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Abstract

Two families A and B of sets are said to be cross-t-intersecting if each set in A
intersects each set in B in at least t elements. An active problem in extremal set theory
is to determine the maximum product of sizes of cross-t-intersecting subfamilies of a
given family. We prove a cross-t-intersection theorem for weighted subsets of a set by
means of a new subfamily alteration method, and use the result to provide solutions for
three natural families. For r € [n] = {1,2,...,n}, let ([Z]) be the family of r-element

subsets of [n], and let (L"l) be the family of subsets of [n] that have at most r elements.

Let F,, ,+ be the family of sets in (L"l) that contain [t]. We show that if g : ([Z‘T]) — RT

and h : ([<”]) — R are functions that obey certain conditions, A C ([Zﬂ), BC (L”i), and

S

A and B are cross-t-intersecting, then

SNg A wBy < > g0) > D),

AeA BeB CeFm,rt DeFn,s,t

and equality holds if A = F,, ,.+ and B = F,, s +. We prove this in a more general setting
and characterise the cases of equality. We use the result to show that the maximum
product of sizes of two cross-t-intersecting families A C ([T]) and B C ([Z]) is (") (")
for min{m,n} > ng(r, s, t), where no(r, s, t) is close to best possible. We obtain analogous
results for families of integer sequences and for families of multisets. The results yield

generalisations for k > 2 cross-t-intersecting families, and Erdos-Ko-Rado-type results.

1 Introduction

Unless otherwise stated, we shall use small letters such as x to denote elements of
a set or non-negative integers or functions, capital letters such as X to denote sets,
and calligraphic letters such as F to denote families (that is, sets whose elements are
sets themselves). The set {1,2,...} of all positive integers is denoted by N. For any
m,n € N, the set {i € N: m < i < n} is denoted by [m,n]. We abbreviate [1,n] to
[n]. It is to be assumed that arbitrary sets and families are finite. We call a set A
an r-element set, or simply an r-set, if its size |A| is r. For a set X, 2% denotes the
power set of X (that is, the family of all subsets of X), ():) denotes the family of all
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r-element subsets of X, and ( fr ) denotes the family of all subsets of X of size at most
r. For a family F and a set T', we denote the family {F' € F: T C F} by F(T).

We say that a set A t-intersects a set B if A and B contain at least ¢ common
elements. A family A of sets is said to be t-intersecting if every two sets in A t-
intersect. A l-intersecting family is also simply called an intersecting family. If T is
a t-element subset of at least one set in a family F, then we call the family of all the
sets in F that contain T the t-star of F. A t-star of a family is the simplest example
of a t-intersecting subfamily.

One of the most popular endeavours in extremal set theory is that of determining
the size of a largest t-intersecting subfamily of a given family F. This took off with [20],
which features the classical result, known as the Erdds-Ko-Rado (EKR) Theorem, that
says that if 1 <7 < mn/2, then the size of a largest intersecting subfamily .4 of ([’Z]) is the

size ("7]) of every l-star of ([f}). If r < n/2, then, by the Hilton-Milner Theorem [28],

A attains the bound if and only if A is a star of ([Z]). Ifn/2 <r <mn, then ([:f}) itself is
intersecting. There are various proofs of the EKR Theorem (see [34], 28, 32, [1§]), two of
which are particularly short and beautiful: Katona’s [32], introducing the elegant cycle
method, and Daykin’s [18], using the fundamental Kruskal-Katona Theorem [35] 33].
A sequence of results [20, 22, 48| [I] culminated in the solution of the problem for
t-intersecting subfamilies of ([:f}); the solution particularly tells us that the size of a

largest t-intersecting subfamily of ([Z}) is the size (Z:;) of a t-star of ([’Z]) if and only
if n > (t+1)(r —t+ 1). The t-intersection problem for 2" was solved by Katona
[34]. These are among the most prominent results in extremal set theory. The EKR,
Theorem inspired a wealth of results, including generalisations (see [43| [I1]), that
establish how large a system of sets can be under certain intersection conditions; see
19, 23, 21, 13, 30, 31].

Two families A and B are said to be cross-t-intersecting if each set in A t-intersects
each set in B. More generally, k families Ay, ..., A (not necessarily distinct or non-
empty) are said to be cross-t-intersecting if for every ¢ and j in [k] with i # j, each set
in A; t-intersects each set in A4;. Cross-1-intersecting families are also simply called
cross-intersecting families.

For t-intersecting subfamilies of a given family F, the natural question to ask is how
large they can be. For cross-t-intersecting families, two natural parameters arise: the
sum and the product of sizes of the cross-t-intersecting families (note that the product
of sizes of k families Ay, . .., Ay is the number of k-tuples (Ay, ..., Ax) such that A; € A;
for each ¢ € [k]). It is therefore natural to consider the problem of maximising the sum
or the product of sizes of k cross-t-intersecting subfamilies A4, ..., A; of a given family
F. The paper [I5] analyses this problem in general, particularly showing that for k
sufficiently large, both the sum and the product are maxima if 4, = --- = A, = L
for some largest t-intersecting subfamily £ of F. Therefore, this problem incorporates
the t-intersection problem. Solutions have been obtained for various families (see [15]),
including (") [27, 41, 37, 4, [7, 45, 47, 46, 25], 21" [36, 15], () [6], and families of
integer sequences [39, 12, [16, 47, 149, [44], 25, 40]. Most of these results tell us that for
the family F under consideration and for certain values of k, the sum or the product
is maximum when A; = --- = A, = L for some largest t-star £ of F. In such a case,



L is a largest t-intersecting subfamily of F.

Remark 1.1 In general, if £ C F, k > 2, and the sum or the product is maximum
when A; = --- = A, = L, then L is a largest t-intersecting subfamily of F. Indeed,
the cross-t-intersection condition implies that every two sets A and B in £ t-intersect
(as A € A; and B € Ay), and by taking an arbitrary t¢-intersecting subfamily A of
F and setting B; = --- = B, = A, we obtain that By,..., By are cross-t-intersecting,
and hence | A] < |£] since k4] = Y5, B < S5, [l = k|£] or [AF = [T5, B <
[T Al = 2]~

Wang and Zhang [47] solved the maximum sum problem for an important class of
families that includes ([Z]) and families of integer sequences, using a striking combina-
tion of the method in |7, 8, 9 16, 10] and an important lemma that is found in [3] [17]
and referred to as the ‘no-homomorphism lemma’. The solution for ([f]) with ¢t = 1
had been obtained by Hilton [27] and is the first result of this kind.

In this paper we address the maximum product problem for ([’Z]) and families of
integer sequences. We will actually consider more general problems; one generalisation
allows the cross-t-intersecting families to come from different families, and another one
involves maximising instead the product of weights of cross-t-intersecting families of
subsets of a set. As we explain in the next section, if the product for £ = 2 is max-
imum when the cross-t-intersecting families are certain t-stars, then this immediately
generalises for k > 2.

The maximum product problem for ([:f}) was first addressed by Pyber [41], who
proved that for any r, s, and n such that either r = s <n/2orr < sand n > 2s+r—2,
if A C ([2}) and B C ([Z}) such that A and B are cross-intersecting, then |A||B| <
(’Z:ll) (2:11) Subsequently, Matsumoto and Tokushige [37] proved this for r < s < n/2.
It has been shown in [14] that there exists an integer ng(r, s,t) such that for t <r <s
and n > no(r,s,t), if A C ([Z]), B C ([Z]), and A and B are cross-t-intersecting, then
|AJ|B] < ("Z])("Z]). The value of ny(r, s, t) given in [I4] is far from best possible. The
special case r = s is treated in [45], 40, 25], which establish values of ng(r,r,t) that are
close to the conjectured smallest value of (¢t + 1)(r — ¢ + 1), and which use algebraic
methods and Frankl’s random walk method [22]; in particular, ng(r,r,t) = (t + 1)r
is determined in [25] for ¢ > 14. Using purely combinatorial arguments, we solve the
problem for n > (t+u+2)(s—t)+r—1, where u can be any non-negative real number
satisfying u > %t; thus, we can take ng(r,s,t) = (t +2)(s —t) +r —1 for t > 7, and
no(r,s,t) < (t+4)(s—t)+r—1for 1 <t <6. We actually prove the following more
general result in Section [0l

Theorem 1.2 If1 <t <r <s, u is a non-negative real number such that u > %,
min{m,n} > t+u+2)(s—t)+r—1, A C ([T}), B C ([Z]), and A and B are

cross-t-intersecting, then
m—t\(n—t
AllB| < .
AlIB < (r—t)(s—t)



Moreover, if u > 0, then the bound is attained if and only if A = {A € ([T}) ;T C A}
and B = {B € ([’Z]) T C B} for some t-element subset T of [min{m,n}|.

In Section B we show that Theorem is a consequence of our main result, The-
orem [L.3] for which we need some additional definitions and notation.
For any i,j € [n], let &;;: 2"l — 2" be defined by

%s(4) = { ZA\{j}) o gtiefw?s:fld e

and let A, ;: 22"y 22" he the compression operation defined by
AZ’J‘(A) = {517](14) Ae .A} U {A e A: 517](14) S .A}

The compression operation was introduced in the seminal paper [20]. The paper [23]
provides a survey on the properties and uses of compression (also called shifting) oper-
ations in extremal set theory. All our new results make use of compression operations.

If i < j, then we call A;; a left-compression. A family F C 2" is said to be
compressed if A;;j(F) = F for every i,j € [n] with ¢ < j. In other words, F is
compressed if it is invariant under left-compressions. Note that F is compressed if and
only if (F\{j})U{i} € F whenever i < j € F € F and i € [n]\F.

A family H is said to be hereditary if for each H € H, all the subsets of H are in
H. Thus, a family is hereditary if and only if it is a union of power sets. The family
(L"l) (which is 2" if » = n) is an example of a hereditary family that is compressed.

~ Let Rt denote the set of positive real numbers. With a slight abuse of notation,

for any non-empty family F, any function w: F — R* (called a weight function), and
any A C F, we denote the sum ), , w(A) (of weights of sets in A) by w(A). Note
that if A is empty, then w(.A) is the empty sum, and we will adopt the convention of
taking this to be 0.

In Section M, we prove the following result.

Theorem 1.3 Let 1 <t <n, T = [t], and u € {0} UR" such that u > %t Let G
and H be non-empty compressed hereditary subfamilies of 2. For each F € {G,H},
let wr: F — RT such that

(a) wr(A) > (t + u)wg(B) for every A, B € F with A C B and |A| > t, and

(b) wr(6;;(C)) > wxr(C) for every C € F and every i,j € [n] with i < j.

Let g = wg and h = wy. If A C G and B C H such that A and B are cross-t-
intersecting, then

g(Ah(B) < g(G(T))h(H(T)).

Moreover, if u > 0 and each of G and H has a member of size at least t, then the
bound is attained if and only if A = G(T") and B = H(T") for some T" € ([;ﬂ) such
that g(G(T")) = g(G(T)) and h(H(T")) = h(H(T)).

Remark 1.4 For u > % to hold, we can always take u = 2, and we can take u =0

for t > 7. We conjecture that the inequality g(A)h(B) < g(G(T))h(H(T)) still holds
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if the condition u > 3% is replaced by u = 0. As we mentioned above, this is true

for t > 7. Also, the proof of Theorem [L.3] shows that for ¢ > 3, the conjecture is true
if it is true for t + 3 < n < t + 6 (see Remark [£3]). A verification of the conjecture
for t +3 < n < t+ 6 could be obtained through detailed case-checking similar to
that used in our proof for the special case n < t 4+ 2; however, the process would be
significantly more laborious. The condition on u cannot be relaxed further, because
no real number v < 0 with ¢ + v > 1 guarantees that the result holds. Indeed, if
l<z=t+tu<t<n-2 G==H=2 ¢gG) = hG) =271 for all G € 2"
and A =B ={Aec2l: |[An[t+2]| >t+1} = A* then conditions (a) and (b) of
Theorem [[.3] are satisfied, A and B are cross-t-intersecting, but

(9(A)h(B))!/? = = > > dxuv)+ Y g(t+2uY)

Xe([“r?]) Y C[t+3,n] Y Clt+3,n]
n—t—2 n—t—2
—t—=2 . —t—2 ;
=2 3 (M ey (M)
j=0 J =0 J
n—t—1 —1\n—t=2 n—t—2 n—t—2
=(t+2)z" " 1+t +a (1+271)

(4" T T (w20 1) = (24 1) (b 20 4 1)
>@+1D)" 22?224+ 1) (asl<az<t)

(1) = nzt (n B t) 2" = Z g(fuY)

=0~/
= 9(G(T)) = (9(G(T)h(H(T)))"?,

and hence g(A)h(B) > g(G(T))h(H(T)). It has been shown in [6] that for ¢ = 1,
the product of sizes of A and B is maximised by taking A = G(T') and B = H(T);
equivalently, for the special case where t = 1 and g(A) = h(A) =1 for all A € GUH,
the bound in Theorem [[.3] also holds (that is, the conjecture is true). However, this
is not true for ¢t > 1, and hence Theorem [L.3] does not imply that the product of sizes
is maximised by taking A = G(T') and B = H(T). Indeed, if G = H = 2" and
A =B = A* as above, then |A||B| > |G(T)||H(T')| (take z = 1 above).

The proof of Theorem [L.3] contains the main observations in this paper and is based
on induction, compression, a new subfamily alteration method, and double-counting.
The alteration method can be regarded as the main new component and appears to
have the potential of yielding other intersection results of this kind.

The bound in [25, Theorem 1.3] for product measures of cross-t-intersecting sub-
families of 2" is given by Theorem I3 with G = H = 2* ¢ > 14, v = 0, and
g(A) = h(A) = pl4(1 — p)»~1l for all A € 2", where p € RY such that p < t+1

The subsequent results in this section and in the next section are also consequences
of Theorem [[.3l Our next application is a cross-t-intersection result for integer se-
quences.

We will represent a sequence ay, ..., a, by an n-tuple (ay,...,a,), and we say that
it is of length n. We call a sequence of positive integers a positive sequence. We
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call (ay,...,a,) an r-partial sequence if exactly r of its entries are positive integers
and the rest are all zero. Thus, an n-partial sequence of length n is positive. A
sequence (cq,...,c,) is said to be increasing if ¢; < -+ < ¢,. We call an increasing
positive sequence an IP sequence. Note that (¢, ..., ¢,) is an IP sequence if and only
if1<ce <---<g,p.

We call {(z1,11),..., (2., y.)} a labeled set (following [12]) if x4, ..., z, are distinct.
For any IP sequence ¢ = (cy,...,¢,) and any r € [n], let S., be the family of all
labeled sets {(x1,Yz,),- -, (Zr, Yz, )} such that {z1,..., 2.} € ([:f}) and y,; € [c,] for
each j € [r]. For any sets Yi,...,Y,, let Y] x -+ x Y], denote the Cartesian product of
Yi,...,Y,, that is, the set of sequences (yi,...,y,) such that y; € Y; for each i € [n].
Note that Sc,, = {{(1,41),---, (N, yn) }: vi € [¢;] for each i € [n]}, so S, is isomorphic
to [e1] X -+ X [cn]. Also note that S, is isomorphic to the set of r-partial sequences
(y1,--.,Yyn) such that for some R € ([’Z]), Yy; € [c;] for each ¢ € R (and hence y; = 0 for
each j € [n]\R). Let Scrt = Scr([t] x [1]) = {A € S (z,1) € A for each z € [t]}.

In Section [0l we prove the following result.

Theorem 1.5 Letc = (c1,...,¢y) andd = (dy,...,d,) be IP sequences. Let r € [m],
s € [n], t € [min{r,s}], and u € {0} UR" such that u > %t If ey > t+u+1,
dy>t+u+1, ACS.,, BC Sq5, and A and B are cross-t-intersecting, then

'A”B'§<I ) ch)(Jez ch)

t+1tm) iel (t+1"])]€J

Moreover, if u > 0, then the bound is attained if and only if for some T € S¢y N Sa
with |Se(T)| = |Sert| and |Sas(T)| = |Sastl, A= Scr(T) and B = Sas(T).

Note that this result holds for ¢; > t+1and d; > t+ 1 whent > 7, for ¢; >t + 2
and dy > t+ 2 when 4 <t <6,and forc; >t+3and dy > t+ 3 when 1 <t < 3.
We conjecture that the result holds for ¢; > ¢+ 1 and d; >t + 1, and, as can be seen
from the proof of Theorem [L.3] this conjecture is true if the conjecture in Remark [I.4]
is true. The result does not hold for ¢; < ¢t + 1. Indeed, if r = s =m =n >t + 2,
== =c+1<t+1l=d=---=d,, Z=[n]x[1], Z1=[t+2] x[1], Zy =
[t+3,n]x[1], A={A € Scpn: |ANZ1| > t+1},and B={B € Sq,,: |BNZ,| > t+1},
then A and B are cross-t-intersecting,

|Z2|

|A| = U U U {4edanz=XxvyY}

Xe(fh)uaI=0ve(%)
n—t—2 n—t—2
-2 | —t—2 }
ey (M e (e
j=0 J j=0 J

= (x+1)""?(tzx + 2z +1) (as in Remark [[4)
>+ 1)@ 2+ 1) = (24 D" = [Senl,



Bl = (t+1)" "2 (2 + 2t + 1) = (t + 1)" " = [Sans| (by a calculation similar to that
for |A|), and hence |A||B| > |Scr+||Sd,s.t-

Solutions for the special case where ¢ = d and r = s = n already exist. The
solution for ¢t +2 < ¢; = ¢, was first obtained by Moon [39]. Inspired by [49], Pach
and Tardos [40] recently generalised Moon’s result to include the cases t +2 < ¢; < ¢,
and 8 <t + 1< ¢ < ¢,. Another proof for 15 <t+ 1 < ¢; = ¢, is given in [25].

Our last application of Theorem [[.3] in this section is a cross-t-intersection result
for multisets.

A multiset is a collection A of objects such that each object possibly appears more
than once in A. Thus the difference between a multiset and a set is that a multiset may
have repetitions of its elements. We can uniquely represent a multiset A of positive inte-
gers by an IP sequence (ay, ..., a,), where ay, . .., a, form A. Thus we will take multisets
to be IP sequences. For A = (ay,...,a,), the support of Ais the set {ay,...,a,} and will
be denoted by S4. For any n,r € N, let M, ,. denote the set of all multisets (aq,...,a,)
such that ay,...,a, € [n]; thus M, , = {(a1,...,a,): a1 <--- < a,, a1,...,a, C [n]}.
An elementary counting result is that

n+r—1
= (771,
r

With a slight abuse of terminology, we say that a multiset A t-intersects a multiset
B if and A and B have at least ¢ distinct common elements, that is, if S t-intersects
Sp. A set A of multisets is said to be t-intersecting if every two multisets in A t-
intersect, and k sets Aj, ..., A of multisets are said to be cross-t-intersecting if for
every 1, j € [k] with ¢ # j, each multiset in A4; t-intersects each multiset in A;.

In Section [7 we prove the following result.

Theorem 1.6 If 1 <t <r < s, u € {0} UR" such that u > %, min{m,n} >

(t+u+1)(s—t)+r—t, AC M,,,, BC M,s, and A and B are cross-t-intersecting,

then . .
m+r—t— n+s—1t-—
A1 < ( ) )
r—t s—1
Moreover, if u > 0, then the bound is attained if and only if A ={A € M,,,: T CSs}
and B={B € M, s: T C Sg} for some t-element subset T of [min{m,n}].

The condition min{m,n} > (t +u+ 1)(s — t) + r — ¢ is close to being sharp, as is
evident from the fact that if r = s, m = n < t(r —t)+2, and A = B = {A €
My, |San[t+2]] >t+ 1}, then A and B are cross-t-intersecting,



|A| = > {Ae My,: San[t+2] =X}

xe (U u{+2)}

= Z H{(a1,...,ar—x)): a1 < - < apix), a1, .. @ x) € X U [t +3,n]}

xe (U u{+2)}

= Z | M\ x|+n—t—2,—|x]|

xe(Urhu{+2)}

B Z n+r—t—3 —(t+2) n+r—t—3 n n+r—t—3
B r—|X]| B r—t—1 r—t—2
xe (U u{+2)}
(n+r tfl)
r—t

T i— D=y =D =D+ (==t =1)

("5

D)=+ )+ D — 1)
_(ntr—t—1
()
and hence |A||B| > ("7 7)” 1)2 = (" Ih ().
EKR-type results for multlsets have been obtalned in [38, 26]. To the best of the
author’s knowledge, Theorem [L.6] is the first cross-t-intersection result for multisets.
In the next section, we Show that the above results generalise for £ > 2 families
and yield EKR-type results. Section [3 provides basic compression results used in our
proofs. Sections 4HT7l are dedicated to the proofs of Theorems [[.3] [L.2] LA and [1.6]

respectively.

(t+2)(r—t)t(r—t)+ 1)+ (r—t)(r—t—1))

2 Multiple cross-t-intersecting families and ¢-intersecting
families

Theorem generalises as follows.

Theorem 2.1 Let k > 2, t <1 < --- <1y, u € {0} URT such that u > %, and

min{ny, ..., n} > (E+u+2)(r —t) +rea =1 I ACC (0), A € (0), and
A1, ..., Ay are cross-t-intersecting, then

k k et
H‘AASH(W—t).

Moreover, if u > 0, then the bound is attained if and only if for some t-element subset
T of [min{ny,...,nx}], 4i={A€ ("']) T C A} for each i € [k].



The line of argument in the proof of [I4] Theorem 1.2| yields the result above to-
gether with a similar generalisation of Theorem and the following generalisations
of Theorem [L.3] and Theorem [L.5

Theorem 2.2 Ift,u, and T are as in Theorem[L.3, Hy, ..., H) are non-empty com-
pressed hereditary subfamilies of 2", wx: F — RY is a function satisfying (a) and (b)
(of Theorem[L.3) for each F € {Ha, ..., Hi}, Ai C H; for eachi € [k], and Ay, ..., Ay

are cross-t-intersecting, then

k k
H wyy, (Ai) < H wyy, (Hi(T)).

Moreover, if u > 0 and each of Hi,...,Hyr has a member of size at least t, then the
bound is attained if and only if for some T" € ([?}) such that wy, (Hi(T")) = wyy,(Hi(T))
for each i € [k], A; = H;(T") for each i € [k].

Theorem 2.3 Let c¢; = (¢11,---C1my)s -+, Ck = (Ch1y- -+ Chn,) be IP sequences. Let
r1 € [nal, .., € [ni], t € [min{ry, ..., 7}], and u € {0} URY such that u > St If
i >t+u+l,.. g1 >t+u+1, A CSe s A C© Seprys and Ay, .o Ay are
cross-t-intersecting, then

k k

<11 3 M)

i=1 i=1 \ rg(lr+1ml) jer
Moreover, if u > 0, then the bound s attained if and only if for some T € ﬂleScivt
with |Se, 7. (T')| = |Se;rit| for each i € [k], A; = S, r,(T) for each i € [k].
' 3 k-1 .
We simply observe that (Hi:l ai> = ITici ITje i @iy (see also [15, Lemma 5.2]
with p = 2) and that if A4, ..., Ay are cross-t-intersecting, then any A; and A; with i #

j are cross-t-intersecting. Thus, if, for example, A1, ..., Ay are as in Theorem 2.2, a; =
wyy, (A;) for each i € [k], and b; = wy, (H;(T)) for each i € [k], then Theorem [[3] gives

N ) N k—1 3 k—1
us [T, Hje[k]\[i] aa; < [Ty Hje[k]\[i] bibj, and hence (Hi:l ai) < (Hi:l bi)

(giving Hle a; < Hle b;, as required).

As in Remark [Tl Theorem [[3] immediately implies an EKR-type version for a
family ‘H as in Theorem By taking G = H in Theorem and applying an
argument similar to the one in Remark [T, we obtain the following new result.

Theorem 2.4 Let t,u,T,H, and h be as in Theorem [1.3. If A is a t-intersecting
subfamily of H, then
h(A) < h(H(T)).

Moreover, if u > 0 and H has a member of size at least t, then the bound is attained if
and only if A =H(T") for some t-set T" such that h(H(T")) = h(H(T)).



By taking ¢ = d in Theorem and applying the argument in Remark [L.1], we
obtain the following EKR-type result.

Theorem 2.5 If1 <t <r <n, uc {0} UR" such that u > %, ¢ = (c1,...,¢p) is
an IP sequence, c; >t +u+1, and A is a t-intersecting subfamily of Se,, then

|A| < <1€Z Hc)

([t;r}tn]) el

Moreover, if u > 0, then the bound is attained if and only if A = S.,(T) for some
T € Scp with |Se,(T)| = |Sertl-

The EKR problem for S, attracted much attention and has been dealt with extensively
(see, for example, [13]). In particular, for ¢; = ¢,, it was solved for r = n in [2], 24],

and for n > L(T’_Hzii)(tH)J in [5]. Similarly to Theorem [[L5, Theorem 2.5 does not hold
forcp <t+1.

By taking m = n and r = s in Theorem [[L6] and applying the argument in Re-
mark [Tl we obtain the following EKR-type result.

Theorem 2.6 If1 <t <7, ue {0} UR" such thatu >, n> (t+u+2)(r—1),
A C M, ,, and A is t-intersecting, then

Al < (n—l—r—t—l).
r—1
Moreover, if uw > 0, then the bound is attained if and only if A ={A & M, ,: T CSs}
for some T € ([?}).

The condition n > (¢t + u + 2)(r — t) is close to being sharp. Indeed, as shown in
Section Il if n < t(r —t) +2 and A = {A € M,,:[San[t+2]] > ¢+ 1}, then
4> ().

The EKR problem for M, , and t = 1 is solved in [38]. Generalising this result,
Fiiredi, Gerbner, and Vizer [26] solved the EKR problem of maximising the size of a
largest subset A of M, , such that for every (ai,...,a,),(b1,...,b,) € A, there exist
t distinct elements iq,...,4; of [r] and ¢ distinct elements ji,...,j; of [r] such that

a;, = b;, for each p € [t].
3 The compression operation
Compression operations have various useful properties. It is straightforward that for

i,7 € [n] and A C 2",
[Ai;(A)] = | Al

We will also need the following well-known basic result (see, for example, [14, Lemma 2.1]).
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Lemma 3.1 Let A and B be cross-t-intersecting subfamilies of 2.
(i) For anyi,j € [n], A;;(A) and A, ;(B) are cross-t-intersecting subfamilies of 2.
(i) If1<t<r<s<n, AC (@), B C (@), and A and B are compressed, then

|JANBN[r+s—t]| >t
for any A€ A and any B € B.

The only difference between Lemma [B.1] and [14, Lemma 2.1] is that the latter is for
A C ([Z]) and B C ([Z}); however, the former follows by the argument for the latter.
Suppose that a subfamily A of 2" is not compressed. Then A can be transformed to
a compressed family through left-compressions as follows. Since A is not compressed,
we can find a left-compression that changes A, and we apply it to A to obtain a new
subfamily of 2"/, We keep on repeating this (always applying a left-compression to the
last family obtained) until we obtain a subfamily of 2[" that is invariant under any
left-compression (such a point is indeed reached, because if A; ;(F) # F C 2" and

i <, then 0 <> gen, (7) 2ovec b < 2oper Daer @)-

Now consider A, B C 2 such that A and B are cross-t-intersecting. Then, by
Lemma B.I], we can obtain A*, B* C 2[" such that A* and B* are compressed and cross-
t-intersecting, |A*| = |A|, and |B*| = |B|. Indeed, similarly to the above procedure, if
we can find a left-compression that changes at least one of A and B, then we apply it
to both A and B, and we keep on repeating this (always performing this on the last
two families obtained) until we obtain .A*, B* C 2 such that both A* and B* are
invariant under any left-compression.

4 Proof of the main result

This section is dedicated to the proof of Theorem L3
For the extremal cases of Theorem [L.3] we shall use the following two lemmas.

Lemma 4.1 Let 1 <t <n and T = [t|. Let H be a compressed subfamily of 2. Let
w: H — RT such that w(d;;(H)) > w(H) for every H € H and every i,j € [n] with
i <j. Then w(H(T")) < w(H(T)) for each T' € ([?}).

Proof. Let T € ([?}), and let ay,...,a; be the elements of T". Let Dy = H(T"). Let
Dy =A14,(Dy),...,Dy = At4,(Di—1). Since H is compressed, D; C H for each i € [t].
It follows from the properties of w and of left-compressions that w(Dy) < w(D;) <
-+ < w(Dy). Thus the result follows if we show that D, C H(T).

Let Dy € Dy. If Dy ¢ Dy, then Dy = 01,4,(D) # D for some D € Dy, and hence
1 € Dy. Suppose Dy € Dy, so a; € D; by definition of Dy. Since D, is also in Dy,
01,0, (D1) € Dy. Thus ay € 01,4,(D1) by definition of Dy. Since a; € Dy, it follows that
1€ Ds.

Therefore, 1 € H for each H € Dy, that is, D; C H({1}). If ¢ = 1, then we have
w(Dy) < w(Dy) <w(HH{1})) = w(H(T)), as required.
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Suppose t > 2. Since Dy C H({1}), we clearly have 1 € H for each H € D..
By an argument similar to that for D;, we also obtain that 2 € H for each H € Ds,.
Continuing this way, we obtain that 1,...,¢t € H for each H € D;. Thus D; C H(T),
as required. O

Lemma 4.2 Let n, t, T, G, H, g, and h be as in Theorem 3. IfU € A C G,
VeBCH, |U =|V|=t, and A and B are cross-t-intersecting, then

g(AM(B) < g(G(T))h(H(T)),

and equality holds if and only if A = G(V), B = H(V), g(G(V)) = g(G(T)), and
h(H(V)) = h(H(T)).

Proof. Since A and B are cross-t-intersecting, we have U =
B C H(V). By Lemma 1], g(G(V)) < ¢g(G(T)) and h(H(V)) < h(H(T)). Hence the
result. a

Proof of Theorem [1.3l We prove the result by induction on n.

Consider the base case n = t. If g(A)h(B) # 0, then A # () # B, and hence, since
A and B are cross-t-intersecting, A = {T'} = B.

Now consider n > ¢+ 1. Let A C G and B C H such that g(A)h(B) is maximum
under the condition that A and B are cross-t-intersecting. If G does not have a member
of size at least ¢, then A = ) or B = ) (since A and B are cross-t-intersecting), and
hence g(A)h(B) =0 = ¢g(G(T))h(H(T)). Similarly, g(A)h(B) =0 = g(G(T))h(H(T))
if H does not have a member of size at least t. Therefore, we will assume that each of G
and H has a member of size at least t. Since G and H are hereditary and compressed,
we clearly have T' € G and T' € H. Thus g(G(7T')) > 0 and h(H(T')) > 0. Since G(T')
and H(T) are cross-t-intersecting, it follows by the choice of A and B that

9(ANB) = g(G(T))h(H(T)) > 0. (1)

It follows that A # () # B. It also follows that no member of A is of size less than ¢,
because otherwise B = (), contradicting (IJ). Similarly, no member of B is of size less
than .

As explained in Section Bl we apply left-compressions to A and B simultaneously
until we obtain two compressed cross-t-intersecting families A* and B*, respectively.
Thus |A*| = |A| and |B*| = |B|. Since G and H are compressed, A* C G and B* C H.
By (b), g(A) < g(A*) and h(B) < h(B*). By the choice of A and B, we actually have
g(A) = g(A") and h(B) = h(B").

Suppose that A* = G(U) and B* = H(U) for some U € ([?]) such that g(G(U)) =
9(G(T)) and h(H(U)) = h(H(T)). Then g(G(U)) > 0 and h(H(U)) > 0,s0 G(U) # 0
and H(U) # 0. Thus, since G and H are hereditary, U € A* and U € B*. Hence
V e A for some V € ([’Z]), and V' € B for some V' € ([’Z]). By Lemma [4.2] the result
follows.

Therefore, we may assume that A and B are compressed.
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We first consider t+1 < n < t+2. If A has a member of size ¢t and B has a member
of size t, then the result follows by Lemma Thus, without loss of generality, we
may assume that no member of A is of size t.

Suppose n = t+1. Then A = {[t+1]} C G(T)\{T} (since A # 0 and AN ([?]) =0)
and B C HN <([ttl]) U{[t+ 1]}) Thus we have

g(A)h(B) < (9(G(T) = g(T)) | AT+ > h(H)
He (M) nm\{T}
= 9(1)) (W(H(T)) +th(T)) ~ (by (b))
(G(T)) = g(T') (h(H(T)) + th(T))
(T) +g([t + 1)) = (¢ + 1)g(T)A(T)

9
(sr) + 2250} ¢+ ) (o @),

Therefore, g(A)h(B) < g(G(T))h(H(T)), and equality holds only if u = 0.

Suppose n = t + 2. This case requires a number of observations followed by the
separate treatment of a few sub-cases.

Let Ty = [t + 1], T{ = TU{t+ 2}, and T, = [t + 2]. For each ¢ € {t,t + 1,¢ + 2}
and each F € {A,B,G, H}, let FO) = Fn ([HZ.Q]). Thus A = AD U A U A2 and
B = BOUBHD UBE2) | Recall that A has no t-set, so A® = ). Since A2 BE+2) C
([Hz]) = {[t + 2]}, we have A®*? C G(T) and B2 C H(T). Let

t+2

Ar=ANG((T), Ay=A\Ar, Br=BnNH(T), By=B\Br.
We have
Ar CGMN{T}, Ap CGUI\{T, T}, Bp CHYUHYIN\{T, T} (2)

Since T C T; € Ts, we have g(T7) < 9(+) g9(Tz) < 9t) o _9() hTy) < WD)

u? Hu — (t4u)?? t+u?
and h(Tg) < t(f;) < (th+ Clearly, for each U € G| there is a composition of left-

compressions that gives T when applied to U, and hence g(U) < g(T') by (b). Similarly,
h(V) < W(T) for each V € H®, g(U) < g(T1) for each U € G and (V) < h(T})
for each V € Ht+D).

Suppose A®Y) = (. Then A = {T,}. Since T € G and G is hereditary, we have
T.T\,T!, T, € G(T). Thus

9(G(T))

9(T) + g(Th) + g(T7) + g(T2)
(t +u)?g(Ty) + 2(t + u)g(Ty) + g(Ts)
(

>
>
> ((t+u) +1)%g(Ty) = (t+u+1)°g(A),
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and hence g(A) < (fJ(rgu(Jrl))) Now

h(B) = M&0+MB)<MHHw+(Ctg)—ghuﬁ+(6i?)—%hgn
< h(H(T)) + (w = 1) W(T) + t@ () 4 LB

t? + 3t + 2 P43t 44

< h(H(T)) + hH(T)) = ——

< 5 h(H(T)).

JA(B) < 5 s (G(T)ROUT)) < S alGT)UT))

2(t+u+1)
Hence g(A)h(B) < g(G(T))h(H(T)), and equality holds only if u = 0.
Suppose that A*tY) has at least 3 sets. Let Uy, Us, and U; be 3 distinct sets in
AUD - Since Uy, Us, Us € (iﬁ]), no t-set is a subset of each of Uy, Us, and Us. Thus
no t-set t-intersects each of Uy, Us, and Us, and hence BY = (). We have

9(T)
t+

t+2
t+1

9(A) < 9(G(T)) — g(T) + (( ) - 2) o)) < 9(G(T)) — o) +127) < gy,

N

Similarly, h(B) < h(H(T)). Thus g(A)h(B) < g(G(T))h(H(T)), and equality holds

only if u = 0.
We still need to consider 1 < |A®V| < 2, for which we need more detailed
observations. Let Cp = B N (HQ]) C, = Bf ([iﬁ}), = H(T) N ([t?}), and

Dy = H(T)N ([iﬁ}) By @), B = CoUCy. If ’H(tﬂ)\{Tl,T{} has a set V, then
t + 2 € V, and hence there is a composition of left-compressions that gives 7] when
applied to V. Thus, if HEHI\{T}, T{} is non-empty, then Ty, T € H(T) (as H is

compressed, T'C T}, and T' C T7), and hence we have

< Y. V) (by @)

VEHHD\{Ty,T]}

h(Cy)

< Y <o < MM Ly

2 2
VerE+U\{T,T]}

If HEH\{T}, T{} = 0, then C; = 0, and hence we also have h(C;) <
slight abuse of notation, we set g(7]) = 0 if 7] ¢ G, and we set g(T»
Since G is hereditary, 7] € G if Ty, € G. Thus g(T7]) > (t + u)g(T3).

Suppose that A®D) has exactly one set. Since A is compressed, A = {11},
Thus A C {T3,T,}, and hence g(A) < g(T1) + g(T2) = g(G(T")) — g(T') — g(T7]). The
t-sets that t-intersect T} are those in (7;1), so B® C (7;1), and hence

e < S (V)< ((ttl) - 1) h(T) = th(Dy).

VemO\{THn("1)

D;). With a
01fT2¢g
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We have

o(A(B) < (9(G(T)) ~ o(T) ~ (T (AGH(T)) + h(By)
= g(GDRCH(T)) + o(G(T)R(By) — (9(T) + o(T)) (HCH(T)) + h(By)
= g(GIDR(H(T)) + (a(T) + g(Ta)) h(Br) — (9(T) + 9(TI)H(H(T))
< oG + (257 + 950 ) )~ (o(1) + a(T)A(HAT))
= (@D + (o(7) + o(r1) (M)
< o@D + (o) + 1) (PGP (D) + 02y )

Thus g(A)h(B) < g(G(T))h(H(T)), and equality holds only if u = 0.

Suppose that A®*Y) has exactly 2 sets. Since A is compressed, AY = {T}, T}
The only t-set that t-intersects each of T} and T7 is T, so BY C {T}. Thus Cy = 0,
and hence B = C;. Since Dy C {13,171}, h(D;) < 2};232 = 2h(D° Since h(H(T)) >
h(Do) + h(Dy), h(H(T)) > H4h(Dy) + h(Dy) = (E* + 1) h(Dl) We have

S(AM(B) < (9(G(T)) — g(T))(HH(T)) + h(CD)
= g(GIR(H(T)) + 9(GT)A(Cr) — a(T)((H(T)) + h(C)
=SS + LT + o) + AT D)~ s DA

2¢(T) g(T) t—i—u
< g@mpneum) + (204 2D Loy - o) (F54 +1) neoy
~ o(GDHT) + oDy (s + 2<tju) S,

Thus g(A)h(B) < g(G(T))h(H(T)), and equality holds only if u = 0.

Now consider n >t + 3.

Define Ho ={H € H:n ¢ H} and Hy, = {H\{n}: n € H € H}. Define Gy, G, Ao,
A1, By, and By similarly. Since A, B, G, and H are compressed, we clearly have that
Ao, A1, By, B1, Go, G1, Ho, and H; are compressed. Since G and H are hereditary, we
clearly have that Gy, G1, Ho, and H; are hereditary, G; C Gy, and H; C Hy. Obviously,
we have Ay C Gy C 271 A, € G C 21 By € Hy C 2001 and B, € H,; C 201

Let ho : Ho — RT such that ho(H) = h(H) for each H € Hy. Let hy : H; — RT
such that hy(H) = h(H U {n}) for each H € H; (note that H U{n} € H by definition
of H1). By (a) and (b), we have the following consequences. For any A, B € H, with
A C Band |A| >t,

ho(A) = h(A) = (t + u)h(B) = (t + u)ho(B). (3)
For any C' € Hy and any 7, j € [n — 1] with i < j,

ho(60:5(C)) = h(d:;(C)) = M(C) = ho(C). (4)
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For any A, B € H, with A C B and |A| > t,
hi(A) = h(AU{n}) > (t+ u)h(BU{n}) = (t + u)hi(B). (5)
For any C' € H; and any i, j € [n — 1] with ¢ < j,
hi(0:5(C)) = h(9i,;(C) U {n}) = h(d:;(CU{n})) = h(C'U{n}) = l(C).  (6)

Therefore, we have shown that properties (a) and (b) are inherited by hg and h;.
Since B = By U B({n}), Bo N B({n}) =0, and B({n}) = {BU{n}: B € B}, we
have

h(B) = h(Bo) + h(B({n})) = ho(Bo) + ha(By). (7)

Along the same lines,

R(H(T)) = h(Ho(T)) + h({H € H: TU{n} C H})
= ho(Ho(T)) + h({H U {n}: H € Hi(T)})
= ho(Ho(T)) + hi(H1(T)). (8)

Suppose G; = 0. Clearly, A and By are cross-t-intersecting. Since G; = (), no set
in A contains n, and hence A and B; are cross-t-intersecting. Thus, by the induction
hypothesis,

9(A)h;(B;) < g(G(T))h;(H;(T)) for each j € {0,1}. (9)

Together with (7) and (8)), this gives us

9(A)N(B) = g(A)ho(Bo) 9(A)hi(By)
< 9(G(T)ho(Ho(T)) + g(G(T)) n(HA(T))
= g(G(T)n(H(T)).

By (), equality holds throughout, and hence g(A)h(B) = ¢g(G(T))h(H(T)). Thus,
in (@), we actually have equality. Suppose v > 0. By the induction hypothesis, for
each j € {0,1}, we have A = G(V;) and B; = #;(V;) for some V; € ([";1]) such
that g(G(V;)) = g(G(T)) and h;(H;(V;)) = h; (’H (T)) Thus g(g(Vo)) > 0, and hence
G(Vo) # 0. Thus, since G is hereditary and A =GW), Wh € A. Since A and B
are cross-t-intersecting, B C H(Vp). Since A = G(V4), and since G(Vp) and H(Vp)
are cross-t-intersecting, it follows by the choice of A and B that B = H (V). By (D),
H(Vy) # 0. Since H is hereditary, Vy € B. By Lemma [£2] the result follows.

Now suppose that G; is non-empty. If H; = (), then the result follows by an
argument similar to that for the case G; = () above. Thus we assume that H; is
non-empty. Since G; C Gy and Hi C Hg, Gy and Hy are non-empty too.

Similarly to hg and hy, let g : Go — RT such that go(G) = ¢g(G) for each G € Gy,
and let ¢g; : G; — RT such that ¢;(G) = ¢g(G U {n}) for each G € G; (note that
G U {n} € G by definition of G;). Then properties (a) and (b) are inherited by gy and
g1 in the same way they are inherited by Ay and hq, as shown above; that is, similarly
to ([B)—-(6l), we have the following. For any A, B € Gy with A C B and |A| > t,

90(A) = (t +u)go(B). (10)
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For any C' € Gy and any 4,5 € [n — 1] with i < j,

90(0:,4(C)) = 9o(C). (11)
For any A, B € G; with A C B and |A| > t,

g1(A) = (t+u)gi(B). (12)

For any C' € G; and any 4,5 € [n — 1] with i < j,

91(6:,;(C)) = 91(C). (13)

Similarly to (7) and (&), we have
9(A) = go(Ao) + g1(Ar), (14)
9(G(T)) = go(Go(T)) + g1(G1(T)). (15)

Clearly, Ay and By are cross-t-intersecting, Ay and B; are cross-t-intersecting, and
A; and By are cross-t-intersecting.

Let us first assume that A; and B; are cross-t-intersecting too. Then, by the
induction hypothesis,

9i(Ai)h;(B;) < gi(Gi(T)h;(H;(T))  for any i, j € {0, 1}. (16)
Together with ([7), (8), (I4)), and (I3]), this gives us

g(A)R(B) = go(Ao)ho(Bo) + go(Ao)hi(Bi) + 91(A1)ho(Bo) + g1(A1)hi(Bi)
< 90(Go(T)) ho(Ho(T)) + go(Go(T)) 1 (Ha(T))+

91(G1(T))ho(Ho(T)) + g1(G1(T)) i (Ha(T))

= g(G(1)h(H(T)).

By (), equality holds throughout, and hence g(A)h(B) = ¢g(G(T))h(H(T)). Thus,
in (I6), we actually have equality. Suppose u > 0. By the induction hypothesis,
we particularly have Ay = Go(Vp) and By = Ho(Vp) for some Vi € ([";1]) such that
90(Go(Vo)) = 90(Go(T)) and ho(Ho(Vo)) = ho(Ho(T)). Recall that T € G, so T' € Gy,
and hence go(Go(T)) > 0. Thus go(Go(Vo)) > 0, and hence Gy(Vh) # 0. Since Gy is
hereditary, it follows that Vo € Go(Vp), and hence Vo € A. Similarly, V; € B. By
Lemma [4.2], the result follows.

We will now show that A; and B; are indeed cross-t-intersecting. Note that 4; and
B, are cross-(t — 1)-intersecting.

Suppose that A; and B; are not cross-t-intersecting. Then there exists A* € A;
such that |[A*N B*| =t —1 for some B* € B;. Let r = |A*|+1and s =n —r +t. Let

R={Ae€A:|Al=r—1,|ANB|=t—1 for some B € B;},
S={BeB:|Bl=s—1,|ANnB|=t—1 for some A € A;}.

We have A* € R.
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Consider any R € R and B € B such that |RN B| < t. Since A; and B; are
cross-(t — 1)-intersecting, |[R N B| =t — 1. We have

|B| = |BNR|+ |B\R| =t— 1+ |B\R|
<t—-1+|n—-1\R|=t-1+n—-1)—(r—1)=s—1

Suppose B ¢ S. Then |B| < s — 1. Thus we have
|IRUB|=|R|+|B|—|RNB|<r—1+s—-2—t+1=n-2,

and hence RUB C [n —1]. Let c € [n — 1]\(RU B). Since B € By, BU {n} € B. Let
C = .n(BU{n}). Since ¢ ¢ BU{n}, C = BU{c}. Since B is compressed, C' € B.
However, since ¢ ¢ RU{n} and |[RNB| =t— 1, we have |[[RU{n})NC| =t — 1, which
is a contradiction as A4 and B are cross-t-intersecting, RU {n} € A, and C € B.

We have therefore shown that

for each B € By such that |[RN B| <t for some R € R, B € S. (17)
By a similar argument,
for each A € A; such that |[AN S| <t for some S €S, AeR. (18)

For each A € Ay UBy, let A= AU{n}. Let " ={R": Re R} and &' ={S5": S €
S}. Since R C A and S C By, R' C A({n}) and &' C B({n}). Let

A=AUR, A"=AR, B =B\S, B"=BUS.

By (I1), A’ and B’ are cross-t-intersecting. By (I8]), A" and B” are cross-t-intersecting.
Since G and H are hereditary, and since R C AC Gand S’ C B C H, we have R C G
and S C H, and hence A", A” C G and B, B" C H.

Let x = g(A), x1 = g(R), y = h(B), and y; = h(S"). We use a double-counting
argument to obtain x > nzy/r and y > ny;/s. For any R € R’ and any set A such
that A = 6;,,(R) for some i € [n]\R, we write A < R. If A < R € R/, then, since A is
compressed and n € R € A, we have A € Ay. For any A € Ay and any R € R/, let

1 if A< R,

0 otherwise.

X(4, R) = {

Then ) o4, X(A, R) =n —r for each R € R'. For each A € Ay, x(4, R
|A| = |R| and R = (A\{i}) U {n} for some i € A. Thus ) ..~ x(A, R)
A e Ay. We have

(n—rzr =Y (n—r)g(R)=>_ > xARgR) => Y x(ARgR)

ReR'! ReR! AcAg AcAo RER!
<D0 > XA R)g(A) (by (b))
AeAp RER/
< ) rg(A) = rg(Ay) = r(z — g(A({n}))) < r(z — m),
AeAg
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so x > nzy/r. Similarly, y > ny /s.

Sincet — 1 =|A*NB*| <|A|=r—1,r>t By (1), B€S. Sincet —1 =
|[A*NB*| < |B*=s—1,s>t.

Suppose r = t. Then s = n. Thus &’ = {[n|} and § = {[n — 1]}. Let C* =
[t — 1] U {n}. Since A* € Ay, A is compressed, and |A*| = r — 1 =t — 1, we have
[t — 1] € A, and hence C* € A.

Suppose that there exists D* € B such that D* # [n]. Since A and B are cross-t-
intersecting, we have |C* N D*| > t. Thus C* C D* as |C*| = t. Since D* # [n], there
exists ¢ € [n] such that ¢ ¢ D*. Thus ¢ ¢ C*. Since A is compressed, 6.,(C*) € A.
However, |6.,(C*) N D*| = |C*\{n}| =t — 1, which is a contradiction as A and B are
cross-t-intersecting.

Therefore, B = {[n]}. Since n —1 > t, h([n—1]) > (t+u)h([n]) > th([n]). We have
WB") = h([n]) + h([n = 1]) = h([n]) + th([n]) = (¢ + D)h(B) = (t + 1)y.
Since x > nxy/r = nxy [t > (t + 3)xy /t, x1 < tx/(t +3). We have

tx 3x
AY=g g > 2= T
gA) =z —m 2o =g =g

Thus we obtain
3(t+ 1)y

gANM(B") = =

> zy = g(A)h(B),

contradicting the choice of A and B.

Therefore, » > ¢ + 1. Similarly, s > ¢+ 1. Since r — 1 > ¢ and each set in R is of
sizer — 1, g(R) > (t +u)g(R’). Similarly, h(S) > (t + u)g(S’).

Consider any R € R. By definition of R, there exists Br € B; such that |[RNBg| =
t—1. Thus |RNBg'| = t—1. Since By’ € B, and since A and B are cross-t-intersecting,
R ¢ A. Therefore, ANR = (). Similarly, BNS = 0.

We have
gAY =2+g(R) >z + (t+u)g(R') =z + (t+u)xy,
g(A”) =T — Iy,
h(BI) =YY
MB") =y +h(S) > y+ (t+u)h(S)=y+ (t+u)y.

By the choice of A and B,

g(AV(B) < g(A)h(B) and  g(A")h(B") < g(A)h(B).
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Thus we have

(z+ @t +u)r)(y—y) <wzy and (z—21)(y+ (+u)y) <zy
t+uw)ry <zyp + (t+w)zy; and  (E+w)zy; < xy + (E+ vy
ttu)zy + (t+u)zy < (zyr + (E+w)ziy) + (1Y + (¢ + w)z1y1)

(

(

( @1y + zy1) < 2(¢+ u)z1ys.
(t4+u—1) (:L‘l% + %gﬂ) < 2(t + u)ryy
(t+u—1)(r+s)xiyin < 2(t + u)rseyy

( Y(n+t)n <2(t+u)r(n—r+t).

=
=
=
=
=

=

Using differentiation, we find that the maximum value of the function f(z) = z(n—z+t)
occurs at z = . Thus r(n —r +t) < 2 (n — 2 + ¢) = (n 4 t)?/4, and hence

(t+u—1)(n+t)n <2t +u)(n+t)*/4
= 2t+u—1n<(t+u)(n+1)

(t+u)t
== n< —7. 19
"= t+u—2 (19)
Since u > %, S:;i); < t+ 3. Thus we have n < t + 3, which is a contradiction. Hence
the result. O

Remark 4.3 Note that the proof for the special case n <t + 2 actually verifies the
conjecture in Remark [[L4] for n < ¢ + 2. Also note that for t > 3, if we also settle the
conjecture for t +3 < n <t + 6, then we can take u = 0 and proceed for n >t + 7 in
exactly the same way we did for n > ¢t + 3, because again we obtain a contradiction to
([9); thus, as mentioned in Remark [[.4], this would settle the conjecture for ¢ > 3.

5 Proof of Theorem

In this section, we use Theorem [[.3] to prove Theorem .2

For a family F and an integer r > 0, we denote the families {F' € F: |F| = r} and
{FeF:|F|<r}by F) and FE)| respectively.

We will need the following lemma only when dealing with the characterisation of
the extremal structures in the proof of Theorem [L.2

Lemma 5.1 Let t,r,s,u,m, and n be as in Theorem[L2D. Let i,j € [max{m,n}] with
i<j. Let G =2M" and H =2, Let A C G") and B C H®) such that A and B are
cross-t-intersecting. Suppose that A; ;(A) = GW(T) and A; ;(B) = HS(T) for some
t-element subset T of [min{m,n}]. Then A = G"(T") and B = H)(T") for some
t-element subset T' of [min{m, n}].

We prove the above lemma using the following special case of [11, Lemma 5.6].
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Lemma 5.2 Lett > 1, r>t+1,n>2r —t+2, and i,j € [n]. Let H = 2", and let
A be a t-intersecting subfamily of H". If A; ;(A) is a largest t-star of H"), then A is
a largest t-star of H").

Proof of Lemma [5.1l We are given that t <r < s.

Suppose r = t. Then A, ;(A) = {T'}. Thus A = {T"} = H")(T") for some T" €
([’?}). Since A and B are cross-t-intersecting, 7" C B for all B € B. Thus B C H®)(T").
Since (") = [HO(T)] = |Ay,(B)] = [B] < MO = (), |B] = (1=)). Hence
B=HE(T).

Now suppose r > t 4+ 1. Note that T\{i} C E for all E € AU B.

Suppose that A is not t-intersecting. Then there exist A;, Ay € A such that |A; N
Ay] <t —1, and hence T' ¢ A; for some [ € {1,2}; we may assume that [ = 1. Thus,
since AZJ(A) = H") (T), we have A; ¢ Ai7j(A), Ay 7& 51'7]‘(141) S Ai7j(A), 51'7]‘(141) §é A
(because otherwise A; € A; ;(A)),1e€T,j¢T,je A, and Ay NT = T\{i}. Since
T\{i} CANAyand [A;NA| <t—1, AyN Ay =T\{i}. Thus j ¢ A, and hence
Ay = 6 j(Az). Since 6, ;(Az) € Ay ;(A) = H(T), T C Ay. Let X = [n]\(A; U Ay).
We have

>t+u+2)(s—t)+r—1=-2r—t)—(t+1)>t+u)(s—1t)—1
2t 2t

> (2+§) (s—t)—1= (1+§) (s—t)+s—(t+1).
Since t +1 < r < s, we have |X| > s — ¢, and hence (S)_(t) # 0. Let C € (S)_(t) and
D =CUT. Then D € H®(T) and DN A; = T\{i}, meaning that D € A, ;(B)
and |D N A;| =t — 1. Since A and B are cross-t-intersecting, we obtain D ¢ B and
(D\{i})U{j} € B, which is a contradiction since |((D\{i})U{j})NAs| = |T\{i}| = t—1.

Therefore, A is t-intersecting. Similarly, B is t-intersecting. Now H(")(T) is a largest

t-star of H"), and H)(T) is a largest t-star of H(*). Since t + 1 <r < s and

max{m,n} > (t+u+2)(s—t)+r—1=((t+u)(s—t)+2s—t+2)+r—(t+1)—2,

we have
2t 2t
max{m,n} — (2s —t+2) > <2+§) (s—t)—2> g(s—t) > 0,

and hence max{m,n} > 2s —t + 2. By Lemma 5.2, A = H")(T") for some T’ € ([T]),
and B = H®)(T*) for some T* € ([?]).

Suppose T" # T*. Let z € T*\T". Since m > 2s —t 4+ 2 > r, we can choose
A" € HU)(T') such that z ¢ A’. Sincen >2s —t+2>r+s—t+2>7r+s5—tand
z € T*\ A, we can choose B* € H®)(T*) such that |A’N B*| <t — 1; however, this is a
contradiction since A = H)(T"), B =HE)(T*), and A and B are cross-t-intersecting.
Therefore, T' = T*. O
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Proof of Theorem .2l If A = () or B = (), then |A||B] = 0. Thus we assume
that A # () and B # (). Let [ = max{m,n}, so A, B C 2.

As explained in Section Bl we apply left-compressions to A and B simultaneously
until we obtain two compressed cross-t-intersecting families A* and B*, respectively.
We have A* C (™), B+ C ("), |A*| = |A|, and |B*| = |B]. In view of Lemma 5.1 we
may therefore assume that A and B are compressed. Thus, by Lemma [B.T(ii),

|JANBN[r+s—t]| >tfor any A € A and any B € B. (20)

Let p=r+s—t Let G = ([p]) and H = ([pl). Let g : G — N such that

<r <

9(G) = (r":é") for each G € G. Let h : # — N such that h(H) = (Sﬁ};‘) for each
He™H.
For every F,G € G with FF C G and t < |F| = |G| — 1, we have

g(F) = (t+ug(@) , CHa(En) g+ —|F)
(s (") m—p—(r—|F])+1

- m=p—(t+u+1)(r—|F|)+1

B m—p—(r—|F|)+1
>m—p—(t+u+1)(r—t)+1

- m—p—(r—|F|)+1

- om—(t+u+2)(r—t)—s+1

N m—p—(r—|F|)+1

- (t+u+2)(s—t)+r—1—(t+u+2)(r—t) +s—1)
- m—p—(r—|F|)+1

>0

9

and hence g(F) > (t +u)g(G). It follows that g(F) > (t + u)g(G) for every F,G € G
with ¥ C G and |F| > t. Similarly, h(F) > (t + u)g(H) for every F, H € H with
F C H and |F| > t.

We have ¢(8;,;(G)) = ¢(G) for every G € G and every 4,5 € [p]. Similarly,
h(d;;(H)) = h(H) for every H € H and every i, j € [p].

Let C={AN[p]: A€ A} and D ={BnN|[p]: B€ B}. Then C C G, D C H, and,
by (20), C and D are cross-t-intersecting. Let T' = [t]. By Theorem [L3]

9(C)WD) < g(G(T)h(H(T)), (21)

and if u > 0, then equality holds only if C = G(T") and D = H(T") for some T" € ([i’]).
We have

Al = U {AcA:Anfplec?}| < Z c)| (”Z:f) =9(C), (22)
B| = U [(BeB:Bn[p e DV} < Z D] (Z:f) =h(D),  (23)

and hence, by (21)),
|AIIB] < g(G(T)h(H(T)). (24)
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Now

9(G(T)) = 2; G9(T)| <T::Zp) - Q{A € (“;’f]) T CAJAN[p]| = 2}

e () me - )

and, similarly, h(H(T)) = (";). Together with (24)), this gives us

—1 —1
ais< (") (0 27)
r—1 s—1t
as required.

Suppose |A||B| = ("~/)("Z;) and u > 0. Then equality holds throughout in each

s—t

of [2I)-(24)), and hence C = G(T") and D = H(T") for some T" € ([i’]). It follows that
AC {A € ([’:L}): T' C A} and B C {B € (["]): T C B}. Since |A||B] = (")) ("Z)).

s — s—t

both inclusion relations are actually equalities, 77 C [m], and T" C [n]. O

6 Proof of Theorem

In this section, we use Theorem [[.3] to prove Theorem [L.5l
We start by defining a compression operation for labeled sets. For any x,y € N, let

s = { (DU L) ) 4

1 A otherwise
for any labeled set A, and let
Foy(A) = {r2y(A): A€ AFU{A € A:yy(A) € A}

for any family A of labeled sets.

Note that |T';,(A)] = |A| and that if A C S, then I'; ,(A) C Sc,. It is well
known that if A and B are cross-t-intersecting families of labeled sets, then so are
I,,(A) and I'; ,(B). We present a result that gives more than this.

For any IP sequence ¢ = (cy,...,¢,) and any r € [n], let S¢ <, denote the union

U:ZI Sc7i'

Lemma 6.1 Let c = (c1,...,¢y) and d = (dy, ..., d,) be IP sequences. Let x,y € N,
y > 2. Let | = max{m,n} and h = max{cy,,d,}. Let V C [l] x [2,h]. Let A C Sc<m
and B C Sa <, such that [(AN B)\V| >t for every A € A and every B € B. Then
[(CNDN\(VU{(x,y)})| >t for every C € Iy ,(A) and every D € T, ,(B).

Proof. Suppose C € I', ,(A) and D € T, ,(B). We first show that [(C'N D)\V| > t.

Let C¢" = (C\{(z,1)}) U{(z,y)} and D' = (D\{(z,1)}) U{(z,y)}. If C € A and
D e B, then ([CNDN\V| >t f C ¢ Aand D ¢ B, then (z,1) e CND, C" € A,
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D" € B, and hence, since (z,1) ¢ V, [(CND)\V| > [(C"nD")\V| > t. Suppose C' ¢ A
and D € B. Then (z,1) € C and C" € A. If (z,y) ¢ D, then, since C' € A and
DeB t<|(C"NnD\V| < [(CNnD\V|. If (x,y) € D, then ~,,(D) € B (because
otherwise D ¢ I';, ,(B)), and hence, since C" € A, t < [(C'Nv,,(D))\V] = [(CND)\V|.
Similarly, if C' € A and D ¢ B, then [(C N D)\V| > t.

Now suppose (CND)\(VU{(z,y)}) < t. Since (CND)\V| > t, (z,y) € CND. Thus
€7 (C) € A, D 7y(D) € B, and |(C A ey (D)\V] = |(C 1 DNV U{(z, )] <

a contradiction. O

Corollary 6.2 Let ¢ = (¢1,...,¢p),d = (dy,...,d,),l, and h be as in Lemma [G ]
Let A C S < and B C Sq <y, such that A and B are cross-t-intersecting. Let

A*:Fl,ho"'OFl,2O"'OF2,hO"'OF2,2OF1,hO"'OF1,2<A),
B*:PZJ‘LO”'OFl,ZO”'OPQ,hO"'OFZ,QOPLhO”'OFLQ(B)'

Then |[AN BN ([I[] x [1])| >t for every A € A* and every B € B*.

Proof. Let Z = [I] x [2,h]. By repeated application of Lemma Bl [(AN B)\Z| >t
for every A € A* and every B € B*. The result follows since (AN B)\Z = AN BN

([ > [1]). =

The next lemma is needed for the characterisation of the extremal structures in
Theorem

Lemma 6.3 Let ¢ = (¢1,...,¢p),d = (di,...,d,),l, and h be as in Lemma [61.
Suppose ¢y > 3 and dy > 3. Let r € [m], s € [n], and t € [min{r, s}|. Let A C S, and
B C Sas such that A and B are cross-t-intersecting. Suppose I'y ,(A) = Sc(T') and
I,y(B) = Sas(T) for some (x,y) € [I] x [h] and some labeled set T € (mxt[h}). Then
A= 8e, (T') and B = Sqs(T") for some labeled set T' € (M),

Proof. The result is immediate if A = I', ,(A) and B = I';,(B). Suppose A #
I'yy(A) or B#T,,(B). We may assume that A # I'; ,(A). Thus there exists A; €
A\T'; ,(A) such that v, ,(A1) € T'yy(A)N\A. Then (z,1) # (z,y) € Ay and v, 4(A;) =
(Ao U (1)}

Suppose (z,1) ¢ T. Together with v, ,(A1) € I',,(A) = S, (T), this gives us
T C Ay, which contradicts A; ¢ T';,(A).

Therefore, (z,1) € T. Let (a1, b1), ..., (at,b;) be the elements of T', where (a;, b;) =
(z,1). Let T" = (T'\{(z,1)}) U {(x,y)}. Since v, ,(A41) € S,(T), we have T" C Ay,
and hence S.,(T") # 0. Note that |Sc,(T")| = |Sec.(T)].

Let A* € S, (T"). If s > ¢, thenlet xy, ..., x5 be distinct elements of [n]\{ai, ..., a:}.
For each i € [n], let D; = {i} x [d;]. We are given that 3 < d; < --- < d,. By defi-
nition of a labeled set, for each i € [n], we have |[AN D;| <1 for all A € S.,. Thus
|ID\(A1UA*)| > d;—2 > 1foreachi € [n]. If s > ¢, then let (x;,y;) € D, \(A;UA*) for
each i € [s—t], and let B* = T"U{(x1,y1),. .., (Ts_t,ys—t)}. If s =1, then let B* =T".
Thus B* € Sq,(T"). Since I'yy(B) = Sas(T), we have B* € B or ,,(B*) € B.
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However, |v,,(B*) N Ai| = |[TNA| = |T\{(z,1)}| = t—1, so B* € B. Since
I,y(A) =S8, (T), we have A* € A or v, ,(A*) € A. However, |%y(A*) NB*=t—1,
so A* € A.

We have therefore shown that S.,(7") C A. Since |A| = [y, (A)| = [Ser(T)] =
|Se.(T")|, we actually have A = S, ,.(T"). Clearly, for each L € Sq s with 7" € L, there
exists L' € S¢,(1") such that |[LNL'| = |LNT'| < |T'| =t. Thus, since A =S, (1"),
each set in B contains 7". Hence B C Sq4(7”). Since |B| = |y ,(B)| = [Sas(T)| =
|Sa,s(T")|, we actually have B = Sq +(T1").

The next lemma allows us to translate the setting in Theorem to one given by
Theorem L3

Lemma 6.4 Let ¢ be an IP sequence (cy,...,c,). Let r € [n]. Let w: (L"l) — N such
that for each A € (L"},),

w(A)=|{L € S.,: LN([n] x [1]) = A x [1]}].
Then:
(i) w(A) > (c; — Dw(B) for every A, B € ([gni) with A C B.
(i1) w(0; j(A)) > w(A) for every A € ([S"i) and every i,j € [n] with i < j.

Proof. (i) Let A,B € ("]) with A € B. Let B’ = B\A. Thus |B'| > 1. For each

<r
L€ S8, let o(L)={z €n]: (z,y) € L for some y € [¢;]}. We have

w(A) 2 {L € Sep: LN ([n] x [1]) = Ax[1], B'C (L)}

= > ll@-nllE-

[n]\(AUB’)\ be B’ eckE
Be(M)5E)

“Me-n{ ¥ M-

< be([7}g) <F

= w(B) H (¢p—1) > (¢ — DIFw(B) > (¢1 — Dw(B).

beB’

(ii) Let A € (L"}n), and let ¢,j € [n] with ¢ < j. Suppose 9; ;(A) # A. Then j € A,
i ¢ A, and 0, ;(A) = (A\{j}) U{i}. Let B = A\{j}. Let

£, (MBI,

&= {pe (MNBUENY o gl
(o
r— |A|
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We have

wBuh = > e

Be(P\BUD) B

= Jla—D+ > J[er—1

D€ deD Fe€ feF
— 1
> — — i L < o
> ZH(Cd 1) ZHCf 1 c _1 (since ¢; < ¢;)
Deé&y deD Feé& feF
= > Itca=v+ > JIter -1
Deé&y deD Feé& feF
= >l w(BU{j}),
Be(I\PUGD) eeE
and hence w(9; j(A)) > w(A). O

Proof of Theorem [1.5l Let G = ( ) Let v: G — N such that for each G € G,
v(G) = {L € Sep: L0 ([m] x [1]) = G x [1]}].

Let H = (). Let w: H — N such that for each H € H,
w(H) =[{L € Sas: LN ([n] x [1]) = H x [1]}].

Let [ = max{m,n} and h = max{c,,,d,}. Let

./4*:I_\IJLO"'OI‘l,QO"'OI_\2,hO"'OI‘272OI_\1,]1O"'OI‘172<,/4)7
B*:Pl,ho"'OFl,ZO"'OPQ,hO"'OFQ,QOPLhO"'OFLQ(B)~

Now let

C={GegG: En([m] x[1]) =G x [1] for some E € A*},
D={HeH: FN([n] x[1]) = H x [1] for some F € B*}.

ThenC C G C 2, D C H C 2l and, by Corollary[6.2], C and D are cross-t-intersecting.
We have

A C | J{L € Sep: LN ([m] x 1)) = C x [1]}, (25)
ceC
B C (J{L € Sas: LN ([n] x [1]) = D x [1]}. (26)
Thus
A <> 0(0) = v(0), (27)
ceC
B <) w(D) =w(D). (28)
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Since |A| = | A*| and |B| = |B*|, we therefore have

|Al < v(0), (29)
IB| < w(D). (30)

Let Ty = [t]. Let Z = G(Tp), T = H(Tp), X = Se,(Ty x [1]), and Y = Sa,(Ty x [1)).
By Lemma [6.4] and Theorem [L.3]

2(C)w(D) < v(T)w(T). (31)

Now

v(T) = (Zmn) = (Z {L €S, LN ([m] x [1]) =1 x [1]}\)

IeT 1eT

= |JAL € Ser: LN (Im] x [1]) =1 x [1]}| = ||

1€l

and, similarly, w(J) = |)|. Together with (29)—(1]), this gives us |A||B| < |X||YV],
which establishes the first part of the theorem.

We now prove the second part of the theorem. The sufficiency condition is trivial,
so we prove the necessary condition.

Suppose |A||B| = |X||Y| and v > 0. Then all the inequalities in (Z7)-(31) are
equalities. Having equality throughout in each of (27)) and (28) implies that equality
holds in each of (28) and (26). By Theorem [[3] equality in (BI]) gives us that C = G(T1)
and D = H(Ty) for some T; ([l}) Together with equality in each of (28) and (26]),
this gives us that A* = S, T(Tg) and B* = Sq,5(13), where To = T x [1]. By Lemmal6.3]
A = 8.,.(T3) and B = Sq5(T3) for some T3 € ([l]X h]) Since |A||B| = |X||Y| > 0, we
clearly have T5 € Sc; N Sq,¢- O

7 Proof of Theorem

In this section, we use Theorem [L.3] to prove Theorem [L.6l

As in Section [ for any family 7, ™ denotes {F € F: |F| =r}. For any n,r € N
and any family A, let M, , 4 denote the set {A € M, ,: S, € A}.
Lemma 7.1 Ifn,r €N, i,j € [n], and A C 2", then | Mra )| = | My al-

Proof. Let B = A;;(A). Clearly, |B»)| = |AP)] for each p € [n]. We have

| My 5] = ZIMm{B}l—Z > IMnr{B}l—ZIB [ Mo 1o} |

BeB p= 1BeB(P)
—ZM(”’HM {[p]}|_z o IMupiayl =D 1Moy ay] = (M al,
p=1 AcA(P) AcA
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as required. a

Proof of Theorem Let C = {Sa: A € A} and D = {Sp: B € B}. Clearly,
AC My, ,c, BC M, sp,and, since A and B are cross-t-intersecting, M,, ,c and M, s p
are cross-t-intersecting. Thus we assume that

A=M,,c and B= M, p. (32)

As explained in Section B, we apply left-compressions to C and D simultaneously

until we obtain two compressed cross-t-intersecting families C* and D*, respectively.
Since C C ([Zﬂ) and D C (L"l), we have C* C ([m]) and D* C (L"l) By Lemma B.1(ii),

<r
ICNDN[r+s—t]| >t for any C' € C* and any D € D*. (33)
Let p=r+s—t Let G = ([é’l) and H = ([é)l) Let g : G — N such that
9(G) = (m;f:é"_l) for each G € G. Let h : H — N such that h(H) = ("tiﬁ;‘_l) for

ecach H € H.
For every F,G € G with FF C G and t < |F| = |G| — 1, we have

g(F) = (t+wg(@) _  E+wCIN) L @u)r - |F)

(") (") m—p+|F|
_m—p+|F = (+u)(r—|F)
B m—p+ |F|
S m—p+t—(t+u)(r—t) m—-—(t+u+l)(r—t)—s+t
- m—p+ |F| m—p+ |F|
- t+u+)(s=t)+r—t—(t+u+1)(r—t)+s—1) -0
- m —p+ |F| 7

and hence g(F) > (t +u)g(G). It follows that g(F) > (t + u)g(G) for every F,G € G
with ¥ C G and |F| > t. Similarly, h(F) > (t + u)g(H) for every F, H € H with
F C H and |F| >t

We have ¢(8;,;(G)) = ¢(G) for every G € G and every 4,5 € [p]. Similarly,
h(d;;(H)) = h(H) for every H € H and every i, j € [p].

Let E={CnNJp]: C €C*} and F={DN|[p]: D € D*}. Then £ C G, F C H, and,
by [B3), £ and F are cross-t-intersecting. Let T' = [t]. By Theorem [[3]

9(E)MF) < g(G(T)(H(T)), (34)

and if u > 0, then equality holds only if £ = G(T") and F = H(T") for some T" € ([i’]).
By (2) and Lemma [T],

|A| = | My o] < {A € My, : San[p] = E for some E € E}|
=Y {A€ M,,:San[p] = E}

Eec€
=Y Ha, e m): a1 <+ <ar g, a1, 4 g € EUp+1,ml}|
Eec€
m4+r—p—1
= S Mgl = X (") = gt (35)
EeE EeE



Similarly,

|B| < h(F). (36)

By (B4)-(34),
|AJ|B] < g(G(T))h(H(T)). (37)

Now, similarly to (35),

g(G(T)={Ae M,,:San[p] = E for some £ € G(T)}|
—|{Ae M,,: T CSs} = (m+:__f - 1).

Similarly, h(H(T)) = ("**~/7"). By @7), it follows that

s—t

LA|IB| < m+r—t—1\/n+s—t—1
- r—t s—t ’
as required.

Suppose |A||B| = (mtf’:tt*l) ("‘Lj::*l) and u > 0. Then equality holds throughout
in each of (34)-(B7), and hence & = G(T") and F = H(T") for some 7" € (7)),
Having equality throughout in (B5]) implies that M,,,.c- = {A € M,,,: SaN[p] =
E forsome E € £} = {A € M,,,: T" C Su}. Thus T" € C*, and hence there exists

T € ([’?}) such that T} € C. Similarly, there exists T, € ([’Z]) such that T, € D.

Since C and D are cross-t-intersecting, we have 77 = Ty, C C {C € (@) T, C C},

and D C {D € (L"i) T, C D}. Consequently, A C {A€ M,,,: T CSu} and B C

{B € M, s: Ty € Sg}. Since |A||B| = ("7-/"")("**_/""), both inclusion relations are

T r—t s—t
actually equalities. O

8 The remaining cases

Each of Theorems [[L2] [L.5, and solves the particular cross-t-intersection problem
under consideration for all cases where the ground sets are not smaller than a certain
value dependent on r, s, and t. Solving any of these problems completely appears to
be very difficult and would take this area of study to a significantly deeper level. We
conjecture that the complete solutions are ([B8)—(40) below.

For any n € N and any r,¢,i,7 € {0} U [n] with 1 <t <randt+i+j <n, let
Mprrij={A¢€ ([:f}) C|AN[t+i+4]| > t+i}. In [22], Frankl conjectured that the size
of a largest t-intersecting subfamily of ([Z}) is max{| M, r1iil: 4,5 € {0FUN, t +2i <
n}, and this was verified in [I]. Hirschorn suggested an analogous conjecture [29,
Conjecture 4] for cross-t-intersecting families A and B with A C ([Z]) and B C ([Z}).
Generalising Hirschorn’s conjecture, we conjecture that if m,n € N, r € [m], s € [n],
t € [min{r, s}], A C ([T}), B C ([z]), and A and B are cross-t-intersecting, then

|A||B| < max{| M, rtiillMnstjil:i,j€{0}UN, t+i+j <min{m,n}}. (38)
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For any IP sequence ¢ = (cy,...,¢,) and any r,¢,4,j € {0} U[n] with 1 <t <r and
t+i+7<n,let Sertij={A€ Se,r: [AN([t +i+ 7] x[1])] >t +1i}. We conjecture
that if ¢ = (¢1,...,¢,) and d = (dy, ..., d,) are IP sequences, ¢; > 2, d; > 2, r € [m)],
s € [n], t € [min{r,s}], A C S, B C Sas, and A and B are cross-t-intersecting, then

|.A||B| S max{\Sc,r,t7i7j||8d,s7t,j7l-|: Z,j c {O} U N, t+ 7 +] S min{m, n}} (39)

This generalises [40, Conjecture 3|, which is a conjecture for the case r = s =m = n.

For any n € N and any r,¢,i,5 € {0} U [n] with 1 <t <randt+i+j <n,let
Myyii; ={A€ M,,: |San[t+i+j]| >t+i}. We conjecture that if m,n,r, s € N,
t € [min{r, s}], A C M,,,, BC M, ,, and A and B are cross-t-intersecting, then

|A||B| < max{| My, il Mnstjil: 1,7 € {0} UN, t+i+j <min{m,n}}. (40)
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