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Abstract

Two families A and B of sets are said to be cross-t-intersecting if each set in A
intersects each set in B in at least t elements. An active problem in extremal set theory

is to determine the maximum product of sizes of cross-t-intersecting subfamilies of a

given family. We prove a cross-t-intersection theorem for weighted subsets of a set by

means of a new subfamily alteration method, and use the result to provide solutions for

three natural families. For r ∈ [n] = {1, 2, . . . , n}, let
(

[n]
r

)

be the family of r-element

subsets of [n], and let
(

[n]
≤r

)

be the family of subsets of [n] that have at most r elements.

Let Fn,r,t be the family of sets in
(

[n]
≤r

)

that contain [t]. We show that if g :
(

[m]
≤r

)

→ R+

and h :
(

[n]
≤s

)

→ R+ are functions that obey certain conditions, A ⊆
(

[m]
≤r

)

, B ⊆
(

[n]
≤s

)

, and

A and B are cross-t-intersecting, then

∑

A∈A

g(A)
∑

B∈B

h(B) ≤
∑

C∈Fm,r,t

g(C)
∑

D∈Fn,s,t

h(D),

and equality holds if A = Fm,r,t and B = Fn,s,t. We prove this in a more general setting

and characterise the cases of equality. We use the result to show that the maximum

product of sizes of two cross-t-intersecting families A ⊆
(

[m]
r

)

and B ⊆
(

[n]
s

)

is
(

m−t

r−t

)(

n−t

s−t

)

for min{m,n} ≥ n0(r, s, t), where n0(r, s, t) is close to best possible. We obtain analogous

results for families of integer sequences and for families of multisets. The results yield

generalisations for k ≥ 2 cross-t-intersecting families, and Erdos–Ko–Rado-type results.

1 Introduction

Unless otherwise stated, we shall use small letters such as x to denote elements of
a set or non-negative integers or functions, capital letters such as X to denote sets,
and calligraphic letters such as F to denote families (that is, sets whose elements are
sets themselves). The set {1, 2, . . . } of all positive integers is denoted by N. For any
m,n ∈ N, the set {i ∈ N : m ≤ i ≤ n} is denoted by [m,n]. We abbreviate [1, n] to
[n]. It is to be assumed that arbitrary sets and families are finite. We call a set A
an r-element set, or simply an r-set, if its size |A| is r. For a set X, 2X denotes the
power set of X (that is, the family of all subsets of X),

(

X
r

)

denotes the family of all
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r-element subsets of X, and
(

X
≤r

)

denotes the family of all subsets of X of size at most
r. For a family F and a set T , we denote the family {F ∈ F : T ⊆ F} by F(T ).

We say that a set A t-intersects a set B if A and B contain at least t common
elements. A family A of sets is said to be t-intersecting if every two sets in A t-
intersect. A 1-intersecting family is also simply called an intersecting family. If T is
a t-element subset of at least one set in a family F , then we call the family of all the
sets in F that contain T the t-star of F . A t-star of a family is the simplest example
of a t-intersecting subfamily.

One of the most popular endeavours in extremal set theory is that of determining
the size of a largest t-intersecting subfamily of a given family F . This took off with [20],
which features the classical result, known as the Erdős–Ko–Rado (EKR) Theorem, that
says that if 1 ≤ r ≤ n/2, then the size of a largest intersecting subfamily A of

(

[n]
r

)

is the

size
(

n−1
r−1

)

of every 1-star of
(

[n]
r

)

. If r < n/2, then, by the Hilton-Milner Theorem [28],

A attains the bound if and only if A is a star of
(

[n]
r

)

. If n/2 < r ≤ n, then
(

[n]
r

)

itself is
intersecting. There are various proofs of the EKR Theorem (see [34, 28, 32, 18]), two of
which are particularly short and beautiful: Katona’s [32], introducing the elegant cycle
method, and Daykin’s [18], using the fundamental Kruskal–Katona Theorem [35, 33].
A sequence of results [20, 22, 48, 1] culminated in the solution of the problem for
t-intersecting subfamilies of

(

[n]
r

)

; the solution particularly tells us that the size of a

largest t-intersecting subfamily of
(

[n]
r

)

is the size
(

n−t
r−t

)

of a t-star of
(

[n]
r

)

if and only

if n ≥ (t + 1)(r − t + 1). The t-intersection problem for 2[n] was solved by Katona
[34]. These are among the most prominent results in extremal set theory. The EKR
Theorem inspired a wealth of results, including generalisations (see [43, 11]), that
establish how large a system of sets can be under certain intersection conditions; see
[19, 23, 21, 13, 30, 31].

Two families A and B are said to be cross-t-intersecting if each set in A t-intersects
each set in B. More generally, k families A1, . . . ,Ak (not necessarily distinct or non-
empty) are said to be cross-t-intersecting if for every i and j in [k] with i 6= j, each set
in Ai t-intersects each set in Aj . Cross-1-intersecting families are also simply called
cross-intersecting families.

For t-intersecting subfamilies of a given family F , the natural question to ask is how
large they can be. For cross-t-intersecting families, two natural parameters arise: the
sum and the product of sizes of the cross-t-intersecting families (note that the product
of sizes of k families A1, . . . ,Ak is the number of k-tuples (A1, . . . , Ak) such that Ai ∈ Ai

for each i ∈ [k]). It is therefore natural to consider the problem of maximising the sum
or the product of sizes of k cross-t-intersecting subfamilies A1, . . . ,Ak of a given family
F . The paper [15] analyses this problem in general, particularly showing that for k
sufficiently large, both the sum and the product are maxima if A1 = · · · = Ak = L
for some largest t-intersecting subfamily L of F . Therefore, this problem incorporates
the t-intersection problem. Solutions have been obtained for various families (see [15]),
including

(

[n]
r

)

[27, 41, 37, 4, 7, 45, 47, 46, 25], 2[n] [36, 15],
(

[n]
≤r

)

[6], and families of
integer sequences [39, 12, 16, 47, 49, 44, 25, 40]. Most of these results tell us that for
the family F under consideration and for certain values of k, the sum or the product
is maximum when A1 = · · · = Ak = L for some largest t-star L of F . In such a case,
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L is a largest t-intersecting subfamily of F .

Remark 1.1 In general, if L ⊆ F , k ≥ 2, and the sum or the product is maximum
when A1 = · · · = Ak = L, then L is a largest t-intersecting subfamily of F . Indeed,
the cross-t-intersection condition implies that every two sets A and B in L t-intersect
(as A ∈ A1 and B ∈ A2), and by taking an arbitrary t-intersecting subfamily A of
F and setting B1 = · · · = Bk = A, we obtain that B1, . . . ,Bk are cross-t-intersecting,
and hence |A| ≤ |L| since k|A| =

∑k
i=1 |Bi| ≤

∑k
i=1 |Ai| = k|L| or |A|k =

∏k
i=1 |Bi| ≤

∏k
i=1 |Ai| = |L|k.

Wang and Zhang [47] solved the maximum sum problem for an important class of
families that includes

(

[n]
r

)

and families of integer sequences, using a striking combina-
tion of the method in [7, 8, 9, 16, 10] and an important lemma that is found in [3, 17]
and referred to as the ‘no-homomorphism lemma’. The solution for

(

[n]
r

)

with t = 1
had been obtained by Hilton [27] and is the first result of this kind.

In this paper we address the maximum product problem for
(

[n]
r

)

and families of
integer sequences. We will actually consider more general problems; one generalisation
allows the cross-t-intersecting families to come from different families, and another one
involves maximising instead the product of weights of cross-t-intersecting families of
subsets of a set. As we explain in the next section, if the product for k = 2 is max-
imum when the cross-t-intersecting families are certain t-stars, then this immediately
generalises for k ≥ 2.

The maximum product problem for
(

[n]
r

)

was first addressed by Pyber [41], who
proved that for any r, s, and n such that either r = s ≤ n/2 or r < s and n ≥ 2s+r−2,
if A ⊆

(

[n]
r

)

and B ⊆
(

[n]
s

)

such that A and B are cross-intersecting, then |A||B| ≤
(

n−1
r−1

)(

n−1
s−1

)

. Subsequently, Matsumoto and Tokushige [37] proved this for r ≤ s ≤ n/2.
It has been shown in [14] that there exists an integer n0(r, s, t) such that for t ≤ r ≤ s
and n ≥ n0(r, s, t), if A ⊆

(

[n]
r

)

, B ⊆
(

[n]
s

)

, and A and B are cross-t-intersecting, then
|A||B| ≤

(

n−t
r−t

)(

n−t
s−t

)

. The value of n0(r, s, t) given in [14] is far from best possible. The
special case r = s is treated in [45, 46, 25], which establish values of n0(r, r, t) that are
close to the conjectured smallest value of (t + 1)(r − t + 1), and which use algebraic
methods and Frankl’s random walk method [22]; in particular, n0(r, r, t) = (t + 1)r
is determined in [25] for t ≥ 14. Using purely combinatorial arguments, we solve the
problem for n ≥ (t+u+2)(s− t)+r−1, where u can be any non-negative real number
satisfying u > 6−t

3
; thus, we can take n0(r, s, t) = (t + 2)(s− t) + r − 1 for t ≥ 7, and

n0(r, s, t) < (t+ 4)(s− t) + r − 1 for 1 ≤ t ≤ 6. We actually prove the following more
general result in Section 5.

Theorem 1.2 If 1 ≤ t ≤ r ≤ s, u is a non-negative real number such that u > 6−t
3

,

min{m,n} ≥ (t + u + 2)(s − t) + r − 1, A ⊆
(

[m]
r

)

, B ⊆
(

[n]
s

)

, and A and B are
cross-t-intersecting, then

|A||B| ≤

(

m− t

r − t

)(

n− t

s− t

)

.
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Moreover, if u > 0, then the bound is attained if and only if A =
{

A ∈
(

[m]
r

)

: T ⊆ A
}

and B =
{

B ∈
(

[n]
s

)

: T ⊆ B
}

for some t-element subset T of [min{m,n}].

In Section 5, we show that Theorem 1.2 is a consequence of our main result, The-
orem 1.3, for which we need some additional definitions and notation.

For any i, j ∈ [n], let δi,j : 2
[n] → 2[n] be defined by

δi,j(A) =

{

(A\{j}) ∪ {i} if j ∈ A and i /∈ A;
A otherwise,

and let ∆i,j : 2
2[n]

→ 22
[n]

be the compression operation defined by

∆i,j(A) = {δi,j(A) : A ∈ A} ∪ {A ∈ A : δi,j(A) ∈ A}.

The compression operation was introduced in the seminal paper [20]. The paper [23]
provides a survey on the properties and uses of compression (also called shifting) oper-
ations in extremal set theory. All our new results make use of compression operations.

If i < j, then we call ∆i,j a left-compression. A family F ⊆ 2[n] is said to be
compressed if ∆i,j(F) = F for every i, j ∈ [n] with i < j. In other words, F is
compressed if it is invariant under left-compressions. Note that F is compressed if and
only if (F\{j}) ∪ {i} ∈ F whenever i < j ∈ F ∈ F and i ∈ [n]\F .

A family H is said to be hereditary if for each H ∈ H, all the subsets of H are in
H. Thus, a family is hereditary if and only if it is a union of power sets. The family
(

[n]
≤r

)

(which is 2[n] if r = n) is an example of a hereditary family that is compressed.

Let R+ denote the set of positive real numbers. With a slight abuse of notation,
for any non-empty family F , any function w : F → R+ (called a weight function), and
any A ⊆ F , we denote the sum

∑

A∈Aw(A) (of weights of sets in A) by w(A). Note
that if A is empty, then w(A) is the empty sum, and we will adopt the convention of
taking this to be 0.

In Section 4, we prove the following result.

Theorem 1.3 Let 1 ≤ t ≤ n, T = [t], and u ∈ {0} ∪ R+ such that u > 6−t
3

. Let G
and H be non-empty compressed hereditary subfamilies of 2[n]. For each F ∈ {G,H},
let wF : F → R+ such that
(a) wF(A) ≥ (t + u)wF(B) for every A,B ∈ F with A ( B and |A| ≥ t, and
(b) wF(δi,j(C)) ≥ wF(C) for every C ∈ F and every i, j ∈ [n] with i < j.
Let g = wG and h = wH. If A ⊆ G and B ⊆ H such that A and B are cross-t-
intersecting, then

g(A)h(B) ≤ g(G(T ))h(H(T )).

Moreover, if u > 0 and each of G and H has a member of size at least t, then the
bound is attained if and only if A = G(T ′) and B = H(T ′) for some T ′ ∈

(

[n]
t

)

such
that g(G(T ′)) = g(G(T )) and h(H(T ′)) = h(H(T )).

Remark 1.4 For u > 6−t
3

to hold, we can always take u = 2, and we can take u = 0
for t ≥ 7. We conjecture that the inequality g(A)h(B) ≤ g(G(T ))h(H(T )) still holds
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if the condition u > 6−t
3

is replaced by u = 0. As we mentioned above, this is true
for t ≥ 7. Also, the proof of Theorem 1.3 shows that for t ≥ 3, the conjecture is true
if it is true for t + 3 ≤ n ≤ t + 6 (see Remark 4.3). A verification of the conjecture
for t + 3 ≤ n ≤ t + 6 could be obtained through detailed case-checking similar to
that used in our proof for the special case n ≤ t + 2; however, the process would be
significantly more laborious. The condition on u cannot be relaxed further, because
no real number u < 0 with t + u ≥ 1 guarantees that the result holds. Indeed, if
1 ≤ x = t + u < t ≤ n − 2, G = H = 2[n], g(G) = h(G) = xn−|G| for all G ∈ 2[n],
and A = B = {A ∈ 2[n] : |A ∩ [t + 2]| ≥ t + 1} = A∗, then conditions (a) and (b) of
Theorem 1.3 are satisfied, A and B are cross-t-intersecting, but

(g(A)h(B))1/2 = g(A) =
∑

X∈([t+2]
t+1 )

∑

Y⊆[t+3,n]

g(X ∪ Y ) +
∑

Y⊆[t+3,n]

g([t+ 2] ∪ Y )

= (t+ 2)

n−t−2
∑

j=0

(

n− t− 2

j

)

xn−t−1−j +

n−t−2
∑

j=0

(

n− t− 2

j

)

xn−t−2−j

= (t+ 2)xn−t−1
(

1 + x−1
)n−t−2

+ xn−t−2
(

1 + x−1
)n−t−2

= xn−t−2
(

1 + x−1
)n−t−2

(tx+ 2x+ 1) = (x+ 1)n−t−2(tx+ 2x+ 1)

> (x+ 1)n−t−2(x2 + 2x+ 1) (as 1 ≤ x < t)

= xn−t
(

1 + x−1
)n−t

=

n−t
∑

j=0

(

n− t

j

)

xn−t−j =
∑

Y⊆[t+1,n]

g([t] ∪ Y )

= g(G(T )) = (g(G(T ))h(H(T )))1/2,

and hence g(A)h(B) > g(G(T ))h(H(T )). It has been shown in [6] that for t = 1,
the product of sizes of A and B is maximised by taking A = G(T ) and B = H(T );
equivalently, for the special case where t = 1 and g(A) = h(A) = 1 for all A ∈ G ∪ H,
the bound in Theorem 1.3 also holds (that is, the conjecture is true). However, this
is not true for t > 1, and hence Theorem 1.3 does not imply that the product of sizes
is maximised by taking A = G(T ) and B = H(T ). Indeed, if G = H = 2[n] and
A = B = A∗ as above, then |A||B| > |G(T )||H(T )| (take x = 1 above).

The proof of Theorem 1.3 contains the main observations in this paper and is based
on induction, compression, a new subfamily alteration method, and double-counting.
The alteration method can be regarded as the main new component and appears to
have the potential of yielding other intersection results of this kind.

The bound in [25, Theorem 1.3] for product measures of cross-t-intersecting sub-
families of 2[n] is given by Theorem 1.3 with G = H = 2[n], t ≥ 14, u = 0, and
g(A) = h(A) = p|A|(1− p)n−|A| for all A ∈ 2[n], where p ∈ R+ such that p ≤ 1

t+1
.

The subsequent results in this section and in the next section are also consequences
of Theorem 1.3. Our next application is a cross-t-intersection result for integer se-
quences.

We will represent a sequence a1, . . . , an by an n-tuple (a1, . . . , an), and we say that
it is of length n. We call a sequence of positive integers a positive sequence. We
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call (a1, . . . , an) an r-partial sequence if exactly r of its entries are positive integers
and the rest are all zero. Thus, an n-partial sequence of length n is positive. A
sequence (c1, . . . , cn) is said to be increasing if c1 ≤ · · · ≤ cn. We call an increasing
positive sequence an IP sequence. Note that (c1, . . . , cn) is an IP sequence if and only
if 1 ≤ c1 ≤ · · · ≤ cn.

We call {(x1, y1), . . . , (xr, yr)} a labeled set (following [12]) if x1, . . . , xr are distinct.
For any IP sequence c = (c1, . . . , cn) and any r ∈ [n], let Sc,r be the family of all

labeled sets {(x1, yx1), . . . , (xr, yxr
)} such that {x1, . . . , xr} ∈

(

[n]
r

)

and yxj
∈ [cxj

] for
each j ∈ [r]. For any sets Y1, . . . , Yn, let Y1 × · · · × Yn denote the Cartesian product of
Y1, . . . , Yn, that is, the set of sequences (y1, . . . , yn) such that yi ∈ Yi for each i ∈ [n].
Note that Sc,n = {{(1, y1), . . . , (n, yn)} : yi ∈ [ci] for each i ∈ [n]}, so Sc,n is isomorphic
to [c1] × · · · × [cn]. Also note that Sc,r is isomorphic to the set of r-partial sequences

(y1, . . . , yn) such that for some R ∈
(

[n]
r

)

, yi ∈ [ci] for each i ∈ R (and hence yj = 0 for
each j ∈ [n]\R). Let Sc,r,t = Sc,r([t]× [1]) = {A ∈ Sc,r : (x, 1) ∈ A for each x ∈ [t]}.

In Section 6, we prove the following result.

Theorem 1.5 Let c = (c1, . . . , cm) and d = (d1, . . . , dn) be IP sequences. Let r ∈ [m],
s ∈ [n], t ∈ [min{r, s}], and u ∈ {0} ∪ R+ such that u > 6−t

3
. If c1 ≥ t + u + 1,

d1 ≥ t + u+ 1, A ⊆ Sc,r, B ⊆ Sd,s, and A and B are cross-t-intersecting, then

|A||B| ≤

(

∑

I∈([t+1,m]
r−t )

∏

i∈I

ci

)(

∑

J∈([t+1,n]
s−t )

∏

j∈J

cj

)

.

Moreover, if u > 0, then the bound is attained if and only if for some T ∈ Sc,t ∩ Sd,t

with |Sc,r(T )| = |Sc,r,t| and |Sd,s(T )| = |Sd,s,t|, A = Sc,r(T ) and B = Sd,s(T ).

Note that this result holds for c1 ≥ t + 1 and d1 ≥ t + 1 when t ≥ 7, for c1 ≥ t + 2
and d1 ≥ t + 2 when 4 ≤ t ≤ 6, and for c1 ≥ t + 3 and d1 ≥ t + 3 when 1 ≤ t ≤ 3.
We conjecture that the result holds for c1 ≥ t + 1 and d1 ≥ t + 1, and, as can be seen
from the proof of Theorem 1.5, this conjecture is true if the conjecture in Remark 1.4
is true. The result does not hold for c1 < t + 1. Indeed, if r = s = m = n ≥ t + 2,
c1 = · · · = cn = x + 1 < t + 1 = d1 = · · · = dn, Z = [n] × [1], Z1 = [t + 2]× [1], Z2 =
[t+3, n]× [1], A = {A ∈ Sc,n : |A∩Z1| ≥ t+1}, and B = {B ∈ Sd,n : |B∩Z1| ≥ t+1},
then A and B are cross-t-intersecting,

|A| =

∣

∣

∣

∣

∣

∣

∣

⋃

X∈(Z1
t+1)∪{Z1}

|Z2|
⋃

j=0

⋃

Y ∈(Z2
j )

{A ∈ A : A ∩ Z = X ∪ Y }

∣

∣

∣

∣

∣

∣

∣

= (t + 2)
n−t−2
∑

j=0

(

n− t− 2

j

)

xn−t−1−j +
n−t−2
∑

j=0

(

n− t− 2

j

)

xn−t−2−j

= (x+ 1)n−t−2 (tx+ 2x+ 1) (as in Remark 1.4)

> (x+ 1)n−t−2 (x2 + 2x+ 1) = (x+ 1)n−t = |Sc,n,t|,

6



|B| = (t+ 1)n−t−2 (t2 + 2t + 1) = (t + 1)n−t = |Sd,n,t| (by a calculation similar to that
for |A|), and hence |A||B| > |Sc,r,t||Sd,s,t|.

Solutions for the special case where c = d and r = s = n already exist. The
solution for t + 2 ≤ c1 = cn was first obtained by Moon [39]. Inspired by [49], Pach
and Tardos [40] recently generalised Moon’s result to include the cases t+2 ≤ c1 ≤ cn
and 8 ≤ t + 1 ≤ c1 ≤ cn. Another proof for 15 ≤ t+ 1 ≤ c1 = cn is given in [25].

Our last application of Theorem 1.3 in this section is a cross-t-intersection result
for multisets.

A multiset is a collection A of objects such that each object possibly appears more
than once in A. Thus the difference between a multiset and a set is that a multiset may
have repetitions of its elements. We can uniquely represent a multiset A of positive inte-
gers by an IP sequence (a1, . . . , ar), where a1, . . . , ar form A. Thus we will take multisets
to be IP sequences. For A = (a1, . . . , ar), the support of A is the set {a1, . . . , ar} and will
be denoted by SA. For any n, r ∈ N, let Mn,r denote the set of all multisets (a1, . . . , ar)
such that a1, . . . , ar ∈ [n]; thus Mn,r = {(a1, . . . , ar) : a1 ≤ · · · ≤ ar, a1, . . . , ar ⊆ [n]}.
An elementary counting result is that

|Mn,r| =

(

n+ r − 1

r

)

.

With a slight abuse of terminology, we say that a multiset A t-intersects a multiset
B if and A and B have at least t distinct common elements, that is, if SA t-intersects
SB. A set A of multisets is said to be t-intersecting if every two multisets in A t-
intersect, and k sets A1, . . . ,Ak of multisets are said to be cross-t-intersecting if for
every i, j ∈ [k] with i 6= j, each multiset in Ai t-intersects each multiset in Aj.

In Section 7, we prove the following result.

Theorem 1.6 If 1 ≤ t ≤ r ≤ s, u ∈ {0} ∪ R+ such that u > 6−t
3

, min{m,n} ≥
(t+ u+ 1)(s− t) + r − t, A ⊆ Mm,r, B ⊆ Mn,s, and A and B are cross-t-intersecting,
then

|A||B| ≤

(

m+ r − t− 1

r − t

)(

n+ s− t− 1

s− t

)

.

Moreover, if u > 0, then the bound is attained if and only if A = {A ∈ Mm,r : T ⊆ SA}
and B = {B ∈ Mn,s : T ⊆ SB} for some t-element subset T of [min{m,n}].

The condition min{m,n} ≥ (t + u + 1)(s − t) + r − t is close to being sharp, as is
evident from the fact that if r = s, m = n < t(r − t) + 2, and A = B = {A ∈
Mn,r : |SA ∩ [t+ 2]| ≥ t+ 1}, then A and B are cross-t-intersecting,
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|A| =
∑

X∈([t+2]
t+1 )∪{[t+2]}

|{A ∈ Mn,r : SA ∩ [t+ 2] = X}|

=
∑

X∈([t+2]
t+1 )∪{[t+2]}

|{(a1, . . . , ar−|X|) : a1 ≤ · · · ≤ ar−|X|, a1, . . . , ar−|X| ∈ X ∪ [t+ 3, n]}|

=
∑

X∈([t+2]
t+1 )∪{[t+2]}

|M|X|+n−t−2,r−|X||

=
∑

X∈([t+2]
t+1 )∪{[t+2]}

(

n+ r − t− 3

r − |X|

)

= (t+ 2)

(

n + r − t− 3

r − t− 1

)

+

(

n+ r − t− 3

r − t− 2

)

=

(

n+r−t−1
r−t

)

(n + r − t− 1)(n+ r − t− 2)
((t+ 2)(r − t)(n− 1) + (r − t)(r − t− 1))

>

(

n+r−t−1
r−t

)

((t + 1)(r − t) + 1)((t+ 1)(r − t))
((t+ 2)(r − t)(t(r − t) + 1) + (r − t)(r − t− 1))

=

(

n+ r − t− 1

r − t

)

,

and hence |A||B| >
(

m+r−t−1
r−t

)2
=
(

m+r−t−1
r−t

)(

n+s−t−1
s−t

)

.
EKR-type results for multisets have been obtained in [38, 26]. To the best of the

author’s knowledge, Theorem 1.6 is the first cross-t-intersection result for multisets.
In the next section, we show that the above results generalise for k ≥ 2 families

and yield EKR-type results. Section 3 provides basic compression results used in our
proofs. Sections 4–7 are dedicated to the proofs of Theorems 1.3, 1.2, 1.5, and 1.6,
respectively.

2 Multiple cross-t-intersecting families and t-intersecting

families

Theorem 1.2 generalises as follows.

Theorem 2.1 Let k ≥ 2, t ≤ r1 ≤ · · · ≤ rk, u ∈ {0} ∪ R+ such that u > 6−t
3

, and

min{n1, . . . , nk} ≥ (t + u + 2)(rk − t) + rk−1 − 1. If A1 ⊆
(

[n1]
r1

)

, . . . ,Ak ⊆
(

[nk]
rk

)

, and
A1, . . . ,Ak are cross-t-intersecting, then

k
∏

i=1

|Ai| ≤
k
∏

i=1

(

ni − t

ri − t

)

.

Moreover, if u > 0, then the bound is attained if and only if for some t-element subset
T of [min{n1, . . . , nk}], Ai = {A ∈

(

[ni]
ri

)

: T ⊆ A} for each i ∈ [k].
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The line of argument in the proof of [14, Theorem 1.2] yields the result above to-
gether with a similar generalisation of Theorem 1.6 and the following generalisations
of Theorem 1.3 and Theorem 1.5.

Theorem 2.2 If t, u, and T are as in Theorem 1.3, H1, . . . ,Hk are non-empty com-
pressed hereditary subfamilies of 2[n], wF : F → R+ is a function satisfying (a) and (b)
(of Theorem 1.3) for each F ∈ {H1, . . . ,Hk}, Ai ⊆ Hi for each i ∈ [k], and A1, . . . ,Ak

are cross-t-intersecting, then

k
∏

i=1

wHi
(Ai) ≤

k
∏

i=1

wHi
(Hi(T )).

Moreover, if u > 0 and each of H1, . . . ,Hk has a member of size at least t, then the
bound is attained if and only if for some T ′ ∈

(

[n]
t

)

such that wHi
(Hi(T

′)) = wHi
(Hi(T ))

for each i ∈ [k], Ai = Hi(T
′) for each i ∈ [k].

Theorem 2.3 Let c1 = (c1,1, . . . , c1,n1), . . . , ck = (ck,1, . . . , ck,nk
) be IP sequences. Let

r1 ∈ [n1], . . . , rk ∈ [nk], t ∈ [min{r1, . . . , rk}], and u ∈ {0} ∪ R+ such that u > 6−t
3

. If
c1,1 ≥ t + u+ 1, . . . , ck,1 ≥ t + u + 1, A1 ⊆ Sc1,r1, . . . ,Ak ⊆ Sck ,rk, and A1, . . . ,Ak are
cross-t-intersecting, then

k
∏

i=1

|Ai| ≤
k
∏

i=1

(

∑

I∈([t+1,ni]
ri−t )

∏

j∈I

ci,j

)

.

Moreover, if u > 0, then the bound is attained if and only if for some T ∈
⋂k

i=1 Sci,t

with |Sci,ri(T )| = |Sci,ri,t| for each i ∈ [k], Ai = Sci,ri(T ) for each i ∈ [k].

We simply observe that
(

∏k
i=1 ai

)k−1

=
∏k

i=1

∏

j∈[k]\[i] aiaj (see also [15, Lemma 5.2]

with p = 2) and that if A1, . . . ,Ak are cross-t-intersecting, then any Ai and Aj with i 6=
j are cross-t-intersecting. Thus, if, for example, A1, . . . ,Ak are as in Theorem 2.2, ai =
wHi

(Ai) for each i ∈ [k], and bi = wHi
(Hi(T )) for each i ∈ [k], then Theorem 1.3 gives

us
∏k

i=1

∏

j∈[k]\[i] aiaj ≤
∏k

i=1

∏

j∈[k]\[i] bibj , and hence
(

∏k
i=1 ai

)k−1

≤
(

∏k
i=1 bi

)k−1

(giving
∏k

i=1 ai ≤
∏k

i=1 bi, as required).
As in Remark 1.1, Theorem 1.3 immediately implies an EKR-type version for a

family H as in Theorem 1.3. By taking G = H in Theorem 1.3 and applying an
argument similar to the one in Remark 1.1, we obtain the following new result.

Theorem 2.4 Let t, u, T,H, and h be as in Theorem 1.3. If A is a t-intersecting
subfamily of H, then

h(A) ≤ h(H(T )).

Moreover, if u > 0 and H has a member of size at least t, then the bound is attained if
and only if A = H(T ′) for some t-set T ′ such that h(H(T ′)) = h(H(T )).
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By taking c = d in Theorem 1.5 and applying the argument in Remark 1.1, we
obtain the following EKR-type result.

Theorem 2.5 If 1 ≤ t ≤ r ≤ n, u ∈ {0} ∪ R+ such that u > 6−t
3

, c = (c1, . . . , cn) is
an IP sequence, c1 ≥ t + u+ 1, and A is a t-intersecting subfamily of Sc,r, then

|A| ≤

(

∑

I∈([t+1,n]
r−t )

∏

i∈I

ci

)

.

Moreover, if u > 0, then the bound is attained if and only if A = Sc,r(T ) for some
T ∈ Sc,t with |Sc,r(T )| = |Sc,r,t|.

The EKR problem for Sc,r attracted much attention and has been dealt with extensively
(see, for example, [13]). In particular, for c1 = cn, it was solved for r = n in [2, 24],

and for n ≥
⌊

(r−t+c1)(t+1)
c1

⌋

in [5]. Similarly to Theorem 1.5, Theorem 2.5 does not hold

for c1 < t+ 1.
By taking m = n and r = s in Theorem 1.6, and applying the argument in Re-

mark 1.1, we obtain the following EKR-type result.

Theorem 2.6 If 1 ≤ t ≤ r, u ∈ {0} ∪ R+ such that u > 6−t
3

, n ≥ (t + u + 2)(r − t),
A ⊆ Mn,r, and A is t-intersecting, then

|A| ≤

(

n + r − t− 1

r − t

)

.

Moreover, if u > 0, then the bound is attained if and only if A = {A ∈ Mn,r : T ⊆ SA}

for some T ∈
(

[n]
t

)

.

The condition n ≥ (t + u + 2)(r − t) is close to being sharp. Indeed, as shown in
Section 1, if n < t(r − t) + 2 and A = {A ∈ Mn,r : |SA ∩ [t + 2]| ≥ t + 1}, then
|A| >

(

n+r−t−1
r−t

)

.
The EKR problem for Mn,r and t = 1 is solved in [38]. Generalising this result,

Füredi, Gerbner, and Vizer [26] solved the EKR problem of maximising the size of a
largest subset A of Mn,r such that for every (a1, . . . , ar), (b1, . . . , br) ∈ A, there exist
t distinct elements i1, . . . , it of [r] and t distinct elements j1, . . . , jt of [r] such that
aip = bjp for each p ∈ [t].

3 The compression operation

Compression operations have various useful properties. It is straightforward that for
i, j ∈ [n] and A ⊆ 2[n],

|∆i,j(A)| = |A|.

We will also need the following well-known basic result (see, for example, [14, Lemma 2.1]).
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Lemma 3.1 Let A and B be cross-t-intersecting subfamilies of 2[n].
(i) For any i, j ∈ [n], ∆i,j(A) and ∆i,j(B) are cross-t-intersecting subfamilies of 2[n].

(ii) If 1 ≤ t ≤ r ≤ s ≤ n, A ⊆
(

[n]
≤r

)

, B ⊆
(

[n]
≤s

)

, and A and B are compressed, then

|A ∩B ∩ [r + s− t]| ≥ t

for any A ∈ A and any B ∈ B.

The only difference between Lemma 3.1 and [14, Lemma 2.1] is that the latter is for
A ⊆

(

[n]
r

)

and B ⊆
(

[n]
s

)

; however, the former follows by the argument for the latter.

Suppose that a subfamily A of 2[n] is not compressed. Then A can be transformed to
a compressed family through left-compressions as follows. Since A is not compressed,
we can find a left-compression that changes A, and we apply it to A to obtain a new
subfamily of 2[n]. We keep on repeating this (always applying a left-compression to the
last family obtained) until we obtain a subfamily of 2[n] that is invariant under any
left-compression (such a point is indeed reached, because if ∆i,j(F) 6= F ⊆ 2[n] and
i < j, then 0 <

∑

G∈∆i,j(F)

∑

b∈G b <
∑

F∈F

∑

a∈F a).

Now consider A,B ⊆ 2[n] such that A and B are cross-t-intersecting. Then, by
Lemma 3.1, we can obtain A∗,B∗ ⊆ 2[n] such that A∗ and B∗ are compressed and cross-
t-intersecting, |A∗| = |A|, and |B∗| = |B|. Indeed, similarly to the above procedure, if
we can find a left-compression that changes at least one of A and B, then we apply it
to both A and B, and we keep on repeating this (always performing this on the last
two families obtained) until we obtain A∗,B∗ ⊆ 2[n] such that both A∗ and B∗ are
invariant under any left-compression.

4 Proof of the main result

This section is dedicated to the proof of Theorem 1.3.
For the extremal cases of Theorem 1.3, we shall use the following two lemmas.

Lemma 4.1 Let 1 ≤ t ≤ n and T = [t]. Let H be a compressed subfamily of 2[n]. Let
w : H → R+ such that w(δi,j(H)) ≥ w(H) for every H ∈ H and every i, j ∈ [n] with

i < j. Then w(H(T ′)) ≤ w(H(T )) for each T ′ ∈
(

[n]
t

)

.

Proof. Let T ′ ∈
(

[n]
t

)

, and let a1, . . . , at be the elements of T ′. Let D0 = H(T ′). Let
D1 = ∆1,a1(D0), . . . ,Dt = ∆t,at(Dt−1). Since H is compressed, Di ⊆ H for each i ∈ [t].
It follows from the properties of w and of left-compressions that w(D0) ≤ w(D1) ≤
· · · ≤ w(Dt). Thus the result follows if we show that Dt ⊆ H(T ).

Let D1 ∈ D1. If D1 /∈ D0, then D1 = δ1,a1(D) 6= D for some D ∈ D0, and hence
1 ∈ D1. Suppose D1 ∈ D0, so a1 ∈ D1 by definition of D0. Since D1 is also in D1,
δ1,a1(D1) ∈ D0. Thus a1 ∈ δ1,a1(D1) by definition of D0. Since a1 ∈ D1, it follows that
1 ∈ D1.

Therefore, 1 ∈ H for each H ∈ D1, that is, D1 ⊆ H({1}). If t = 1, then we have
w(D0) ≤ w(D1) ≤ w(H({1})) = w(H(T )), as required.
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Suppose t ≥ 2. Since D1 ⊆ H({1}), we clearly have 1 ∈ H for each H ∈ D2.
By an argument similar to that for D1, we also obtain that 2 ∈ H for each H ∈ D2.
Continuing this way, we obtain that 1, . . . , t ∈ H for each H ∈ Dt. Thus Dt ⊆ H(T ),
as required. ✷

Lemma 4.2 Let n, t, T , G, H, g, and h be as in Theorem 1.3. If U ∈ A ⊆ G,
V ∈ B ⊆ H, |U | = |V | = t, and A and B are cross-t-intersecting, then

g(A)h(B) ≤ g(G(T ))h(H(T )),

and equality holds if and only if A = G(V ), B = H(V ), g(G(V )) = g(G(T )), and
h(H(V )) = h(H(T )).

Proof. Since A and B are cross-t-intersecting, we have U = V , A ⊆ G(V ), and
B ⊆ H(V ). By Lemma 4.1, g(G(V )) ≤ g(G(T )) and h(H(V )) ≤ h(H(T )). Hence the
result. ✷

Proof of Theorem 1.3. We prove the result by induction on n.
Consider the base case n = t. If g(A)h(B) 6= 0, then A 6= ∅ 6= B, and hence, since

A and B are cross-t-intersecting, A = {T} = B.
Now consider n ≥ t + 1. Let A ⊆ G and B ⊆ H such that g(A)h(B) is maximum

under the condition that A and B are cross-t-intersecting. If G does not have a member
of size at least t, then A = ∅ or B = ∅ (since A and B are cross-t-intersecting), and
hence g(A)h(B) = 0 = g(G(T ))h(H(T )). Similarly, g(A)h(B) = 0 = g(G(T ))h(H(T ))
if H does not have a member of size at least t. Therefore, we will assume that each of G
and H has a member of size at least t. Since G and H are hereditary and compressed,
we clearly have T ∈ G and T ∈ H. Thus g(G(T )) > 0 and h(H(T )) > 0. Since G(T )
and H(T ) are cross-t-intersecting, it follows by the choice of A and B that

g(A)h(B) ≥ g(G(T ))h(H(T )) > 0. (1)

It follows that A 6= ∅ 6= B. It also follows that no member of A is of size less than t,
because otherwise B = ∅, contradicting (1). Similarly, no member of B is of size less
than t.

As explained in Section 3, we apply left-compressions to A and B simultaneously
until we obtain two compressed cross-t-intersecting families A∗ and B∗, respectively.
Thus |A∗| = |A| and |B∗| = |B|. Since G and H are compressed, A∗ ⊆ G and B∗ ⊆ H.
By (b), g(A) ≤ g(A∗) and h(B) ≤ h(B∗). By the choice of A and B, we actually have
g(A) = g(A∗) and h(B) = h(B∗).

Suppose that A∗ = G(U) and B∗ = H(U) for some U ∈
(

[n]
t

)

such that g(G(U)) =
g(G(T )) and h(H(U)) = h(H(T )). Then g(G(U)) > 0 and h(H(U)) > 0, so G(U) 6= ∅
and H(U) 6= ∅. Thus, since G and H are hereditary, U ∈ A∗ and U ∈ B∗. Hence
V ∈ A for some V ∈

(

[n]
t

)

, and V ′ ∈ B for some V ′ ∈
(

[n]
t

)

. By Lemma 4.2, the result
follows.

Therefore, we may assume that A and B are compressed.
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We first consider t+1 ≤ n ≤ t+2. If A has a member of size t and B has a member
of size t, then the result follows by Lemma 4.2. Thus, without loss of generality, we
may assume that no member of A is of size t.

Suppose n = t+1. Then A = {[t+1]} ⊆ G(T )\{T} (since A 6= ∅ and A∩
(

[n]
t

)

= ∅)

and B ⊆ H ∩
(

(

[t+1]
t

)

∪ {[t + 1]}
)

. Thus we have

g(A)h(B) ≤ (g(G(T ))− g(T ))






h(H(T )) +

∑

H∈([t+1]
t )∩H\{T}

h(H)







≤ (g(G(T ))− g(T )) (h(H(T )) + th(T )) (by (b))

= g(G(T ))h(H(T )) + th(T )g(G(T ))− g(T ) (h(H(T )) + th(T ))

≤ g(G(T ))h(H(T )) + th(T )(g(T ) + g([t+ 1]))− (t + 1)g(T )h(T )

≤ g(G(T ))h(H(T )) + th(T )

(

g(T ) +
g(T )

t+ u

)

− (t+ 1)g(T )h(T ) (by (a)).

Therefore, g(A)h(B) ≤ g(G(T ))h(H(T )), and equality holds only if u = 0.

Suppose n = t + 2. This case requires a number of observations followed by the
separate treatment of a few sub-cases.

Let T1 = [t + 1], T ′
1 = T ∪ {t + 2}, and T2 = [t + 2]. For each i ∈ {t, t + 1, t + 2}

and each F ∈ {A,B,G,H}, let F (i) = F ∩
(

[t+2]
i

)

. Thus A = A(t) ∪A(t+1) ∪A(t+2) and

B = B(t)∪B(t+1)∪B(t+2). Recall that A has no t-set, so A(t) = ∅. Since A(t+2),B(t+2) ⊆
(

[t+2]
t+2

)

= {[t+ 2]}, we have A(t+2) ⊆ G(T ) and B(t+2) ⊆ H(T ). Let

AT = A ∩ G(T ), AT = A\AT , BT = B ∩H(T ), BT = B\BT .

We have

AT ⊆ G(T )\{T}, AT ⊆ G(t+1)\{T1, T
′
1}, BT ⊆ H(t) ∪H(t+1)\{T1, T

′
1}. (2)

Since T ( T1 ( T2, we have g(T1) ≤ g(T )
t+u

, g(T2) ≤ g(T1)
t+u

≤ g(T )
(t+u)2

, h(T1) ≤ h(T )
t+u

,

and h(T2) ≤
h(T1)
t+u

≤ h(T )
(t+u)2

. Clearly, for each U ∈ G(t), there is a composition of left-

compressions that gives T when applied to U , and hence g(U) ≤ g(T ) by (b). Similarly,
h(V ) ≤ h(T ) for each V ∈ H(t), g(U) ≤ g(T1) for each U ∈ G(t+1), and h(V ) ≤ h(T1)
for each V ∈ H(t+1).

Suppose A(t+1) = ∅. Then A = {T2}. Since T2 ∈ G and G is hereditary, we have
T, T1, T

′
1, T2 ∈ G(T ). Thus

g(G(T )) ≥ g(T ) + g(T1) + g(T ′
1) + g(T2)

≥ (t+ u)2g(T2) + 2(t+ u)g(T2) + g(T2)

≥ ((t+ u) + 1)2g(T2) = (t+ u+ 1)2g(A),
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and hence g(A) ≤ g(G(T ))
(t+u+1)2

. Now

h(B) = h(BT ) + h(BT ) ≤ h(H(T )) +

((

t+ 2

t

)

− 1

)

h(T ) +

((

t + 2

t + 1

)

− 2

)

h(T1)

≤ h(H(T )) +

(

(t+ 2)(t+ 1)

2
− 1

)

h(T ) + t
h(T )

t
= h(H(T )) +

t2 + 3t+ 2

2
h(T )

≤ h(H(T )) +
t2 + 3t+ 2

2
h(H(T )) =

t2 + 3t+ 4

2
h(H(T )).

Thus

g(A)h(B) ≤
t2 + 3t+ 4

2(t+ u+ 1)2
g(G(T ))h(H(T )) ≤

t2 + 3t + 4

2(t + 1)2
g(G(T ))h(H(T )).

Hence g(A)h(B) ≤ g(G(T ))h(H(T )), and equality holds only if u = 0.
Suppose that A(t+1) has at least 3 sets. Let U1, U2, and U3 be 3 distinct sets in

A(t+1). Since U1, U2, U3 ∈
(

[t+2]
t+1

)

, no t-set is a subset of each of U1, U2, and U3. Thus

no t-set t-intersects each of U1, U2, and U3, and hence B(t) = ∅. We have

g(A) ≤ g(G(T ))− g(T ) +

((

t+ 2

t+ 1

)

− 2

)

g(T1) ≤ g(G(T ))− g(T ) + t
g(T )

t + u
≤ g(G(T )).

Similarly, h(B) ≤ h(H(T )). Thus g(A)h(B) ≤ g(G(T ))h(H(T )), and equality holds
only if u = 0.

We still need to consider 1 ≤ |A(t+1)| ≤ 2, for which we need more detailed
observations. Let C0 = BT ∩

(

[t+2]
t

)

, C1 = BT ∩
(

[t+2]
t+1

)

, D0 = H(T ) ∩
(

[t+2]
t

)

, and

D1 = H(T ) ∩
(

[t+2]
t+1

)

. By (2), BT = C0 ∪ C1. If H(t+1)\{T1, T
′
1} has a set V , then

t + 2 ∈ V , and hence there is a composition of left-compressions that gives T ′
1 when

applied to V . Thus, if H(t+1)\{T1, T
′
1} is non-empty, then T1, T

′
1 ∈ H(T ) (as H is

compressed, T ⊂ T1, and T ⊂ T ′
1), and hence we have

h(C1) ≤
∑

V ∈H(t+1)\{T1,T ′
1}

h(V ) (by (2))

≤
∑

V ∈H(t+1)\{T1,T ′
1}

h(T ′
1) ≤ th(T ′

1) ≤ t
h(T1) + h(T ′

1)

2
=

t

2
|D1|.

If H(t+1)\{T1, T
′
1} = ∅, then C1 = ∅, and hence we also have h(C1) ≤

t
2
h(D1). With a

slight abuse of notation, we set g(T ′
1) = 0 if T ′

1 /∈ G, and we set g(T2) = 0 if T2 /∈ G.
Since G is hereditary, T ′

1 ∈ G if T2 ∈ G. Thus g(T ′
1) ≥ (t + u)g(T2).

Suppose that A(t+1) has exactly one set. Since A is compressed, A(t+1) = {T1}.
Thus A ⊆ {T1, T2}, and hence g(A) ≤ g(T1) + g(T2) = g(G(T )) − g(T ) − g(T ′

1). The
t-sets that t-intersect T1 are those in

(

T1

t

)

, so B(t) ⊆
(

T1

t

)

, and hence

h(C0) ≤
∑

V ∈(H(t)\{T})∩(T1t )

h(V ) ≤

((

t + 1

t

)

− 1

)

h(T ) = th(D0).
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We have

g(A)h(B) ≤ (g(G(T ))− g(T )− g(T ′
1))(h(H(T )) + h(BT ))

= g(G(T ))h(H(T )) + g(G(T ))h(BT )− (g(T ) + g(T ′
1))(h(H(T )) + h(BT ))

= g(G(T ))h(H(T )) + (g(T1) + g(T2))h(BT )− (g(T ) + g(T ′
1))h(H(T ))

≤ g(G(T ))h(H(T )) +

(

g(T )

t + u
+

g(T ′
1)

t + u

)

h(BT )− (g(T ) + g(T ′
1))h(H(T ))

= g(G(T ))h(H(T )) + (g(T ) + g(T ′
1))

(

h(C0) + h(C1)

t+ u
− h(H(T ))

)

≤ g(G(T ))h(H(T )) + (g(T ) + g(T ′
1))

(

th(D0) +
t
2
h(D1)

t+ u
− (h(D0) + h(D1))

)

.

Thus g(A)h(B) ≤ g(G(T ))h(H(T )), and equality holds only if u = 0.
Suppose that A(t+1) has exactly 2 sets. Since A is compressed, A(t+1) = {T1, T

′
1}.

The only t-set that t-intersects each of T1 and T ′
1 is T , so B(t) ⊆ {T}. Thus C0 = ∅,

and hence BT = C1. Since D1 ⊆ {T1, T
′
1}, h(D1) ≤ 2h(T )

t+u
= 2h(D0)

t+u
. Since h(H(T )) ≥

h(D0) + h(D1), h(H(T )) ≥ t+u
2
h(D1) + h(D1) =

(

t+u
2

+ 1
)

h(D1). We have

g(A)h(B) ≤ (g(G(T ))− g(T ))(h(H(T )) + h(C1))

= g(G(T ))h(H(T )) + g(G(T ))h(C1)− g(T )(h(H(T )) + h(C1))

= g(G(T ))h(H(T )) + (g(T1) + g(T ′
1) + g(T2))h(C1)− g(T )h(H(T ))

≤ g(G(T ))h(H(T )) +

(

2g(T )

t+ u
+

g(T )

(t+ u)2

)

t

2
h(D1)− g(T )

(

t+ u

2
+ 1

)

h(D1)

= g(G(T ))h(H(T )) + g(T )h(D1)

(

t

t+ u
+

t

2(t+ u)2
−

t + u

2
− 1

)

.

Thus g(A)h(B) ≤ g(G(T ))h(H(T )), and equality holds only if u = 0.

Now consider n ≥ t+ 3.
Define H0 = {H ∈ H : n /∈ H} and H1 = {H\{n} : n ∈ H ∈ H}. Define G0, G1, A0,

A1, B0, and B1 similarly. Since A, B, G, and H are compressed, we clearly have that
A0, A1, B0, B1, G0, G1, H0, and H1 are compressed. Since G and H are hereditary, we
clearly have that G0, G1, H0, and H1 are hereditary, G1 ⊆ G0, and H1 ⊆ H0. Obviously,
we have A0 ⊆ G0 ⊆ 2[n−1], A1 ⊆ G1 ⊆ 2[n−1], B0 ⊆ H0 ⊆ 2[n−1], and B1 ⊆ H1 ⊆ 2[n−1].

Let h0 : H0 → R+ such that h0(H) = h(H) for each H ∈ H0. Let h1 : H1 → R+

such that h1(H) = h(H ∪ {n}) for each H ∈ H1 (note that H ∪ {n} ∈ H by definition
of H1). By (a) and (b), we have the following consequences. For any A,B ∈ H0 with
A ( B and |A| ≥ t,

h0(A) = h(A) ≥ (t + u)h(B) = (t + u)h0(B). (3)

For any C ∈ H0 and any i, j ∈ [n− 1] with i < j,

h0(δi,j(C)) = h(δi,j(C)) ≥ h(C) = h0(C). (4)
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For any A,B ∈ H1 with A ( B and |A| ≥ t,

h1(A) = h(A ∪ {n}) ≥ (t + u)h(B ∪ {n}) = (t+ u)h1(B). (5)

For any C ∈ H1 and any i, j ∈ [n− 1] with i < j,

h1(δi,j(C)) = h(δi,j(C) ∪ {n}) = h(δi,j(C ∪ {n})) ≥ h(C ∪ {n}) = h1(C). (6)

Therefore, we have shown that properties (a) and (b) are inherited by h0 and h1.
Since B = B0 ∪ B({n}), B0 ∩ B({n}) = ∅, and B({n}) = {B ∪ {n} : B ∈ B1}, we

have
h(B) = h(B0) + h(B({n})) = h0(B0) + h1(B1). (7)

Along the same lines,

h(H(T )) = h(H0(T )) + h({H ∈ H : T ∪ {n} ⊆ H})

= h0(H0(T )) + h({H ∪ {n} : H ∈ H1(T )})

= h0(H0(T )) + h1(H1(T )). (8)

Suppose G1 = ∅. Clearly, A and B0 are cross-t-intersecting. Since G1 = ∅, no set
in A contains n, and hence A and B1 are cross-t-intersecting. Thus, by the induction
hypothesis,

g(A)hj(Bj) ≤ g(G(T ))hj(Hj(T )) for each j ∈ {0, 1}. (9)

Together with (7) and (8), this gives us

g(A)h(B) = g(A)h0(B0) + g(A)h1(B1)

≤ g(G(T ))h0(H0(T )) + g(G(T ))h1(H1(T ))

= g(G(T ))h(H(T )).

By (1), equality holds throughout, and hence g(A)h(B) = g(G(T ))h(H(T )). Thus,
in (9), we actually have equality. Suppose u > 0. By the induction hypothesis, for
each j ∈ {0, 1}, we have A = G(Vj) and Bj = Hj(Vj) for some Vj ∈

(

[n−1]
t

)

such
that g(G(Vj)) = g(G(T )) and hj(Hj(Vj)) = hj(Hj(T )). Thus g(G(V0)) > 0, and hence
G(V0) 6= ∅. Thus, since G is hereditary and A = G(V0), V0 ∈ A. Since A and B
are cross-t-intersecting, B ⊆ H(V0). Since A = G(V0), and since G(V0) and H(V0)
are cross-t-intersecting, it follows by the choice of A and B that B = H(V0). By (1),
H(V0) 6= ∅. Since H is hereditary, V0 ∈ B. By Lemma 4.2, the result follows.

Now suppose that G1 is non-empty. If H1 = ∅, then the result follows by an
argument similar to that for the case G1 = ∅ above. Thus we assume that H1 is
non-empty. Since G1 ⊆ G0 and H1 ⊆ H0, G0 and H0 are non-empty too.

Similarly to h0 and h1, let g0 : G0 → R+ such that g0(G) = g(G) for each G ∈ G0,
and let g1 : G1 → R+ such that g1(G) = g(G ∪ {n}) for each G ∈ G1 (note that
G ∪ {n} ∈ G by definition of G1). Then properties (a) and (b) are inherited by g0 and
g1 in the same way they are inherited by h0 and h1, as shown above; that is, similarly
to (3)–(6), we have the following. For any A,B ∈ G0 with A ( B and |A| ≥ t,

g0(A) ≥ (t+ u)g0(B). (10)
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For any C ∈ G0 and any i, j ∈ [n− 1] with i < j,

g0(δi,j(C)) ≥ g0(C). (11)

For any A,B ∈ G1 with A ( B and |A| ≥ t,

g1(A) ≥ (t+ u)g1(B). (12)

For any C ∈ G1 and any i, j ∈ [n− 1] with i < j,

g1(δi,j(C)) ≥ g1(C). (13)

Similarly to (7) and (8), we have

g(A) = g0(A0) + g1(A1), (14)

g(G(T )) = g0(G0(T )) + g1(G1(T )). (15)

Clearly, A0 and B0 are cross-t-intersecting, A0 and B1 are cross-t-intersecting, and
A1 and B0 are cross-t-intersecting.

Let us first assume that A1 and B1 are cross-t-intersecting too. Then, by the
induction hypothesis,

gi(Ai)hj(Bj) ≤ gi(Gi(T ))hj(Hj(T )) for any i, j ∈ {0, 1}. (16)

Together with (7), (8), (14), and (15), this gives us

g(A)h(B) = g0(A0)h0(B0) + g0(A0)h1(B1) + g1(A1)h0(B0) + g1(A1)h1(B1)

≤ g0(G0(T ))h0(H0(T )) + g0(G0(T ))h1(H1(T ))+

g1(G1(T ))h0(H0(T )) + g1(G1(T ))h1(H1(T ))

= g(G(T ))h(H(T )).

By (1), equality holds throughout, and hence g(A)h(B) = g(G(T ))h(H(T )). Thus,
in (16), we actually have equality. Suppose u > 0. By the induction hypothesis,
we particularly have A0 = G0(V0) and B0 = H0(V0) for some V0 ∈

(

[n−1]
t

)

such that
g0(G0(V0)) = g0(G0(T )) and h0(H0(V0)) = h0(H0(T )). Recall that T ∈ G, so T ∈ G0,
and hence g0(G0(T )) > 0. Thus g0(G0(V0)) > 0, and hence G0(V0) 6= ∅. Since G0 is
hereditary, it follows that V0 ∈ G0(V0), and hence V0 ∈ A. Similarly, V0 ∈ B. By
Lemma 4.2, the result follows.

We will now show that A1 and B1 are indeed cross-t-intersecting. Note that A1 and
B1 are cross-(t− 1)-intersecting.

Suppose that A1 and B1 are not cross-t-intersecting. Then there exists A∗ ∈ A1

such that |A∗ ∩B∗| = t− 1 for some B∗ ∈ B1. Let r = |A∗|+ 1 and s = n− r + t. Let

R = {A ∈ A1 : |A| = r − 1, |A ∩B| = t− 1 for some B ∈ B1},

S = {B ∈ B1 : |B| = s− 1, |A ∩B| = t− 1 for some A ∈ A1}.

We have A∗ ∈ R.
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Consider any R ∈ R and B ∈ B1 such that |R ∩ B| < t. Since A1 and B1 are
cross-(t− 1)-intersecting, |R ∩ B| = t− 1. We have

|B| = |B ∩ R|+ |B\R| = t− 1 + |B\R|

≤ t− 1 + |[n− 1]\R| = t− 1 + (n− 1)− (r − 1) = s− 1.

Suppose B /∈ S. Then |B| < s− 1. Thus we have

|R ∪ B| = |R|+ |B| − |R ∩ B| ≤ r − 1 + s− 2− t+ 1 = n− 2,

and hence R ∪B ( [n− 1]. Let c ∈ [n− 1]\(R ∪B). Since B ∈ B1, B ∪ {n} ∈ B. Let
C = δc,n(B ∪ {n}). Since c /∈ B ∪ {n}, C = B ∪ {c}. Since B is compressed, C ∈ B.
However, since c /∈ R∪{n} and |R∩B| = t−1, we have |(R∪{n})∩C| = t−1, which
is a contradiction as A and B are cross-t-intersecting, R ∪ {n} ∈ A, and C ∈ B.

We have therefore shown that

for each B ∈ B1 such that |R ∩B| < t for some R ∈ R, B ∈ S. (17)

By a similar argument,

for each A ∈ A1 such that |A ∩ S| < t for some S ∈ S, A ∈ R. (18)

For each A ∈ A1 ∪B1, let A′ = A∪ {n}. Let R′ = {R′ : R ∈ R} and S ′ = {S ′ : S ∈
S}. Since R ⊆ A1 and S ⊆ B1, R

′ ⊆ A({n}) and S ′ ⊆ B({n}). Let

A′ = A∪R, A′′ = A\R′, B′ = B\S ′, B′′ = B ∪ S.

By (17), A′ and B′ are cross-t-intersecting. By (18), A′′ and B′′ are cross-t-intersecting.
Since G and H are hereditary, and since R′ ⊆ A ⊆ G and S ′ ⊆ B ⊆ H, we have R ⊆ G
and S ⊆ H, and hence A′,A′′ ⊆ G and B′,B′′ ⊆ H.

Let x = g(A), x1 = g(R′), y = h(B), and y1 = h(S ′). We use a double-counting
argument to obtain x ≥ nx1/r and y ≥ ny1/s. For any R ∈ R′ and any set A such
that A = δi,n(R) for some i ∈ [n]\R, we write A < R. If A < R ∈ R′, then, since A is
compressed and n ∈ R ∈ A, we have A ∈ A0. For any A ∈ A0 and any R ∈ R′, let

χ(A,R) =

{

1 if A < R;
0 otherwise.

Then
∑

A∈A0
χ(A,R) = n − r for each R ∈ R′. For each A ∈ A0, χ(A,R) = 1 only if

|A| = |R| and R = (A\{i}) ∪ {n} for some i ∈ A. Thus
∑

R∈R′ χ(A,R) ≤ r for each
A ∈ A0. We have

(n− r)x1 =
∑

R∈R′

(n− r)g(R) =
∑

R∈R′

∑

A∈A0

χ(A,R)g(R) =
∑

A∈A0

∑

R∈R′

χ(A,R)g(R)

≤
∑

A∈A0

∑

R∈R′

χ(A,R)g(A) (by (b))

≤
∑

A∈A0

rg(A) = rg(A0) = r(x− g(A({n}))) ≤ r(x− x1),
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so x ≥ nx1/r. Similarly, y ≥ ny1/s.
Since t − 1 = |A∗ ∩ B∗| ≤ |A∗| = r − 1, r ≥ t. By (17), B∗ ∈ S. Since t − 1 =

|A∗ ∩B∗| ≤ |B∗| = s− 1, s ≥ t.
Suppose r = t. Then s = n. Thus S ′ = {[n]} and S = {[n − 1]}. Let C∗ =

[t − 1] ∪ {n}. Since A∗ ∈ A1, A1 is compressed, and |A∗| = r − 1 = t − 1, we have
[t− 1] ∈ A1, and hence C∗ ∈ A.

Suppose that there exists D∗ ∈ B such that D∗ 6= [n]. Since A and B are cross-t-
intersecting, we have |C∗ ∩D∗| ≥ t. Thus C∗ ⊆ D∗ as |C∗| = t. Since D∗ 6= [n], there
exists c ∈ [n] such that c /∈ D∗. Thus c /∈ C∗. Since A is compressed, δc,n(C

∗) ∈ A.
However, |δc,n(C

∗) ∩D∗| = |C∗\{n}| = t− 1, which is a contradiction as A and B are
cross-t-intersecting.

Therefore, B = {[n]}. Since n−1 > t, h([n−1]) ≥ (t+u)h([n]) ≥ th([n]). We have

h(B′′) = h([n]) + h([n− 1]) ≥ h([n]) + th([n]) = (t + 1)h(B) = (t+ 1)y.

Since x ≥ nx1/r = nx1/t ≥ (t+ 3)x1/t, x1 ≤ tx/(t + 3). We have

g(A′′) = x− x1 ≥ x−
tx

t+ 3
=

3x

t+ 3
.

Thus we obtain

g(A′′)h(B′′) ≥
3(t+ 1)xy

t+ 3
> xy = g(A)h(B),

contradicting the choice of A and B.
Therefore, r ≥ t + 1. Similarly, s ≥ t + 1. Since r − 1 ≥ t and each set in R is of

size r − 1, g(R) ≥ (t + u)g(R′). Similarly, h(S) ≥ (t + u)g(S ′).
Consider any R ∈ R. By definition of R, there exists BR ∈ B1 such that |R∩BR| =

t−1. Thus |R∩BR
′| = t−1. Since BR

′ ∈ B, and since A and B are cross-t-intersecting,
R /∈ A. Therefore, A∩R = ∅. Similarly, B ∩ S = ∅.

We have

g(A′) = x+ g(R) ≥ x+ (t+ u)g(R′) = x+ (t+ u)x1,

g(A′′) = x− x1,

h(B′) = y − y1,

h(B′′) = y + h(S) ≥ y + (t+ u)h(S ′) = y + (t+ u)y1.

By the choice of A and B,

g(A′)h(B′) ≤ g(A)h(B) and g(A′′)h(B′′) ≤ g(A)h(B).
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Thus we have

(x+ (t+ u)x1)(y − y1) ≤ xy and (x− x1)(y + (t+ u)y1) ≤ xy

⇒ (t+ u)x1y ≤ xy1 + (t+ u)x1y1 and (t+ u)xy1 ≤ x1y + (t+ u)x1y1

⇒ (t+ u)x1y + (t+ u)xy1 ≤ (xy1 + (t+ u)x1y1) + (x1y + (t+ u)x1y1)

⇒ (t+ u− 1)(x1y + xy1) ≤ 2(t+ u)x1y1.

⇒ (t+ u− 1)
(

x1
ny1
s

+
nx1

r
y1

)

≤ 2(t+ u)x1y1

⇒ (t+ u− 1)(r + s)x1y1n ≤ 2(t+ u)rsx1y1

⇒ (t+ u− 1)(n+ t)n ≤ 2(t + u)r(n− r + t).

Using differentiation, we find that the maximum value of the function f(z) = z(n−z+t)
occurs at z = n+t

2
. Thus r(n− r + t) ≤ n+t

2

(

n− n+t
2

+ t
)

= (n + t)2/4, and hence

(t + u− 1)(n+ t)n ≤ 2(t+ u)(n+ t)2/4

⇒ 2(t+ u− 1)n ≤ (t+ u)(n+ t)

⇒ n ≤
(t+ u)t

t+ u− 2
. (19)

Since u > 6−t
3

, (t+u)t
t+u−2

< t+ 3. Thus we have n < t+ 3, which is a contradiction. Hence
the result. ✷

Remark 4.3 Note that the proof for the special case n ≤ t + 2 actually verifies the
conjecture in Remark 1.4 for n ≤ t + 2. Also note that for t ≥ 3, if we also settle the
conjecture for t + 3 ≤ n ≤ t + 6, then we can take u = 0 and proceed for n ≥ t + 7 in
exactly the same way we did for n ≥ t+3, because again we obtain a contradiction to
(19); thus, as mentioned in Remark 1.4, this would settle the conjecture for t ≥ 3.

5 Proof of Theorem 1.2

In this section, we use Theorem 1.3 to prove Theorem 1.2.
For a family F and an integer r ≥ 0, we denote the families {F ∈ F : |F | = r} and

{F ∈ F : |F | ≤ r} by F (r) and F (≤r), respectively.
We will need the following lemma only when dealing with the characterisation of

the extremal structures in the proof of Theorem 1.2.

Lemma 5.1 Let t, r, s, u,m, and n be as in Theorem 1.2. Let i, j ∈ [max{m,n}] with
i < j. Let G = 2[m] and H = 2[n]. Let A ⊆ G(r) and B ⊆ H(s) such that A and B are
cross-t-intersecting. Suppose that ∆i,j(A) = G(r)(T ) and ∆i,j(B) = H(s)(T ) for some
t-element subset T of [min{m,n}]. Then A = G(r)(T ′) and B = H(s)(T ′) for some
t-element subset T ′ of [min{m,n}].

We prove the above lemma using the following special case of [11, Lemma 5.6].
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Lemma 5.2 Let t ≥ 1, r ≥ t + 1, n ≥ 2r − t+ 2, and i, j ∈ [n]. Let H = 2[n], and let
A be a t-intersecting subfamily of H(r). If ∆i,j(A) is a largest t-star of H(r), then A is
a largest t-star of H(r).

Proof of Lemma 5.1. We are given that t ≤ r ≤ s.
Suppose r = t. Then ∆i,j(A) = {T}. Thus A = {T ′} = H(r)(T ′) for some T ′ ∈

(

[m]
t

)

. Since A and B are cross-t-intersecting, T ′ ⊆ B for all B ∈ B. Thus B ⊆ H(s)(T ′).

Since
(

n−t
s−t

)

= |H(s)(T )| = |∆i,j(B)| = |B| ≤ |H(s)(T ′)| =
(

n−t
s−t

)

, |B| =
(

n−t
s−t

)

. Hence

B = H(s)(T ′).
Now suppose r ≥ t+ 1. Note that T\{i} ⊆ E for all E ∈ A ∪ B.
Suppose that A is not t-intersecting. Then there exist A1, A2 ∈ A such that |A1 ∩

A2| ≤ t − 1, and hence T * Al for some l ∈ {1, 2}; we may assume that l = 1. Thus,
since ∆i,j(A) = H(r)(T ), we have A1 /∈ ∆i,j(A), A1 6= δi,j(A1) ∈ ∆i,j(A), δi,j(A1) /∈ A
(because otherwise A1 ∈ ∆i,j(A)), i ∈ T , j /∈ T , j ∈ A1, and A1 ∩ T = T\{i}. Since
T\{i} ⊆ A1 ∩ A2 and |A1 ∩ A2| ≤ t − 1, A1 ∩ A2 = T\{i}. Thus j /∈ A2, and hence
A2 = δi,j(A2). Since δi,j(A2) ∈ ∆i,j(A) = H(r)(T ), T ⊆ A2. Let X = [n]\(A1 ∪ A2).
We have

|X| = n− |A1 ∪ A2| = n− (|A1|+ |A2| − |A1 ∩ A2|) = n− 2r + t− 1

≥ (t + u+ 2)(s− t) + r − 1− 2(r − t)− (t+ 1) ≥ (t+ u)(s− t)− 1

>

(

2 +
2t

3

)

(s− t)− 1 =

(

1 +
2t

3

)

(s− t) + s− (t + 1).

Since t + 1 ≤ r ≤ s, we have |X| > s − t, and hence
(

X
s−t

)

6= ∅. Let C ∈
(

X
s−t

)

and

D = C ∪ T . Then D ∈ H(s)(T ) and D ∩ A1 = T\{i}, meaning that D ∈ ∆i,j(B)
and |D ∩ A1| = t − 1. Since A and B are cross-t-intersecting, we obtain D /∈ B and
(D\{i})∪{j} ∈ B, which is a contradiction since |((D\{i})∪{j})∩A2| = |T\{i}| = t−1.

Therefore, A is t-intersecting. Similarly, B is t-intersecting. Now H(r)(T ) is a largest
t-star of H(r), and H(s)(T ) is a largest t-star of H(s). Since t+ 1 ≤ r ≤ s and

max{m,n} ≥ (t+ u+2)(s− t) + r− 1 = (t+ u)(s− t) + (2s− t+ 2)+ r− (t+ 1)− 2,

we have

max{m,n} − (2s− t+ 2) >

(

2 +
2t

3

)

(s− t)− 2 ≥
2t

3
(s− t) > 0,

and hence max{m,n} > 2s− t+ 2. By Lemma 5.2, A = H(r)(T ′) for some T ′ ∈
(

[m]
t

)

,

and B = H(s)(T ∗) for some T ∗ ∈
(

[n]
t

)

.
Suppose T ′ 6= T ∗. Let z ∈ T ∗\T ′. Since m > 2s − t + 2 > r, we can choose

A′ ∈ H(r)(T ′) such that z /∈ A′. Since n > 2s− t + 2 ≥ r + s − t + 2 > r + s − t and
z ∈ T ∗\A′, we can choose B∗ ∈ H(s)(T ∗) such that |A′ ∩B∗| ≤ t− 1; however, this is a
contradiction since A = H(r)(T ′), B = H(s)(T ∗), and A and B are cross-t-intersecting.
Therefore, T ′ = T ∗. ✷
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Proof of Theorem 1.2. If A = ∅ or B = ∅, then |A||B| = 0. Thus we assume
that A 6= ∅ and B 6= ∅. Let l = max{m,n}, so A,B ⊆ 2[l].

As explained in Section 3, we apply left-compressions to A and B simultaneously
until we obtain two compressed cross-t-intersecting families A∗ and B∗, respectively.
We have A∗ ⊆

(

[m]
r

)

, B∗ ⊆
(

[n]
s

)

, |A∗| = |A|, and |B∗| = |B|. In view of Lemma 5.1, we
may therefore assume that A and B are compressed. Thus, by Lemma 3.1(ii),

|A ∩ B ∩ [r + s− t]| ≥ t for any A ∈ A and any B ∈ B. (20)

Let p = r + s − t. Let G =
(

[p]
≤r

)

and H =
(

[p]
≤s

)

. Let g : G → N such that

g(G) =
(

m−p
r−|G|

)

for each G ∈ G. Let h : H → N such that h(H) =
(

n−p
s−|H|

)

for each
H ∈ H.

For every F,G ∈ G with F ( G and t ≤ |F | = |G| − 1, we have

g(F )− (t + u)g(G)
(

m−p
r−|F |

) = 1−
(t+ u)

(

m−p
r−|F |−1

)

(

m−p
r−|F |

) = 1−
(t+ u)(r − |F |)

m− p− (r − |F |) + 1

=
m− p− (t+ u+ 1)(r − |F |) + 1

m− p− (r − |F |) + 1

≥
m− p− (t+ u+ 1)(r − t) + 1

m− p− (r − |F |) + 1

=
m− (t + u+ 2)(r − t)− s+ 1

m− p− (r − |F |) + 1

≥
(t+ u+ 2)(s− t) + r − 1− ((t + u+ 2)(r − t) + s− 1)

m− p− (r − |F |) + 1
≥ 0,

and hence g(F ) ≥ (t + u)g(G). It follows that g(F ) ≥ (t + u)g(G) for every F,G ∈ G
with F ( G and |F | ≥ t. Similarly, h(F ) ≥ (t + u)g(H) for every F,H ∈ H with
F ( H and |F | ≥ t.

We have g(δi,j(G)) = g(G) for every G ∈ G and every i, j ∈ [p]. Similarly,
h(δi,j(H)) = h(H) for every H ∈ H and every i, j ∈ [p].

Let C = {A ∩ [p] : A ∈ A} and D = {B ∩ [p] : B ∈ B}. Then C ⊆ G, D ⊆ H, and,
by (20), C and D are cross-t-intersecting. Let T = [t]. By Theorem 1.3,

g(C)h(D) ≤ g(G(T ))h(H(T )), (21)

and if u > 0, then equality holds only if C = G(T ′) and D = H(T ′) for some T ′ ∈
(

[p]
t

)

.
We have

|A| =

∣

∣

∣

∣

∣

r
⋃

i=0

{

A ∈ A : A ∩ [p] ∈ C(i)
}

∣

∣

∣

∣

∣

≤
r
∑

i=0

∣

∣C(i)
∣

∣

(

m− p

r − i

)

= g(C), (22)

|B| =

∣

∣

∣

∣

∣

s
⋃

j=0

{

B ∈ B : B ∩ [p] ∈ D(j)
}

∣

∣

∣

∣

∣

≤
s
∑

j=0

∣

∣D(j)
∣

∣

(

n− p

s− j

)

= h(D), (23)

and hence, by (21),
|A||B| ≤ g(G(T ))h(H(T )). (24)
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Now

g(G(T )) =
r
∑

i=t

∣

∣G(i)(T )
∣

∣

(

m− p

r − i

)

=

∣

∣

∣

∣

∣

r
⋃

i=t

{

A ∈

(

[m]

r

)

: T ⊆ A, |A ∩ [p]| = i

}

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

{

A ∈

(

[m]

r

)

: T ⊆ A

}∣

∣

∣

∣

=

(

m− t

r − t

)

and, similarly, h(H(T )) =
(

n−t
s−t

)

. Together with (24), this gives us

|A||B| ≤

(

m− t

r − t

)(

n− t

s− t

)

,

as required.
Suppose |A||B| =

(

m−t
r−t

)(

n−t
s−t

)

and u > 0. Then equality holds throughout in each

of (21)–(24), and hence C = G(T ′) and D = H(T ′) for some T ′ ∈
(

[p]
t

)

. It follows that

A ⊆
{

A ∈
(

[m]
r

)

: T ′ ⊆ A
}

and B ⊆
{

B ∈
(

[n]
s

)

: T ′ ⊆ B
}

. Since |A||B| =
(

m−t
r−t

)(

n−t
s−t

)

,

both inclusion relations are actually equalities, T ′ ⊆ [m], and T ′ ⊆ [n]. ✷

6 Proof of Theorem 1.5

In this section, we use Theorem 1.3 to prove Theorem 1.5.
We start by defining a compression operation for labeled sets. For any x, y ∈ N, let

γx,y(A) =

{

(A\{(x, y)}) ∪ {(x, 1)} if (x, y) ∈ A;
A otherwise

for any labeled set A, and let

Γx,y(A) = {γx,y(A) : A ∈ A} ∪ {A ∈ A : γx,y(A) ∈ A}

for any family A of labeled sets.
Note that |Γx,y(A)| = |A| and that if A ⊆ Sc,r, then Γx,y(A) ⊆ Sc,r. It is well

known that if A and B are cross-t-intersecting families of labeled sets, then so are
Γx,y(A) and Γx,y(B). We present a result that gives more than this.

For any IP sequence c = (c1, . . . , cn) and any r ∈ [n], let Sc,≤r denote the union
⋃r

i=1 Sc,i.

Lemma 6.1 Let c = (c1, . . . , cm) and d = (d1, . . . , dn) be IP sequences. Let x, y ∈ N,
y ≥ 2. Let l = max{m,n} and h = max{cm, dn}. Let V ⊆ [l] × [2, h]. Let A ⊆ Sc,≤m

and B ⊆ Sd,≤n such that |(A ∩ B)\V | ≥ t for every A ∈ A and every B ∈ B. Then
|(C ∩D)\(V ∪ {(x, y)})| ≥ t for every C ∈ Γx,y(A) and every D ∈ Γx,y(B).

Proof. Suppose C ∈ Γx,y(A) and D ∈ Γx,y(B). We first show that |(C ∩ D)\V | ≥ t.
Let C ′ = (C\{(x, 1)}) ∪ {(x, y)} and D′ = (D\{(x, 1)}) ∪ {(x, y)}. If C ∈ A and
D ∈ B, then |(C ∩ D)\V | ≥ t. If C /∈ A and D /∈ B, then (x, 1) ∈ C ∩ D, C ′ ∈ A,
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D′ ∈ B, and hence, since (x, 1) /∈ V , |(C ∩D)\V | ≥ |(C ′∩D′)\V | ≥ t. Suppose C /∈ A
and D ∈ B. Then (x, 1) ∈ C and C ′ ∈ A. If (x, y) /∈ D, then, since C ′ ∈ A and
D ∈ B, t ≤ |(C ′ ∩ D)\V | ≤ |(C ∩ D)\V |. If (x, y) ∈ D, then γx,y(D) ∈ B (because
otherwise D /∈ Γx,y(B)), and hence, since C ′ ∈ A, t ≤ |(C ′∩γx,y(D))\V | = |(C∩D)\V |.
Similarly, if C ∈ A and D /∈ B, then |(C ∩D)\V | ≥ t.

Now suppose (C∩D)\(V ∪{(x, y)}) < t. Since |(C∩D)\V | ≥ t, (x, y) ∈ C∩D. Thus
C, γx,y(C) ∈ A, D, γx,y(D) ∈ B, and |(C ∩ γx,y(D))\V | = |(C ∩D)\(V ∪ {(x, y)})| < t,
a contradiction. ✷

Corollary 6.2 Let c = (c1, . . . , cm),d = (d1, . . . , dn), l, and h be as in Lemma 6.1.
Let A ⊆ Sc,≤m and B ⊆ Sd,≤n such that A and B are cross-t-intersecting. Let

A∗ = Γl,h ◦ · · · ◦ Γl,2 ◦ · · · ◦ Γ2,h ◦ · · · ◦ Γ2,2 ◦ Γ1,h ◦ · · · ◦ Γ1,2(A),

B∗ = Γl,h ◦ · · · ◦ Γl,2 ◦ · · · ◦ Γ2,h ◦ · · · ◦ Γ2,2 ◦ Γ1,h ◦ · · · ◦ Γ1,2(B).

Then |A ∩ B ∩ ([l]× [1])| ≥ t for every A ∈ A∗ and every B ∈ B∗.

Proof. Let Z = [l] × [2, h]. By repeated application of Lemma 6.1, |(A ∩ B)\Z| ≥ t
for every A ∈ A∗ and every B ∈ B∗. The result follows since (A ∩ B)\Z = A ∩ B ∩
([l]× [1]). ✷

The next lemma is needed for the characterisation of the extremal structures in
Theorem 1.5.

Lemma 6.3 Let c = (c1, . . . , cm),d = (d1, . . . , dn), l, and h be as in Lemma 6.1.
Suppose c1 ≥ 3 and d1 ≥ 3. Let r ∈ [m], s ∈ [n], and t ∈ [min{r, s}]. Let A ⊆ Sc,r and
B ⊆ Sd,s such that A and B are cross-t-intersecting. Suppose Γx,y(A) = Sc,r(T ) and

Γx,y(B) = Sd,s(T ) for some (x, y) ∈ [l] × [h] and some labeled set T ∈
(

[l]×[h]
t

)

. Then

A = Sc,r(T
′) and B = Sd,s(T

′) for some labeled set T ′ ∈
(

[l]×[h]
t

)

.

Proof. The result is immediate if A = Γx,y(A) and B = Γx,y(B). Suppose A 6=
Γx,y(A) or B 6= Γx,y(B). We may assume that A 6= Γx,y(A). Thus there exists A1 ∈
A\Γx,y(A) such that γx,y(A1) ∈ Γx,y(A)\A. Then (x, 1) 6= (x, y) ∈ A1 and γx,y(A1) =
(A1\{(x, y)}) ∪ {(x, 1)}.

Suppose (x, 1) /∈ T . Together with γx,y(A1) ∈ Γx,y(A) = Sc,r(T ), this gives us
T ⊆ A1, which contradicts A1 /∈ Γx,y(A).

Therefore, (x, 1) ∈ T . Let (a1, b1), . . . , (at, bt) be the elements of T , where (at, bt) =
(x, 1). Let T ′ = (T\{(x, 1)}) ∪ {(x, y)}. Since γx,y(A1) ∈ Sc,r(T ), we have T ′ ⊆ A1,
and hence Sc,r(T

′) 6= ∅. Note that |Sc,r(T
′)| = |Sc,r(T )|.

Let A∗ ∈ Sc,r(T
′). If s > t, then let x1, . . . , xs−t be distinct elements of [n]\{a1, . . . , at}.

For each i ∈ [n], let Di = {i} × [di]. We are given that 3 ≤ d1 ≤ · · · ≤ dn. By defi-
nition of a labeled set, for each i ∈ [n], we have |A ∩ Di| ≤ 1 for all A ∈ Sc,r. Thus
|Di\(A1∪A

∗)| ≥ di−2 ≥ 1 for each i ∈ [n]. If s > t, then let (xi, yi) ∈ Dxi
\(A1∪A

∗) for
each i ∈ [s− t], and let B∗ = T ′∪{(x1, y1), . . . , (xs−t, ys−t)}. If s = t, then let B∗ = T ′.
Thus B∗ ∈ Sd,s(T

′). Since Γx,y(B) = Sd,s(T ), we have B∗ ∈ B or γx,y(B
∗) ∈ B.
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However, |γx,y(B
∗) ∩ A1| = |T ∩ A1| = |T\{(x, 1)}| = t − 1, so B∗ ∈ B. Since

Γx,y(A) = Sc,r(T ), we have A∗ ∈ A or γx,y(A
∗) ∈ A. However, |γx,y(A

∗) ∩ B∗| = t− 1,
so A∗ ∈ A.

We have therefore shown that Sc,r(T
′) ⊆ A. Since |A| = |Γx,y(A)| = |Sc,r(T )| =

|Sc,r(T
′)|, we actually have A = Sc,r(T

′). Clearly, for each L ∈ Sd,s with T ′ * L, there
exists L′ ∈ Sc,r(T

′) such that |L ∩ L′| = |L ∩ T ′| < |T ′| = t. Thus, since A = Sc,r(T
′),

each set in B contains T ′. Hence B ⊆ Sd,s(T
′). Since |B| = |Γx,y(B)| = |Sd,s(T )| =

|Sd,s(T
′)|, we actually have B = Sd,s(T

′). ✷

The next lemma allows us to translate the setting in Theorem 1.5 to one given by
Theorem 1.3.

Lemma 6.4 Let c be an IP sequence (c1, . . . , cn). Let r ∈ [n]. Let w :
(

[n]
≤r

)

→ N such

that for each A ∈
(

[n]
≤r

)

,

w(A) = |{L ∈ Sc,r : L ∩ ([n]× [1]) = A× [1]}| .

Then:
(i) w(A) ≥ (c1 − 1)w(B) for every A,B ∈

(

[n]
≤r

)

with A ( B.

(ii) w(δi,j(A)) ≥ w(A) for every A ∈
(

[n]
≤r

)

and every i, j ∈ [n] with i < j.

Proof. (i) Let A,B ∈
(

[n]
≤r

)

with A ( B. Let B′ = B\A. Thus |B′| ≥ 1. For each
L ∈ Sc,r, let σ(L) = {x ∈ [n] : (x, y) ∈ L for some y ∈ [ci]}. We have

w(A) ≥ |{L ∈ Sc,r : L ∩ ([n]× [1]) = A× [1], B′ ⊆ σ(L)}|

=
∑

E∈([n]\(A∪B′)

r−|A|−|B′|)

∏

b∈B′

(cb − 1)
∏

e∈E

(ce − 1)

=
∏

b∈B′

(cb − 1)







∑

E∈([n]\B
r−|B|)

∏

e∈E

(ce − 1)







= w(B)
∏

b∈B′

(cb − 1) ≥ (c1 − 1)|B
′|w(B) ≥ (c1 − 1)w(B).

(ii) Let A ∈
(

[n]
≤r

)

, and let i, j ∈ [n] with i < j. Suppose δi,j(A) 6= A. Then j ∈ A,
i /∈ A, and δi,j(A) = (A\{j}) ∪ {i}. Let B = A\{j}. Let

E0 =

(

[n]\(B ∪ {i, j})

r − |A|

)

,

E1 =

{

E ∈

(

[n]\(B ∪ {i})

r − |A|

)

: j ∈ E

}

,

E2 =

{

E ∈

(

[n]\(B ∪ {j})

r − |A|

)

: i ∈ E

}

.
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We have

w(B ∪ {i}) =
∑

E∈([n]\(B∪{i})
r−|A| )

∏

e∈E

(ce − 1)

=
∑

D∈E0

∏

d∈D

(cd − 1) +
∑

F∈E1

∏

f∈F

(cf − 1)

≥
∑

D∈E0

∏

d∈D

(cd − 1) +
∑

F∈E1

∏

f∈F

(cf − 1)
ci − 1

cj − 1
(since ci ≤ cj)

=
∑

D∈E0

∏

d∈D

(cd − 1) +
∑

F∈E2

∏

f∈F

(cf − 1)

=
∑

E∈([n]\(B∪{j})
r−|A| )

∏

e∈E

(ce − 1) = w(B ∪ {j}),

and hence w(δi,j(A)) ≥ w(A). ✷

Proof of Theorem 1.5. Let G =
(

[m]
≤r

)

. Let v : G → N such that for each G ∈ G,

v(G) = |{L ∈ Sc,r : L ∩ ([m]× [1]) = G× [1]}| .

Let H =
(

[n]
≤s

)

. Let w : H → N such that for each H ∈ H,

w(H) = |{L ∈ Sd,s : L ∩ ([n]× [1]) = H × [1]}| .

Let l = max{m,n} and h = max{cm, dn}. Let

A∗ = Γl,h ◦ · · · ◦ Γl,2 ◦ · · · ◦ Γ2,h ◦ · · · ◦ Γ2,2 ◦ Γ1,h ◦ · · · ◦ Γ1,2(A),

B∗ = Γl,h ◦ · · · ◦ Γl,2 ◦ · · · ◦ Γ2,h ◦ · · · ◦ Γ2,2 ◦ Γ1,h ◦ · · · ◦ Γ1,2(B).

Now let

C = {G ∈ G : E ∩ ([m]× [1]) = G× [1] for some E ∈ A∗} ,

D = {H ∈ H : F ∩ ([n]× [1]) = H × [1] for some F ∈ B∗} .

Then C ⊆ G ⊆ 2[l], D ⊆ H ⊆ 2[l], and, by Corollary 6.2, C and D are cross-t-intersecting.
We have

A∗ ⊆
⋃

C∈C

{L ∈ Sc,r : L ∩ ([m]× [1]) = C × [1]}, (25)

B∗ ⊆
⋃

D∈D

{L ∈ Sd,s : L ∩ ([n]× [1]) = D × [1]}. (26)

Thus

|A∗| ≤
∑

C∈C

v(C) = v(C), (27)

|B∗| ≤
∑

D∈D

w(D) = w(D). (28)
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Since |A| = |A∗| and |B| = |B∗|, we therefore have

|A| ≤ v(C), (29)

|B| ≤ w(D). (30)

Let T0 = [t]. Let I = G(T0), J = H(T0), X = Sc,r(T0 × [1]), and Y = Sd,s(T0 × [1]).
By Lemma 6.4 and Theorem 1.3,

v(C)w(D) ≤ v(I)w(J ). (31)

Now

v(I) =

(

∑

I∈I

v(I)

)

=

(

∑

I∈I

|{L ∈ Sc,r : L ∩ ([m]× [1]) = I × [1]}|

)

=

∣

∣

∣

∣

∣

⋃

I∈I

{L ∈ Sc,r : L ∩ ([m]× [1]) = I × [1]}

∣

∣

∣

∣

∣

= |X |

and, similarly, w(J ) = |Y|. Together with (29)–(31), this gives us |A||B| ≤ |X ||Y|,
which establishes the first part of the theorem.

We now prove the second part of the theorem. The sufficiency condition is trivial,
so we prove the necessary condition.

Suppose |A||B| = |X ||Y| and u > 0. Then all the inequalities in (27)–(31) are
equalities. Having equality throughout in each of (27) and (28) implies that equality
holds in each of (25) and (26). By Theorem 1.3, equality in (31) gives us that C = G(T1)
and D = H(T1) for some T1 ∈

(

[l]
t

)

. Together with equality in each of (25) and (26),
this gives us that A∗ = Sc,r(T2) and B∗ = Sd,s(T2), where T2 = T1× [1]. By Lemma 6.3,

A = Sc,r(T3) and B = Sd,s(T3) for some T3 ∈
(

[l]×[h]
t

)

. Since |A||B| = |X ||Y| > 0, we
clearly have T3 ∈ Sc,t ∩ Sd,t. ✷

7 Proof of Theorem 1.6

In this section, we use Theorem 1.3 to prove Theorem 1.6.
As in Section 5, for any family F , F (r) denotes {F ∈ F : |F | = r}. For any n, r ∈ N

and any family A, let Mn,r,A denote the set {A ∈ Mn,r : SA ∈ A}.

Lemma 7.1 If n, r ∈ N, i, j ∈ [n], and A ⊆ 2[n], then |Mn,r,∆i,j(A)| = |Mn,r,A|.

Proof. Let B = ∆i,j(A). Clearly, |B(p)| = |A(p)| for each p ∈ [n]. We have

|Mn,r,B| =
∑

B∈B

|Mn,r,{B}| =
n
∑

p=1

∑

B∈B(p)

|Mn,r,{B}| =
n
∑

p=1

|B(p)||Mn,r,{[p]}|

=

n
∑

p=1

|A(p)||Mn,r,{[p]}| =
n
∑

p=1

∑

A∈A(p)

|Mn,r,{A}| =
∑

A∈A

|Mn,r,{A}| = |Mn,r,A|,
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as required. ✷

Proof of Theorem 1.6. Let C = {SA : A ∈ A} and D = {SB : B ∈ B}. Clearly,
A ⊆ Mm,r,C, B ⊆ Mn,s,D, and, since A and B are cross-t-intersecting, Mm,r,C and Mn,s,D

are cross-t-intersecting. Thus we assume that

A = Mm,r,C and B = Mn,s,D. (32)

As explained in Section 3, we apply left-compressions to C and D simultaneously
until we obtain two compressed cross-t-intersecting families C∗ and D∗, respectively.
Since C ⊆

(

[m]
≤r

)

and D ⊆
(

[n]
≤s

)

, we have C∗ ⊆
(

[m]
≤r

)

and D∗ ⊆
(

[n]
≤s

)

. By Lemma 3.1(ii),

|C ∩D ∩ [r + s− t]| ≥ t for any C ∈ C∗ and any D ∈ D∗. (33)

Let p = r + s − t. Let G =
(

[p]
≤r

)

and H =
(

[p]
≤s

)

. Let g : G → N such that

g(G) =
(

m+r−p−1
r−|G|

)

for each G ∈ G. Let h : H → N such that h(H) =
(

n+s−p−1
s−|H|

)

for
each H ∈ H.

For every F,G ∈ G with F ( G and t ≤ |F | = |G| − 1, we have

g(F )− (t+ u)g(G)
(

m+r−p−1
r−|F |

) = 1−
(t + u)

(

m+r−p−1
r−|F |−1

)

(

m+r−p−1
r−|F |

) = 1−
(t+ u)(r − |F |)

m− p+ |F |

=
m− p+ |F | − (t+ u)(r − |F |)

m− p+ |F |

≥
m− p + t− (t+ u)(r − t)

m− p+ |F |
=

m− (t+ u+ 1)(r − t)− s+ t

m− p+ |F |

≥
(t + u+ 1)(s− t) + r − t− ((t + u+ 1)(r − t) + s− t)

m− p + |F |
≥ 0,

and hence g(F ) ≥ (t + u)g(G). It follows that g(F ) ≥ (t + u)g(G) for every F,G ∈ G
with F ( G and |F | ≥ t. Similarly, h(F ) ≥ (t + u)g(H) for every F,H ∈ H with
F ( H and |F | ≥ t.

We have g(δi,j(G)) = g(G) for every G ∈ G and every i, j ∈ [p]. Similarly,
h(δi,j(H)) = h(H) for every H ∈ H and every i, j ∈ [p].

Let E = {C ∩ [p] : C ∈ C∗} and F = {D ∩ [p] : D ∈ D∗}. Then E ⊆ G, F ⊆ H, and,
by (33), E and F are cross-t-intersecting. Let T = [t]. By Theorem 1.3,

g(E)h(F) ≤ g(G(T ))h(H(T )), (34)

and if u > 0, then equality holds only if E = G(T ′) and F = H(T ′) for some T ′ ∈
(

[p]
t

)

.
By (32) and Lemma 7.1,

|A| = |Mm,r,C∗| ≤ |{A ∈ Mm,r : SA ∩ [p] = E for some E ∈ E}|

=
∑

E∈E

|{A ∈ Mm,r : SA ∩ [p] = E}

=
∑

E∈E

|{(a1, . . . , ar−|E|) : a1 ≤ · · · ≤ ar−|E|, a1, . . . , ar−|E| ∈ E ∪ [p+ 1, m]}|

=
∑

E∈E

|M|E|+m−p,r−|E|| =
∑

E∈E

(

m+ r − p− 1

r − |E|

)

= g(E). (35)
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Similarly,
|B| ≤ h(F). (36)

By (34)–(36),
|A||B| ≤ g(G(T ))h(H(T )). (37)

Now, similarly to (35),

g(G(T )) = |{A ∈ Mn,r : SA ∩ [p] = E for some E ∈ G(T )}|

= |{A ∈ Mn,r : T ⊆ SA}| =

(

m+ r − t− 1

r − t

)

.

Similarly, h(H(T )) =
(

n+s−t−1
s−t

)

. By (37), it follows that

|A||B| ≤

(

m+ r − t− 1

r − t

)(

n+ s− t− 1

s− t

)

,

as required.
Suppose |A||B| =

(

m+r−t−1
r−t

)(

n+s−t−1
s−t

)

and u > 0. Then equality holds throughout

in each of (34)–(37), and hence E = G(T ′) and F = H(T ′) for some T ′ ∈
(

[p]
t

)

.
Having equality throughout in (35) implies that Mm,r,C∗ = {A ∈ Mm,r : SA ∩ [p] =
E for some E ∈ E} = {A ∈ Mm,r : T

′ ⊆ SA}. Thus T ′ ∈ C∗, and hence there exists

T1 ∈
(

[m]
t

)

such that T1 ∈ C. Similarly, there exists T2 ∈
(

[n]
t

)

such that T2 ∈ D.

Since C and D are cross-t-intersecting, we have T1 = T2, C ⊆ {C ∈
(

[m]
≤r

)

: T1 ⊆ C},

and D ⊆ {D ∈
(

[n]
≤s

)

: T1 ⊆ D}. Consequently, A ⊆ {A ∈ Mm,r : T1 ⊆ SA} and B ⊆

{B ∈ Mn,s : T1 ⊆ SB}. Since |A||B| =
(

m+r−t−1
r−t

)(

n+s−t−1
s−t

)

, both inclusion relations are
actually equalities. ✷

8 The remaining cases

Each of Theorems 1.2, 1.5, and 1.6 solves the particular cross-t-intersection problem
under consideration for all cases where the ground sets are not smaller than a certain
value dependent on r, s, and t. Solving any of these problems completely appears to
be very difficult and would take this area of study to a significantly deeper level. We
conjecture that the complete solutions are (38)–(40) below.

For any n ∈ N and any r, t, i, j ∈ {0} ∪ [n] with 1 ≤ t ≤ r and t + i + j ≤ n, let
Mn,r,t,i,j = {A ∈

(

[n]
r

)

: |A∩ [t+ i+ j]| ≥ t+ i}. In [22], Frankl conjectured that the size

of a largest t-intersecting subfamily of
(

[n]
r

)

is max{|Mm,r,t,i,i| : i, j ∈ {0} ∪ N, t+ 2i ≤
n}, and this was verified in [1]. Hirschorn suggested an analogous conjecture [29,
Conjecture 4] for cross-t-intersecting families A and B with A ⊆

(

[n]
r

)

and B ⊆
(

[n]
s

)

.
Generalising Hirschorn’s conjecture, we conjecture that if m,n ∈ N, r ∈ [m], s ∈ [n],
t ∈ [min{r, s}], A ⊆

(

[m]
r

)

, B ⊆
(

[n]
s

)

, and A and B are cross-t-intersecting, then

|A||B| ≤ max{|Mm,r,t,i,j||Mn,s,t,j,i| : i, j ∈ {0} ∪ N, t+ i+ j ≤ min{m,n}}. (38)
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For any IP sequence c = (c1, . . . , cn) and any r, t, i, j ∈ {0}∪ [n] with 1 ≤ t ≤ r and
t + i+ j ≤ n, let Sc,r,t,i,j = {A ∈ Sc,r : |A ∩ ([t + i+ j]× [1])| ≥ t + i}. We conjecture
that if c = (c1, . . . , cm) and d = (d1, . . . , dn) are IP sequences, c1 ≥ 2, d1 ≥ 2, r ∈ [m],
s ∈ [n], t ∈ [min{r, s}], A ⊆ Sc,r, B ⊆ Sd,s, and A and B are cross-t-intersecting, then

|A||B| ≤ max{|Sc,r,t,i,j||Sd,s,t,j,i| : i, j ∈ {0} ∪ N, t+ i+ j ≤ min{m,n}}. (39)

This generalises [40, Conjecture 3], which is a conjecture for the case r = s = m = n.
For any n ∈ N and any r, t, i, j ∈ {0} ∪ [n] with 1 ≤ t ≤ r and t + i + j ≤ n, let

Mn,r,t,i,j = {A ∈ Mn,r : |SA ∩ [t + i + j]| ≥ t + i}. We conjecture that if m,n, r, s ∈ N,
t ∈ [min{r, s}], A ⊆ Mm,r, B ⊆ Mn,s, and A and B are cross-t-intersecting, then

|A||B| ≤ max{|Mm,r,t,i,j||Mn,s,t,j,i| : i, j ∈ {0} ∪ N, t+ i+ j ≤ min{m,n}}. (40)
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