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THE UNIQUENESS PROBLEM OF DG-LIFTS AND

FOURIER-MUKAI KERNELS

FRANCESCO GENOVESE

Dipartimento di Matematica “F. Casorati”, Università di Pavia,
Via Ferrata 5, 27100 Pavia (PV), Italy

Abstract. We address the uniqueness problem of dg-lifts of exact functors between
triangulated categories, and its relationship with the uniqueness problem of Fourier-
Mukai kernels. We prove a positive result under a vanishing hypothesis on the functors,
employing A∞-categorical techniques.

1. Introduction

Triangulated categories are nowadays a classical topic in mathematics, with many
applications in geometry and algebra. In particular, they arise in algebraic geometry
as derived categories of (quasi-)coherent sheaves on schemes. Their serious technical
drawbacks (in particular, the non functoriality of cones) suggest that they are actually
“shadows” of more complicated, higher categorical structures. A popular way to en-
hance the understanding of triangulated categories is to employ differential graded (dg-)
categories, namely, categories enriched in complexes of modules over a ground field k

(more in general, k can be taken as a commutative ring). A (dg-)enhancement of a
triangulated category T is a pretriangulated dg-category A such that H0(A) is equiv-
alent to T; with the term pretriangulated dg-category we mean a dg-category which,
roughly speaking, contains shifts and functorial cones up to homotopy equivalence. If
A is a pretriangulated dg-category, then its zeroth cohomology H0(A) has a natural
structure of triangulated category; a dg-functor F : A → B (which is simply a functor
of enriched categories) induces an exact functor H0(F ) : H0(A) → H0(B). Unfortu-
nately, dg-functors do not retain the homotopical structure of dg-categories; so, we must
consider more complicated – homotopy relevant – replacements, namely, quasi-functors.
They can be described concretely as right quasi-representable bimodules (see Proposition
2.8) or as A∞-functors (see Proposition 4.9).

Quasi-functors A→ B form a dg-category (defined up to quasi-equivalence), which is
denoted by RHom(A, B). They yield ordinary functors by taking cohomology, namely,
there is a functor:

H0 = ΦA→B : H0(RHom(A, B))→ Fun(H0(A), H0(B)). (1.1)
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If A and B are pretriangulated, then ΦA→B is viewed as taking values in the category
of exact functors Funex(H0(A), H0(B)). By definition, a dg-lift of an exact functor
F : H0(A) → H0(B) is a quasi-functor F : A → B such that H0(F ) ∼= F . The unique-
ness problem of dg-lifts, which is the main topic of the work, amounts to studying
whether, given quasi-functors F, G : A→ B, H0(F ) ∼= H0(G) implies that F ∼= G. The
relevance of this problem lies in the fact that, in the geometric cases, it is essentially
equivalent to the uniqueness problem of Fourier-Mukai kernels. Let us make this claim
precise.

Let X be a quasi-compact and quasi-separated scheme (over k). We denote by
D(QCoh(X)) the derived category of quasi-coherent sheaves on X. The subcategory
of compact objects of D(QCoh(X)) coincides with the category of perfect complexes
Perf(X) . Given two schemes X and Y , there is a functor:

ΦX→Y
− : D(QCoh(X × Y ))→ Funex(Perf(X),D(QCoh(Y ))), (1.2)

which maps a complex E ∈ D(QCoh(X × Y )) to its Fourier-Mukai functor

ΦX→Y
E = ΦE : Perf(X)→ D(QCoh(Y )),

which is defined by:
ΦE(−) = R(p2)∗(E ⊗L p∗

1(−)),

where p1 : X × Y → X and p2 : X × Y → Y are the natural projections. If an exact
functor F : Perf(X) → D(QCoh(Y )) is such that F ∼= ΦE , we say thay E is a Fourier-
Mukai kernel of F . Current research is devoted to investigating the properties of ΦX→Y

−

(see [CS12a] for a survey); for instance, the uniqueness problem of Fourier-Mukai kernels
amounts to studying if ΦX→Y

E
∼= ΦX→Y

E ′ implies E ∼= E ′. In general, we know that this
is false: we can find counterexamples when X = Y is an elliptic curve (see [CS12b]).
However, we do obtain a positive answer in some particular cases: for instance, it is
known that fully faithful functors F : Perf(X)→ D(QCoh Y ) admit uniquely determined
Fourier-Mukai kernels, when X and Y are smooth projective (see [Orl97, Theorem 2.2]
for the original formulation).

Now, let us see how this is related to dg-categories and quasi-functors. If X is a
scheme (over k), then the derived category D(QCoh(X)) has an enhancement, which we
call Ddg(QCoh(X)), choosing it once and for all and identifying H0(Ddg(QCoh(X))) =
D(QCoh(X)). Taking the dg-subcategory of Ddg(QCoh(X)) whose objects correspond
to Perf(X), we find an enhancement Perfdg(X) of the category of perfect complexes. A
remarkable theorem by B. Toën tells us that, under suitable hypotheses, every quasi-
functor has a unique Fourier-Mukai kernel, in the following sense:

Theorem 1.1 (Adapted from [Toë07, Theorem 8.9]). Let X and Y be quasi-compact
and separated schemes over k. Then, there is an isomorphism in Hqe:

Ddg(QCoh(X × Y ))
∼
−→ RHom(Perfdg(X),Ddg(QCoh(Y )). (1.3)

Next, a result adapted from [LS14, Theorem 1.1] gives the desired “bridge” between
Fourier-Mukai functors and quasi-functors between dg-categories:

Theorem 1.2. Let X and Y be Noetherian separatedproblem is unsolved, even if some
partial results have been obtained. For instance, schemes over k such that X × Y is
Noetherian and the following condition holds for both X and Y : any perfect complex is
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isomorphic to a strictly perfect complex (i. e. a bounded complex of vector bundles).
Then, there is a commutative diagram (up to isomorphism):

D(QCoh(X × Y ))
∼

//

ΦX→Y
− ++❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

H0(RHom(Perfdg(X),Ddg(QCoh(Y )))

Φ
Perfdg(X)→Ddg(QCoh(Y ))

��

Funex(Perf(X),D(QCoh Y )),

(1.4)

where the horizontal equivalence is induced by (1.3).

Remark 1.3. The hypotheses of the above theorem are satisfied if both X and Y are
quasi-projective.

The above result tells us that, under suitable hypotheses, the properties of ΦX→Y
−

are directly translated to those of ΦPerfdg(X)→Ddg(QCoh(Y )). In particular, the dg-lift
uniqueness problem for functors Perf(X) → D(QCoh(Y )) (with the above chosen dg-
enhancements) is equivalent to the uniqueness problem of Fourier-Mukai kernels.

Next, we state the main theorem of the work, which is purely algebraic. Its proof em-
ploys the description of quasi-functors by means of A∞-functors; even if it involves some
rather intricate computations with the A∞ formalism, it is not conceptually difficult.

Theorem 1.4 (Theorem 4.14). Let A and B be triangulated dg-categories. Assume that
A is the triangulated hull (see Subsection 2.4) of a k-linear category E. Moreover, let
F, G : A→ B be quasi-functors satisfying the following vanishing condition:

Hj(B(F (E), F (E′))) ∼= 0,

for all j < 0, for all E, E′ ∈ E. Then, H0(F|E) ∼= H0(G|E) implies F ∼= G.

From this theorem, we obtain a result giving uniqueness of dg-lifts in the case where
the source dg-category is an enhancement of the subcategory of compact objects in a
suitable Verdier quotient of the derived category of a k-linear category (see Theorem
5.5). This applies in particular to Perf(X), when X is a quasi-projective scheme; from
this we obtain the following geometric application:

Theorem 1.5 (Theorem 5.7). Let X and Y be schemes satisfying the hypotheses of
Theorem 1.2, with X quasi-projective. Let E , E ′ ∈ D(QCoh(X × Y )) be such that

ΦX→Y
E

∼= ΦX→Y
E ′

∼= F : Perf(X)→ D(QCoh(Y )),

and Hom(F (OX(n)), F (OX (m))[j]) = 0 for all j < 0, for all n, m ∈ Z. Then E ∼= E ′.

The above result is an improvement of [CS07, Theorem 1.1], clearly only regarding
the uniqueness problem and the non-twisted case: our result holds not only for smooth
projective varieties, and with a hypothesis which is weaker than the one in the mentioned
article, which is:

Hom(F (F), F (G)[j]) = 0,

for all F ,G ∈ Coh(X). It is also an improvement of [CS14, Remark 5.7], which holds for
fully faithful functors.
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2. Dg-categories and quasi-functors

This section contains the basic well-known facts about dg-categories; we refer to
[Kel06] for a comprehensive survey. We fix, once and for all, a ground field k. Virtually
every category we shall encounter will be at least k-linear, so we allow ourself some
sloppiness, and often employ the terms “category” and “functor” meaning “k-category”
and “k-functor”.

2.1. Dg-categories and dg-functors. A dg-category is a category enriched over the
closed symmetric monoidal category C(k) of cochain complexes of k-modules:

Definition 2.1. A differential graded (dg-) category A consists of a set of objects Ob A,
a hom-complex A(A, B) for any couple of objects A, B, and (unital, associative) com-
position chain maps of complexes of k-modules:

A(B, C)⊗A(A, B)→ A(A, C),

g ⊗ f 7→ gf = g ◦ f

Definition 2.2. Let A and B be dg-categories. A dg-functor F consists of the following
data:

• a function F : Ob A→ Ob B;
• for any couple of objects (A, B) of A, a chain map

F = F(A,B) : A(A, B)→ B(F (A), F (B)),

subject to the usual associativity and unitality axioms.

Example 2.3. An example of dg-category is given by the dg-category of complexes Cdg(k):
it has the same objects as C(k), and complexes of morphisms Hom(V, W ) given by:

Hom(V, W )n =
∏

i∈Z

Hom(V i, W i+k),

df = dW ◦ f − (−1)|f |f ◦ dV .

(2.1)

Remark 2.4. All usual categorical constructions can be carried out for dg-categories and
dg-functors.

(1) Any ordinary (k-linear) category can be viewed as a dg-category, with trivial
complexes of morphisms.

(2) For any dg-category A there is the opposite dg-category Aop, such that

Aop(A, B) = A(B, A),

with the same compositions as in A up to a sign:

fopgop = (−1)|f ||g|(gf)op,

denoting by fop ∈ Aop(B, A) the corresponding morphism of f ∈ A(A, B).
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(3) Given dg-categories A and B, there is the tensor product A⊗B: its objects are
couples (A, B) where A ∈ A and B ∈ B; its hom-complexes are given by

(A⊗B)((A, B), (A′, B′)) = A(A, A′)⊗B(B, B′).

Compositions of two morphisms f ⊗ g and f ′ ⊗ g′ is given by:

(f ′ ⊗ g′)(f ⊗ g) = (−1)|g′||f |f ′f ⊗ g′g.

The tensor product commutes with taking opposites: (A⊗B)op = Aop ⊗Bop.
Also, it is symmetric, namely, there is an isomorphism of dg-categories: A⊗B ∼=
B⊗A.

(4) Given dg-categories A and B, there is a dg-category Fundg(A, B) whose objects
are dg-functors A → B and whose complexes of morphisms are the so-called
dg-natural transformations: A dg-natural transformation ϕ : F → G of degree p
is a collection of degree p morphisms

ϕA : F (A)→ G(A),

for all A ∈ A, such that for any degree q morphism f ∈ A(A, A′) the following

diagram is commutative up to the sign (−1)|p||q|:

F (A)
ϕA

//

F (f)
��

G(A)

G(f)
��

F (A′)
ϕA′

// G(A′).

Differentials and compositions of dg-natural transformations are defined object-
wise.

There is a natural isomorphism of dg-categories:

Fundg(A⊗B, C) ∼= Fundg(A, Fundg(B, C)). (2.2)

Dg-functors A ⊗ B → C are called dg-bifunctors, and they are “dg-functors of
two variables A ∈ A and B ∈ B”, separately dg-functorial in both.

(5) Given a dg-category A, a right A-dg-module is a dg-functor Aop → Cdg(k). We
set

Cdg(A) = Fundg(Aop, Cdg(k)).

We have a fully faithful dg-functor

h = hA : A→ Cdg(A),

A 7→ A(−, A),
(2.3)

which is the dg version of the Yoneda embedding.
Given dg-categories A and B, an A-B-dg-bimodule (covariant in A, contravari-

ant in B) is a right B⊗Aop-dg-module, namely, a dg-functor Bop⊗A→ Cdg(k).
By convention, the contravariant variable comes first. By (2.2), such a bimodule
can also be viewed as a dg-functor A→ Cdg(B).
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2.2. The derived category. Small dg-categories and dg-functors form a category,
which is denoted by dgCatk, or simply dgCat when the base ring is clear. The oper-
ations of taking cocycles and cohomology can be extended from complexes of k-modules
to dg-categories and dg-functors:

Definition 2.5. Let A be a dg-category. The underlying category (resp. the homotopy
category) of A is the category Z0(A) (resp. H0(A)) which is defined as follows:

• Ob Z0(A) = Ob H0(A) = Ob A,
• Z0(A)(A, B) = Z0(A(A, B)) (respectively H0(A)(A, B) = H0(A(A, B))), for

all A, B ∈ A,

with natural compositions and identities.

The mappings A 7→ Z0(A) and A 7→ H0(A) are functorial: given a dg-functor
F : A→ B, there are natural induced functors

Z0(F ) : Z0(A)→ Z0(B),

H0(F ) : H0(A)→ H0(B).

Given two objects A, B in a dg-category A, we say that they are dg-isomorphic (resp.
homotopy equivalent), and write A ∼= B (resp. A ≈ B) if they are isomorphic in Z0(A)
(resp. H0(A)).

Let A be a dg-category. The homotopy category of A-modules is defined to be K(A) =
H0(Cdg(A)). A morphism M → N in K(A) is a quasi-isomorphism if M(A)→ N(A) is
a quasi-isomorphism of complexes for all A ∈ A. The derived category of A is defined
to be the localisation of K(A) along quasi-isomorphisms:

D(A) = K(A)[Qis−1].

The Yoneda embedding induces a fully faithful functor:

H0(A) →֒ D(A), (2.4)

which is called the derived Yoneda embedding. The category D(A) is triangulated; as in
the case of the derived category of complexes of k-modules, morphisms T → T ′ in D(A)
are represented by “roofs”

T
≈
←− T ′′ → T ′,

in K(A), where the arrow T ′′ → T is a quasi-isomorphism. Two A-dg-modules T and

T ′ are quasi-isomorphic (T
qis
≈ T ′) if they are isomorphic in D(A), which is equivalent to

saying that there is a “roof” of quasi-isomorphisms:

T
≈
←− T ′′ ≈

−→ T ′. (2.5)

We denote by tria(A) the smallest strictly full triangulated subcategory of D(A) which
contains the image of (2.4). Moreover, we denote by per(A) the idempotent completion
of tria(A), which coincides with the smallest strictly full triangulated subcategory of
D(A) which contains the image of (2.4) and it is thick, i.e. closed under direct summands;
it can also be characterised as the subcategory of compact objects in D(A). The derived
Yoneda embedding factors through tria(A):

H0(A) →֒ tria(A) →֒ per(A). (2.6)
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Definition 2.6. A dg-category A is pretriangulated if H0(A) →֒ tria(A) is an equiva-
lence; it is triangulated if H0(A) →֒ per(A) is an equivalence.

We remark that a pretriangulated dg-category A is triangulated if and only if H0(A)
is idempotent complete.

Pretriangulated dg-categories are employed as higher categorical models for triangu-
lated categories. A dg-enhancement of a triangulated category T is a pretriangulated
dg-category A such that H0(A) is equivalent to T.

2.3. Quasi-functors. The category dgCat carries significant homotopical structure. A
quasi-equivalence is a dg-functor F : A→ B such that the maps

F(A,B) : A(A, B)→ B(F (A), F (B))

are quasi-isomorphisms, and H0(F ) is essentially surjective. Given dg-categories A and

B, we say that they are quasi-equivalent, writing A
qe
≈ B, if there exists a zig-zag of

quasi-equivalences:

A← A1 → . . .← An → B.

Model category theory allows us to understand dg-categories up to quasi-equivalence.
We summarise the main results in the following statement:

Theorem 2.7 ([Tab05], [Toë07]). The category dgCat of small dg-categories has a model
category structure whose weak equivalences are the quasi-equivalences; the localisation
of dgCat along quasi-equivalences is denoted by Hqe. Given dg-categories A and B,
there exists a dg-category RHom(A, B) (which is defined up to isomorphism in Hqe and
depends only on the quasi-equivalence classes of A and B) such that there is a natural
isomorphism in Hqe:

RHom(A⊗B, C) ∼= RHom(A,RHom(B, C)). (2.7)

Objects of RHom(A, B) are called quasi-functors: they are the “homotopy relevant”
functors between dg-categories. Quasi-functors can be described concretely as particular
bimodules:

Proposition 2.8 ([Kel06, Theorem 4.5]). The category H0(RHom(A, B)) is naturally
equivalent to the category qrepr(B⊗Aop) of right quasi-representable A-B-dg-bimodules,
namely, the full subcategory of D(B⊗Aop) of dg-functors T : A→ Cdg(B) such that T (A)
is quasi-isomorphic to a B-module of the form B(−, F (A)), for some F (A) ∈ B, for all
A ∈ A.

2.4. Pretriangulated hulls. Let A be a dg-category. A dg-module X ∈ Cdg(A) is
acyclic if X(A) is an acyclic complex for all A ∈ A. A dg-module M ∈ Cdg(A) is h-
projective if K(A)(M, X) ∼= 0 for any acyclic A-dg-module X. H-projective dg-modules
serve as an enhancement of the derived category:

Proposition 2.9. The full dg-subcategory h-proj(A) ⊂ Cdg(A) of h-projective A-dg-
modules is an enhancement of D(A). Namely, the functor

H0(h-proj(A)) ⊂ K(A)→ D(A)

is an equivalence.
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Taking suitable dg-subcategories of h-proj(A), we obtain enhancements of tria(A) and
per(A), respectively pretr(A) and perdg(A). For instance, perdg(A) is by definition the
full dg-subcategory of h-proj(A) whose objects are the same as per(A). The dg-Yoneda
embedding factors through pretr(A):

A →֒ pretr(A) ⊂ perdg(A). (2.8)

The dg-category perdg(A) is called the triangulated hull of A. It satisfies the following
“homotopy universal property”:

Proposition 2.10 ([Toë07, Theorem 7.2], [CS15, Corollary 4.2]). Let A, B be dg-
categories, and assume that B is triangulated. Then RHom(A, B) is triangulated. More-
over, there is a natural quasi-equivalence:

RHom(perdg(A), B)
∼
−→ RHom(A, B), (2.9)

induced by the Yoneda embedding A →֒ perdg(A).

3. The dg-lift uniqueness problem

Any quasi-functor T : A → B yields an ordinary functor H0(T ) : H0(A) → H0(B).
More precisely, there is a functor:

ΦA→B : H0(RHom(A, B))→ Fun(H0(A), H0(B)). (3.1)

When we identify H0(RHom(A, B) with qrepr(B⊗Aop), ΦA→B is precisely the functor
which maps a bimodule T to its (objectwise) zeroth cohomology H0(T ), which is a
H0(A)-H0(B)-bimodule, namely, a functor

H0(T ) : H0(B)
op
⊗H0(A)→ Mod(k),

or equivalently a functor

H0(T ) : H0(A)→ Fun(H0(B)
op

, Mod(k)),

where Mod(k) is the category of k-modules. Since T is right quasi-representable, then
H0(T ) is right representable, namely

H0(T )(A) ∼= H0(B)(−, F (A)),

for some F (A) ∈ B, for all A ∈ A. Hence, H0(T ) yields a functor H0(A)→ H0(B).
If A and B are pretriangulated, then ΦA→B takes values in the category of exact

functors Funex(H0(A), H0(B)). The dg-lift uniqueness problem amounts to understand-
ing in which cases ΦA→B is essentially injective, that is: given quasi-functors T1, T2 such
that H0(T1) ∼= H0(T2), is it true that T1

∼= T2 in H0(RHom(A, B))? In many situations,
we will be studying dg-functors whose domain dg-category A is (pre)triangulated and

generated by a simpler dg-category, namely, A
qe
≈ perdg(C). In this case, the dg-lift

uniquness problem can be reduced to generators:

Lemma 3.1. Let A and B be triangulated dg-categories, and assume that A
qe
≈ perdg(C)

for some dg-category C. Then, ΦA→B is essentially injective if ΦC→B is such.
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Proof. Without loss of generality, we may identify A = perdg(C). There is a commuta-
tive diagram:

H0(RHom(perdg(C), B))

∼

��

ΦA→B

// Funex(H0(perdg(C)), H0(B))

��

H0(RHom(C, B))
ΦC→B

// Fun(H0(C), H0(B)),

where the left vertical arrow is induced by the Yoneda embedding C →֒ perdg(C), and
the right vertical arrow is induced by its zeroth cohomology: H0(C) →֒ H0(perdg(C)).
By Proposition 2.10, the left vertical arrow is an isomorphism; the claim now follows
from a direct argument. �

We mention another relevant property of ΦA→B:

Proposition 3.2. The functor (3.1) reflects isomorphisms.

Proof. A morphism T → T ′ in H0(RHom(A, B)) = qrepr(A, B) is given by a roof

T
≈
←− T ′′ → T ′

in K(B ⊗ Aop), where the arrow T ′′ → T is a quasi-isomorphism. So, it sufficient
to prove that any morphism of A-B-bimodules ϕ : T → T ′ is a quasi-isomorphism if
H0(ϕ) : H0(T )→ H0(T ′) is an isomorphism. Now, ϕ is a quasi-isomorphism if and only
if ϕA : T (A) → T ′(A) is an isomorphism in D(B) for all A ∈ A, which is equivalent to
requiring that ϕ′

A : B(−, F (A))→ B(−, F ′(A)) is an isomorphism in D(B), where ϕ′
A is

the unique morphism in D(B) such that the following diagram is commutative in D(B):

T (A)
ϕA

//

≈

��

T ′(A)

≈
��

B(−, F (A))
ϕ′

A
// B(−, F ′(A)).

Now, by the derived Yoneda embedding of B, ϕ′
A is a quasi-isomorphism if and only if

ϕ′
A(1F (A)) ∈ B(F (A), F ′(A)) is a homotopy equivalence. This means that [ϕ′

A(1F (A))] =

H0(ϕ′
A)([1F (A)]) is an isomorphism in H0(B), so by the Yoneda embedding of the (or-

dinary) category H0(B) this is equivalent to requiring that

H0(ϕ′
A) : H0(B)(−, F (A)) → H0(B)(−, F ′(A))

is an isomorphism in Fun(H0(B), Mod(k)). Taking H0, the above commutative diagram
becomes:

H0(T )(A)
H0(ϕ)A

//

∼
��

H0(T ′)(A)

∼
��

H0(B)(−, F (A))
H0(ϕ′

A
)
// H0(B)(−, F ′(A)).

By hypothesis, H0(ϕ)A is an isomorphism, so we deduce that H0(ϕ′
A) is an isomorphism

for all A ∈ A; by the above discussion, this implies that ϕA : T (A) → T ′(A) is a quasi-
isomorphism for all A, and we are done. �
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4. Dg-lifts and A∞-functors

A∞-categories and A∞-functors are, respectively, a homotopy coherent incarnation
of dg-categories and dg-functors. A∞-functors are actually a model for quasi-functors;
their advantage over quasi-representable bimodules relies in their “concreteness”: they
are defined by elementary (even if quite complicated) formulae, which can be employed
in rather direct arguments. This formalism will allow us to prove a dg-lift uniqueness
result under some hypothesis on the functors involved

4.1. A∞-categories and functors. The basic notions of the theory of A∞-categories
and functors are taken directly from [Sei08], whose conventions will be followed. We
warn the reader especially about sign conventions, which are possibly the most annoying
feature of the theory. If it feels more comfortable, just assume that char k = 2, at least
at a first reading.

We will be working with strictly unital A∞-categories and functors. The formal defi-
nitions are as follows:

Definition 4.1. A strictly unital A∞-category A consists of a set of objects Ob A, a
graded k-vector space A(X0, X1) for any couple of objects X0, X1 ∈ A, and multilinear
composition maps for any order d ≥ 1:

µd
A : A(Xd−1, Xd)⊗ . . .⊗A(X0, X1)→ A(X0, Xd)[2− d], (4.1)

satisfying the following collection of equations (for all d ≥ 1):

d
∑

m=1

d−m
∑

n=0

(−1)znµd−m+1
A (fd, . . . , fn+m+1, µm

A(fn+m, . . . , fn+1), fn, . . . , f1) = 0, (4.2)

where by definition zn = |f1| + . . . + |fn| − n. Moreover, for any object X ∈ A, there
exists a (necessarily unique) morphism 1X ∈ A(X, X)0 which satisfies:

µ1
A(1X) = 0,

(−1)|f |µ2
A(1X1 , f) = µ2

A(f, 1X0) = f, ∀ f ∈ A(X0, X1),

µd
A(fd−1, . . . , fn+1, 1Xn , fn, . . . , f1) = 0,

∀ d > 2, fk ∈ A(Xk−1, Xk),∀ 0 ≤ n < d.

(4.3)

Unwinding the above definition, we find out that that the map µ1
A is a coboundary

which endows the hom-spaces A(X, Y ) with a structure of chain complex. The compo-
sition µ2

A is not associative, but its deviation from being so is measured by the higher
order maps µd

A.

Definition 4.2. Let A and B be (strictly unital) A∞-categories. An A∞-functor
F : A→ B consists of a map of sets

F 0 : Ob A→ Ob B,

X 7→ F 0(X) = F (X),

and multilinear maps

F d : A(Xd−1, Xd)⊗ . . . ⊗A(X0, X1)→ B(F (X0), F (Xd))[1 − d], (4.4)
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subject to the following equations, for all d ≥ 1:

∑

r≥1

∑

s1+...+sr=d

µr
B(F sr (fd, . . . , fd−sr+1), . . . , F s1(fs1, . . . , f1))

=
d
∑

m=1

d−m
∑

n=0

(−1)znF d−m+1(fd, . . . , fn+m+1, µm
A(fn+m, . . . , fn+1), fn, . . . , f1),

(4.5)

where si ≥ 1 for all i. Moreover, F is required to satisfy the following strict unitality
condition:

F 1(1X) = 1F (X), ∀X ∈ A,

F d(fd−1, . . . , fn+1, 1Xn , fn, . . . , f1) = 0,

∀ d ≥ 2, fk ∈ A(Xk−1, Xk),∀ 0 ≤ n < d.

(4.6)

Given A∞-functors F : A→ B and G : B→ C, their composition G ◦ F is defined as
follows:

(G ◦ F )0 = G0 ◦ F 0,

(G ◦ F )d(fd, . . . , f1)

=
∑

r≥1

∑

s1+...+sr=d

Gr(F sr (fd, . . . , fd−sr+1), . . . , F s1(fs1, . . . , f1)),

(4.7)

whenever d ≥ 1, with si ≥ 1.

Remark 4.3. Any dg-category A can be viewed as an A∞-category, setting

µ1
A(f) = (−1)|f |df,

µ2
A(g, f) = (−1)|f |gf,

µd
A = 0, ∀ d > 2.

As we see, apart from sign twists, a dg-category is an A∞-category whose higher com-
positions (for d > 2) vanish. From now on, unless otherwise specified, any dg-category
will be implicitly viewed in this way as an A∞-category.

It is interesting to see how the definition of A∞-functor behaves if the domain and
codomain are assumed to be dg-categories. If F : A → B is an A∞-functor between
dg-categories, the degree d equation (4.5) boils down to:

µ1
B(F d(fd, . . . , f1)) +

d−1
∑

j=1

µ2
B(F j(fd, . . . , fd−j+1), F d−j(fd−j , . . . , f1))

=
d−1
∑

n=0

(−1)znF d(fd, . . . , fn+2, µ1
A(fn+1), fn, . . . , f1)

+
d−2
∑

n=0

(−1)znF d−1(fd, . . . , fn+3, µ2
A(fn+2, fn+1), fn, . . . , f1).

(4.8)
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In the even simpler case when F : E→ B is an A∞-functor where E is a k-linear category
and B is a dg-category, the degree d equation defining F then reduces to the following:

µ1
B(F d(fd, . . . , f1)) +

d−1
∑

j=1

µ2
B(F j(fd, . . . , fd−j+1), F d−j(fd−j , . . . , f1))

=
d−2
∑

n=0

(−1)znF d−1(fd, . . . fn+3, µ2
E(fn+2, fn+1), fn, . . . , f1).

(4.9)

It is also interesting to see what is the composition of an A∞-functor F : A → B

(between dg-categories) with a dg-functor G : B → C. Such a dg-functor, viewed as an
A∞-functor, is characterised by having Gd = 0 for all d > 1. Formula (4.7) becomes
very simple:

(G ◦ F )d(fd, . . . , f1) = G1(F d(fd, . . . , f1)), (4.10)

for all d ≥ 1.

Given A∞-categories A and B, there is an A∞-category Fun∞(A, B) of (strictly uni-
tal) A∞-functors. Its definition involves describing (A∞-)natural transformations of
A∞-functors.

Definition 4.4. Let F, G : A→ B be A∞-functors. A degree g pre-natural transforma-
tion h : F → G is consists of a sequence of maps (h0, h1, . . .) such that

h0 : X 7→ h0
X ∈ B(F (X), G(X))g , X ∈ A,

and hd is a family of multilinear maps

hd : A(Xd−1, Xd)⊗ . . .⊗A(X0, X1)→ B(F (X0), G(Xd))[g − d]

for any family of objects X0, . . . , Xd ∈ A. Pre-natural transformations F → G form the
graded vector space Fun∞(A, B)(F, G). Compositions are described in [Sei08, Paragraph
(1d)]. For example, we have that

µ1(h)0
X = µ1

B(h0
X), ∀X ∈ A.

Moreover, we require the strict unitality condition:

hd(fd−1, . . . , fn+1, 1Xn , fn, . . . , f1) = 0, (4.11)

for all d ≥ 1 and 0 ≤ n < d, with fk ∈ A(Xk−1, Xk).

Remark 4.5. It is worth writing down the coboundary formula for a pre-natural trans-
formation h : F → G when F, G : A → B are A∞-functors between dg-categories. If
d ≥ 1, we have:

µ1(h)d(fd, . . . , f1) = Ad −Bd, (4.12)
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where

Ad =µ1
B(hd(fd, . . . , f1))

+ µ2
B(Gd(fd, . . . , f1), hX0) + (−1)zd(|h|−1)µ2

B(hXd
, F d(fd, . . . , f1))

+
d−1
∑

j=1

µ2
B(Gj(fd, . . . , fd−j+1), hd−j(fd−j , . . . , f1))

+
d−1
∑

j=1

(−1)zd−j(|h|−1)µ2
B(hj(fd, . . . , fd−j+1), F d−k(fd−j , . . . , f1)),

(4.13)

and

Bd =
d−1
∑

n=0

(−1)zn+|h|−1hd(fd, . . . , fn+2, µ1
A(fn+1), fn, . . . , f1)

+
d−2
∑

n=0

(−1)zn+|h|−1hd−1(fd, . . . , fn+3, µ2
A(fn+2, fn+1), fn, . . . , f1),

(4.14)

given composable morphisms f1, . . . , fd with first source X0 and final target Xd. Notice
that the term Bd is similar to the right hand side of (4.8).

4.2. Natural transformations. Closed degree 0 pre-natural transformations of A∞-
functors are properly called natural transformations. We are going to describe a useful
characterisation of them; we start with a definition in the dg-setting:

Definition 4.6. Let A be a dg-category (here, not viewed as an A∞-category). The
dg-category of (homotopy coherent) morphisms Mor A is defined as follows. Objects are
triples (A, B, f), where f ∈ Z0(A(A, B)). A degree n morphism (A, B, f)→ (A′, B′, f ′)
is given by a lower triangular matrix

(u, v, h) =

(

u 0
h v

)

,

where u ∈ A(A, A′)n, v ∈ A(B, B′)n and h ∈ A(A, B)n−1. Compositions are defined by
matrix multiplication with a sign rule:

(

u′ 0
h′ v′

)(

u 0
h v

)

=

(

u′u 0
(−1)nh′u + v′h v′v

)

,

whenever (u, v, h) has degree n. The differential of a morphism (u, v, h) : (A, B, f) →
(A′, B′, f ′) of degree n is defined by

d

(

u 0
h v

)

=

(

du 0
dh + (−1)n(f ′u− vf) dv

)

.

There are obvious “source” and “target” dg-functors:

S : Mor A→ A, (A, B, f) 7→ A, (u, v, h) 7→ u,

T : Mor A→ A, (A, B, f) 7→ B, (u, v, h) 7→ v.

Notice that the chosen sign conventions in the definition of Mor A allow to define S and
T in the simplest way, without any sign twist.
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We remark that there is a natural functor

H0(Mor A)→ Mor H0(A),

(A, B, f) 7→ (A, B, [f ]),

[(u, v, h)] 7→ ([u], [v]),

(4.15)

where Mor H0(A) denotes the ordinary category of morphisms of H0(A).

Example 4.7. Let A be a dg-category, now viewed as an A∞-category. Let us write
down what happens when we view the dg-category of homotopy coherent morphisms
Q = Mor A as an A∞-category. First:

µ1
Q

(

u 0
h v

)

= (−1)|u|

(

du 0

dh + (−1)|u|(f ′u− vf) dv

)

= (−1)|u|

(

(−1)|u|µ1
A(u) 0

(−1)|u|−1µ1
A(h) + (−1)|u|((−1)|u|µ2

A(f ′, u)− µ2
A(v, f)) (−1)|u|µ1

A(v)

)

=

(

µ1
A(u) 0

−µ1
A(h) + (−1)|u|µ2

A(f ′, u)− µ2
A(v, f) µ1

A(v)

)

.

Moreover:

µ2
Q

((

u′ 0
h′ v′

)

,

(

u 0
h v

))

=

(

(−1)|u|u′u 0

(−1)|u|((−1)|u|h′u + v′h) (−1)|u|v′v

)

=

(

µ2
A(u′, u) 0

(−1)|u|µ2
A(h′, u)− µ2

A(v′, h) µ2
A(v′, v)

)

.

Natural transformations of A∞-functors can now be characterised as “directed homo-
topies”, in the sense explained by the following lemma.

Lemma 4.8. Let A, B be dg-categories. Let F, G : A→ B be A∞-functors. There is a
bijection between the set of (closed, degree 0) natural transformations F → G and the
set of A∞-functors ϕ : A→ Mor B such that Sϕ = F and T ϕ = G:

ϕd = (F d, Gd, hd)↔ hd. (4.16)

Proof. Let ϕ : A → Mor B an A∞-functor as in the hypothesis. In particular, for any
string of composable maps f1, . . . , fd with first source X0 and final target Xd, we have

ϕd(fd, . . . , f1) = (F d(fd, . . . , f1), Gd(fd, . . . , f1), hd(fd, . . . , f1))

as a morphism (F (X0), G(X0), hX0) → (F (Xd), G(Xd), hXd
). Notice that F d(. . .) and

Gd(. . .) have degree |f1|+ . . . + |fd|+ 1− d, that is, zd + 1, whereas hd(. . .) has degree
zd. Now, we unwind the equation (4.8) which defines ϕ. By Example 4.7, we have

µ1(ϕd) = (µ1
B(F d), µ1

B(Gd),−µ1
B(hd) + (−1)zd+1µ2

B(hXd
, F d)− µ2

B(Gd, hX0)).
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Moreover:

µ2(ϕj(fd, . . . , fd−j+1), ϕd−j(fd−j , . . . , f1))

= µ2((F j , Gj , hj), (F d−j , Gd−j , hd−j))

= (µ2
B(F j, F d−j), µ2

B(Gj , Gd−j), (−1)zd−j+1µ2
B(hj , F d−j)− µ2

B(Gj , hd−j)).

Now, we find out that the left hand side of (4.8), projected to the third component, is
equal to the following:

−µ1
B(hd(fd, . . . , f1))− µ2

B(Gd(fd, . . . , f1), hX0)− (−1)zdµ2
B(hXd

, F d(fd, . . . , f1))

−
d−1
∑

j=1

µ2
B(Gj(fd, . . . , fd−j+1), hd−j(fd−j, . . . , f1))

−
d−1
∑

j=1

(−1)zd−j µ2
B(hj(fd, . . . , fd−j+1), F d−j(fd−j , . . . , f1)).

We immediately notice that the above term is equal to −Ad when |h| = 0 (see (4.13)).
Moreover, the right hand side of (4.8), projected to the third component, is equal to −Bd

when |h| = 0 (see (4.14)). Now, it is clear that any A∞-functor ϕ : A → Mor B such
that Sϕ = F and T ϕ = G defines a closed degree 0 natural transformation h : F → G,
taking the projection of ϕ to the third component; conversely, given h : F → G closed
and of degree 0, setting

ϕd = (F d, Gd, hd)

we obtain an A∞-functor with the desired properties. Clearly, these mappings are mu-
tually inverse. Moreover, the scrict unitality condition (4.6) for ϕ is clearly equivalent
to the strict unitality condition (4.11) for h. �

If A and B are dg-categories, then so is Fun∞(A, B). Actually, this is an incarnation
of RHom(A, B), as mentioned in [Kel06, Paragraph 4.3]:

Proposition 4.9. The dg-category RHom(A, B) can be identified with the dg- category
Fun∞(A, B) of strictly unital A∞-functors from A to B.

The functor ΦA→B has clearly an incarnation in this setting:

ΦA→B : H0(Fun∞(A, B))→ Fun(H0(A), H0(B)),

F 7→ H0(F ), H0(F )(f) = [F 1(f)],

[h]µ1 7→ H0(h), H0(h)X = [h0
X ],

(4.17)

where here [·]µ1 denotes the cohomology class with respect of the coboundary µ1 of
Fun∞(A, B)(F, G). Recalling Lemma 4.8, the action of the above functor on morphisms
can also be viewed in terms of directed homotopies. Given ϕ : A → Mor B such that
Sϕ = F and T ϕ = G, we may identify H0(ϕ) to the ordinary functor

H0(A)→ Mor(H0(B))

obtained by the following composition:

H0(A)→ H0(Mor B)
(4.15)
−−−→ Mor(H0(B)).
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4.3. Uniqueness of dg-lifts. The goal of this section is to prove a dg-lift uniqueness
result using the formalism and techniques of A∞-functors. We will need the following
(simplified) obstruction theory result, which can be proved with a direct computation.
The analogue (general) result is proved for A∞-algebras in [LH03, Corollaire B.1.5].

Lemma 4.10. Let E be a k-linear category, let B be a dg-category, and let n ≥ 2 be an
integer. Suppose that we have a finite sequence (F 0, F 1, . . . , F n−1), where F 0 : ObE→
Ob B, X 7→ F (X) = F 0(X) and

F d : E(Xd−1, Xd)⊗ . . . ⊗ E(X0, X1)→ B(F (X0), F (Xd))[1 − d],

is a multilinear map, for all d = 1, . . . , n − 1. Assume that (4.9) is satisfied for all
d = 1, . . . , n− 1. Then, the expression

n−2
∑

j=0

(−1)zj F n−1(fn, . . . fj+3, µ2
E(fj+2, fj+1), fj , . . . , f1)

−
n−1
∑

j=1

µ2
B(F j(fn, . . . , fn−j+1), F n−j(fn−j, . . . , f1))

is a µ1
B-cocycle, for any chain of composable maps f1, . . . , fn.

Another key tool in our argument is the following lemma, which we first prove in the
dg-framework, and then reinterpret with the A∞ notations:

Lemma 4.11. Let A be a dg-category, here not viewed as an A∞-category. Let (A, B, f)
and (A′, B′, f ′) be objects of Mor A, and let n ∈ Z such that

Hn−1(A(A, B′)) ∼= 0.

Next, assume we are given a closed degree n morphism (u, v, h) : (A, B, f)→ (A′, B′, f ′).
Then, if u = dũ and v = dṽ, there exists h̃ : A→ B′ such that

(u, v, h) = d(ũ, ṽ, h̃).

Proof. By hypothesis we have d(u, v, h) = 0, in particular

dh + (−1)n(f ′u− vf) = 0.

Now, f ′u = d(f ′ũ) and vf = d(ṽf), and so

d(h + (−1)n(f ′ũ− ṽf)) = 0

In other words, h + (−1)n(f ′ũ − ṽf) is a (n − 1)-cocycle. Hence, by hypothesis, it is a
(n− 1)-coboundary:

h + (−1)n(f ′ũ− ṽf) = dh̃.

Finally, we compute:

d

(

ũ 0

h̃ ṽ

)

=

(

u 0
h + (−1)n(f ′ũ− ṽf) + (−1)n−1(f ′ũ− ṽf) v

)

=

(

u 0
h v

)

. �
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Lemma 4.12. Let A be a dg-category, now viewed as an A∞-category. Let (A, B, f)
and (A′, B′, f ′) be objects in Q = Mor A (viewed as an A∞-category), and let n ∈ Z

such that
Hn−1(A(A, B′)) = 0.

Next, assume that we are given a degree n morphism (u, v, h) : (A, B, f) → (A′, B′, f ′)
such that µ1

Q(u, v, h) = 0. Then, if u = µ1
A(ũ) and v = µ1

A(ṽ), there exists h̃ : A → B′

such that
(u, v, h) = µ1

Q(ũ, ṽ, h̃).

Proof. Recall Example 4.7. u = µ1
A(ũ) means (−1)n−1u = dũ, and (−1)n−1v = dṽ.

Apply Lemma 4.11 to (−1)n−1(u, v, h):

(−1)n−1(u, v, h) = d(ũ, ṽ, h̃) = (−1)n−1µ1
Q(ũ, ṽ, h̃),

and the claim follows. �

We are going to prove the following claim, which is actually a lifting result of natural
transformations:

Proposition 4.13. Let E be a k-linear category, viewed as a dg-category concentrated
in degree 0, and let B be a dg-category. Let F, G : E→ B be quasi-functors, such that

Hj(B(F (E), G(E′))) = 0, (4.18)

for all j < 0 and for all E, E′ ∈ E. Let ϕ : H0(F )→ H0(G) be a natural transformation.
Then, there exists a morphism ϕ : F → G in H0(RHom(E, B)) such that H0(ϕ) = ϕ.

We obtain the following theorem, which is the announced dg-lift uniqueness result:

Theorem 4.14. Let E be a k-linear category, viewed as a dg-category concentrated in
degree 0, and let B be a triangulated dg-category. Let F, G : E → B be quasi-functors,
such that

Hj(B(F (E), F (E′))) ∼= 0, (4.19)

for all j < 0, for all E, E′ ∈ E. Let ϕ : H0(F )→ H0(G) be a natural isomorphism. Then,
there exists an isomorphism ϕ : F → G in H0(RHom(E, B)) such that H0(ϕ) = ϕ.

In particular, set A = perdg(E), and view E as a full dg-subcategory of A; if F, G : A→
B are quasi-functors satisfying (4.19), then H0(F|E) ∼= H0(G|E) implies F ∼= G in

H0(RHom(A, B)).

Proof. Since H0(F ) ∼= H0(G) and B is triangulated, then (4.18) holds. Then, the proof
is a direct application of Proposition 4.13, Proposition 3.2. The second part of the
statement follows from Lemma 3.1. �

Upon identifying RHom(E, B) to Fun∞(E, B), Proposition 4.13 is translated to the
following:

Proposition 4.15. Let E be a k-linear category, viewed as a dg-category concentrated in
degree 0, and let B be a dg-category. Let F, G : E→ B be (strictly unital) A∞-functors,
satisfying

Hj(B(F 0(E), G0(E′))) = 0, (4.20)

for all j < 0, for all E, E′ ∈ E. Assume ϕ : H0(F )→ H0(G) is a natural transformation.
Then, there exists an A∞-natural transformation ϕ : F → G, such that H0(ϕ) = ϕ.
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Proof. In view of Lemma 4.8, we try to define recursively a A∞-functor ϕ : E→ Mor B

such that Sϕ = F, T ϕ = G, and the induced functor

E = H0(E)→ Mor(H0(B))

is equal to ϕ. First, we define a map ϕ0 on objects: for any E ∈ E, we set

ϕ0(E) = (F 0(E), G0(E), ϕE),

where ϕE is a chosen lift of the given map ϕE : F 0(E)→ G0(E). Next, we define ϕ1 on
a given basis (including the identities of all objects) of the space of morphisms. Given
an element f : E0 → E1 of this basis, we set

ϕ1(f) = (F 1(f), G1(f), h1(f)),

where h1(f) is a chosen degree −1 morphism such that

−µ1
B(h1(f)) = µ2

B(G1(f), ϕE0)− µ2
B(ϕE1 , F 1(f)).

h1(f) exists by the hypothesis that ϕ : H0(F ) → H0(G) is a natural transformation.
Moreover, we may choose h1(1E) = 0 for all E ∈ E. By construction, ϕ1(f) is a
closed degree 0 morphism in Q = Mor B (see Example 4.7), as required by (4.9), and
ϕ1(1E) = 1ϕ0(E).

Now, for d ≥ 2, assume that we have defined a sequence of maps (ϕ1, . . . , ϕd−1)
satisfying (4.9) and strict unitality, with

ϕk(fk, . . . , f1) = (F k(fk, . . . , f1), Gk(fk, . . . , f1), hk(fk, . . . , f1)).

Given maps fi : Ei−1 → Ei in our chosen basis for i = 1, . . . , d, by Lemma 4.10 the
expression

d−2
∑

n=0

(−1)znϕd−1(fd, . . . fn+3, µ2
E(fn+2, fn+1), fn, . . . , f1)

−
d−1
∑

j=1

µ2
Q(ϕj(fd, . . . , fd−j+1), ϕd−j(fd−j, . . . , f1))

(4.21)

is a µ1
Q-cocycle (F 0(E0), G0(E0), ϕE0)→ (F 0(Ed), G0(Ed), ϕEd

), of degree 1− (d− 1) =
2− d. Since F and G are A∞-functors, we have that

(4.21) = (µ1
B(F d(fd, . . . , f1), µ1

B(Gd(fd, . . . , f1), · · · ).

Then, the condition (4.20) allows us to apply Lemma 4.12 (with n = 2 − d). We may
choose hd(fd, . . . f1) such that

(4.21) = µ1
Q(F d(fd, . . . , f1), Gd(fd, . . . , f1), hd(fd, . . . , f1)).

So, defining

ϕd(fd, . . . , f1) = (F d(fd, . . . , f1), Gd(fd, . . . , f1), hd(fd, . . . , f1))

we get the correct identity (4.9). Notice that, if one of the fi is an identity morphism,
then expression (4.21) vanishes, so in that case we may choose hd(fd, . . . , f1) = 0, and
hence ϕd(fd, . . . , f1) = 0, which is the strict unitality condition. Finally, our result
follows by recursion. �



THE UNIQUENESS PROBLEM OF DG-LIFTS AND FOURIER-MUKAI KERNELS 19

5. Applications

In this section we describe an application of the above technique which gives unique-
ness results of Fourier-Mukai kernels. The dg-categories of interest in these applications
are enhancements of Verdier quotients of the form D(A)/L, where A is a k-linear cate-
gory and L is a full subcategory of D(A) with suitable hypotheses. More precisely, we
will work in the framework of the following result, whose proof is essentially contained
in [LO10, Section 6, first part].

Lemma 5.1. Let A be a k-linear category, viewed as a dg-category. Let L ⊆ D(A) be a
localising subcategory (namely, strictly full and closed under direct sums), generated by
compact objects Lc = L ∩ D(A)c. There is a canonical functor

ι : A →֒ D(A)c → D(A)c/Lc →֒ (D(A)/L)c, (5.1)

where the composition of the last two maps is the restriction of the quotient functor
D(A) → D(A)/L. The triangulated category (D(A)/L)c is the idempotent completion
of D(A)c/Lc, and it is classically generated by the full subcategory with objects ι(A).
Moreover, if D together with the equivalence

ǫ : (D(A)/L)c → H0(D)

is an enhancement of (D(A)/L)c, then D is quasi-equivalent to perdg(A′), where A
′ is

the full dg-subcategory of D whose object are given by ǫ(ι(A)).

Verdier quotients such as D(A)c/Lc are enhanced by the Drinfeld dg-quotient. We
state its definition and main properties, which we will need in the following; they are
directly taken from [Dri04, 1.6.2].

Definition 5.2. Let A be a dg-category, and let B be a full dg-subcategory of A. A
dg-quotient of A modulo B is a dg-category A/B together with a quasi-functor π : A→
A/B, such that for any dg-category C the induced functor

π∗ : H0(RHom(A/B, C))→ H0(RHom(A, C)) (5.2)

is fully faithful, and its essential image consists of quasi-functors F : A → C such that
H0(F ) maps objects of B to zero objects in H0(C).

Theorem 5.3. Let A be a dg-category, and let B be a full dg-subcategory of A. A dg-
quotient (A/B, π) exists, and it is uniquely determined up to natural quasi-equivalence.
Moreover, if A is pretriangulated and H0(B) is a triangulated subcategory of H0(A),
then (H0(A/B), H0(π)) is a Verdier quotient of H0(A) modulo H0(B):

H0(A)/H0(B)
∼
−→ H0(A/B). (5.3)

Remark 5.4. Assume the framework of Lemma 5.1. We know that the category D(A)c

has perdg(A) as a dg-enhancement. Moreover, taking Lc to be the full dg-subcategory of
perdg(A) whose objects correspond to Lc, we find out that the dg-quotient perdg(A)/Lc

is an enhancement of D(A)c/Lc. Moreover, since (D(A)/L)c can be viewed as the idem-
potent completion of D(A)c/Lc, we find out that the dg-category

perdg(perdg(A)/Lc)
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is an enhancement of (D(A)/L)c. Without loss of generality, we may assume that the
above functor ι is obtained in H0 by the quasi-functor

ι̃ : A →֒ perdg(A)
π
−→ perdg(A)/Lc →֒ perdg(perdg(A)/Lc). (5.4)

Notice that the quasi-functor perdg(A)
π
−→ perdg(A)/Lc is the canonical projection to the

dg-quotient, and the fully faithful dg-functor perdg(A)/Lc →֒ perdg(perdg(A)/Lc) is the
canonical inclusion. They are respectively involved with the universal properties (5.2)
and (2.9).

Now, [LO10, Theorem 2.8] tells us that, under the vanishing hypothesis

(D(A)/L)(ι(A), ι(A′)[j]) ∼= 0, ∀ j < 0, ∀A, A′ ∈ A, (5.5)

the category (D(A)/L)c admits a unique dg-enhancement (up to quasi-equivalence). So,
in that case, we are allowed to identify any such enhancement D, up to quasi-equivalence,
to the dg-category perdg(perdg(A)/Lc).

Now, the abstract result of the previous section allows us to prove the following:

Theorem 5.5. Assume the framework of Lemma 5.1, and assume that (D(A)/L)c has
a unique enhancement. Let D be such an enhancement, and for simplicity identify
H0(D) = (D(A)/L)c. Let F, G : D→ B be quasi-functors taking values in a triangulated
dg-category B, satisfying the vanishing hypothesis:

H0(B)(F (ι(A)), F (ι(A′))[j]) ∼= 0, ∀ j < 0, (5.6)

for all A, A′ ∈ A. Then, if

H0(F ) ◦ ι ∼= H0(G) ◦ ι : A→ B,

we have that F ∼= G as quasi-functors.

Proof. Recalling Remark 5.4, we are allowed to identify D to perdg(perdg(A)/Lc). By
the universal property of perdg(perdg(A)/Lc), we have that F ∼= G if and only if
F|perdg(A)/Lc

∼= G|perdg(A)/Lc . Then, by the universal property of the dg-quotient, this
is equivalent to

F|perdg(A)/Lc ◦ π ∼= G|perdg(A)/Lc ◦ π : perdg(A)→ B.

Finally, by the universal property of perdg(A), this is equivalent to

F ◦ ι̃ ∼= G ◦ ι̃ : A→ B.

Now, recalling that we have identified ι = H0(ι̃), a direct application of Theorem 4.14
gives the desired result. �

The above result has an interesting application. Let X be a quasi-projective scheme,
viewed as open subscheme of a projective scheme X. Then, the derived category
D(QCoh(X)) of quasi-coherent sheaves on X can be described as a quotient D(A)/L.
Namely, take A as the category with objects given by the integers, and

A(i, j) = H0(X,OX(j − i)), (5.7)

with composition induced by that of the graded algebra
⊕

n H0(X,OX(n)). The sub-
category L is taken to be the category of all objects in D(A) whose cohomologies are
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“I-torsion modules” (for details, see [LO10, before Corollary 7.8]). It can be proved that
there is an equivalence D(A)/L ∼= D(QCoh(X)), and also that the natural functor

A →֒ D(A)→ D(A)/L
∼
−→ D(QCoh(X))

maps any integer j ∈ ObA to the sheaf OX(j). Moreover, the subcategory L satisfies
the hypotheses of Lemma 5.1, and in particular the above discussion restricts to compact
objects and perfect complexes. Namely, we have an equivalence (D(A)/L)c ∼= Perf(X)
such that, composed with the functor (5.1), gives:

A
ι
−→ (D(A)/L)c ∼

−→ Perf(X),

j 7→ OX(j).
(5.8)

Now, let Ddg(QCoh(X)) be an enhancement of D(QCoh(X)), and for simplicity iden-
tify this category to H0(Ddg(QCoh(X))). Recall that the full dg-subcategory Perfdg(X)
of Ddg(QCoh(X)) whose objects are the compact objects in D(QCoh(X)) is an en-
hancement of Perf(X); also, recall that these enhancements are uniquely determined,
by [LO10, Corollary 7.8, Theorem 7.9]. Upon identifying (D(A)/L)c to Perf(X) via the
equivalence discussed above, we immediately get the following:

Corollary 5.6. Let X be a quasi-projective scheme, and let B be a triangulated dg-
category. Let F, G : Perfdg(X)→ B be quasi-functors which satisfy the vanishing condi-
tion

H0(B)(F (OX (n)), F (OX (m))[j]) = 0, ∀ j < 0,

for all n, m ∈ Z. Then, if H0(F ) ∼= H0(G), we have that F ∼= G as quasi-functors.

Finally, we apply this machinery to the uniqueness problem of Fourier-Mukai kernels,
as explained in Section 1, hence obtaining the following uniqueness result:

Theorem 5.7. Let X and Y be schemes satisfying the hypotheses of Theorem 1.2, with
X quasi-projective. Let E , E ′ ∈ D(QCoh(X × Y )) be such that

ΦX→Y
E

∼= ΦX→Y
E ′

∼= F : Perf(X)→ D(QCoh(Y )),

and Hom(F (OX(n)), F (OX (m))[j]) = 0 for all j < 0, for all n, m ∈ Z. Then E ∼= E ′.
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