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LOCAL COHOMOLOGY WITH SUPPORT IN IDEALS OF SYMMETRIC MINORS

AND PFAFFIANS

CLAUDIU RAICU AND JERZY WEYMAN

Abstract. We compute the local cohomology modules H•
Y (X,OX) in the case when X is the complex vector

space of n×n symmetric, respectively skew-symmetric matrices, and Y is the closure of the GL-orbit consisting
of matrices of any fixed rank, for the natural action of the general linear group GL on X. We describe the
D-module composition factors of the local cohomology modules, and compute their multiplicities explicitly in
terms of generalized binomial coefficients. One consequence of our work is a formula for the cohomological
dimension of ideals of even minors of a generic symmetric matrix: in the case of odd minors, this was obtained
by Barile in the 90s. Another consequence of our work is that we obtain a description of the decomposition
into irreducible GL-representations of the local cohomology modules (the analogous problem in the case when
X is the vector space of m× n matrices was treated in earlier work of the authors).

1. Introduction

In this paper we consider X to be a vector space of matrices (general, symmetric, or skew-symmetric). We
let Yp denote the subvariety of general or symmetric matrices of rank at most p, or of skew-symmetric matrices
of rank at most 2p. We write DX for the Weyl algebra of differential operators on X, and Dp = L(Yp,X) for
the intersection homology DX-module corresponding to Yp. Our goal is to compute the composition factors
of the local cohomology modules H•

Yp
(X,OX ): we express, in the Grothendieck group of holonomic DX -

modules, the local cohomology modules in terms of the modules Dp. As a corollary, we obtain descriptions
of the local cohomology modules as representations of the general linear group (we will refer to these as the
characters of local cohomology modules). We have already performed the character calculation in the case of
general matrices in [RW14], so here we only formulate the D-module version of the main result of [RW14].

We write Γ(X) for the Grothendieck group of holonomic DX-modules, and let q denote a formal variable.
We write [M] for the class of a DX -module M in Γ(X) and define Hp(q) ∈ Γ(X)[q] via

Hp(q) =
∑

j≥0

[Hj
Yp
(X,OX )] · qj. (1.1)

For nonnegative integers a ≥ b we define the Gauss polynomials (or q-binomial coefficients)
(a
b

)

q
by

(

a

b

)

q

=
(1− qa)(1 − qa−1) · · · (1− qa−b+1)

(1− qb)(1− qb−1) · · · (1− q)
. (1.2)

Main Theorem. With the notation above, we have the following expressions for Hp(q):

• If X = C
m×n is the space of m× n matrices, m ≥ n, then for 0 ≤ p < n

Hp(q) =

p
∑

s=0

[Ds] · q
(n−p)2+(n−s)·(m−n) ·

(

n− s− 1

p− s

)

q2
. (1.3)
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• If X =
∧2

C
n is the space of n× n skew-symmetric matrices and m = ⌊n/2⌋, then for 0 ≤ p < m

Hp(q) =























p
∑

s=0

[Ds] · q
2(m−p)2+(m−p)+2(p−s) ·

(

m− 1− s

p− s

)

q4
if n = 2m+ 1 is odd;

p
∑

s=0

[Ds] · q
2(m−p)2−(m−p) ·

(

m− 1− s

p− s

)

q4
if n = 2m is even.

(1.4)

• If X = Sym2
C
n is the space of n× n symmetric matrices, then for 0 ≤ p < n

Hp(q) =

p
∑

s=0
s≡p (mod 2)

[Ds] · q
1+(n−s+1

2 )−(p−s+2
2 ) ·

(

⌊n−s−1
2 ⌋

p−s
2

)

q−4

. (1.5)

An immediate corollary of the Main Theorem is a formula for the local cohomological dimension of X
along Yp, defined via

lcd(X;Yp) = max{j : Hj
Yp
(X,OX ) 6= 0}.

Using (1.1), lcd(X;Yp) is precisely the highest exponent of q appearing in the polynomial Hp(q). It follows

that for X = C
m×n, lcd(X;Yp) = mn− (p+1)2+1 [BS90], and for X =

∧2
C
n, lcd(X;Yp) =

(

n
2

)

−
(

2p+2
2

)

+1

[Bar95, Thm. 6.1]. In the case when X = Sym2
C
n we get

lcd(X,Yp) =

{

1 +
(n+1

2

)

−
(p+2

2

)

if p is even;

1 +
(n
2

)

−
(p+1

2

)

if p is odd.
(1.6)

The formula (1.6) was known in the case when p is even [Bar95, Thm. 6.3], but it is new in the case when
p < n− 1 is odd, as far as we are aware! We point out that the previously known cohomological dimension
calculations were based on the fact that the top non-vanishing local cohomology module is supported at
Y0 = {0}, in which case it can be determined via a computation of singular cohomology [LSW13, Thm. 3.1].
In contrast, in the case when X = Sym2

C
n and p < n − 1 is odd, the top non-vanishing local cohomology

module H•
Yp
(X,OX ) is the simple D-module D1, which is supported on Y1. Using [Bar95, Thm. 3.1] we

conclude that the case when X = Sym2
C
n and p < n− 1 is odd is also the only one where lcd(X;Yp) differs

from the arithmetic rank of Yp ⊂ X (i.e. from the minimal number of equations required to cut out Yp as an
algebraic subset of X).

The formula (1.3) is a direct consequence of [RW14], as explained in [Rai15, Remark 1.4]: it is included
in the Main Theorem for the sake of completeness, and will not be addressed further. The formulas (1.4–
1.5) give rise to expressions for the characters of the local cohomology modules with support in ideals of
symmetric minors/Pfaffians, as we explain next. We let Zn

dom denote the set of dominant weights λ = (λ1 ≥
· · · ≥ λn) ∈ Z

n, consider the sets

B(s, 2m) = {λ ∈ Z
2m
dom : λ2s ≥ (2s − 1), λ2s+1 ≤ 2s, λ2i−1 = λ2i for all i},

B(s, 2m+ 1) = {λ ∈ Z
2m+1
dom : λ2s+1 = 2s, λ2i−1 = λ2i for i ≤ s, λ2i = λ2i+1 for i > s},

C1(s, n) = {λ ∈ Z
n
dom : λi

(mod 2)
≡ s+ 1 for i = 1, · · · , n, λs ≥ s+ 1 ≥ λs+2},

C2(s, n) =

{

λ ∈ Z
n
dom : λi

(mod 2)
≡

{

s+ 1 for i = 1, · · · , s

s for i = s+ 1, · · · , n
, λs ≥ s+ 1, λs+1 ≤ s

}

,
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and use them to define the GLn(C)-representations (where Sλ denotes the Schur functor associated to λ)

Bs =
⊕

λ∈B(s,n)

SλC
n, s = 0, · · · , ⌊n/2⌋, and C

j
s =

⊕

λ∈Cj(s,n)

SλC
n, s = 0, · · · , n. (1.7)

The following is a direct consequence of Theorems 4.1 and 5.1 in [Rai15]:

Theorem 1.1. If X =
∧2

C
n is the vector space of n × n skew-symmetric matrices then we have the

isomorphisms of GLn(C)-representations

Ds ≃ Bm−s for s = 0, · · · ,m = ⌊n/2⌋.

If X = Sym2
C
n is the vector space of n× n symmetric matrices then we have similarly

Ds ≃

{

C
1
n−s if n− s is odd;

C
2
n−s if n− s is even.

Replacing the D-modules Ds in (1.4) and (1.5) by the corresponding GLn(C)-representations as in The-
orem 1.1, we obtain a description of the characters of local cohomology modules with support in ideals of
symmetric minors/Pfaffians. These formulas give the analogue in the symmetric/skew-symmetric case of
the main result of [RW14]. Note that the special case of (1.4) when n = 2m+1 is odd and p = m− 1 (that
of sub-maximal Pfaffians) recovers [RWW14, Thm. 5.5].

Strategy for proving the Main Theorem. For X the space of symmetric/skew-symmetric matrices, we
let (Fi)i∈I denote the collection of simple GL-equivariant holonomic DX -modules. By [VdB99, Prop. 3.1.2],
the local cohomology modules with determinantal/Pfaffian support have a composition series whose com-
position factors are the modules Fi, each appearing with some (finite) multiplicity. It follows that for fixed
p there exist polynomials Pi ∈ Z[q], and a relation inside Γ(X)[q]

Hp(q) =
∑

i∈I

[Fi] · Pi(q). (1.8)

Using the forgetful map from Γ(X) to the Grothendieck group Γ(GL) of admissible GL-representations,
we can interpret (1.8) as an equality in Γ(GL)[q]. For each i ∈ I, it is possible to choose a witness weight

λ(Fi) ∈ Z
n
dom, with the property that Sλ(Fi)C

n appears as a subrepresentation inside Fj if and only if i = j.
To determine the polynomials Pi(q) it is then sufficient to determine the multiplicity of Sλ(Fi)C

n inside the
local cohomology modules H•

Yp
(X,OX ).

At this point we can apply the strategy from [RW14,Rai14]: we write an appropriate spectral sequence
that computes local cohomology and in addition it is GL-equivariant. The terms of the spectral sequence
are computed using a Grothendieck duality argument and Bott’s Theorem. When restricting the spectral
sequence to the λ(Fi)-isotypic component we notice that there can be no non-zero GL-equivariant maps, i.e.
the restriction of the spectral sequence is degenerate. This allows us to compute the multiplicities of the
witness weights inside the local cohomology modules H•

Yp
(X,OX ), and thus to determine the polynomials

Pi(q). We note that for skew-symmetric matrices the spectral sequence is degenerate even before the restric-
tion to the witness weights, so the approach of [RW14] goes through with little modifications. However, this
is not the case for symmetric matrices: we were not able to write down a degenerate spectral sequence for
computing local cohomology, so the D-module insight is essential in this case. Even for skew-symmetric ma-
trices, the D-module approach offers a simplification of the arguments of [RW14], in that it is not necessary
to compute all the terms in the spectral sequence, but only their isotypic components corresponding to the
witness weights. We encourage the interested reader to apply the D-module/witness weight arguments below
in the case when X is the space of general matrices (1.3), as an alternative to the calculations in [RW14].
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Organization. In Section 2.1 we fix some notation regarding the representation theory of GLn(C), and
describe a useful consequence of Bott’s Theorem for Grassmannians. In Section 2.2 we recall the character
calculations for equivariant D-modules on (skew-)symmetric matrices from [Rai15]. In Section 2.4 we set up
a spectral sequence for computing local cohomology with symmetric determinantal/Pfaffian support, whose
terms are Ext modules computed in Section 2.3 via the Duality Theorem [RWW14, Thm. 3.1]. In Sections 3
and 4 we perform the local cohomology calculation following the strategy outlined above.

2. Preliminaries

2.1. Representation theory and Bott’s Theorem. Given a complex vector space W of dimension
n, we write GL(W ) for its group of invertible linear transformations. The irreducible representations of
GL(W ) are classified by Z

n
dom, the set of dominant weights λ = (λ1 ≥ · · · ≥ λn) ∈ Z

n. We write SλW for
the irreducible corresponding to λ. We write det(W ) =

∧nW for the irreducible SλW corresponding to
λ = (1, · · · , 1) = (1n). The dual weight λ∗ of a weight λ is defined by λ∗

i = −λn+1−i. If we let V = W ∗ be
the dual vector space to W then SλV = Sλ∗W . The size of a weight λ is |λ| = λ1 + · · · + λn. A partition

is a dominant weight whose entries are non-negative integers (we often use underlined roman letters for
partitions, to distinguish them from the arbitrary dominant weights, for which we use greek letters). We let
P(k) denote the set of partitions z = (z1 ≥ · · · ≥ zk ≥ 0) with at most k parts, and whenever necessary we
identify P(k) with a subset of P(k+1). We write P(k, n−k) for the subset of partitions z ∈ P(k) satisfying
z1 ≤ n − k. The conjugate partition to z is denoted by z′, so that P(n − k, k) = {z′ : z ∈ P(k, n − k)}. The
Gauss polynomials defined in (1.2) can be thought of as generating functions for the number of partitions
of any given size in P(a− b, b):

(

a

b

)

q

=
∑

z∈P(a−b,b)

q|z|. (2.1)

It will be useful to note that taking the complement of a Young diagram inside the (a − b) × b rectangle
establishes a bijection from P(a− b, b) to itself, so we can rewrite (2.1) as

(

a

b

)

q

=
∑

z∈P(a−b,b)

q(a−b)·b−|z|. (2.2)

For a partition z ∈ P(k), we write z(2) = (z1, z1, z2, z2, · · · ) ∈ P(2k) for the partition obtained by repeating
the parts of z. We write 2z = (2z1, 2z2, · · · ) ∈ P(k) for the one obtained by doubling the parts of z. By
[Wey03, Prop. 2.3.8], we have the following formulas which will be used throughout the next sections:

Sym(Sym2 V ) =
⊕

z∈P(n)

S2zV, Sym

(

2
∧

V

)

=
⊕

z∈P(⌊n/2⌋)

Sz(2)V. (2.3)

If we write S for Sym(Sym2 V ) (resp. Sym
(

∧2 V
)

) then for any partition z in P(n) (resp. P(⌊n/2⌋)) we

define

Iz = the ideal generated by S2zV (resp. by Sz(2)V ). (2.4)

We define a partial order on the partitions by y ≤ z if and only if yi ≤ zi for all i. It follows from
[Abe80,ADF80] that Iy ⊆ Iz if and only if y ≥ z, or equivalently

Iz =
⊕

y≥z

S2yV when S = Sym(Sym2 V ), and Iz =
⊕

y≥z

Sy(2)V when S = Sym

(

2
∧

V

)

. (2.5)
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Analogous statements hold for general matrices (see [DCEP80]), and this was employed by the authors in
the local cohomology calculations from [RW14].

If U =
⊕

λ(SλW )⊕aλ is a representation of GL(W ), we write

〈SλW,U〉 = aλ (2.6)

for the multiplicity of the irreducible SλW inside U . We call the subrepresentation (SλW )⊕aλ the λ-isotypic
component of U . For a cohomologically Z-graded GL(W )-representation H• =

⊕

j∈ZH
j, and a dominant

weight λ ∈ Z
n
dom, we define a generating function for the multiplicities of the λ-isotypic components of H•:

〈H•, SλW 〉 =
∑

j∈Z

〈

Hj, SλW
〉

· qj. (2.7)

The following consequence of Bott’s Theorem [Wey03, Cor. 4.1.9] will be useful later:

Theorem 2.1. Consider the Grassmannian G = G(k, V ) of k-dimensional quotients of V = W ∗, and let Q
denote the tautological rank k quotient bundle, and R the tautological rank (n− k) sub-bundle.

(a) If α ∈ Z
k
dom and β ∈ P(n − k) is a partition then

〈H•(G,SβR⊗ SαQ),C〉 =

{

q|β| if β ∈ P (n− k, k) and α = (β′)∗;

0 otherwise.

(b) If α ∈ Z
k
dom, n− k ≤ s ≤ n, and β ∈ P(n − k) is a partition with βi ≥ n− s for all i, then

〈

H•(G,SβR⊗ SαQ),
n−s
∧

W

〉

=

{

q|β| if β ∈ P (n− k, k) and α = (β′)∗ + (0s−n+k,−1n−s);

0 otherwise.

Proof. Observe first that it suffices to prove part (b): (a) is the special case when s = n. We write
γ = (γ1, · · · , γn) = (α1, · · · , αk, β1, · · · , βn−k) for the concatenation of α and β, let δ = (n− 1, n− 2, · · · , 0),
and consider γ + δ = (γ1 + n − 1, γ2 + n − 2, · · · , γn). We write γ̃ = sort(γ + δ) for the sequence obtained
by arranging the entries of γ + δ in non-increasing order. If we write l for the number of pairs (x, y) with
1 ≤ x < y ≤ n and γx − x < γy − y, then Bott’s Theorem yields

H•(G,SβR⊗ SαQ) =

{

Sγ̃−δV if γ + δ has distinct entries and • = l;

0 otherwise.
(2.8)

Since
∧n−sW = S(0s,−1n−s)V , in order to prove (b) we need to show the equivalence

γ̃ − δ = (0s,−1n−s) ⇐⇒ β ∈ P (n− k, k) and α = (β′)∗ + (0s−n+k,−1n−s), (2.9)

and moreover if the equivalent conditions above hold, then l = |β|.
Consider a permutation σ of [n] such that

γ̃σ(i) = γi + δi, for i = 1, · · · , n, (2.10)

and note that σ is unique if γ + δ has distinct entries. Since γ1 ≥ · · · ≥ γk and γk+1 ≥ · · · ≥ γn, we get that

σ(1) < · · · < σ(k), and σ(k + 1) < · · · < σ(n).

Such σ corresponds to a unique partition t ∈ P(n− k, k) such that (recalling t′ ∈ P(k, n − k))

σ(i) =

{

t′k+1−i + i for i = 1, · · · , k;

i− ti−k for i = k + 1, · · · , n.
(2.11)
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Note that the condition γx − x < γy − y is equivalent to γ̃σ(x) < γ̃σ(y). If γ + δ has non-repeated entries (i.e.
γ̃ is strictly decreasing), we get that

l = #{(x, y) : x < y, σ(x) > σ(y)} = |t|. (2.12)

We are now ready to prove the equivalence (2.9), under the assumption in the statement of the theorem
that s ≥ n− k and all βi ≥ n− s.

⇐=: The condition βi ≥ n− s for all i implies β′
1 = · · · = β′

n−s = n− k, so

α = (−β′
k, · · · ,−β′

n−s+1,−(n− k)− 1, · · · ,−(n− k)− 1).

If we let k′ = k − (n− s) ≥ 0 then we get

γ + δ = (n − 1− β′
k, · · · , n− k′ − β′

k+1−k′ , n− s− 2, n − s− 3, · · · ,−1, n − k − 1 + β1, · · · , βn−k).

If we take t = β and define σ via (2.11) then we get σ(i) = n− k + i for i = k′ + 1, · · · , k, and

γ + δ = (n − σ(1), · · · , n− σ(k′), n− σ(k′ + 1)− 1, · · · , n − σ(k)− 1, n− σ(k + 1), · · · , n− σ(n)).

Since σ is a permutation of [n], the numbers n − σ(i), i = 1, · · · , n form a permutation of {0, · · · , n − 1}.
Moreover, the (ordered) sets {n − σ(k′ + 1), · · · , n − σ(k)} and {n − s− 1, · · · , 0} coincide. It follows that
the entries of γ + δ are all the integers from −1 to n − 1, except for n − s − 1, and in particular they are
distinct. If we define γ̃σ(i) = γi + δi = n− σ(i) or n− σ(i)− 1, then it is clear that γ̃ is non-increasing, and

γ̃ = sort(γ + δ) = (n− 1, · · · , n− s, n− s− 2, · · · ,−1), (2.13)

which yields γ̃ − δ = (0s,−1n−s), proving the implication. Furthermore, since σ corresponds via (2.11) to
t = β, it follows from (2.12) that l = |β|, as desired.

=⇒: The condition γ̃ − δ = (0s,−1n−s) is equivalent to (2.13), which implies that γ + δ has distinct
entries, so there exists a unique permutation σ for which (2.10) is satisfied. Let t ∈ P(n − k, k) be the
partition corresponding to σ as in (2.11). We begin by proving that t = β, which implies β ∈ P(n − k, k).

Assume that σ(i) = i− ti−k > s for some i = k + 1, · · · , n. It follows from (2.10) and (2.13) that

βi−k + (n− i) = γi + δi = γ̃σ(i) = n− 1− σ(i) = n− 1− i+ ti−k, (2.14)

so βi−k = ti−k− 1. We then get a contradiction since n− s ≤ βi−k = ti−k− 1 < i− s− 1, which is equivalent
to n < i− 1. It follows that σ(i) = i− ti−k ≤ s for all i = k+1, · · · , n. A calculation similar to (2.14), using
the fact that γ̃σ(i) = n− σ(i) when σ(i) ≤ s, yields βi−k = ti−k for i = k + 1, · · · , n, i.e. t = β, as desired.

If we let k′ = k − (n − s), we obtain just as in the previous implication that σ(i) = n − k + i > s for
i = k′+1, · · · , k. Note that for such i we have k+1− i ≤ n− s, so β′

k+1−i = n− k (recall that the condition
βi ≥ n− s is equivalent to β′

1 = · · · = β′
n−s = n− k). It follows that for i = k′ + 1, · · · , k,

αi = γi = γ̃σ(i) − δi = (n− 1− σ(i)) − (n− i) = i− 1− σ(i) = i− 1− (n− k + i) = −β′
k+1−i − 1.

This equality shows that the last (n−s) entries of α and (β′)∗ agree, so it remains to check that αi = −β′
k+1−i

for i ≤ k′. To do so we note that σ(i) ≤ s for i ≤ k′: this is because σ is a permutation, and the numbers
s+ 1, · · · , n are all of the form σ(i) for some i = k′ + 1, · · · , k. It follows that γ̃σ(i) = n− σ(i) and thus

αi = γi = γ̃σ(i) − δi = (n− σ(i)) − (n− i) = i− σ(i) = i− (t′k+1−i + i) = −t′k+1−i = −β′
k+1−i. �
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2.2. Characters of equivariant D-modules and witness weights [Rai15]. We write W = C
n and

identify
∧2 W with the vector space of n×n skew-symmetric matrices, and Sym2W with the space of n×n

symmetric matrices. Recalling the notation (1.7), we get the following [Rai15, Theorems 4.1 and 5.1]:

Theorem 2.2. (a) There exist m = ⌊n/2⌋ simple GL(W )-equivariant holonomic D-modules on
∧2 W ,

whose characters are Bs, s = 0, · · · ,m. The support of the D-module with character Bs consists of matrices
of rank at most m− s.

(b) There exist 2n + 1 simple GL(W )-equivariant holonomic D-modules on Sym2 W , whose characters

are C
j
s, s = 0, · · · , n, j = 1, 2 (note that C

1
n = C

2
n correspond to the same D-module). The support of the

D-module with character C
j
s consists of matrices of rank at most n− s.

We define the weights λ(Bs) for s = 0, · · · ,m, and λ(Cj
s) for s = 0, · · · , n, j = 1, 2, via

λ(Bs)i = 2s for i = 1, · · · , n, (2.15)

λ(C1
s)i = s+ 1 for i = 1, · · · , n, and λ(C2

s)i =

{

s+ 1 for i = 1, · · · , s

s for i = s+ 1, · · · , n.
(2.16)

The weights λ(Bs) (resp. λ(Cj
s)) are witness weights for the simple equivariant D-modules on the spaces of

skew-symmetric (resp. symmetric) matrices in the following sense: the λ(Bs)-isotypic component of Bs′ is

non-zero if and only if s = s′; likewise, the λ(Cj
s)-isotypic component of Cj′

s′ is non-zero if and only if s = s′

and j = j′ (or s = s′ = n).

2.3. Ext modules for the subquotients Jx,p. In this section V denotes a complex vector space of dimen-
sion n. The next two results concern the calculation of certain Ext modules which appear in the spectral
sequence for computing local cohomology.

Lemma 2.3. Let S = Sym(Sym2 V ). For 1 ≤ p ≤ n consider a partition x = (x1 = x2 = · · · = xp ≥ xp+1 ≥
· · · ≥ xn ≥ 0). There exists a unique GL-equivariant S-module Jsymm

x,p with the properties

(a) As a GL-representation, Jsymm
x,p has a decomposition

Jsymm
x,p =

⊕

y∈P(p)

Sx+2yV.

(b) Jsymm
x,p is generated by its x-isotypic component SxV .

We let Q,R denote the tautological quotient and sub- bundles on G = G(p, V ) and define

S = Sym(Sym2Q), S∨ = det(Sym2 Q∗)⊗ Sym(Sym2Q∗), and V = Sx2R⊗ Sx1Q,

where x1 = (x1, · · · , xp) and x2 = (xp+1, · · · , xn). If we let J symm
x,p = V ⊗ S then

H0(G,J symm
x,p ) = Jsymm

x,p , Hj(G,J symm
x,p ) = 0 for j > 0,

and moreover

Ext•S(J
symm
x,p , S) = H(n+1

2 )−(p+1
2 )−•(G,V ⊗ S∨)∗ ⊗ det(Sym2W ).

Example 2.4. Let n = 3, p = 1, and x = (2, 2, 0). We have G = P
2, Q = O(1), and R = Ω1

P2(1). Moreover,

V = Sym2 R⊗Q2, S∨ = Q−2 ⊗ Sym(Q−2),

and therefore
V ⊗ S∨ =

⊕

i≤0

Sym2R⊗Q2i.
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Since H1(G,Sym2R) =
∧2 V , we get for • = 4 that H(n+1

2 )−(p+1
2 )−•(G,V ⊗ S∨)∗ contains

∧2W as a
subrepresentation. Tensoring with det(Sym2 W ) = S4,4,4W and using the formula for Ext•S(J

symm
x,p , S) in

Lemma 2.3 we obtain that

S5,5,4W is a subrepresentation of Ext4S(J
symm
x,p , S).

One can show that in fact Jx,p = I2/(I
2
2 + I3) where I2 is the ideal generated by the 2 × 2 minors of the

generic symmetric 3 × 3 matrix, while I3 is the ideal generated by its determinant. A quick calculation
with Macaulay2 [GS] shows that Ext4S(Jx,p, S) vanishes in all degrees different from −7, and that the degree

−7 component has dimension 3. Since dim(S5,5,4W ) = dim(
∧2 W ) = 3, it follows that in fact one has the

equality Ext4S(Jx,p, S) = S5,5,4W .

Proof of Lemma 2.3. Consider the GL-equivariant free S-module M = SxV ⊗ S. If follows from (2.3) and
the Littlewood-Richardson rule that

〈

Sx+2yV,M
〉

= 1 for all y ∈ P(p).

Moreover, if z ∈ P(n) is such that
〈

SzV,M
〉

> 0 and z 6= x + 2y for y ∈ P(p) then the same rule implies
that we must have zi > xi for some i = p + 1, · · · , n. It follows that if we let Mz denote the z-isotypic
component of M , and define

N =
⊕

z∈P(n)
z 6=x+2y for y∈P(p)

Mz,

then N is a GL-equivariant S-submodule of M , and moreover

M/N ≃
⊕

y∈P(p)

Sx+2yV

and M/N is generated by SxV since M is. This proves the existence of a module with properties (a) and (b).
For the uniqueness, observe that if P satisfies (b) then there exists a surjective map M ։ P . If in addition
it satisfies (a), then the kernel of this surjection is isomorphic to N as a GL-subrepresentation. Since there is
no N 6= N ′ ⊂ M such that N ≃ N ′ as GL-representations, it follows that ker(M ։ P ) = N and P ≃ M/N .
We write Jsymm

x,p = M/N .
To perform the Ext calculation, we consider M(V) = V ⊗S, with the notation as in the statement of the

lemma. We have by Bott’s Theorem for Grassmannians [Wey03, Cor. 4.1.9] that

H0(G,M(V)) =
⊕

y∈P(p)

Sx+2yV, and Hj(G,M(V)) = 0 for j > 0.

If we can show that H0(G,M(V)) is generated by SxV , then it must be isomorphic to Jsymm
x,p , and the

calculation of Ext in terms of sheaf cohomology follows directly from [RWW14, Thm. 3.1].
The tautological surjection V ⊗ OG ։ Q induces a map Sym2 V ⊗ OG ։ Sym2 Q, which in turn yields

a map π : S ⊗ OG ։ S. π induces a surjection S ։ H0(G,S) on global sections (see for instance [Wey03,
Section 6.3]) and the structure of H0(G,M(V)) as an S-module is defined by

S ⊗H0(G,M(V)) → H0(G,S)⊗H0(G,M(V)) → H0(G,M(V)).

To prove that H0(G,M(V)) is generated by SxV , it is then enough to show that the multiplication

H0(G,S)⊗H0(G,V) → H0(G,M(V))
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is surjective. Writing S =
⊕

y∈P(p) S2yQ, we have to check that the multiplication

H0(G, S2yQ)⊗H0(G,V) → H0(G, S2yQ⊗ V)

is surjective, but this is just given by the Cartan multiplication

S2yV ⊗ SxV → Sx+2yV. �

An analogous argument as in the proof of Lemma 2.3 yields the following

Lemma 2.5. Let S = Sym
(

∧2 V
)

and m = ⌊n/2⌋. For 1 ≤ p ≤ m consider a partition x = (x1 = x2 =

· · · = x2p ≥ x2p+1 ≥ · · · ≥ xn ≥ 0). There exists a unique GL-equivariant S-module Jskew
x,p with the properties

(a) As a GL-representation, Jskew
x,p has a decomposition

Jskew
x,p =

⊕

y∈P(p)

Sx+y(2)V.

(b) Jskew
x,p is generated by its x-isotypic component SxV .

We let Q,R denote the tautological quotient and sub- bundles on G = G(2p, V ) and define

S = Sym

(

2
∧

Q

)

, S∨ = det

(

2
∧

Q∗

)

⊗ Sym

(

2
∧

Q∗

)

, and V = Sx2R⊗ Sx1Q,

where x1 = (x1, · · · , x2p) and x2 = (x2p+1, · · · , xn). If we let J skew
x,p = V ⊗ S then

H0(G,J skew
x,p ) = Jskew

x,p , Hj(G,J skew
x,p ) = 0 for j > 0,

and moreover

Ext•S(J
skew
x,p , S) = H(n2)−(

2p
2 )−•(G,V ⊗ S∨)∗ ⊗ det

(

2
∧

W

)

.

In what follows we will write simply Jx,p instead of Jskew
x,p or Jsymm

x,p when no confusion is possible.

2.4. A spectral sequence for computing local cohomology. As before, we consider the vector space
X of symmetric (resp. skew-symmetric) n× n matrices, and let S denote its coordinate ring Sym(Sym2 V )

(resp. Sym(
∧2 V )). Let Yp ⊂ X denote the subvariety of matrices of rank at most p (resp. 2p). We write

m = ⌊n/2⌋ and define the GL-equivariant S-modules

Jp = Jsymm
p =

⊕

y∈P(n)
y1=···=yp+1

J2·y,p, for p = 0, · · · , n− 1, when S = Sym(Sym2 V ), (2.17)

respectively

Jp = Jskew
p =

⊕

y∈P(m)
y1=···=yp+1

Jy(2),p, for p = 0, · · · ,m− 1, when S = Sym

(

2
∧

V

)

. (2.18)
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Proposition 2.6. There exists a descending sequence (Ir)r≥0 of ideals in S and a spectral sequence

Ei,j
2 = Exti−j

S (Ij/Ij+1, S) ⇒ Hi−j
Yp

(X,OX ), (2.19)

where moreover
⊕

r≥0

Ir/Ir+1 ≃ Jp. (2.20)

Remark 2.7. It can be shown that the spectral sequence in Proposition 2.6 is degenerate when S =

Sym
(

∧2 V
)

, but this is not the case when S = Sym(Sym2 V ) as the following example shows (this be-

havior is typical, and the spectral sequence is never degenerate as long as 0 < p < n− 1).
Consider the situation of Example 2.4: n = 3, p = 1. As shown there, Ext4S(Jp, S) contains a copy of

the representation S5,5,4W , which means that S5,5,4W appears on the E2-page of the spectral sequence.
However, a cancellation must occur when running the spectral sequence, since S5,5,4W doesn’t occur as a
subrepresentation in H•

Yp
(X,OX ): this can be seen by noting that S5,5,4W is not a subrepresentation of any

of the GL-equivariant holonomic D-modules on symmetric matrices (see Theorem 2.2(b) and (1.7)).

Proof of Proposition 2.6. We write P = P(n) if S = Sym(Sym2 V ), and P = P(m) when S = Sym
(

∧2 V
)

.

We choose a total ordering of the partitions λ ∈ P with λ1 = · · · = λp+1:

λ(0), λ(1), · · · , λ(r), · · · (2.21)

such that there exists no i < j with λ(i) ≥ λ(j). Using (2.4), we define a decreasing sequence of ideals

S = I0 ⊃ I1 ⊃ · · · ⊃ Ir ⊃ · · · , by

Ir =
∑

i≥r

Iλ(i).

We fix r and define

x = 2λ(r) if S = Sym(Sym2 V ), and x = λ(r)(2) if S = Sym

(

2
∧

V

)

.

We will prove that Ir/Ir+1 ≃ Jx,p, which then implies (2.20). The existence of the spectral sequence (2.19)
follows as in the proof of [Rai14, Thm. 4.1].

To prove Ir/Ir+1 ≃ Jx,p we need to check that Ir/Ir+1 satisfies the assumptions (a) and (b) of Lemma 2.3
resp. 2.5. Part (a) is a consequence of the equality (2.5). Part (b) follows from the fact that Ir/Ir+1 is a
quotient of Iλ(r), and Iλ(r) is generated by SxV . �

3. Skew-symmetric matrices

In this section W = C
n, V = W ∗, and S = Sym(

∧2 V ) is the coordinate ring of the vector space
∧2 W

of n× n skew-symmetric matrices.

Theorem 3.1. Let m = ⌊n/2⌋ and fix 0 ≤ p < m. With notation (1.2), (2.7), (2.15) and (2.18), we have

〈

Ext•S(J
skew
p , S), Sλ(Bs)W

〉

=



























q2(m−p)2−(m−p)+2s ·

(

s− 1

s− (m− p)

)

q4
if m− p ≤ s ≤ m, and n = 2m+ 1,

q2(m−p)2−(m−p) ·

(

s− 1

s− (m− p)

)

q4
if m− p ≤ s ≤ m, and n = 2m,

0 otherwise.
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We begin by showing how to use this theorem in order to prove (1.4).

Proof of (1.4). We fix 0 ≤ p < m, and follow the strategy for proving the Main Theorem outlined in the
Introduction. We consider the equation (1.8), where I = {0, · · · ,m} and for s ∈ I, Fs is the D-module with
character Bs. Since λ(Bs) is a witness weight for Fs, we can detect the polynomials Ps(q) by

Ps(q) =
〈

H•
Yp
(X,OX ), Sλ(Bs)W

〉

.

We now use the spectral sequence (2.19) to analyze H•
Yp
(X,OX ). It follows from (2.20) with Jp = Jskew

p , and

from Theorem 3.1 that Sλ(Bs)W can appear as a subrepresentation of Ei,j
2 only when i− j ≡ m−p (mod 2).

It follows that as we run the spectral sequence, no cancellations can occur between copies of Sλ(Bs)W , and
therefore

Ps(q) =
〈

H•
Yp
(X,OX ), Sλ(Bs)W

〉

=
〈

Ext•S(J
skew
p , S), Sλ(Bs)W

〉

.

To finish the proof of (1.4), we just need to note that the intersection homology D-module Ds is Fm−s by
Theorem 1.1, so the coefficient of [Ds] in Hp(q) is

Pm−s(q) =



























q2(m−p)2−(m−p)+2(m−s) ·

(

m− s− 1

m− s− (m− p)

)

q4
if 0 ≤ s ≤ p, and n = 2m+ 1,

q2(m−p)2−(m−p) ·

(

m− s− 1

m− s− (m− p)

)

q4
if 0 ≤ s ≤ p, and n = 2m,

0 otherwise.

This formula is precisely what (1.4) predicts, which concludes our proof. �

Proof of Theorem 3.1. We begin by fixing some notation. For d ≥ 0 we consider a partition y ∈ P(m) with

y1 = · · · = yp+1 = d. We let x = y(2) ∈ P(n) (setting xn = 0 if n is odd) and write x as the concatenation of

x1 = (d2p) ∈ P(2p) and x2 ∈ P(n− 2p). We consider the partition β = x2 + ((n− 1− 2s)n−2p) ∈ P(n− 2p),
so that

β1 = β2 = d+ n− 1− 2s, β2i−1 = β2i = yp+i + n− 1− 2s for i = 2, · · · ,m− p. (3.1)

For s = m− p, · · · ,m we consider the collection of dominant weights

As = {α ∈ Z
2p
dom : α2i−1 = α2i for i = 1, · · · , p, and α1 ≤ d+ n− 2s− 2p}, (3.2)

We define the cohomologically graded module

H• = H(n2)−(
2p
2 )−•(G, SβR⊗ det(Q)⊗(d+n−2s−2p) ⊗ Sym(

2
∧

Q∗)) (3.3)

with G,Q,R as in Lemma 2.5. Our proof is based on a number of claims which we explain at the end:
Claim 1: For Jskew

x,p as in Lemma 2.5 and s = m− p, · · · ,m,
〈

Ext•S(J
skew
x,p , S), Sλ(Bs)W

〉

= 〈H•,C〉 .

Claim 2:

〈H•,C〉 =

{

q(
n

2)−(
2p
2 )−|β| if β ∈ P(n− 2p, 2p) and (β′)∗ ∈ As,

0 otherwise.

Claim 3: For β ∈ P(n − 2p, 2p) satisfying (3.1), we have the equivalences
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(β′)∗ ∈ As ⇐⇒

{

d = 2s+ 2p− n+ 1,

βi is even for all i = 1, · · · , n− 2p.

We now explain the proof of the theorem based on Claims 1–3. It follows from Claims 2 and 3 that the
only partitions y ∈ P(m) for which the corresponding β (as in (3.1)) yields 〈H•,C〉 6= 0, satisfy

y1 = · · · = yp+1 = 2s + 2p− n+ 1, yi ≡ n− 1 (mod 2). (3.4)

Any such y is obtained from a unique partition z ∈ P(m− p− 1, s + p−m) via

yp+1+i =

{

2zi if n is odd,

2zi + 1 if n is even,
for i = 1, · · · ,m− p− 1. (3.5)

Since |β| = (n− 1− 2s)(n− 2p) + 2(yp+1 + · · · + ym), we get that |β| and |z| are related via

|β| =

{

(2m− 2s)(2m+ 1− 2p) + 2(2s + 2p − 2m) + 4|z| if n = 2m+ 1 is odd;

(2m− 1− 2s)(2m− 2p) + 2(2s + 2p − 2m+ 1) + 2(m− p− 1) + 4|z| if n = 2m is even.

Equivalently, after some easy manipulations we have
(

n

2

)

−

(

2p

2

)

−|β| =

{

2(m− p)2 − (m− p) + 2s+ 4((m− p− 1)(s − (m− p))− |z|) if n = 2m+ 1 is odd;

2(m− p)2 − (m− p) + 4((m− p− 1)(s − (m− p))− |z|) if n = 2m is even.

Combining Claims 1–3 with the above equality and the fact that

∑

z∈P(m−p−1,s−(m−p))

q4((m−p−1)(s−(m−p))−|z|) (2.2)
=

(

s− 1

s− (m− p)

)

q4
,

we obtain the desired conclusion. To finish the proof of the theorem, it remains to explain Claims 1–3.
Proof of Claim 1: The following easy identities will be useful next:

det

(

2
∧

W

)

= det(W )⊗(n−1), Sλ(Bs)W = det(W )⊗(2s), (3.6)

det(V )⊗OG = det(Q)⊗ det(R), det

(

2
∧

Q∗

)

= det(Q)⊗(−2p+1), Sx1Q = det(Q)⊗d. (3.7)

By Lemma 2.5 (and the notation thereof) we get
〈

Ext•S(J
skew
x,p , S), Sλ(Bs)W

〉

(3.6)
=

〈

H(n2)−(
2p
2 )−•(G,V ⊗ S∨)∗ ⊗ det(W )⊗(n−1),det(W )⊗(2s)

〉

tensor with det(W )⊗(−2s)

=
〈

H(n2)−(
2p
2 )−•(G,V ⊗ S∨)∗ ⊗ det(W )⊗(n−1−2s),C

〉

dualize
=

〈

H(n2)−(
2p
2 )−•(G,V ⊗ S∨)⊗ det(V )⊗(n−1−2s),C

〉

(3.1),(3.3),(3.7)
= 〈H•,C〉 .

Proof of Claim 2: We have

det(Q)⊗(d+n−2s−2p) ⊗ Sym(
2
∧

Q∗) =
⊕

α∈As

SαQ,
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and therefore

H• =
⊕

α∈As

H(n2)−(
2p
2 )−•(G, SβQ⊗ SαR).

The asserted conclusion now follows from Theorem 2.1(a).
Proof of Claim 3: Assume first that (β′)∗ = α ∈ As. Since α2i−1 = α2i for i = 1, · · · , p, we get that all

βi are even. Since β ∈ P(n − 2p, 2p), we have d + n − 1 − 2s = β1 ≤ 2p. If the inequality is strict, then
β′
2p = 0 and therefore α1 = −β′

2p = 0. Since α ∈ As, we get 0 = α1 ≤ d+ n − 2s − 2p, which then implies
d+ n− 2s ≥ 2p. Since β1 is even and β1 < 2p, we get 2p− 2 ≥ β1 = d+ n− 1− 2s, i.e. 2p ≥ d+ n+1− 2s,
contradicting the inequality d+ n− 2s ≥ 2p.

Assume now that d = 2s + 2p− n+ 1, and that all βi are even. As simplifies to

As = {α ∈ Z
2p
dom : α2i−1 = α2i for i = 1, · · · , p, and α1 ≤ 1}.

Let α = (β′)∗. Since the βi are even, we get α2i−1 = α2i for i = 1, · · · , p. Since α1 = −β′
2p ≤ 0, the inequality

α1 ≤ 1 is trivially satisfied, proving that (β′)∗ ∈ As. �

4. Symmetric matrices

In this section W = C
n, V = W ∗, and S = Sym(Sym2 V ) is the coordinate ring of the vector space

Sym2 W of n× n symmetric matrices.

Theorem 4.1. We fix 0 ≤ p < n, n − p ≤ s ≤ n. Using the notation (1.2), (2.7), (2.16) and (2.17), we
have

〈

Ext•S(J
symm
p , S), S

λ(Cj
s)
W
〉

=























q1+(
s+1
2 )−(s−(n−p)+2

2 ) ·

(

⌊s−1
2 ⌋

s−(n−p)
2

)

q−4

if s ≡ n− p (mod 2), and

j ≡ s (mod 2) when s < n;

0 otherwise.

The identity (1.5) follows from Theorem 4.1 by the same reasoning for which (1.4) was a consequence of
Theorem 3.1. We leave the details to the interested reader, and focus on the proof of Theorem 4.1.

Proof of Theorem 4.1. We begin by fixing some notation. For d ≥ 0 we consider a partition y ∈ P(n) with

y1 = · · · = yp+1 = d. We let x = 2 · y ∈ P(n) and write x as the concatenation of x1 = ((2d)p) ∈ P(p) and

x2 ∈ P(n− p). We consider the partition β = x2 + ((n − s)n−p) ∈ P(n− p), so that

β1 = 2d+ n− s, βi = 2yp+i + n− s for i = 2, · · · , n − p. (4.1)

For s = n− p, · · · , n we consider the collection of dominant weights

As = {α ∈ Z
p
dom : αi ≡ n− s− p− 1 (mod 2), α1 ≤ 2d+ n− s− p− 1}, (4.2)

We define the cohomologically graded module

H• = H(n+1
2 )−(p+1

2 )−•(G, SβR⊗ det(Q)⊗(2d+n−s−p−1) ⊗ Sym(Sym2Q∗)) (4.3)

with G,Q,R as in Lemma 2.3. Our proof is based on a number of claims which we explain at the end:
Claim 1: For Jsymm

x,p as in Lemma 2.3 and s = n− p, · · · , n,

〈

Ext•S(J
symm
x,p , S), S

λ(Cj
s)
W
〉

=

{

〈H•,C〉 if j = 1,
〈

H•,
∧n−sW

〉

if j = 2.
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Claim 2: For β satisfying (4.1), we have

〈H•,C〉 =

{

q(
n+1
2 )−(p+1

2 )−|β| if β ∈ P(n − p, p) and (β′)∗ ∈ As,

0 otherwise.

〈

H•,

n−s
∧

W

〉

=

{

q(
n+1
2 )−(p+1

2 )−|β| if β ∈ P(n − p, p) and (β′)∗ + (0s−n+p,−1n−s) ∈ As,

0 otherwise.

Claim 3: For β ∈ P(n − p, p) satisfying (4.1), we have the equivalences

(β′)∗ ∈ As ⇐⇒











2d = s+ p− n,

β′
i odd for i = n− s+ 1, · · · , p,

n− p is odd when s < n.

(β′)∗ + (0s−n+p,−1n−s) ∈ As ⇐⇒











2d = s+ p− n,

β′
i odd for i = n− s+ 1, · · · , p,

n− p is even when s < n.

We now explain the proof of the theorem based on Claims 1–3. The condition in Claim 3 that β′
i is odd

for i = n− s+ 1, · · · , p is equivalent with the following condition on the original partition y:

yp+2 = yp+3, yp+4 = yp+5, · · · , and moreover yn = 0 if n− p− 1 is odd.

This is equivalent to the existence of a partition z ∈ P(⌊(n − p− 1)/2⌋) such that (yp+2, · · · , yn) = z(2). In
fact, the non-trivial contributions to H• in Claim 2 occur when (s+ p− n)/2 = d = yp+1 ≥ yp+2 ≥ · · · , i.e.
for z ∈ P(⌊(n − p− 1)/2⌋, (s + p− n)/2). Note that |β| and |z| are then related via

|β| = (n− s) · (n− p) + 2d+ 2(yp+2 + · · ·+ yn) = (n − s) · (n− p) + (s + p− n) + 4|z|. (4.4)

Combining Claims 1–3 with (4.4) we get that the following equality holds when s + p − n ≥ 0 is even, and
any of the following conditions (a)–(c) holds: (a) j = 1 and n − p is odd; (b) j = 2 and n − p is even;
(c) s = n, independently on the parity of j, n − p (note that this is compatible with the equality C

1
n = C

2
n).

〈

Ext•S(J
symm
p , S), S

λ(Cj
s)
W
〉

=
∑

z∈P(⌊(n−p−1)/2⌋,(s+p−n)/2)

q(
n+1
2 )−(p+1

2 )−(n−s)·(n−p)−(s+p−n)−4|z|

(2.1)
= q(

n+1
2 )−(p+1

2 )−(n−s)·(n−p)−(s+p−n) ·

(

⌊s−1
2 ⌋

s−(n−p)
2

)

q−4

The formula asserted in the statement of the theorem now follows by observing that
(

n+ 1

2

)

−

(

p+ 1

2

)

− (n− s) · (n− p)− (s+ p− n) = 1 +

(

s+ 1

2

)

−

(

s− (n − p) + 2

2

)

.

To finish the proof of the theorem, it remains to explain Claims 1–3.
Proof of Claim 1: The following easy identities will be useful next:

det
(

Sym2W
)

= det(W )⊗(n+1), det(Sym2 Q∗) = det(Q)⊗(−p−1), det(V )⊗OG = det(Q)⊗det(R). (4.5)
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By Lemma 2.3 (and the notation thereof) we get
〈

Ext•S(J
symm
x,p , S), S

λ(Cj
s)
W
〉

(4.5)
=

〈

H(n+1
2 )−(p+1

2 )−•(G,V ⊗ S∨)∗ ⊗ det(W )⊗(n+1), S
λ(Cj

s)
W
〉

tensor with det(W )⊗(−s−1)

=
〈

H(n+1
2 )−(p+1

2 )−•(G,V ⊗ S∨)∗ ⊗ det(W )⊗(n−s), S
λ(Cj

s)−((s+1)n)
W
〉

dualize
=

〈

H(n+1
2 )−(p+1

2 )−•(G,V ⊗ S∨)⊗ det(V )⊗(n−s), S
λ(Cj

s)−((s+1)n)
V
〉

(4.1),(4.3),(4.5)
=

〈

H•, S
λ(Cj

s)−((s+1)n)
V
〉

For j = 1 we have λ(C1
s) = (s + 1)n, so Sλ(C1

s)−((s+1)n)V = C. For j = 2 we have λ(C2
s) − ((s + 1)n) =

(0s,−1n−s) so S
λ(Cj

s)−((s+1)n)
V =

∧n−sW .

Proof of Claim 2: We have

det(Q)⊗(2d+n−s−p−1) ⊗ Sym(Sym2 Q∗) =
⊕

α∈As

SαQ,

and therefore

H• =
⊕

α∈As

H(n+1
2 )−(p+1

2 )−•(G, SβQ⊗ SαR).

The asserted conclusions now follow from Theorem 2.1.
Proof of Claim 3: Let us first prove that either of the assumptions (β′)∗ ∈ As or (β′)∗ + (0s−n+p,−1n−s)

implies that 2d = s + p − n, or equivalently β1 = p. Suppose otherwise that β1 < p, or equivalently that
β′
p = 0, and that (β′)∗ = α or (β′)∗ + (0s−n+p,−1n−s) = α for some α ∈ As. We get in either case that

0 = −β′
p = α1 ≤ 2d+ n− s− p− 1, i.e. p+ 1 ≤ 2d+ n− s = β1, a contradiction. To prove the equivalences

in Claim 3 we can then assume that 2d = s+ p− n (and β1 = p, β′
p ≥ 1). Formula (4.2) then simplifies to

As = {α ∈ Z
p
dom : αi odd, α1 ≤ −1}.

Let us now observe that

(β′)∗ = (−β′
p, · · · ,−β′

n−s+1, (p − n)n−s),

so the first entry in (β′)∗ resp. (β′)∗+(0s−n+p,−1n−s) is at most −1. Containment in As for either of the two
weights (β′)∗ or (β′)∗+(0s−n+p,−1n−s) is then equivalent to them having only odd entries. We get (β′)∗ ∈ As

if and only if β′
i is odd for i = n−s+1, · · · , p, and n−p is odd when s < n. Also, (β′)∗+(0s−n+p,−1n−s) ∈ As

if and only if β′
i is odd for i = n− s+ 1, · · · , p, and n− p is even when s < n. �
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