̃w
γ′(τ)

′(0), γ′(τ))ω(w) dw dρdτ =
t2

2

∫

Sn−2
ρ̄ (γ′(τ̄ ))

g(J̃w
γ′(τ̄)

′(0), γ′(τ̄ ))ω(w) dw.

Choose 0 < T < r/2 such that γ is defined on [0, T ] and denote by C the maximum of
∫

Sn−2
ρ (γ′(τ))

g(J̃w
γ′(τ)

′(0), γ′(τ))ω(w) dw

as (τ, ρ) is running over the rectangle [0, T ]× [r/2, r]. Then for any 0 < t < T , we have

|vol(Nr(t))− vol(Er(t))| ≤
C

2
t2.

From this, we get

(12)
d

dt
vol(Nr(t))

∣

∣

∣

∣

t=0

=
d

dt
vol(Er(t))

∣

∣

∣

∣

t=0

.

In a harmonic manifold, the volume of the union of two small geodesic balls depends only on the radius and
the distance between their centers [18]. Hence we have that vol(Er(t)) depends only on r and t, but not on
the fixed geodesic γ, so we can define the function V by V (r) = d

dtvol(Er(t))
∣

∣

t=0
. Equations (11) and (12)

show that a harmonic manifold has the tube property with the function V . �
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4. The volume of a tube in a Damek–Ricci space

There are two known families of harmonic manifolds, the two-point homogeneous spaces and the Damek–
Ricci spaces. A. Gray and L. Vanhecke computed the volume of tubes in two-point homogeneous spaces [3].
In this section, we compute the volume of tubes in Damek–Ricci spaces.

Let n = v⊕z be a generalized Heisenberg algebra (dim v = p,dim z = q). Recall that n is a two-step nilpotent
Lie algebra with center z = [n, n], endowed with an inner product 〈 , 〉 and a map J : z → End(v), Z 7→ JZ
such that

∀V ∈ v, Z ∈ z : 〈V,Z〉 = 0,

∀V1, V2 ∈ v, Z ∈ z : 〈JZV1, V2〉 = 〈[V1, V2], Z〉,
∀V ∈ v, Z ∈ z : J2

Z(V ) = −〈Z,Z〉V.

Let a be a one-dimensional real vector space with a basis element A. Consider the direct sum s = n⊕ a of
the linear spaces n and a. We can write an element of s as V + Z + tA, where V ∈ v, Z ∈ z, t ∈ R. Extend
the inner product 〈 , 〉 and the Lie bracket [ , ] of n onto s by

〈V1 + Z1 + t1A,V2 + Z2 + t2A〉 = 〈V1 + Z1, V2 + Z2〉+ t1t2,

[V1 + Z1 + t1A,V2 + Z2 + t2A] = [V1, V2] +
1

2
t1V2 −

1

2
t2V1 + t1Z2 − t2Z1.

The simply connected Lie group attached to the Lie algebra s, equipped with the induced left-invariant
metric, is called a Damek–Ricci space S. One can show that S is a semi-direct product N ⋊R, where N is
the generalized Heisenberg group attached to n. Hence we can write a point of S in the form (expn(V +Z), t),
where expn denotes the Lie exponential map of N . Every element of S will be given in this form below. For
example, the unit element 1 of S is (expn(0), 0). The multiplication rule of S is

(expn(V1 + Z1), t1) · (expn(V2 + Z2), t2) = (expn(V1 + e
t1
2 V2 + Z1 + et1Z2 +

1

2
e

t1
2 [V1, V2]), t1 + t2).

The Riemannian metric is

g(expn(V+Z),t)(V1 + Z1 + t1A,V2 + Z2 + t2A) = e−t〈V1, V2〉+ e−2t〈Z1 −
1

2
[V, V1], Z2 −

1

2
[V, V2]〉+ t1t2.

The pull-back of the volume measure of S onto v⊕ z⊕ a is ̺(V +Z + tA) dV dZ dt, where ̺(V +Z + tA) =

e−(p
2
+q)t is the volume density function, dV dZ dt is the Lebesgue measure on v⊕ z⊕ a.

For more details on Damek–Ricci spaces, see [19] or [20].

As every Damek–Ricci space is harmonic, to compute the volume of a tube of small radius about an
arbitrary curve, it is enough to compute that volume for a single geodesic curve by Theorem 2. We will do
the computation for the geodesic curve γ : R → S, γ(t) = Exp(tA) = (expn(0), t). The left translation Φt by
γ(t) is an isometry of S for all t ∈ R. The geodesic γ is an orbit of the one parameter group Φ∗ = {Φt : t ∈ R}
of these isometries. Introduce the following notions.

Bn−1
r = {W ∈ T

1

S : 〈W,A〉 = 0, ‖W‖ ≤ r},
Bn−1
r = Exp(Bn−1

r ).

Let a be small enough to assure that the last coordinate of every point of Φa(Bn−1
r ) with respect to the

semidirect product decomposition N ⋊R is negative. We can choose b in a similar way to get that the last
coordinate of every point of Φb(Bn−1

r ) is positive. The tube of radius r about the geodesic segment γ|[a,b]
is the set T =

⋃

a≤t≤b Φt(Bn−1
r ). Consider the intersection Σ of hypersurface (expn(n), 0) and the tube T ,

and let σ ⊂ n be the subset defined by expn(σ) × {0} = Σ. For any x ∈ Bn−1
r , Σ intersects the curve

{Φt(x) : a ≤ t ≤ b} at exactly one point. T is split into two pieces T = T− ∪ T+ by Σ, where the pieces
T± = {(w, t) ∈ T : ±t ≥ 0} are defined by the sign of the last coordinate. As

⋃

0≤t≤b−a

Φt(Σ) = T+ ∪ Φb−a(T−),
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and Φb−a preserves the volume, we have

vol(T ) = vol





⋃

0≤t≤b−a

Φt(Σ)



 .

To compute the volume on the right hand side, define the sets

σt = {W ∈ n | (expn(W ), t) ∈ Φt(Σ)} = {e t
2V + etZ | V ∈ v, Z ∈ z, V + Z ∈ σ}.

Then

vol





⋃

0≤t≤b−a

Φt(Σ)



 =

∫ b−a

0

∫

σt

̺(W + tA) dW dt =

∫ b−a

0

∫

σt

e−(p
2
+q)t dW dt.

Computing the inner integral using the linear substitution σ → σt, V + Z 7→ e
t
2V + etZ, we obtain

∫

σt

e−(p
2
+q)t dW =

∫

σ
e−(p

2
+q)te(

p

2
+q)t dW = vol(σ).

Thus,

(13) vol(T ) = (b− a)vol(σ).

To describe the shape of σ, find the intersection of Σ and the Φ∗ orbit of a typical point of Bn−1
r . Consider a

unit speed geodesic γV+Z starting from the unit element γV+Z(0) = 1 with initial velocity γ′V+Z(0) = V +Z,
perpendicular to γ, where ‖V + Z‖ = 1, ‖Z‖ = z. We have

γV+Z(t) =

(

expn

(

2θ(t)

χ(t)
V +

2θ2(t)

χ(t)
JZV +

2θ(t)

χ(t)
Z

)

, log

(

1− θ2(t)

χ(t)

))

,

where θ(t) = tanh
(

t
2

)

and χ(t) = 1 + z2θ2(t) (see Section 4.1.11 in [19]).

The left translation by Φt moves the boundary point γV+Z(r) of Bn−1
r to Σ if and only if t = − log

(

1−θ2(r)
χ(r)

)

.

Then Φt(γV+Z(r)) is the point (expn(PV +Z), 0), where

PV+Z =

√

χ(r)

1− θ2(r)

2θ(r)

χ(r)
V +

√

χ(r)

1− θ2(r)

2θ2(r)

χ(r)
JZV +

χ(r)

1− θ2(r)

2θ(r)

χ(r)
Z

=
2θ(r)

√

(1− θ2(r))χ(r)
V +

2θ2(r)
√

(1− θ2(r))χ(r)
JZV +

2θ(r)

1− θ2(r)
Z.

The squared norms of the v and z components of PV+Z are equal to
∥

∥

∥

∥

∥

2θ(r)
√

(1− θ2(r))χ(r)
V +

2θ2(r)
√

(1− θ2(r))χ(r)
JZV

∥

∥

∥

∥

∥

2

=

(

4θ2(r)

(1− θ2(r))χ(r)
+

4θ4(r)

(1− θ2(r))χ(r)
z2
)

‖V ‖2

=
4θ2(r)

1− θ2(r)
‖V ‖2 = 4 sinh2

(r

2

)

‖V ‖2

and
∥

∥

∥

∥

2θ(r)

1− θ2(r)
Z

∥

∥

∥

∥

2

= 4 sinh2
(r

2

)

cosh2
(r

2

)

‖Z‖2.

As V + Z runs over the unit sphere of n, PV +Z runs over the ellipsoid in n defined by the equation

‖V ‖2
4 sinh2

(

r
2

) +
‖Z‖2

4 sinh2
(

r
2

)

cosh2
(

r
2

) = 1.

This ellipsoid has p semi-principal axes of length 2 sinh
(

r
2

)

and q semi-principal axes of length 2 sinh
(

r
2

)

cosh
(

r
2

)

.
Since for any fixed Z of length less than or equal to 1, the v component of PV+Z is obtained from V by a
linear similarity transformation, the unit sphere of n is mapped onto this ellipsoid. Therefore σ is the body
bounded by this ellipsoid, and its volume is

vol(σ) = ωp+q2
p+q sinhp+q

(r

2

)

coshq
(r

2

)

,
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where ωm denotes the volume of the m-dimensional Euclidean unit ball for m ∈ N. Substituting this volume
into (13), we obtain the following

Theorem 3. The volume of a solid tube of radius r about a curve of length l in a Damek–Ricci space is

ωp+q2
p+q sinhp+q

(r

2

)

coshq
(r

2

)

l.

The p+ q-dimensional volume of the tubular surface of radius r about the curve is

ωp+q2
p+q−1

(

(p+ q) sinhp+q−1
(r

2

)

coshq+1
(r

2

)

+ q sinhp+q+1
(r

2

)

coshq−1
(r

2

))

l.

The second part of the theorem follows from the first part by differentiating with respect to the radius r.

The theorem generalizes earlier result of A. Gray and L. Vanhecke on the volume of tubes in rank one
non-compact symmetric spaces [3], as CHn, HHn, and OH2 are Damek–Ricci spaces with parameters
(p, q) = (2n − 2, 1), (4n − 4, 3), and (8, 7) respectively.

5. Manifolds with the tube property are 2-stein

The main result of this section is the following.

Theorem 4. A manifold having the tube property is a 2-stein space.

We recall that a Riemannian manifold is said to be 2-stein if the manifold is Einstein and there exists a
constant λ such that

tr(R2
u) = λ‖u‖4

for every tangent vector u, where for u ∈ TpM , Ru : TpM → TpM , Ru(x) = R(x,u)u is the Jacobi operator.

For the proof, we need an elementary lemma.

Lemma 3. Let P ∈ R[x, y] be a polynomial of degree k ≥ 1 in two variables, P = P0 + · · · + Pk be its

decomposition into homogeneous components. If the function θ 7→ P (cos θ, sin θ) is constant, then Pk(1, i) =
0, where i ∈ C is the imaginary unit.

Proof. Since the polynomial P − P (1, 0) vanishes on the circle x2 + y2 − 1 = 0, the irreducible polynomial
x2 + y2 − 1 divides P − P (1, 0), i.e., there is a polynomial G ∈ R[x, y] such that P (x, y) − P (1, 0) =
(x2 + y2 − 1)G(x, y). Considering the highest degree homogeneous component of both sides, we obtain
Pk(x, y) = (x2 + y2)Gk−2(x, y), where Gk−2 is the degree k − 2 homogeneous part of G. Substituting
(x, y) = (1, i) into the last equation gives Pk(1, i) = 0. �

Proof of Theorem 4. Denote by τ, ρ, and R the scalar curvature, the Ricci tensor, and the Riemannian
curvature tensor respectively. A. Gray and L. Vanhecke [3] computed the initial terms of the Taylor series
of the volume of tubes about a curve using Fermi coordinates. Recall that the Fermi coordinate system on
the tube T (γ, r) about the injective unit speed curve γ : [0, l] → M is the inverse of the parameterization
r̃ : [0, l] × Bn−1

r → M , r̃(x1, x2, . . . , xn) = r(x2, . . . , xn, x1), where r is the parameterization defined in (1).
They obtained the formula

vol(T (γ, r)) = ωn−1r
n−1

∫ l

0

(

1 +Ar2 +Br4 +O(r6)
)

(γ(t)) dt

with coefficients

A = − 1

6(n+ 1)
(τ + ρ11),

B =
1

360(n + 1)(n + 3)

(

− 18∆τ + 5τ2 + 8‖ρ‖2 − 3‖R‖2 + 33∇2
11τ − 9∆ρ11 + 10τρ11 + 2

n
∑

i=2

ρ21i +

+ 14

n
∑

i,j=2

ρijR1i1j − 6

n
∑

i,j,k=2

R2
1ijk − 21∇2

11ρ11 − 3ρ211 − 10

n
∑

i,j=2

R2
1i1j + 60Wτ − 60∇1ρ1W − 30∇W ρ11

)

,

where W is a vector field such that W (γ(t)) = γ′′(t), and the tensor coordinates are taken with respect to
the Fermi coordinate system.
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If the manifold has the tube property, then A and B are constant along γ, and their values do not depend
on the curve γ. For an arbitrary point p ∈ M , choose an orthonormal basis u1, . . . ,un in TpM . Computing
the coefficient A associated to the geodesic curve t 7→ Exp(tui) at t = 0, we obtain

A = − 1

6(n + 1)
(τ(p) + ρ(ui,ui)) for i = 1, . . . , n.

Summation for i yields that τ = −6nA, from which ρ(ui,ui) = −6A for all i, hence the manifold is Einstein.

In the case of a geodesic curve in an Einstein manifold, B can be simplified to

B =
1

360(n + 1)(n + 3)



5τ2 + 8‖ρ‖2 − 3‖R‖2 + 10τρ11 + 14ρ211 − 6

n
∑

i,j,k=2

R2
1ijk − 3ρ211 − 10

n
∑

i,j=2

R2
1i1j



 .

From this, we can conclude that in a manifold having tube property, the sum

−3‖R‖2 − 6
n
∑

i,j,k=2

R2
1ijk − 10

n
∑

i,j=2

R2
1i1j

is a constant function along the curve γ and the value C of this constant does not depend on the curve.

Observe that for any point p ∈ M , and for any orthonormal basis u1, . . . ,un in TpM , there is a unit speed
curve γ : [0, l] → M starting at γ(0) = p and a Fermi coordinate system around γ such that the basis vector
fields induced by the coordinate system are equal to u1, . . . ,un at p. This means that for any orthonormal
basis u1, . . . ,un of TpM , the coordinates Rijkl = R(ui,uj ,uk,ul) of the curvature tensor should satisfy the
identity

C = −3‖R‖2 − 6

n
∑

i,j,k=2

R2
1ijk − 10

n
∑

i,j=2

R2
1i1j = −3‖R‖2 − 6

n
∑

i,j,k=1

R2
1ijk + 2

n
∑

i,j=1

R2
1i1j .

In particular, transposing the role of u1 and ua, we obtain

C = −3‖R‖2 − 6

n
∑

i,j,k=1

R2
aijk + 2

n
∑

i,j=1

R2
aiaj for 1 ≤ a ≤ n.

Introduce the tensor fields P and Q by their components

Pab =

n
∑

i,j,k=1

RaijkRbijk,

Qabcd =
n
∑

i,j=1

RaibjRcidj .

We have the identities

Pab = Pba, Qabcd = Qbadc = Qcdab,

n
∑

b=1

Qabab = Paa,

n
∑

b=1

Qabba =
1

2
Paa,

n
∑

a=1

Paa = ‖R‖2.

In an Einstein manifold (with ρ = Kg), we have

n
∑

b=1

Qaabb = K2.

With this notation, we can write C as

(14) C = −3‖R‖2 − 6Paa + 2Qaaaa.

Equivalently,

(15) C = −3‖R‖2 − 6P (u,u) + 2Q(u,u,u,u)



HARMONIC MANIFOLDS AND THE VOLUME OF TUBES ABOUT CURVES 11

for any unit tangent vector u. Summing (14) over a gives

nC = −3n‖R‖2 − 6‖R‖2 + 2
n
∑

a=1

Qaaaa,

so we have

(16)
n
∑

a=1

Qaaaa =
n

2
C +

3n + 6

2
‖R‖2.

Assume that the tensor components are taken with respect to the orthonormal basis u1, . . . ,un at p. Apply
equation (15) for the unit tangent vector u(θ) = cos θua + sin θub, (a 6= b). Then we get that the function
f(θ) = −3P (u(θ),u(θ)) +Q(u(θ),u(θ),u(θ),u(θ)) is constant. The function f is a polynomial of degree 4
of cos θ and sin θ, and its degree 4 homogeneous term is Q(u(θ),u(θ),u(θ),u(θ)). Applying Lemma 3, we
obtain

Q(ua + iub,ua + iub,ua + iub,ua + iub) = 0.

The real part of this equation is

(17) Qaaaa +Qbbbb = 2(Qaabb +Qabab +Qabba).

Sum (17) for all b not equal to a, and add 6Qaaaa to both sides. Then we obtain

(n+ 4)Qaaaa +

n
∑

b=1

Qbbbb = 2

(

K2 + Paa +
1

2
Paa

)

.

Using (14) and (16), we get

(n + 4)Qaaaa +
n

2
C +

3n + 6

2
‖R‖2 = 2K2 − 3

2
‖R‖2 +Qaaaa −

C

2
,

that is

(n+ 3)Qaaaa +
n+ 1

2
C +

3n+ 9

2
‖R‖2 = 2K2,

which gives

(18) Qaaaa = −3

2
‖R‖2 + 2

n+ 3
K2 − n+ 1

2(n+ 3)
C.

If we sum (18) for a, we obtain

(19)

n
∑

a=1

Qaaaa = −3n

2
‖R‖2 + 2n

n+ 3
K2 − n2 + n

2(n+ 3)
C.

Equations (16) and (19) show that

−3n

2
‖R‖2 + 2n

n+ 3
K2 − n2 + n

2(n + 3)
C =

n

2
C +

3n + 6

2
‖R‖2,

which implies that ‖R‖2 is constant on the manifold. By equation (18), we can conclude that Qaaaa =
tr
(

R2
ua

)

is constant, which means that the manifold is 2-stein. We remark that equation (14) implies also
that Paa is constant. �

6. Tube property in symmetric spaces

In this section, we prove that a symmetric space has the tube property if and only if it is harmonic. Using
that Jacobi fields can be computed in a symmetric space, first we transform formula (10) to a more explicit
form, see equation (21) below.
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6.1. Volume of tubes about geodesics in a symmetric space. Consider a unit speed geodesic curve
γ : [0, l] → M in a symmetric space M , and fix a parallel orthonormal frame E1, . . . , En along it such that
En = γ′. The volume of a tube about γ is given by (10). This formula uses Jacobi fields along geodesic
curves starting from a point of γ orthogonally to γ′.

Fix a point p = γ(t) and a unit vector u ∈ TpM such that u ⊥ γ′(t). Let η be the geodesic starting
at η(0) = p with initial velocity η′(0) = u. Denote by e1, . . . , en the parallel orthonormal frame along η
extending the orthonormal basis E1(t), . . . , En(t) of Tη(0)M . If X is a vector field along η, then we shall
denote by [X] the column vector of the coordinate functions of X with respect to the frame e1, . . . , en. In
a symmetric space, the matrix of the Jacobi operator Rη′ with respect to the frame e1, . . . , en is constant.
Its value at 0 is the matrix [Ru] of the Jacobi operator Ru = Rη′(0). The coordinate vector of a Jacobi field
J along η satisfies the Jacobi differential equation

[J ]′′(t) + [Ru][J ](t) = 0.

The general solution of this equation is

[J ](t) = cos
(

√

[Ru]t
)

a+
sin
(

√

[Ru]t
)

√

[Ru]
b, a,b ∈ R

n,

where trigonometric function symbols abbreviate their power series, i.e.,

cos
(

√

[Ru]t
)

=

∞
∑

k=0

(−1)k
[Ru]

kt2k

(2k)!
,

sin
(

√

[Ru]t
)

√

[Ru]
=

∞
∑

k=0

(−1)k
[Ru]

kt2k+1

(2k + 1)!

which make sense without clarifying what the square root of Ru and the inverse of the square root are.
Consider the Jacobi fields Jy

1 , . . . , J
y
n−1, Ĵ

y along the geodesic ηy and their coordinates with respect to the

parallel frame e
y
1 , . . . , e

y
n as described in Section 2. We have Jy

i (0) = 0, Jy
i
′
(0) = e

y
i (0), hence

[Jy
i ](t) =

sin
(

√

[Ru]t
)

√

[Ru]
[eyi ](0) for i = 1, . . . , n− 1,

where u = ηy′(0).

As Ĵy(0) = e
y
n(0) and Ĵy′(0) = 0,

[Ĵy](t) = cos
(

√

[Ru]t
)

[eyn](0) =
√

[Ru] cot
(

√

[Ru]t
) sin

(

√

[Ru]t
)

√

[Ru]
[eyn](0).

Thus,

(20) ‖Jy
1 ∧ · · · ∧ Jy

n−1 ∧ Ĵy‖(ρ) = det

(

sin
(√

Ruρ
)

√
Ru

)

·
〈

√

Ru cot
(

√

Ruρ
)

eyn(0), e
y
n(0)

〉

.

If the eigenvalues of Ru are λ1, . . . , λn, then

det

(

sin(
√
Ruρ)√

Ruρ

)

=

n
∏

i=1

sin(
√
λiρ)√

λiρ
.

Our goal is to express this determinant with the help of the power sums Sk = λk
1 + · · ·+ λk

n = tr(Rk
u).

Let bk be the coefficient of x2k in the Maclaurin series of the even analytic function x cot x. Then

x cot x =

∞
∑

k=0

bkx
2k for |x| < π.

It is known that b0 = 1 and bk = (−4)kB2k/(2k)! < 0 for k > 0, where Bm denotes the mth Bernoulli
number. With this notation, if |x| < π, then

x

(

log

(

sinx

x

))′

= x cot x− 1 =
∞
∑

k=1

bkx
2k,
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which gives

log

(

sinx

x

)

=

∞
∑

k=1

bk
2k

x2k.

Thus, if ρ ≥ 0 is sufficiently small, namely if |
√
λiρ| < π for all eigenvalues λi, then

log

(

n
∏

i=1

sin(
√
λiρ)√

λiρ

)

=

∞
∑

k=1

bk
2k

n
∑

i=1

λk
i ρ

2k =

∞
∑

k=1

bk
2k

Skρ
2k,

hence

det

(

sin(
√
Ruρ)√

Ruρ

)

=

n
∏

i=1

sin(
√
λiρ)√

λiρ
=

∞
∑

m=0

1

m!

(

∞
∑

k=1

bk
2k

Skρ
2k

)m

=

∞
∑

m=0

1

m!

(

∞
∑

k=1

bk
2k

tr(Rk
u)ρ

2k

)m

.

Combining this equation with (20) and (10), we obtain that for small values of r,
(21)

vol(T (γ, r)) =

l
∫

0

r
∫

0

∫

Sn−2

1
(γ′(t))

ρn−2

(

∞
∑

m=0

1

m!

(

∞
∑

k=1

bk
2k

tr(Rk
u)ρ

2k

)m) ∞
∑

k=0

bk〈Rk
u(γ

′(t)), γ′(t)〉ρ2k dudρdt.

6.2. Symmetric spaces having the tube property. Now we prove the following theorem.

Theorem 5. Every symmetric space having the tube property is either Euclidean or has rank one.

We remark that a symmetric space is harmonic if and only if it has rank one or it is Euclidean (see, e.g.,
[21]).

The proof is based on the following observation and two lemmas. By equation (21), in a symmetric space
having the tube property, the integral

∫

Sn−2

1
(e)

ρn−2

(

∞
∑

m=0

1

m!

(

∞
∑

k=1

bk
2k

tr(Rk
u)ρ

2k

)m) ∞
∑

k=0

bk〈Rk
ue, e〉ρ2k du

does not depend on the unit tangent vector e. Taking the coefficients of the Taylor series expansion with
respect to ρ, we get that for all positive integers k, the integral

(22)

∫

Sn−2

1
(e)

bk
2k

tr(Rk
u) +

{

∑

0≤l<k,
1≤l1,...,lm<k
l+

∑m
i=1

li=k

bl
m!

〈Rl
ue, e〉

m
∏

i=1

bli
2li

tr(Rli
u)
}

+ bk〈Rk
ue, e〉du

is also independent of the unit tangent vector e.

We prove Theorem 5 by contradiction. Assume that there is a nonflat symmetric space M = G/K of rank
r > 1 having the tube property, where G is the identity component of the isometry group of M , and K is
the stabilizer of a point o ∈ M . If Io is the geodesic reflection in the point o, then K is an open subgroup
of the fixed point set of the involutive automorphism σ ∈ Aut(G), σ(h) = Io ◦ h ◦ Io. Let g and k be the Lie
algebras of G and K. The derivative map Tσ of σ gives an involutive automorphism s = Tσ|g of the Lie
algebra g. Setting p = {v ∈ g | s(v) = −v}, we have g = k ⊕ p. There is a natural isomorphism ToM ∼= p,
which induces an inner product 〈 , 〉 on p. The pair (g, s) is an orthogonal symmetric Lie algebra.

By Theorem 4, M is 2-stein, and consequently, it is (locally) irreducible (see [13]). In particular, M is a
symmetric space of either compact or non-compact type, and 〈 , 〉 is a constant multiple of the restriction
of the Killing form of g onto p. This constant multiple of the Killing form extends 〈 , 〉 to a non-degenerate
invariant symmetric bilinear function on g, which will also be denoted by 〈 , 〉.
The rank of M is the dimension of a maximal abelian subspace a of p. Choose an orthonormal basis
a1,a2, . . . ,ar of a, and complete it to an orthonormal basis of p with ar+1, . . . ,an. Let

b1 = cos θ a1 + sin θ a2,

b2 = − sin θ a1 + cos θ a2,

bi = ai if i ≥ 3.
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When we want to emphasize that b1 and b2 depend on θ, we shall denote them by b1(θ) and b2(θ).

Our plan to prove Theorem 5 is to evaluate the integral (22) for e = e(θ) = b1(θ) and exploit its independence
of θ.

With the identification ToM ∼= p, the Jacobi operator Ru can be expressed as

Ru = −ad2(u)|p.

Decompose u ⊥ b1 as u =
∑n

i=2 uibi and denote by ū =
∑

i>r uibi the projection of u onto the orthogonal
complement of a. If L : V → V is a linear endomorphism of the linear space V and W ≤ V is an L-invariant
linear subspace of V , then denote by trW (L) the trace of the restriction L|W of L onto W . We have

tr(Rk
u) = (−1)ktrp(ad

2k(u)) = (−1)ktrp(ad
2k(u2b2(θ) +

n
∑

i=3

uibi)).

If k ≥ 1, then 〈Rk
ub1,b1〉 seems to be a degree 2k+2 trigonometric polynomial of θ, however, the following

identities show that its degree is at most 2k.

〈Rk
ub1,b1〉 = (−1)k

〈

ad2k

(

n
∑

i=2

uibi

)

(b1),b1

〉

= (−1)k+1

〈

ad2k−2

(

n
∑

i=2

uibi

)

◦ ad(ū)(b1), ad(ū)(b1)

〉

= (−1)k

〈

ad(b1(θ)) ◦ ad2k−2

(

u2b2(θ) +

n
∑

i=3

uibi

)

◦ ad(b1(θ))(ū), ū

〉

.

The last expression is clearly a polynomial of degree ≤ 2k of cos θ and sin θ. This means that the integral
in (22) is also a polynomial of degree ≤ 2k of cos θ and sin θ. To apply Lemma 3, we compute the degree
2k homogeneous components of these polynomials of cos θ and sin θ. The above equations yield

tr(Rk
u) = (−1)ku2k2 trp(ad

2k(b2(θ))) + . . . ,

〈Rk
ub1,b1〉 = (−1)k

〈

ad2(b1(θ)) ◦ ad2k−2(u2b2(θ))(ū), ū
〉

+ . . . ,

where . . . stands for a polynomial of degree less than 2k of cos θ and sin θ.

We will need the following formula for the integral of monomials over the unit sphere (see [22]).

Proposition 2. Let P (x1, . . . , xn) = xα1

1 · · · xαn
n be a monomial in n variables, and let βj =

1
2 (αj+1). Then

∫

Sn−1

1

P (u) du =

{

0 if some αj is odd,
2Γ(β1)···Γ(βn)
Γ(β1+···+βn)

if all αj are even.

Lemma 4. If a1,a2 ∈ a are the vectors introduced above, then trC⊗p

(

ad2k(a1 + ia2)
)

= 0 for all positive

integers k.

Proof. We prove the lemma by induction on k. To show the base case k = 1, consider the integral in (22)
for k = 1 and e = b1. We obtain that the value of the integral modulo a trigonometric polynomial of θ of
degree less than 2 is equal to

∫

Sn−2

1
(b1)

− b1
2
u22trp(ad

2(b2(θ)))− b1
〈

ad2(b1(θ))(ū), ū
〉

du

= C

(

−b1
2
trp(ad

2(− sin θ a1 + cos θ a2))− b1trp(ad
2(cos θ a1 + sin θ a2))

)

,

where C > 0 is the integral of the monomial x21 over the unit sphere Sn−2
1 . The value of the integral in (22)

for e = b1 does not depend on the choice of θ, so we can apply Lemma 3 to it. This yields

0 = −trC⊗p(ad
2(−ia1 + a2))− 2trC⊗p(ad

2(a1 + ia2)) = −trC⊗p(ad
2(a1 + ia2)),

which settles the base case.
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For the induction step, assume that k ≥ 2 and the statement is true for positive integers less than k.
Evaluate the integral in (22) for k and e = b1. Modulo trigonometric polynomials of θ of degree less than
2k, the integral equals

(−1)k
∫

Sn−2

1
(b1)

bk
2k

u2k2 trp(ad
2k(b2(θ))) +

∑

1≤l1,...,lm<k∑m
i=1

li=k

1

m!

m
∏

i=1

bli
2li

u2li2 trp(ad
2li(b2(θ))) +

+
∑

0<l<k,
1≤l1,...,lm<k
l+

∑m
i=1

li=k

bl
m!

〈

ad2(b1(θ)) ◦ ad2l−2(u2b2(θ)) (ū) , ū
〉

m
∏

i=1

bli
2li

u2li2 trp(ad
2li(b2(θ))) +

+ bk

〈

ad2(b1(θ)) ◦ ad2k−2(u2b2(θ))(ū), ū
〉

du

= (−1)k

(

C1
bk
2k

trp(ad
2k(b2(θ))) + C1

∑

1≤l1,...,lm<k∑m
i=1

li=k

1

m!

m
∏

i=1

bli
2li

trp(ad
2li(b2(θ))) +

+ C2

∑

0<l<k,
1≤l1,...,lm<k
l+

∑m
i=1

li=k

bl
m!

trp(ad
2(b1(θ)) ◦ ad2l−2(b2(θ)))

m
∏

i=1

bli
2li

trp(ad
2li(b2(θ))) +

+ C2bktrp(ad
2(b1(θ)) ◦ ad2k−2(b2(θ)))

)

,

where C1 and C2 are the integrals of the monomials x2k1 and x2k−2
1 x22 over the unit sphere Sn−2

1 respectively.
Just as in the base case, the value of the integral in (22) for e = b1(θ) does not depend on θ, so we can
apply Lemma 3 to it. This gives that

0 = C1
bk
2k

trC⊗p(ad
2k(−ia1 + a2)) +C1

∑

1≤l1,...,lm<k∑m
i=1 li=k

1

m!

m
∏

i=1

bli
2li

trC⊗p(ad
2li(−ia1 + a2)) +

+ C2

∑

0<l<k,
1≤l1,...,lm<k
l+

∑m
i=1

li=k

bl
m!

trC⊗p(ad
2(a1 + ia2) ◦ ad2l−2(−ia1 + a2))

m
∏

i=1

bli
2li

trC⊗p(ad
2li(−ia1 + a2)) +

+ C2bktrC⊗p(ad
2(a1 + ia2) ◦ ad2k−2(−ia1 + a2)).

By the induction hypothesis,

trC⊗p(ad
2li(−ia1 + a2)) = (−1)litrC⊗p(ad

2li(a1 + ia2)) = 0

if li < k. For this reason,

0 = C1
bk
2k

trC⊗p(ad
2k(−ia1 + a2)) + C2bktrC⊗p(ad

2(a1 + ia2) ◦ ad2k−2(−ia1 + a2))

= (−1)k
(

C1

2k
−C2

)

bktrC⊗p(ad
2k(a1 + ia2)).

The last equation completes the proof of the lemma as bk is negative, and by Proposition 2, we have

C1

C2
=

Γ(k + 1
2 )Γ(

1
2)

Γ(k − 1
2 )Γ(

3
2)

= 2k − 1 6= 2k. �

Lemma 5. Let (g, s) be an orthogonal symmetric Lie algebra of compact or non-compact type, g = k⊕p be the

Cartan decomposition of g. Then if a1,a2 ∈ p are two commuting elements such that trC⊗p(ad
2k(a1+ia2)) =

0 for all positive integers k, then a1 = a2 = 0.

Proof. By duality, orthogonal symmetric Lie algebras of compact and non-compact type occur in dual pairs.
If (g, s) is an orthogonal symmetric Lie algebra, then its dual is (g∗, s∗), where g∗ = k ⊕ ip < C ⊗ g and
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s∗|k = id|k, s∗|ip = −id|
ip. If a1,a2 are two commuting elements in p, then ia1, ia2 are two commuting

elements in ip, and trC⊗p(ad
2k(a1 + ia2)) = (−1)ktrC⊗ip(ad

2k((ia1) + i(ia2))). Thus, the lemma is true for
(g, s) if and only if it is true for its dual. Consequently, we may assume that (g, s) is of non-compact type.

Let a < p be a maximal abelian Lie subalgebra in p containing the vectors a1 and a2. We construct the
Iwasawa decomposition of g as it is described in [23, ch. VI, §3 ]. First we extend a to a maximal abelian
subalgebra h of g. The Lie algebra h decomposes as h = b ⊕ a, where b = h ∩ k. The complexification
hC = C⊗ h of h is a Cartan subalgebra of the complex semisimple Lie algebra gC = C⊗ g. Denote by ∆ the
root system of gC with respect to hC, and let

gC = hC ⊕
⊕

λ∈∆

gλ

be the root space decomposition of gC.

The roots are real valued on hR = ib⊕ a, so ∆ can be embedded into the dual space of the real linear space
hR. Select compatible orderings of the dual spaces of a and hR, this way we get an ordering of ∆. Let ∆+

denote the set of positive roots. Denote by ∆p the set of roots that do not vanish identically on a, and put
∆+

p = ∆p ∩∆+. Then the complex nilpotent Lie algebra nC =
⊕

λ∈∆+
p
gλ is the complexification of the real

nilpotent Lie algebra n = nC ∩ g, and g = k⊕ a⊕ n. This is the Iwasawa decomposition.

If a ∈ C⊗a, then C⊗ k is an ad2(a)-invariant subspace, and both C⊗p and C⊗ (a⊕n) are ad2(a)-invariant
complementary subspaces to it. Thus, we have

trC⊗p(ad
2k(a)) = trC⊗(a⊕n)(ad

2k(a)).

The subspaces C ⊗ a and nC are even ad(a)-invariant. The eigenvalues of the restriction of ad(a) onto nC
are the numbers λ(a) for λ ∈ ∆+

p , the restriction of ad(a) onto C⊗ a is zero. From this, we obtain

trC⊗(a⊕n)(ad
2k(a)) =

∑

λ∈∆+
p

λ2k(a) =
1

2

∑

λ∈∆p

λ2k(a) =
1

2

∑

λ∈∆

λ2k(a).

Applying this formula for a = a1 + ia2, we obtain that
∑

λ∈∆ λ2k(a1 + ia2) = 0 for all positive integers k.
This implies that λ(a1 + ia2) = 0 for all roots λ ∈ ∆. As λ(a1) and λ(a2) are real numbers, we conclude
that λ(a1) = λ(a2) = 0 for all roots λ. Since ∆ spans the dual space of the Cartan subalgebra hC, this
implies a1 = a2 = 0. �

By Lemma 4, we can apply Lemma 5 to the linearly independent basis vectors a1 and a2 of a. However,
Lemma 5 implies a1 = a2 = 0, a contradiction.

Since every locally symmetric space is locally isometric to a symmetric space, the following corollary is
straightforward.

Corollary 1. A locally symmetric space has the tube property if and only if it is flat or has rank one.
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