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Recollements of derived categories III: finitistic dimensions

Hong Xing ChenandChang Chang Xi∗

Abstract

In this paper, we study homological dimensions of algebras linked by recollements of derived module
categories, and establish a series of new upper bounds and relationships among their finitistic or global
dimensions. This is closely related to a longstanding conjecture, the finitistic dimension conjecture, in
representation theory and homological algebra. Further, we apply our results to a series of situations of
particular interest: exact contexts, ring extensions, trivial extensions, pullbacks of rings, and algebras
induced from Auslander-Reiten sequences. In particular, we not only extend and amplify Happel’s re-
duction techniques for finitistic dimenson conjecture to more general contexts, but also generalise some
recent results in the literature.
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1 Introduction

Recollements of triangulated categories have been introduced by Beilinson, Bernstein and Deligne in order to
decompose derived categories of sheaves into two parts, an open and a closed one (see [6]), and thus providing
a natural habitat for Grothendieck’s six functors. Similarly, recollements of derived module categories can
be seen as short exact sequences, describing a derived module category in terms of a subcategory and of a
quotient, both of which may be derived module categories themselves, related by six functors that in general
are not known. It turns out that recollements provide a very useful framework for understanding connections
among three algebraic or geometric objects in which one is interested.

In a series of papers on recollements of derived module categories, we are addressing basic questions
about recollements and the rings involved. Our starting point has been infinite-dimensional tilting theory (see
[7]). While Happel’s theorem establishes a derived equivalence between a given ring and the endomorphism
ring of a finitely generated tilting object (see [15, 13]), Bazzoni has shown that for large tilting modules one
gets instead a recollement relating three triangulated categories, with two of them being the derived categories
of the given ring and the endomorphism ring of the large tilting module. In [7] we have addressed the question
of determining the third category in this recollement as a derived category of a ring and we have explained
this ring in terms of universal localisations in the sense ofCohn (see [12, 20] for definition). Among the
applications has been a counterexample to the Jordan-Hölder problem for derived module categories. In [8]
we have dealt with the problem of constructing recollementsin order to relate rings. Our main construction,
of exact contexts, can be seen as a far-reaching generalisation of pullbacks of rings. In [9] we have used this
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construction to relate algebraicK-theory of different rings. It turned out that under mild assumptions, the
K-theory of an algebra can be fully decomposed under a sequence of recollements.

For cohomology and for homological invariants of algebras,such a complete decomposition is not pos-
sible. Nevertheless, results by Happel in [16] for the case of bounded derived categories (when fewer rec-
ollements exist than in the unbounded case) show that finiteness of finitistic dimension of an algebra can
be reduced along a recollement; if such an invariant is finitefor the two outer terms, then it is finite for the
middle term, too. Note that the particular values of these invariants depend on the ring and are not invariants
of the derived category. The present paper aims at extendingHappel’s reduction techniques for homological
conjectures. As in Happel’s paper [16] we will focus on finitistic dimensions, which include finite global
dimensions as a special case.

Recall that the finitistic dimension of a ringR, denoted by fin.dim(R), is by definition the supremum
of projective dimensions of those leftR-modules having a finite projective resolution by finitely generated
projective modules. The well-known finitistic dimension conjecture states that any Artin algebra should have
finite finitistic dimension (see, for instance, [3, conjecture (11), p.410]). This conjecture is a longstanding
question ([4, Bass, 1960]) and has still not been settled. Itis closely related to at least seven other main
conjectures in homological representation theory of algebras (see [3, p. 409-410]). In the literature, there
is another definition of big finitistic dimension of a ringR, denoted by Fin.dim(R), which is the supre-
mum of projective dimensions of all those leftR-modules which have finite projective dimension. Clearly,
fin.dim(R)≤ Fin.dim(R). Usually, they are quite different (see [26]).

There are two main directions in this article. First, we provide reduction techniques for homological
invariants of unbounded derived module categories, that is, for the most general possible setup (which also
has been covered in the preceding articles in this series). In the first main result, Theorem 1.1, we give
criteria for the finiteness of finitistic dimension for each of the three rings in a recollement of derived module
categories, in terms of the other two. The criteria aim to be applicable by putting conditions on particular
objects, not on the whole category. The second main result, Theorem 1.2, applies the first main result to the
general contexts of the so-called exact contexts introduced in [7], and in addition provides upper and lower
bounds for the finitistic dimensions of the three rings involved. A series of corollaries then applies the general
results to classes of examples of particular interest, suchas ring extensions, trivial extensions, quotient rings
and endomorphism rings of modules related by an almost splitsequence.

Theorem 1.1. Let R1, R2 and R3 be rings. Suppose that there exists a recollement among the derived module
categoriesD(R3), D(R2) andD(R1) of R3, R2 and R1 :

D(R1)
i∗ // D(R2)

j !
//

i!

ff

i∗

xx

D(R3)

j∗

ff

j!
xx

Then the following hold true:
(1) Suppose that j! restricts to a functorDb(R3) → Db(R2) of bounded derived module categories. If

fin.dim(R2)< ∞, thenfin.dim(R3)< ∞.
(2) Suppose that i∗(R1) is a compact object inD(R2). Then we have the following:

(a) If fin.dim(R2)< ∞, thenfin.dim(R1)< ∞.

(b) If fin.dim(R1)< ∞ andfin.dim(R3)< ∞, thenfin.dim(R2)< ∞.

Note that the assumption of Theorem 1.1 on unbounded derivedmodule categories is weaker than the
one on bounded derived module categories, because the existence of recollements of bounded derived module
categories implies the one of unbounded derived module categories. This is shown by a recent investigation
on recollements at different levels in [2, 18]. So, Theorem 1.1 (see also Corollary 3.13) generalizes the
main result in [16] since for a recollement ofDb(Rj -mod) with Rj a finite-dimensional algebra over a field
for 1 ≤ j ≤ 3, one can always deduce thati∗(R1) is compact inD(R2). Moreover, Theorem 1.1 extends
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and amplifies a result in [25] because we deal with arbitrary rings instead of Artin algebras, and also yields
a generalization of a result in [22] for left coherent rings to the one for arbitrary rings (see Corollary 3.9
below).

To prove this result, we introduce homological widths (or cowidth) for complexes that are quasi-isomorphic
to bounded complexes of projective (or injective) modules (see Section 3.1 for details). Broadly speaking,
the homological width (respectively, cowidth) defines a mapfrom homotopy equivalence classes of bounded
complexes of projective (respectively, injective) modules to the natural numbers. It measures, up to ho-
motopy equivalence, how large the minimal interval of such acomplex is in which its non-zero terms are
distributed. Particularly, if a module has finite projective dimension, then its homological width is exactly the
projective dimension. Using homological widths, we will present a substantial and technical result, Theorem
3.11, which is a strengthened version of Theorem 1.1 and describes explicitly upper bounds for finitistic
dimensions, so that Theorem 1.1 will become an easy consequence of Theorem 3.11. Note that, in [16], one
of the key arguments in proofs is that finite-dimensional algebras have finitely many non-isomorphic simple
modules, while in our general context we do not have this factand therefore must avoid this kind of argu-
ments. So, the idea of proving Theorems 3.11 and 1.1 will be completely different from the ones in [16] and
[25]. Moreover, our methods also lead to results on upper bounds for big finitistic and global dimensions.
For details, we refer the reader to Theorems 3.17 and 3.18.

Now, let us utilize Theorem 1.1 to recollements constructedin [8] and establish relationships among
finitistic dimensions of noncommutative tensor products and related rings. First of all, we recall some notions
from [8]:

Let R, SandT be associative rings with identity, and letλ : R→Sandµ : R→ T be ring homomorphisms.
Suppose thatM is anS-T-bimodule together with an elementm∈ M. We say that the quadruple(λ,µ,M,m)
is anexact contextif the following sequence

0−→ R
(λ,µ)
−→ S⊕T

( ·m
−m·)
−→ M −→ 0

is an exact sequence of abelian groups, where·m andm· denote the right and left multiplication bym maps,
respectively. There is a list of examples in [8] that guarantees the ubiquity of exact contexts.

Given an exact context(λ,µ,M,m), there is defined a ring with identity in [8], called thenoncommutative
tensor productof (λ,µ,M,m) and denoted byT ⊠RS if the meaning of the exact context is clear. This notion
not only generalizes the one of usual tensor products over commutative rings and captures coproducts of
rings, but also plays a key role in describing the left parts of recollements induced from homological exact
contexts (see [8, Theorem 1.1]).

For anR-moduleRX, we denote by flat.dim(RX) and proj.dim(RX) the flat and projective dimensions of
X, respectively.

From the proof of Theorem 1.1 or Theorem 3.11, we have the following result.

Theorem 1.2. Let (λ,µ,M,m) be an exact context with the noncommutative tensor product T⊠RS. Then
(1) fin.dim(R)≤ fin.dim(S)+fin.dim(T)+max{1,flat.dim(TR)}+1.
(2) Suppose thatTorRi (T,S) = 0 for all i ≥ 1. If the left R-moduleRS has a finite projective resolution by

finitely generated projective modules, then the following hold true:
(a) fin.dim(T ⊠RS)≤ fin.dim(S)+fin.dim(T)+1.

(b) fin.dim(S)≤ fin.dim

(
S M
0 T

)
≤ fin.dim(R)+fin.dim(T ⊠RS)+max{1,proj.dim(RS)}+3.

Note that for the triangular matrix algebraB :=

(
S M
0 T

)
, it is known that fin.dim(B)≤ fin.dim(S)+

fin.dim(T)+1. But, Theorem 1.2(2)(b) provides us with a new upper bound for the finitistic dimension ofB.
That is, the finiteness of fin.dim(B) can be seen from the one of fin.dim(T ⊠RS) and fin.dim(R), involving
the starting ringR but without information on fin.dim(S) and fin.dim(T). This is non-trivial and somewhat
surprising. Moreover, in Theorem 1.2(2), ifλ : R→ S is a homological ring epimorphism, then we even
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obtain better estimations: fin.dim(S) ≤ fin.dim(R) and fin.dim(T ⊠R S) ≤ fin.dim(T). In this case,T ⊠R S
can be interpreted as the coproductS⊔RT of theR-rings ofSandT.

Now, let us state several consequences of Theorem 1.2. First, we utilize Theorem 1.2 to finitistic di-
mensions of ring extensions. This is of particular interestbecause the finitistic dimension conjecture can be
reformulated over perfect fields in terms of ring extensions(see [24]). Note that, in the following result, we
do not impose any conditions on the radicals of rings, comparing with [23, 24].

Corollary 1.3. Suppose that S⊆ R is an extension of rings, that is, S is a subring of R with the same identity.
Let R′ be the endomorphism ring of the S-module R/S, and let R′⊠SR be the noncommutative tensor product
of the exact context determined the extension. Then

(1) fin.dim(S)≤ fin.dim(R)+fin.dim(R′)+max
{

1, flat.dim((R/S)S), flat.dim
(
HomS(R,R/S)S

)}
+1.

(2) Suppose that the left S-module R is projective and finitely generated. Then the following hold true:
(a) fin.dim(R′

⊠SR)≤ fin.dim(R)+fin.dim(R′)+1.
(b) fin.dim(R)≤ fin.dim(S)+fin.dim(R′

⊠SR)+4.

Next, we apply Theorem 1.2 to trivial extensions. Recall that, given a ringR and anR-R-bimoduleM,
the trivial extensionof R by M is a ring, denoted byR⋉M, with abelian groupR⊕M and multiplication:
(r,m)(r ′,m′) = (rr ′, rm′+mr′) for r, r ′ ∈ Randm,m′ ∈ M. For consideration of Fin.dim(R⋉M), we refer the
reader to [14, Chapter 4].

Corollary 1.4. Let λ : R→ S be a ring epimorphism and M an S-S-bimodule such thatTorRi (M,S) = 0 for
all i ≥ 1. If RS has a finite projective resolution by finitely generated projective R-modules, then

(a) fin.dim(S⋉M)≤ fin.dim(S)+fin.dim(R⋉M)+1.
(b) fin.dim(S)≤ fin.dim(R)+fin.dim(S⋉M).

Now, we apply Theorem 1.2 to pullback squares of rings and surjective homomorphisms.

Corollary 1.5. Let R be a ring, and let I1 and I2 be ideals of R such that I1∩ I2 = 0. Then
(1) fin.dim(R)≤ fin.dim(R/I1)+fin.dim(R/I2)+max{1,flat.dim((R/I2)R)}+1.
(2) Suppose thatTorRi (I2, I1) = 0 for all i ≥ 0. If the left R-module R/I1 has a finite projective resolution

by finitely generated projective modules, then
(a) fin.dim(R/(I1+ I2))≤ fin.dim(R/I1)+fin.dim(R/I2)+1.
(b) fin.dim(R/I1)≤ fin.dim(R)+fin.dim(R/(I1+ I2))+max{1,proj.dim(R(R/I1))}+3.

The strategy of proving Corollaries 1.4 and 1.5 is as follows: First, we show that under the given assump-
tions we can get exact pairs, a class of special exact contexts, and then employ Theorem 1.2 by verifying the
Tor-vanishing condition. At last, we have to describe noncommutative tensor products more substantially for
the cases considered.

Finally, we mention a corollary on finitistic dimensions of algebras arising from idempotent ideals and
almost split sequences (see [3] for definition).

Corollary 1.6. (1) If I is an idempotent ideal in a ring R, thenfin.dim(R/I) ≤ fin.dim
(
EndR(R⊕ I)

)
≤

fin.dim
(
EndR(RI)

)
+fin.dim(R/I)+2.

(2) Let 0 → Z → Y → X → 0 be an almost split sequence of R-modules with R an Artin algebra. If
HomR(Y,Z) = 0, thenfin.dim(EndR(Y⊕X))≤ fin.dim(EndR(Y))+2.

The paper is sketched as follows: In Section 2, we first recallsome necessary definitions and then prove
two results on coproducts of rings. In Section 3, we provide all proofs of our results. Especially, we introduce
homological widths of complexes and prove an amplified version, Theorem 3.11, of Theorem 1.1 phrased in
terms of homological widths and finitistic dimensions of involved rings, such that Theorem 1.1 is deduced
readily from Theorem 3.11. Moreover, the methods developedin this section also give similar upper bounds
for global and big finitistic dimensions (see Theorems 3.17 and 3.18).
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2 Definitions and conventions

In this section, we fix notation and briefly recall some definitions. For unexplained ones, we refer the reader
to [8, 9].

Throughout the paper, all notation and terminology are standard. For example, by a ring we mean an
associative ring with identity. For a ringR, we denote byR-Mod the category of all leftR-modues, and by
C (R), K (R) andD(R) the unbounded complex, homotopy and derived categories ofR-Mod, respectively.
As usual, by adding a superscript∗ ∈ {−,+,b}, we denote their corresponding∗-bounded categories, for
instance,Db(R) is the bounded derived category ofR-Mod. The full subcategory of compact objects in
D(R) is denoted byDc(R). This category is also called theperfect derived module categoryof R. It is known
that the localization functorK (R)→ D(R) induces a triangle equivalence from the homotopy category of
bounded complexes of finitely generated projectiveR-modules toDc(R).

As usual, we write a complex inC (R) asX• = (Xi,di
X•)i∈Z, and calldi

X• : Xi → Xi+1 the i-th differential
of X•. Sometimes, for simplicity, we shall write(Xi)i∈Z for X• without mentioning the morphismsdi

X• .
Given a chain mapf • : X• → Y• in C (R), its mapping cone is denoted by Con( f •). For an integern, the
n-th cohomology ofX• is denoted byHn(X•). Let sup(X•) and inf(X•) be the supremum and minimum
of indicesi ∈ Z such thatH i(X•) 6= 0, respectively. IfX• is acyclic, that is,H i(X•) = 0 for all i ∈ Z, then
we understand that sup(X•) = −∞ and inf(X•) = +∞. If X• is not acyclic, then inf(X•) ≤ sup(X•), and
Hn(X•) = 0 if sup(X•) is an integer andn > sup(X•) or if inf (X•) is an integer andn < inf (X•). For a
complexX• in C (R), if Hn(X•) = 0 for almost alln, thenX• is isomorphic inD(R) to a bounded complex.
So, Db(R) is equivalent to the full subcategory ofD(R) consisting of all complexes with finitely many
nonzero cohomologies.

As a convention, we write the composite of two homomorphismsf : X →Y andg : Y → Z in R-Mod as
f g. Thus the image of an elementx∈ X under f will be written on the opposite of the scalars as(x) f instead
of f (x). This convention makes HomR(X,Y) naturally a left EndR(X)- and right EndR(Y)-bimodule. But, for
two functorsF : X → Y andG : Y → Z of categories, we writeGF : X → Z for their composition.

Let us now recall the notion of recollements of triangulatedcategories, which was defined by Beilinson,
Bernstein and Deligne in [6] to study derived categories of perverse sheaves over singular spaces. It may be
thought as a kind of categorifications of exact sequences in abelian categories.

Definition 2.1. Let D, D ′ andD ′′ be triangulated categories. We say thatD is a recollementof D ′ andD ′′

if there are six triangle functors among the three categories:

D ′′ i∗=i! // D
j != j∗

//

i!

^^

i∗

��

D ′

j∗

^^

j!

��

such that
(1) (i∗, i∗),(i! , i!),( j! , j !) and( j∗, j∗) are adjoint pairs,
(2) i∗, j∗ and j! are fully faithful functors,
(3) j ! i! = 0 (and thus alsoi! j∗ = 0 andi∗ j! = 0), and
(4) for each objectX ∈ D, there are two triangles inD induced by counit and unit adjunctions:

i! i
!(X)−→ X −→ j∗ j∗(X)−→ i! i

!(X)[1],

j! j !(X)−→ X −→ i∗i
∗(X)−→ j! j !(X)[1],

where the shift functor of triangulated categories is denoted by [1].

Recall that thecoproductof a family{Ri | i ∈ I} of R0-rings withI an index set is defined to be anR0-ring
R together with a family{ρi : Ri → R| i ∈ I} of R0-homomorphisms of rings such that, for anyR0-ring Swith
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a family ofR0-homomorphisms{τi : Ri → S| i ∈ I}, there exists a uniqueR0-homomorphismδ : R→ Ssuch
thatτi = ρiδ for all i ∈ I . It is well known that coproducts of rings exist (see [11]). However, this existence
result does not provide us with a handy form of coproducts; therefore we need a concrete description of
coproducts for our situations considered.

In the following we describe coproducts of rings for two cases in terms of some known constructions.
This will be used in later proofs. The first one is for trivial extensions

Lemma 2.2. Suppose thatλ : R→S is a ring epimorphism and M is an S-S-bimodule. Letλ̃ : R⋉M →S⋉M
be the ring homomorphism induced byλ. Then the coproduct S⊔R (R⋉M) is isomorphic to S⋉M, that is,
the inclusion S→ S⋉M and λ̃ define the coproduct.

Proof. Let µ : R→ R⋉M andρ : S→ S⋉M be the inclusions of rings. Note thatSandR⋉M areR-rings
via λ andµ, respectively, and thatλρ = µλ̃ : R→ S⋉M. To prove thatS⋉M, together withρ and λ̃, is
the coproduct ofS andR⋉M over R, we suppose thatΛ is an arbitrary ring and thatf : R⋉M → Λ and
g : S→ Λ are arbitrary ring homomorphisms such thatλg= µ f. Then we have to show that there is a unique
ring homomorphismh : S⋉M → Λ such that̃λh= f andρh= g. Clearly, if such anh exists, thenh must be
defined by(s,m) 7→ (m) f +(s)g for s∈ Sandm∈ M. This shows the uniqueness ofh. So, it suffices to show
that the above-defined maph is a ring homomorphism. Certainly,h is a homomorphism of abelian groups.
Hence, we have to show thath preserves multiplication.

Let si ∈Sandmi ∈M for i = 1,2. On the one hand,
(
(s1,m1)(s2,m2)

)
h= (s1s2, s1m2+m1s2)h= (s1m2+

m1s2) f +(s1s2)g= (s1m2) f +(m1s2) f +(s1)g(s2)g. On the other hand,
(
(s1,m1)

)
h
(
(s2,m2)

)
h=

(
(m1) f +

(s1)g
)(
(m2) f +(s2)g

)
= (m1) f (m2) f +(m1) f (s2)g+(s1)g(m2) f +(s1)g(s2)g= (m1m2) f +(m1) f (s2)g+

(s1)g(m2) f + (s1)g(s2)g = (m1) f (s2)g+ (s1)g(m2) f + (s1)g(s2)g sincem1m2 = 0. This implies that if
(s1m2) f = (s1)g(m2) f and (m1s2) f = (m1) f (s2)g, then

(
(s1,m1)(s2,m2)

)
h =((s1,m1))h ((s2,m2))h. So,

to prove thath preserves multiplication, we need only to verify these additional conditions, that is,

(sm) f = (s)g(m) f and (ms) f = (m) f (s)g for s∈ S and m∈ M.

To show the former, we fix anm∈ M and define two maps:

ϕ : S→ Λ, s 7→ (sm) f andψ : S→ Λ, s 7→ (s)g(m) f .

Sinceλg= µ f, one can check that bothϕ andψ are homomorphisms ofR-modules such thatλϕ = λψ. But
we do not know if they are homomorphisms of rings. Nevertheless, we can still haveφ = ψ becauseλ : R→S
being a ring epimorphism by assumption implies that the map HomR(R,λ) : HomR(S,Λ) → HomR(R,Λ) is
an isomorphism, and therefore it is injective. Thusφ = ψ. Similarly, we can show that(ms) f = (m) f (s)g.
Consequently, the maph preserves multiplication and is actually a ring homomorphism.�

The other description of coproducts is for quotients of rings by ideals, which applies to Milnor squares
(see [19]).

Lemma 2.3. Let R0 be a ring, and let Ri be an R0-ring with ring homomorphismλi : R0 → Ri for i = 1,2.
(1) If λ1 : R0 → R1 is a ring epimorphism, then so is the canonical homomorphismρ2 : R2 → R1⊔R0 R2.
(2) Let I be an ideal of R0, and let J be the ideal of R2 generated by the image(I)λ2 of I under the map

λ2. If R1 = R0/I and λ1 : R0 → R1 is the canonical surjective map, then R1⊔R0 R2 = R2/J.

Proof. (1) It follows from the definition of coproducts of rings thatλ1ρ1 = λ2ρ2 : R0 → R1⊔R0 R2. We
point out thatρ2 is a ring epimorphism. In fact, iff ,g : R1⊔R0 R2 → S are two ring homomorphisms such
thatρ2 f = ρ2g, thenλ2ρ2 f = λ2ρ2g. This means thatλ1ρ1 f = λ1ρ1g, and thereforeρ1 f = ρ1g sinceλ1 is a
ring epimorphism. By the universal property of coproducts,we haveg= f . Thusρ2 is a ring epimorphism.

(2) Let ρ2 : R2 → R2/J be the canonical surjection, and letρ1 : R1 → R2/J be the ring homomorphism
induced byλ2 sinceJ = R2(I)λ2R2 ⊇ (I)λ2. Now, we claim thatR2/J together withρ1 and ρ2 is the
coproduct ofR1 andR2 overR0. Clearly, we haveλ1ρ1 = λ2ρ2 : R0 →R2/J. Further, assume thatτ1 : R1 → S
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and τ2 : R2 → S are two ring homomorphisms such thatλ2τ2 = λ1τ1. Then (I)λ2τ2 = (I)λ1τ1 = 0, and
therefore(J)τ2 = 0. This means that there is a unique ring homomorphismδ : R2/J → Ssuch thatτ2 = ρ2δ.
It follows that λ1τ1 = λ2τ2 = λ2ρ2δ = λ1ρ1δ. Sinceλ1 is surjective, we haveτ1 = ρ1δ. This shows that
R1⊔R0 R2 = R2/J. �

3 Proofs

This section is devoted to proofs of all results mentioned inthe introduction. We start with introducing the
so-called homological widths for complexes, and then provea strengthened version, Theorem 3.11 below, of
Theorem 1.1. As consequences of Theorem 3.11, we get proofs of Theorems 1.1 and 1.2. Finally, we apply
Theorem 1.2 to give proofs of all corollaries, and mention two results on global and big finitistic dimensions.

3.1 Homological widths and cowidths of complexes

As a generalization of finite projective or injective dimensions of modules, we define, in this subsection,
homological widths and cowidths for bounded complexes of projective and injective modules, respectively.

Let R be a ring. For anR-moduleM, we denote by proj.dim(M), inj.dim(M) and flat.dim(M) the pro-
jective, injective and flat dimension ofM, respectively. As usual,R-Proj is the category of all projective left
R-modules, andR-proj is the full subcategory ofR-Proj consisting of all finitely generated projective left
R-modules. If there is a projective resolution 0→ Pn → ··· → P1 → P0 → M → 0 of M with all Pi in R-proj,
then we say thatM is of finite type. The category of allR-modules of finite type will be denoted byP<∞(R).

Let P• := (Pn,dn
P•)n∈Z ∈ C b(R-Proj). We define the homologicalwidth of P• in the following way:

w(P•) :=

{
0 if P• is acyclic,

sup(P•)− inf(P•)+proj.dim
(
Cok(d inf(P•)−1

P• )
)

otherwise.

Clearly, 0≤ w(P•)< ∞. Moreover,P• is isomorphic inK b(R-Proj) to a complex

Q• : 0−→ Qt−p dt−p

−→ Qt−p+1 dt−p+1

−→ ·· · −→ Qt−1 dt−1

−→ Qt −→ Pt+1 dt+1
P•−→ ·· · −→ Ps−1 ds−1

P•−→ Ker(ds
P•)−→ 0

with s := sup(P•), t := inf(P•), p := proj.dim
(
Cok(dt−1

P• )
)

and each term being projective. Clearly, the
sequence

0−→ Qt−p dt−p

−→ Qt−p+1 dt−p+1

−→ ·· · −→ Qt−1 dt−1

−→ Qt −→ Cok(dt−1
P• )−→ 0

is a projective resolution of theR-module Cok(dt−1
P• ). Note that ifP• ∈ C b(R-proj), we can chooseQ• ∈

C b(R-proj).

The following result says that homological widths of bounded complexes of projective modules are pre-
served under homotopy equivalences.

Lemma 3.1. Let M•,N• ∈ C b(R-Proj). If M• ≃ N• in K b(R-Proj), then w(M•) = w(N•).

Proof. Recall thatK b(R-Proj) is the stable category of the Frobenius categoryC b(R-Proj) with projec-
tive objects being acyclic complexes. Assume thatM• ≃ N• in K b(R-Proj). Then there exist two acyclic
complexesP• andQ• in C b(R-Proj) such thatM•⊕P• ≃N•⊕Q• in C b(R-Proj). This implies thatH i(M•)≃
H i(N•) and Cok(di

M•)⊕ Cok(di
P•) ≃ Cok(di

N•)⊕Cok(di
Q•) for all i ∈ Z. Thus sup(M•) = sup(N•) and

inf(M•)= inf(N•). Moreover, since Cok(di
P•) and Cok(di

Q•) belong toR-Proj, we have proj.dim
(
Cok(di

M•)
)
=

proj.dim
(
Cok(di

N•)
)
. It follows thatw(M•) = w(N•). �

Thanks to Lemma 3.1, the definition of homological widths forcomplexes can be extended slightly to
derived categories in the following sense: Given a complexX• ∈D(R), if there is a complexP• ∈C b(R-Proj)
such thatX• ≃ P• in D(R), then we definew(X•) := w(P•). This is well defined: If there exists another
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complexQ• ∈ C b(R-Proj) such thatX• ≃ Q• in D(R), thenP• ≃ Q• in K b(R-Proj) andw(P•) = w(Q•) by
Lemma 3.1. So, for such a complexX•, its homological widthw(X•) can be characterized as follows:

w(X•) = min

{
αP• −βP• ≥ 0

∣∣∣∣
P• ≃ X• in D(R) for P• ∈ C b(R-Proj)
with Pi = 0 for i < βP• or i > αP•

}
.

Clearly, if X ∈ R-Mod has finite projective dimension, thenw(X) = proj.dim(X).
Dually, we can define homological cowidths for bounded complexes of injectiveR-modules.
Let R-Inj denote the category of injectiveR-modules. Given a complexI• := (In,dn

I•)n∈Z ∈ C b(R-Inj),
we define the homologicalcowidthof I• as follows:

cw(I•) :=

{
0 if I• is acyclic,

sup(I•)− inf(I•)+ inj.dim
(
Ker(dsup(I•)

I• )
)

otherwise.

Similarly, if a complexY• is isomorphic inD(R) to a bounded complexI• ∈ C b(R-Inj), then we define
cw(Y•) := cw(I•). In particular, ifY ∈R-Mod has finite injective dimension, thencw(Y) = inj.dim(Y). Also,
we have the following characterization ofcw(Y•):

cw(Y•) = min

{
αI• −βI• ≥ 0

∣∣∣∣
I• ≃Y• in D(R) for I• ∈ C b(R-Inj)
with I i = 0 for i < βI• or i > αI•

}
.

Homological widths and cowidths will be used to bound homological dimensions in the next section.

3.2 Proof of Theoem 1.1

In this subsection, we shall first prove an amplified version of Theorem 1.1, namely Theorem 3.11 below, so
that Theorem 1.1 becomes a straightforward consequence of Theorem 3.11.

Recall that thefinitistic dimensionof a ringR, denoted by fin.dim(R), is defined as follows:

fin.dim(R) := sup{proj.dim(RX) | X ∈ P
<∞(R)}.

For eachn∈ Z, we define

D
c
≥n(R) := {X• ∈ D

c(R) | X• ≃ P• in D
c(R) with P• ∈ C

b(R-proj) such thatPi = 0 for all i < n}.

From this definition, we haveDc
≥n(R)⊆ Dc

≥n′(R) whenevern≥ n′. Since the localization functorK (R)→

D(R) induces a triangle equivalenceK b(R-proj)
≃

−→ Dc(R), we have

D
c(R) =

⋃

n∈Z

D
c
≥n(R).

Clearly, if fin.dim(R) = m< ∞, thenP<∞(R)⊆Dc
≥−m(R). For the convenience of later discussions, we also

formally setDc
≥−∞(R) := Dc(R) andDc

≥+∞(R) := {0}.

Lemma 3.2. Let m,n∈ N. Then the following statements are true:
(1) The full subcategoryDc

≥n(R) of Dc(R) is closed under direct summands inDc(R).
(2) Let X• ∈Dc

≥n(R), Z• ∈Dc
≥m(R) and s= min{n,m}. Then, for any distinguished triangle X• →Y• →

Z• → X•[1] in Dc(R), we have Y• ∈ Dc
≥s(R).

Proof. (1) Let M• ∈ K b(R-proj), and letN• := (Ni)i∈Z ∈ K b(R-proj) such thatNi = 0 for all i <
n. Suppose thatM• is a direct summand ofN• in K b(R-proj), or equivalently, there is a complexL• ∈
C b(R-proj) such thatM•⊕L• ≃ N• in K b(R-proj). HenceH i(M•) = 0 for all i < n. Note thatK b(R-proj)
is the stable category of the Frobenius categoryC b(R-proj) with projective objects being acyclic complexes.
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So we can find two acyclic complexesU• andV• in C b(R-proj) such thatM• ⊕ L• ⊕U• ≃ N• ⊕V• in
C b(R-proj). This implies that

Cok(dn−1
M• )⊕Cok(dn−1

L• )⊕Cok(dn−1
U• )≃ Cok(dn−1

N• )⊕Cok(dn−1
V• ) = Nn⊕Cok(dn−1

V• ).

SinceNn⊕Cok(dn−1
V• )∈R-proj, we have Cok(dn−1

M• )∈R-proj. It follows thatM• is isomorphic inK b(R-proj)
to the following truncated complex

0−→ Cok(dn−1
M• )−→ Mn+1 −→ Mn+2 −→ ·· · −→ 0.

Recall that the localization functorK (R)→ D(R) induces a triangle equivalenceK b(R-proj)
≃

−→ Dc(R).
Thus(1) follows.

(2) SinceX• ∈ Dc
≥n(R), there exists a complexP• ∈ C b(R-proj) with Pi = 0 for i < n such thatX• ≃ P•

in Dc(R). Similarly, there exists another complexQ• ∈ C b(R-proj) with Qi = 0 for i < m such thatZ• ≃ Q•

in Dc(R). It follows from the triangle equivalenceK b(R-proj)
≃

−→ Dc(R) that

Hom
K b(R-proj)(Q

•[−1],P•)≃ HomDc(R)(Q
•[−1],P•)≃ HomDc(R)(Z

•[−1],X•).

Thus the given triangle yields a distinguished triangle inDc(R):

Q•[−1]
f •

−→ P• −→Y• −→ Q•

with f • a chain map inC (R). ThenY• ≃ Con( f •) in Dc(R). Since Con( f •)i = Qi ⊕Pi for any i ∈ Z, we
have Con( f •) ∈ C b(R-proj) and Con( f •)i = 0 for i < s. This impliesY• ∈ Dc

≥s(R). �

To investigate relationships among finitistic dimensions of rings in recollements, it may be convenient to
introduce the notion offinitistic dimensions of functors.

Let R1 and R2 be two arbitrary rings. Suppose thatX1 andX2 are full subcategories ofD(R1) and
D(R2), respectively, and thatR1-Mod⊆ X1. For a given additive functorF : X1 → X2, we define

inf (F) := inf{n∈ Z | Hn(F(X)) 6= 0 for someX ∈ R1-Mod},

fin.dim(F) := inf{n∈ Z | Hn(F(X)) 6= 0 for someX ∈ P
<∞(R1)}.

Note that inf(F) = +∞ if and only if F(X) = 0 in D(R2) for all X ∈ R1-Mod. In fact, if there exits some
X ∈R1-Mod such thatHn(F(X)) 6= 0 for some integern, then inf(F)≤ n. Moreover, by definition, we always
have inf(F)≤ fin.dim(F) and fin.dim(F) ∈ Z∪{−∞,+∞}.

Lemma 3.3. Let F : D(R1)→ D(R2) be a triangle functor. Then the following statements are true:
(1) If F has a left adjoint L: D(R2)→ D(R1) with L(R2) ∈ D−(R1), theninf(F)≥−sup(L(R2)).
(2) If F has a right adjoint G: D(R2)→ D(R1), then F restricts to a functorDb(R1)→ Db(R2) if and

only if G
(
HomZ(R2,Q/Z)

)
is isomorphic inD(R1) to a bounded complex I• of injective R1-modules. In this

case,inf(F)≥−
(
m+ inj.dim(Ker(dm

I•))
)
, where m:= sup(I•) and dm

I• : Im → Im+1 is the m-th differential of
I•.

Proof. (1) For eachn∈ Z andM ∈ R1-Mod, we have

Hn(F(M))≃ HomD(R2)(R2,F(M)[n]) ≃ HomD(R1)(L(R2),M[n]).

SinceL(R2) ∈ D−(R1), we haves := sup(L(R2)) < +∞. Recall that the localization functorK (R1) →

D(R1) induces a triangle equivalenceK −(R1-Proj)
≃

−→ D−(R1). So there is a complexP• := (P j) j∈Z ∈
C−(R1-Proj) with P j = 0 for all j > ssuch thatP• ≃ L(R2) in D(R1). It follows that

Hn(F(M))≃ HomD(R1)(L(R2),M[n]) ≃ HomD(R1)(P
•,M[n])≃ HomK (R1)(P

•,M[n]) = 0
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for all n<−s. Thus inf(F)≥−s.
(2) To calculate cohomologies of complexes, we consider the functor

(−)∨ := HomZ(−,Q/Z) : Z-Mod−→ Z-Mod.

This is an exact functor with the property that aZ-moduleU is zero if and only if so isU∨, becauseQ/Z is
an injective cogenerator forZ-Mod.

Let X• ∈ D(R2). Then

H0(X•)
∨
= HomZ(H

0(X•),Q/Z)≃ HomK (Z)(X
•,Q/Z)≃ HomK (Z)(R2⊗R2 X•,Q/Z)≃ HomK (R2)(X

•,R2
∨).

SinceR2
∨ is an injectiveR2-module, we have HomK (R2)(X

•,R2
∨)≃ HomD(R2)(X

•,R2
∨). Thus

H0(X•)
∨
≃ HomD(R2)(X

•,R2
∨).

Now, let M ∈ R1-Mod andn∈ Z. ThenHn(F(M))∨ ≃ HomD(R2)

(
F(M)[n],R2

∨). Since(F,G) is an adjoint
pair, we have

HomD(R2)

(
F(M)[n],R2

∨)≃ HomD(R1)(M[n],G(R2
∨)
)
.

This implies thatHn(F(M)) = 0 if and only if HomD(R1)(M[n],G(R2
∨)
)
= 0.

LetW = G(R2
∨). To check the sufficiency of(2), it is enough to show that HomD(R1)(M[n],W•

)
= 0 for

almost alln. In fact, ifW• is isomorphic inD(R1) to a bounded complexI• of injectiveR1-modules, then

HomD(R1)(M[n],W•
)
≃ HomD(R1)(M[n], I•

)
≃ HomK (R1)(M[n], I•

)
= 0

for almost alln.
In the following, we will show the necessity of(2). Suppose thatF restricts to a functorDb(R1) →

Db(R2). We first claim thatHn(W•) = 0 for almost alln, that isW• ∈ Db(R1).
Actually, we have the following isomorphisms of abelian groups:

Hn(W•)≃ HomD(R1)(R1,G(R∨
2 )[n])≃ HomD(R2)(F(R1),R

∨
2 [n])≃ H−n(F(R1)).

SinceF(R1) ∈ Db(R2), we haveHn(F(R1)) = 0 for almost alln. ThusHn(W•) = 0 for almost alln. In
other words,W• is isomorphic inDb(R1) to a bounded complex. Consequently, there exists a lower-bounded
complexI• of injectiveR1-modules such thatI• ≃W• in D(R1). In particular, we haveHn(I•)≃ Hn(W•) for
all n. To complete the proof of the necessity of(2), it remains to show thatI• can be chosen to be a bounded
complex.

Note that we have the following isomorphisms:

HomD(R2)(F(M),R∨
2 [n])≃ HomD(R1)(M,W•[n])≃ HomD(R1)(M, I•[n])≃ HomK (R1)(M, I•[n]).

As F : D(R1)→ D(R2) restricts to a functorDb(R1)→ Db(R2) by assumption, we getF(M) ∈ Db(R2). Up
to isomorphism inD(R2), we may assume thatF(M) ∈ C b(R2). SinceR∨

2 is an injectiveR2-module, we see
that HomD(R2)(F(M),R∨

2 [n])≃ HomK (R2)(F(M),R∨
2 [n]) = 0 for almost alln. Thus HomK (R1)(M, I•[n]) = 0

for almost alln. Particularly, there is a natural numberδM (depending onM) such that HomK (R1)(M, I•[n]) =
0 for all n> δM. We may suppose that the complexI• is of the following form:

0−→ Is ds

−→ Is+1 ds+1

−→ ·· · −→ Im dm

−→ Im+1 dm+1

−→ ·· · −→ I i di

−→ I i+1 −→ ·· ·

where all termsI i are injective and wheres ≤ m := sup(I•) and H i(I•) = 0 for any i > m. Let V :=⊕
i≥mIm(di). Then

HomK (R1)(V, I
•[n]) = 0 for all n> δV .

Now we definet := max{m,δV}. Then HomK (R1)(Im(dt), I•[t + 1]) = 0. This implies that the chain map
Im(dt)→ I•[t +1], induced from the inclusion Im(dt) →֒ I t+1, is homotopic to the zero map. Therefore, the
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canonical surjectionI t
։ Im(dt) must split. WithI t then also Im(dt) is an injective module. SinceH i(I•) = 0

for any i > m, we see thatI• is isomorphic inD(R1) to the following bounded complex:

0−→ Is ds

−→ Is+1 ds+1

−→ ·· · −→ Im dm

−→ Im+1 dm+1

−→ ·· · −→ I t dt

−→ Im(dt)−→ 0

with all of its terms being injective. Thus, up to isomorphism in D(R1), we can chooseI• to be a bounded
complex of injective modules. This completes the proof of the necessity of(2).

To show the last statement of(2), we note that theR1-module Ker(dm) has a finite injective resolution
sinceH i(I•) = 0 for all i > m. Hence, up to isomorphism inD(R1), we can replaceI• by the following
bounded complex of injectiveR1-modules:

0−→ Is ds

−→ Is+1 ds+1

−→ ·· · −→ Im−1 −→ Ĩm d̃m

−→ Ĩm+1 d̃m+1

−→ ·· · −→ Ĩm+p−1 d̃m+p−1

−→ Ĩm+p −→ 0

where Ker(d̃m) = Ker(dm) andp := inj.dim(Ker(dm))≤ t. This implies that HomK (R1)(M[n], I•) = 0 for all
n<−(m+ p). Since

Hn(F(M))∨ ≃ HomD(R1)(M[n],W•)≃ HomD(R1)(M[n], I•)≃ HomK (R1)(M[n], I•),

we haveHn(F(M)) = 0 for all n<−(m+ p). Thus inf(F)≥−(m+ p). �

We remark that, in Lemma 3.3(2), theR2-moduleI := HomZ(R2,Q/Z) can be replaced by any injective
cogenerator ofR2-Mod. This is due to the fact thatG always commutes with direct products. Recall that an
R2-moduleM is called acogeneratorof R2-Mod if any R2-module can be embedded into a direct product of
copies ofM. Clearly, I is an injective cogenerator ofR2-Mod. In case thatR2 is an Artin algebra, there is
another injective cogenerator, the usual dual moduleD(R2) of the right regular moduleR2, whereD is the
usual duality of an Artin algebra.

Lemma 3.4. Let F : Dc(R1) → Dc(R2) be a triangle functor. Suppose thatfin.dim(F) = s > −∞ and
fin.dim(R2) = t < ∞. Then we have the following:

(1) F(P<∞(R1))⊆ Dc
≥s−t(R2).

(2) Let m∈ Z. Then, for any X∈ P<∞(R1) and for any Y• ∈ D(R2) with sup(Y•) ≤ m, we have
HomD(R2)(F(X),Y•[i]) = 0 for all i > t −s+m.

Proof. Note thats= +∞ if and only if F(X) = 0 for anyX ∈ P<∞(R1). In this case, both(1) and(2)
are true. Now, we assumes<+∞. Thuss is an integer.

(1) SinceF(X) ∈ Dc(R2), there exists a complexQ• = (Q j ,d j) j∈Z ∈ C b(R2-proj) such thatF(X)≃ Q•

in Dc(R2). In particular,H i(F(X))≃H i(Q•) for all i ∈ Z. Since fin.dim(F) = s< ∞, we haveH i(F(X)) = 0
for all i < s. ThusH i(Q•) = 0 for all i < s. It follows thatY := Cok(ds−1) ∈ P<∞(R2), and thereforeQ• is
isomorphic inD(R2) to the following canonical truncated complex:

0−→Y −→ Qs+1 ds+1

−→ Qs+2 −→ ·· · −→ 0.

Since fin.dim(R2) = t < ∞, we have proj.dim(R2Y)≤ t. So theR2-moduleY has a finite projective resolution:

0−→ Ps−t −→ ·· · −→ Ps−1 −→ Ps −→Y −→ 0

such thatP j ∈R2-proj for s−t ≤ j ≤ s. Consequently,F(X) is isomorphic inD(R2) to the following complex

P• : 0−→ Ps−t −→ ·· · −→ Ps−1 −→ Ps−→ Qs+1 ds+1

−→ Qs+2 −→ ·· · −→ 0.

Clearly, P• ∈ C b(R2-proj) and Pi = 0 for i < s− t. This impliesF(X) ∈ Dc
≥s−t(R2). Hence, we have

F(P<∞(R1))⊆ Dc
≥s−t(R2).

(2) Let X ∈P<∞(R1) andY• ∈D(R2) with sup(Y•)≤m< ∞. ThenH j(Y•) = 0 for j >m, and therefore
there exists a complexZ• ∈ C−(R2) with Zr = 0 for r > m, such thatZ• ≃Y• in D(R2). Moreover, by the
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proof of(1), there exists another complexP• ∈ C b(R2-proj) with Pi = 0 for all i < s− t, such thatP• ≃ F(X)
in D(R2). It follows that

HomD(R2)(F(X),Y•[i])≃ HomD(R2)(P
•,Z•[i])≃ HomK (R2)(P

•,Z•[i]) = 0

for all i > t −s+m. This shows(2). �.

Lemma 3.5. Let F : Dc(R1) → Dc(R2) be a fully faithful triangle functor. Iffin.dim(F) = s is an integer,
thenfin.dim(R1)≤ fin.dim(R2)−s+sup(F(R1)). In particular, if fin.dim(R2)< ∞, thenfin.dim(R1)< ∞.

Proof. If fin .dim(R2) is infinity, then the right-hand side of the inequality is infinity and the corollary is
true. So we assume that fin.dim(R2) = t < ∞. Further, we may assumeR1 6= 0. SinceF is fully faithful,
we have 06= F(R1) ∈ Dc(R2). This implies that sup(F(R1)) < ∞. Moreover, it is known that, for any
X ∈P<∞(R1), if there is a natural numbern such that ExtiR1

(X,R1) = 0 for all i > n, then proj.dim(R1X)≤ n.
So, to show that fin.dim(R1) ≤ n := t −s+sup(F(R1)) < ∞, it is enough to prove that Exti

R1
(X,R1) = 0 for

all X ∈ P<∞(R1) and alli > n. In fact, sinceF is fully faithful, we see that

ExtiR1
(X,R1)≃ HomD(R1)(X,R1[i])≃ HomD(R2)(F(X),F(R1)[i]).

Due to Lemma 3.4 (2), we have HomD(R2)(F(X),F(R1)[i]) = 0 for all i > n. Thus ExtiR1
(X,R1) = 0 for all

X ∈ P<∞(R1) and alli > n. �

Summarizing Lemmas 3.3 and 3.5 together, we obtain the following useful result, in whichw andcw
denote the homological width and cowidth of a complex, respectively.

Corollary 3.6. Let F : D(R1)→ D(R2) be a fully faithful triangle functor such that F(R1) ∈ Dc(R2). Then
the following statements hold true:

(1) If F has a left adjoint L: D(R2)→ D(R1) with L(R2) ∈ D−(R1), thenfin.dim(R1) ≤ fin.dim(R2)+
sup(L(R2))+sup(F(R1)). If moreover L(R2) ∈ Dc(R1), thenfin.dim(R1)≤ fin.dim(R2)+w(L(R2)).

(2) If F has a right adjoint G: D(R2) → D(R1) and restricts to a functorDb(R1) → Db(R2), then
fin.dim(R1)≤ fin.dim(R2)+cw

(
G(HomZ(R2,Q/Z))

)
.

Proof. Clearly, if fin.dim(R2) is infinity, then the two statements (1) and (2) are triviallytrue. So, we
assume that fin.dim(R2) = t < ∞. We further assume thatRi 6= 0 for i = 1,2. By assumption, we have
F(R1) ∈ Dc(R2) , and thereforeF restricts to a functorDc(R1) → Dc(R2). SinceF is fully faithful and
R1 6= 0, we haveF(R1) 6= 0. This leads to fin.dim(F) 6=+∞. Thus fin.dim(F) ∈ Z∪{−∞}.

(1) Since(L,F) is an adjoint pair, we haveHn(F(R1))≃HomD(R2)(R2,F(R1)[n])≃HomD(R1)(L(R2),R1[n]).
It follows from 0 6= F(R1) ∈ D(R2) that L(R2) 6= 0 in D(R1). SinceL(R2) ∈ D−(R1), we know that
sup(L(R2)) is an integer. By Lemma 3.3(1), we see that inf(F) ≥ −sup(L(R2)) > −∞, and therefore
fin.dim(F)≥ inf(F)>−∞. Combining this with Lemma 3.5, we have

fin.dim(R1)≤ t −fin.dim(F)+sup(F(R1))≤ t +sup(L(R2))+sup(F(R1)).

This shows the first part of(1). For the second part of(1), we only need to check thatw
(
L(R2)

)
=

sup(L(R2))+sup(F(R1)).
In fact, it follows fromL(R2) ∈ Dc(R1) that the homological width ofL(R2) is well defined and there

exists a complex

P• : 0−→ Pr dr

−→ Pr−1 −→ ·· · −→ Ps−1 −→ Ps −→ 0

in C b(R1-proj) with s= sup(L(R2)) ands− r = w
(
L(R2)

)
such thatL(R2)≃ P• in D(R1) (see Section 3.1).

In this case,dr is not a split injection. Since(L,F) is an adjoint pair, we have

HomD(R1)(P
•,R1[n])≃ HomD(R1)(L(R2),R1[n]) ≃ HomD(R2)(R2,F(R1)[n]) ≃ Hn(F(R1))
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for all n ∈ Z. This implies thatHn(F(R1)) = 0 for all n > −r. Moreover, since the mapdr is not a split
injection, we have HomD(R1)(P

•,Pr [−r]) 6= 0. ThusH−r(F(R1)) ≃ HomD(R1)(P
•,R1[−r]) 6= 0. This shows

sup(F(R1)) =−r. It follows thatw
(
L(R2)

)
= s− r = sup(L(R2))+sup(F(R1)).

(2) Under the assumption of(2), we see from Lemma 3.3(2) that inf(F) ≥ −
(
m+ inj.dim(Ker(dm

I•))
)
,

whereI• ∈ C b(R1-Inj) is defined in Lemma 3.3(2) andm := sup(I•). Thus fin.dim(F)≥ inf(F)>−∞ and

fin.dim(R1)≤ t +m+ inj.dim(Ker(dm
I•))+sup(F(R1))< ∞

by Lemma 3.5. DefineW• := G(HomZ(R2,Q/Z)). By the proof of Lemma 3.3(2), we see thatW• ≃ I• in
D(R1) and thatHn(W•)≃ H−n(F(R1) for all n∈ Z. This implies that sup(F(R1)) =− inf(W•) =− inf(I•).
Thus

cw(W•) = sup(I•)− inf(I•)+ inj.dim(Ker(dm
I•)) = m+sup(F(R1))+ inj.dim(Ker(dm

I•)).

So fin.dim(R1)≤ t +cw(W•). �

As a consequence of Corollary 3.6, we have the following applicable fact.

Corollary 3.7. Let P• ∈ C (R2⊗Z Rop
1 ) such thatR2P

• ∈ Dc(R2). Assume that the following conditions hold:
(1) R1 ≃ EndD(R2)(P

•) as rings (via multiplication), andHomD(R2)(P
•,P•[n]) = 0 for all n 6= 0.

(2) P•
R1

is isomorphic inD(Rop
1 ) to a bounded complex

F• : 0−→ F r −→ F r−1 −→ ·· · −→ Fs−1 −→ Fs −→ 0

of flat Rop
1 -modules, where r,s∈ Z and r≤ s.

Thenfin.dim(R1)≤ fin.dim(R2)+s− r. In this case, iffin.dim(R2)< ∞, thenfin.dim(R1)< ∞.

Proof. Let F := P•⊗L
R1
− : D(R1) → D(R2). ThenF(R1) ≃ R2P

• ∈ Dc(R2) andF has a right adjoint
G := RHomR2(P

•,−) : D(R2) → D(R1). SinceR2P
• ∈ Dc(R2), the functorF restricts to a functorF ′ :

Dc(R1) → Dc(R2). Note that the condition(1) implies thatF ′ is fully faithful. Further, sinceF commutes
with direct sums andD(R1) is compactly generated byR1, we see thatF itself is also fully faithful.

Now, we claim thatF restricts to a functorDb(R1)→Db(R2). In fact, by Lemma 3.3(2), this is equivalent
to saying that the complexG

(
HomZ(R2,Q/Z)

)
is isomorphic inD(R1) to a bounded complex of injective

R1-modules.
To check the latter, we use the functor(−)∨ := HomZ(−,Q/Z) and applyG to the injectiveR2-module

R∨
2 . Then we have the following isomorphisms inD(R1):

G(R∨
2 ) = RHomR2(P

•,R∨
2 ) = Hom•

R2
(P•,R∨

2 )≃ Hom•
Z(R2⊗R2 P•,Q/Z)≃ (P•)∨.

Note that(−)∨ : Rop
1 -Mod → R1-Mod is an exact functor, which sends flatRop

1 -modules to injectiveR1-
modules. Thus the condition(2) implies that(P•)∨ is isomorphic inD(R1) to the following bounded complex
of injectiveR-modules:

(F•)∨ := 0−→ (Fs)∨ −→ (Fs−1)∨ −→ ·· · −→ (F r−1)∨ −→ (F r)∨ −→ 0

where (Fs)∨ and (F r)∨ are of degrees−s and−r, respectively. Consequently, we havecw(G(R2
∨)) =

cw((P•)∨) = cw((F•)∨)≤ s− r. Now, it follows from Corollary 3.6(2) that

fin.dim(R1)≤ fin.dim(R2)+cw(G(R2
∨))≤ fin.dim(R2)+s− r.

This completes the proof.�

Recall that a ring epimorphismλ : R→ S is homologicalif TorR
i (S,S) = 0 for all i > 0. This is equivalent

to saying that the restriction functorD(λ∗) : D(S)→ D(R) is fully faithful. Note thatD(λ∗) always has a left
adjoint functorS⊗L

R− : D(R)→ D(S). For some new advances on homological ring epimorphisms phrased
in terms of recollements of derived categories, we refer thereader to[8, 9, 10]. Applying Corollary 3.6(1) to
homological ring epimorphisms, we have the following simple result.
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Corollary 3.8. Letλ : R→S be a homological ring epimorphism such thatRS∈P<∞(R). Thenfin.dim(S)≤
fin.dim(R). In this case, iffin.dim(R)< ∞, thenfin.dim(S)< ∞.

Proof. If we take F := D(λ∗) and L := S⊗L
R − in Corollary 3.6(1), then fin.dim(S) ≤ fin.dim(R) +

w(L(S)). Sincew(L(S)) = proj.dim(SS) = 0, we have fin.dim(S)≤ fin.dim(R). �

Let us point out a straightforward proof of Corollary 3.8:
Let SX ∈ P<∞(S). Since proj.dim(RS)< ∞, the Change of Rings Theorem implies that proj.dim(RX)≤

proj.dim(SX) + proj.dim(RS) < ∞. Thus proj.dim(RX) ≤ fin.dim(R). As λ is homological, we see that
ExtiS(X,Y)≃ ExtiR(X,Y) for all Y ∈ S-Mod andi ≥ 0. This implies that proj.dim(SX)≤ proj.dim(RX). As a
result, we have proj.dim(SX)≤ proj.dim(RX)≤ fin.dim(R). This shows fin.dim(S)≤ fin.dim(R). �

The following result extends [22, Theorem 1.1] on finitisticdimensions for derived equivalences of left
coherent rings to those of arbitrary rings.

Corollary 3.9. Suppose that F: D(R1)→ D(R2) is a triangle equivalence. Then

| fin.dim(R1)−fin.dim(R2) |≤ w(F(R1)).

Proof. Suppose thatG : D(R2) → D(R1) is a quasi-inverse ofF. Then(G,F) and (F,G) are adjoint
pairs. Clearly,G is also a triangle equivalence. Since bothF andG preserve compact objects, they restrict to
triangle equivalences of perfect derived categories:F : Dc(R1)

≃
−→ Dc(R2) andG : Dc(R2)

≃
−→ Dc(R1). By

Corollary 3.6(1), we have fin.dim(R1)≤ fin.dim(R2)+w(G(R2)) and fin.dim(R2)≤ fin.dim(R1)+w(F(R1)).
Thus, to complete the proof, it is enough to show thatw(G(R2)) = w(F(R1)).

In fact, up to isomorphism in derived categories, we may assume thatF(R1) ∈ C b(R2-proj) andG(R2) ∈
C b(R1-proj).

Without loss of generality, we suppose thatF(R1) is a complex inC b(R2-proj) of the form

0−→ P−r d−r

−→ P−r+1 −→ ·· · −→ P−1 −→ P0 −→ 0

such thatr = w(F(R1)≥ 0. This implies thatH0(F(R1)) 6= 0 andd−r is not a split injection. Since(F,G) is
an adjoint pair, we always have

HomK (R2)(F(R1),R2[n])≃ HomD(R2)(F(R1),R2[n])≃ HomD(R1)(R1,G(R2)[n])≃ Hn(G(R2))

for all n∈ Z. It follows thatH i(G(R2)) = 0 for i < 0 or i > r. Further, we claim thatH r(G(R2)) 6= 0, and
therefore sup(G(R2)) = r. Actually, sinced−r is not a split injection, we have HomK (R2)(F(R1),P−r [r]) 6= 0.
Thus 06= HomK (R2)(F(R1),R2[r])≃ H r(G(R2)). So, up to isomorphism inK (R1), the complexG(R2) has
the following form

0−→ Qs ϕs

−→ Qs+1 −→ Qs+2 −→ ·· · −→ Qr−1 −→ Qr −→ 0∈ C
b(R1-proj)

such that 0≤ r − s= w(G(R2)). In particular, this implies thatϕs is not a split injection. So, to show
w(F(R1) = w(G(R2)), we only need to shows= 0.

Indeed, since(G,F) is an adjoint pair, we have

HomK (R1)(G(R2),R1[n]) ≃ HomD(R1)(G(R2),R1[n])≃ HomD(R2)(R2,F(R1)[n])≃ Hn(F(R1))

for all n∈ Z. On the one hand, ifs< 0, then HomK (R1)(G(R2),R1[−s]) ≃ H−s(F(R1)) = 0, and therefore
HomK (R1)(G(R2),Qs[−s]) = 0. This means thatϕs is a split injection, a contradiction. On the other hand, if
s> 0, then 0=HomK (R1)(G(R2),R1)≃H0(F(R1)). This is also a contradiction. Thuss= 0 andw(F(R1)) =
w(G(R2)), as desired.�

The above result describes a relationship for finitistic dimensions of derived equivalent rings. If we
weaken derived equivalences into half recollements of perfect derived module categories, we will obtain the
following general result which provides a bound for the finitistic dimension of the middle ring by those of
the other two rings.

14



Proposition 3.10. Suppose that there is a half recollement of perfect derived module categories of the rings
R1,R2 and R3

Dc(R1)
i∗ // Dc(R2)

j !
//

i∗

ww

Dc(R3)

j!
ww

.

Then
fin.dim(R2)≤ fin.dim(R1)+fin.dim(R3)+w

(
i∗(R1)

)
+w

(
j!(R3)

)
+1.

In particular, if fin.dim(R1)< ∞ andfin.dim(R3)< ∞, thenfin.dim(R2)< ∞.

Proof. The proof will be done in several steps. We may suppose that fin.dim(R1)< ∞ and fin.dim(R3)<
∞. Clearly, if one ofR1 andR3 is zero, then Proposition 3.10 follows from Corollary 3.9. From now on, we
assume thatR1 6= 0 6= R3.

Step 1. We claim thatj! j !(P<∞(R2))⊆ Dc
≥−u(R2) whereu := fin.dim(R3)+w

(
j!(R3)

)
≥ 0.

Actually, since j! : Dc(R3) → Dc(R2) is fully faithful, we have 06= j!(R3) ∈ Dc(R2). This implies
sup( j!(R3)) < ∞. As ( j! , j !) is an adjoint pair, one can follow the proof of Lemma 3.3(1) toshow that
−sup( j!(R3))≤ inf( j !). Note that inf( j !)≤ fin.dim( j !). Thus−∞ <−sup( j!(R3))≤ fin.dim( j !)≤+∞.

Defineu1 :=−sup( j!(R3))−fin.dim(R3). Thenu1 ≤ fin.dim( j !)−fin.dim(R3). It follows from Lemma
3.4(1) that

j !(P<∞(R2))⊆ D
c
≥u1

(R3).

In other words, for anyY ∈ P<∞(R2), there exists a complexP•
Y := (Pn

Y)n∈Z ∈ C b(R3-proj) with Pn
Y = 0 for

n< u1 such thatj !(Y)≃ P•
Y in Dc(R3). Clearly, the complexP•

Y is of the following form:

0−→ Pu1
Y −→ Pu1+1

Y −→ Pu1+2
Y −→ ·· · −→ Ps(Y)

Y −→ 0,

wheres(Y) depends onY andu1 ≤ s(Y). Since j!(R3) ∈ Dc(R2) by the half recollement, we see thatj!(R3)
is isomorphic inDc(R2) to a bounded complexL• of the form

0−→ Lu2 −→ Lu2+1 −→ Lu2+2 −→ ·· · −→ 0

such thatu2 = sup( j!(R3))−w
(

j!(R3)
)

and thatLi ∈ R2-proj for all i ≥ u2 (see Section 3.1). This implies
j!(R3) ∈ Dc

≥u2
(R2). SinceDc

≥u2
(R2)) is closed under direct summands inDc(R2) by Lemma 3.2(1), we have

j!(R3-proj)⊆ Dc
≥u2

(R2).
Note thatu= fin.dim(R3)+w

(
j!(R3)

)
= fin.dim(R3)+sup( j!(R3))−u2 = −(u1+u2). Now, we claim

that j! j !(P<∞(R2))⊆ Dc
≥−u(R2) = Dc

≥(u1+u2)
(R2).

Actually, for the complexP•
Y ∈ C b(R3-proj), there is a canonical distinguished triangle inDc(R3):

Ps(Y)
Y [−s(Y)]−→ P•

Y −→ P•
Y
≤s(Y)−1 −→ Ps(Y)

Y [1−s(Y)]

whereP•
Y
≤s(Y)−1 is truncated fromP•

Y by replacingPs(Y)
Y with 0, that is,

P•
Y
≤u1−1 : 0−→ Pu1

Y −→ Pu1+1
Y −→ ·· · −→ Ps(Y)−1

Y −→ 0−→ 0.

This induces a distinguished triangle inDc(R2):

j!
(
Ps(Y)

Y

)
[−s(Y)]−→ j!

(
P•

Y

)
−→ j!

(
P•

Y
≤s(Y)−1)−→ j!

(
Ps(Y)

Y

)
[1−s(Y)].

Note that j!
(
Ps(Y)

Y

)
[−s(Y)] ∈ Dc

≥s(Y)+u2
(R2) ⊆ Dc

≥(u1+u2)
(R2) due tou1 ≤ s(Y). SincePi

Y ∈ R3-proj for all
u1 ≤ i ≤ s(Y), one can apply Lemma 3.2(2) to show thatj!(P•

Y) ∈ Dc
≥(u1+u2)

(R2) by induction on the number

of non-zero terms of a complex. It follows fromj !(Y) ≃ P•
Y that j! j !(Y) ≃ j!(P•

Y) ∈ Dc
≥(u1+u2)

(R2). This

implies that j! j !(P<∞(R2))⊆ Dc
≥(u1+u2)

(R2).
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Step 2. We show thati∗i∗(P<∞(R2))⊆ Dc
≥v(R2), wherev := fin.dim(R1)+w

(
i∗(R1)

)
+u+1.

First of all, we claim that there is an integerm such thatm≤ fin.dim(i∗) ≤ +∞. Indeed, the given half
recollement yields the following canonical triangle

(†) j! j !(Y)
ηY
−→Y

εY−→ i∗i
∗(Y)−→ j! j !(Y)[1]

in D(R2), whereηY andεY stand for the counit and unit adjunction morphisms, respectively. Since j! j !(Y) ∈
Dc

≥−u(R2)⊆ Dc(R2), we can find a complexU• := (Un)n∈Z ∈ C b(R2-proj) with Un = 0 for all n<−u≤ 0
such thatj! j !(Y)≃U• in D(R2). It follows that

HomD(R2)( j! j !(Y),Y)≃ HomD(R2)(U
•,Y)≃ HomK (R2)(U

•,Y).

So there exists a chain mapf • : U• →Y such that its mapping coneV• is isomorphic toi∗i∗(Y) in D(R2).
Clearly, V0 = U1 ⊕Y andV j = U j+1 for any j 6= 0. In particular,V j = 0 for all j < −u− 1. Sincei∗ :
Dc(R1)→ Dc(R2) is fully faithful, we have

Hn(i∗(Y))≃ HomD(R1)(R1, i
∗(Y)[n]) ≃ HomD(R2)(i∗(R1), i∗i

∗(Y)[n]) ≃ HomD(R2)(i∗(R1),V
•[n]).

By assumption,i∗(R1) ∈ Dc(R2) and therefore is isomorphic inDc(R2) to a complex

Q• : 0−→ Qv2 −→ Qv2+1 −→ ·· · −→ Qb −→ 0

in C b(R2-proj), whereb := sup(i∗(R1)) andb−v2 =w
(
i∗(R1)

)
(see Section 3.1). Letm:=−u−1−b. Then

Hn(i∗(Y))≃ HomD(R2)(i∗(R1),V
•[n])≃ HomD(R2)(Q

•,V•[n])≃ HomK (R2)(Q
•,V•[n]) = 0

for all n< m. This implies thatm≤ fin.dim(i∗)≤+∞, as claimed.
Let v1 := m−fin.dim(R1). It follows from Lemma 3.4(1) thati∗(P<∞(R2))⊆Dc

≥v1
(R1). Now, replacing

the pair( j! , j !) in the proof of Step 1 with(i∗, i∗), one can similarly show that

i∗i
∗(P<∞(R2))⊆ D

c
≥v1+v2

(R2).

Note that−(v1+v2) = fin.dim(R1)+w
(
i∗(R1)

)
+u+1= v≥ u+1≥ 1.

Step 3. We show that fin.dim(R2)≤ v= fin.dim(R1)+fin.dim(R3)+w
(
i∗(R1)

)
+w

(
j!(R3)

)
+1.

Since j! j !(Y) ⊆ Dc
≥−u(R2) and i∗i∗(Y) ∈ Dc

≥−v(R2) for Y ∈ P<∞(R2) with u < v, it follows from the
triangle (†) and Lemma 3.2(2) thatY ∈ Dc

≥−v(R2). Now, let P• := (Pn,dn)n∈Z ∈ C b(R2-proj) such that
Pn = 0 for all n<−v and thatY ≃ P• in Dc(R2). SinceY is anR2-module, we see thatHn(P•) = 0 for n 6= 0
andH0(P•)≃Y. Consequently, Ker(d0) ∈ R2-proj and the following complex

0−→ P−v d−v

−→ P−v+1 d−v+1

−→ ·· · −→ P−1 d−1

−→ Ker(d0)−→Y −→ 0

is exact. Thus proj.dim(R2Y)≤ v and therefore fin.dim(R2)≤ v< ∞. �

Now, with the above preparations, we prove the following strong version of Theorem 1.1 .

Theorem 3.11. Let R1, R2 and R3 be rings. Suppose that there exists a recollement among the derived
module categoriesD(R3), D(R2) andD(R1) of R3, R2 and R1 :

D(R1)
i∗ // D(R2)

j !
//

i!

ff

i∗

xx

D(R3)

j∗

ff

j!
xx

Then the following statements hold true:
(1) Suppose that j! restricts to a functorDb(R3)→ Db(R2) of bounded derived module categories. Then

fin.dim(R3)≤ fin.dim(R2)+cw
(

j !(HomZ(R2,Q/Z))
)
.

(2) Suppose that i∗(R1) is a compact object inD(R2). Then

(a) fin.dim(R1)≤ fin.dim(R2)+w(i∗(R2)).

(b) fin.dim(R2)≤ fin.dim(R1)+fin.dim(R3)+w
(
i∗(R1)

)
+w

(
j!(R3)

)
+1.

16



Proof. Note that the triangle functorsj! andi∗ in a recollement always take compact objects to compact
objects and thati∗(R1) is compact if and only ifj !(R2) is compact (for a reference of this fact, one may see,
for example, [9, Lemma 2.2]). Thus we have a sequence of functors:

Dc(R1) Dc(R2)
i∗oo Dc(R3),

j!
oo

where the functorj! is fully faithful.
Applying Corollary 3.6(2) to the adjoint pair( j!, j !), we then obtain(1).
Supposei∗(R1) ∈ Dc(R2). Then j !(R2) ∈ Dc(R3) and the given recollement in Theorem 3.11 induces a

half recollment of prefect derived module categories:

Dc(R1)
i∗ // Dc(R2)

j !
//

i∗

ww

Dc(R3)

j!
ww

.

Now, the statements(a) and(b) in (2) follow from Corollary 3.6(1) and Proposition 3.10, respectively. This
completes the proof of Theorem 3.11.�

As a consequence of Theorem 3.11, we obtain the following corollary which extends the main result [25,
Theorem] on finitistic dimensions of Artin algebras to the one of arbitrary rings.

Corollary 3.12. Let R be a ring and e an idempotent element of R. Suppose that the canonical surjection
R→ R/ReR is homological withRReR∈ P<∞(R). Thenfin.dim(R/ReR) ≤ fin.dim(R) ≤ fin.dim(eRe) +
fin.dim(R/ReR)+proj.dim(RR/ReR)+1.

Proof. Let J := ReR. Since the canonical surjectionR→ R/J is homological, there exists a recollement
of derived module categories:

D(R/J)
D(π∗)

// D(R)
eR⊗L

R−//
ee

R/J⊗L

R−

~~

D(eRe)

Re⊗L

eRe−

~~

ee

SinceRJ∈P<∞(R), we see thatD(π∗)(R/J) =R/J∈Dc(R) and thatw(R/J) = proj.dim(RR/J). Moreover,
Re⊗L

eReeRe= Reandw(RRe) = 0. Now, Corollary 3.12 follows from Theorem 3.11(2)(b) and Corollary 3.8.
�

Since a recollement atDb-level induces a recollement atD-level, the following result is a straightforward
consequence of Theorem 3.11, which also generalizes [16, Theorem 2].

Corollary 3.13. Let R1, R2 and R3 be rings. Suppose that there exists a recollement among the derived
module categoriesDb(R3), Db(R2) andDb(R1) :

Db(R1)
i∗ // Db(R2)

j !
//

i!

gg

i∗
vv

Db(R3)

j∗

gg

j!
vv

such that i∗(R1) ∈ Dc(R2). Then

fin.dim(R2)< ∞ if and only if max{fin.dim(R1),fin.dim(R3)}< ∞.

The existence of a recollement atDb-level occurs in the following special case (see [21], [18]): Let R
be a ring andJ = ReRbe an ideal generated by an idempotent elemente in R such thatRJ is projective
and finitely generated and thatJR has finite projective dimension. Then there exists a recollement among
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Db(R/J),Db(R) andDb(eRe). Remark that, without proj.dim(JR)< ∞, we may not get a recollement atDb-
level because the left-derived functorRe⊗L

eRe− : D(eRe)→ D(R) may not restrict to a functor of bounded
derived categories. One can construct a desired counterexample from triangular matrix rings.

Applying Corollary 3.12 to triangular matrix rings, we re-obtain the following well-known result (for
example, see [14, Corollary 4.21]).

Corollary 3.14. Let R and S be rings, and let M be an S-T -bimodule. Set B:=

(
S M
0 T

)
. Thenfin.dim(S)≤

fin.dim(B)≤ fin.dim(S)+fin.dim(T)+1.

Proof. Let e=

(
0 0
0 1

)
. ThenBeB= Be, eBe≃ T, B/BeB≃ S= B(1−e) andBB= BS⊕Be. Thus

BBeB∈ B-proj and the canonical surjectionB→ S is homological. Now, Corollary 3.14 follows from Corol-
lary 3.12.�

Recall from [10] that a morphismλ : Y → X of objects in an additive categoryC is said to beco-
variant if the induced map HomC (X,λ) : HomC (X,Y) → HomC (X,X) is injective, and the induced map
HomC (Y,λ) : HomC (Y,Y)→HomC (Y,X) is a split epimorphism of EndC (Y)-modules. Covariant morphisms
capture traces of modules, which guarantee the ubiquity of covariant morphisms (see [10]).

For covariant morphisms, we have the following result whichfollows from Corollary 3.12 and [10,
Lemma 3.2].

Corollary 3.15. Let f : Y → X be a covariant morphism in an additive categoryC . Then

fin.dim
(
EndC ,Y(X)

)
≤ fin.dim

(
EndC (Y⊕X)

)
≤ fin.dim

(
EndC (Y)

)
+fin.dim

(
EndC ,Y(X)

)
+2,

whereEndC ,Y(X) is the quotient ring of the endomorphism ringEndC (X) of X modulo the ideal generated
by all those endomorphisms of X which factorize through the object Y .

Consequently, we have the following result which restates Corollary 1.6.

Corollary 3.16. (1) Let I be an idempotent ideal in a ring R. Then

fin.dim(R/I)≤ fin.dim
(
EndR(R⊕ I)

)
≤ fin.dim

(
EndR(RI)

)
+fin.dim(R/I)+2.

In particular, if RI is projective and finitely generated, then

fin.dim(R/I)≤ fin.dim(R)≤ fin.dim
(
EndR(RI)

)
+fin.dim(R/I)+2.

(2) Let 0→ Z →Y
f

−→ X → 0 be an almost split sequence in R-modwith R an Artin algebra such that
HomR(Y,Z) = 0 (see [3] for definition). Then

fin.dim
(
EndR(Y⊕X)

)
≤ fin.dim

(
EndR(Y)

)
+2.

Proof. (1) Since the inclusionI →֒ R is a covariant homomorphism inR-Mod and EndR,I (R) ≃ R/I ,
we know that the first statement in (1) follows from Corollary3.15 immediately. The last statement is a
consequence of the fact thatR is Morita equivalent to EndR(R⊕ I).

(2) Under the assumption, we know thatf is a covariant map inR-mod, the category of finitely generated
R-modules. So, by Corollary 3.15, it is sufficient to show thatfin.dim(EndR,Y(X))= 0. In fact, since EndR(X)
is a local algebra and since the ideal of EndR(X) generated by all homomorphisms which factorize throughY
belong to the radical of EndR(X), the algebra EndR,Y(X) is local. Note that a local Artin algebra has finitistic
dimension 0. Therefore fin.dim(EndR,Y(X)) = 0. Now, (2) follows from Corollary 3.15.�

Note that an alternative proof of Corollary 1.6(2) can be given by [17, Theorem 1.1] together with Corol-
lary 3.14 and [22].
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In the following we point out that the methods developed in this paper for little finitistic dimensions also
work for big finitistic and global dimensions. Recall that, for an arbitrary ringR, we denote by Fin.dim(R)
and gl.dim(R) thebig finitistic andglobal dimensionsof R, respectively. By definition, gl.dim(R) (respec-
tively, Fin.dim(R)) is the supremum of projective dimensions of all leftR-modules (respectively, which have
finite projective dimension). Clearly, fin.dim(R) ≤ Fin.dim(R) ≤ gl.dim(R); and if gl.dim(R) < ∞, then
Fin.dim(R) = gl.dim(R). However, the equality fin.dim(R) = Fin.dim(R) does not have to hold in general
(see [26]).

As in Theorem 3.11, we have the following result on big finitistic dimensions of rings, in which the
condition (2) is weaker than the one in Theorem 3.11(2).

Theorem 3.17. Let R1, R2 and R3 be rings. Suppose that there exists a recollement among the derived
module categoriesD(R3), D(R2) andD(R1) of R3, R2 and R1 :

D(R1)
i∗ // D(R2)

j !
//

i!

ff

i∗

xx

D(R3)

j∗

ff

j!
xx

Then the following statements hold true:
(1) Suppose that j! restricts to a functorDb(R3)→ Db(R2) of bounded derived module categories. Then

Fin.dim(R3)≤ Fin.dim(R2)+cw
(

j !(HomZ(R2,Q/Z))
)
.

(2) Suppose that i∗(R1) is isomorphic inD(R2) to a bounded complex of (not necessarily finitely gener-
ated) projective R2-modules. Then we have the following:

(a) Fin.dim(R1)≤ Fin.dim(R2)+w(i∗(R2)).

(b) Fin.dim(R2)≤ Fin.dim(R1)+Fin.dim(R3)+w
(
i∗(R1)

)
+w

(
j!(R3)

)
+1.

Sketch of the proof.Let us consider the full subcategoryX (R) of D(R) consisting of all those com-
plexes which are isomorphic inD(R) to bounded complexes of projectiveR-modules. It is known that
X (R) containsDc(R) and that the localization functorK (R) → D(R) induces a triangle equivalence
K b(R-Proj)

≃
−→ X (R).

Similarly, one can define big finitistic dimensions of functors, and establish several parallel results for
Fin.dim(R), such as Lemma 3.5, Corollary 3.6 and Proposition 3.10. In the present situation, we shall
replaceDc(R) with X (R), and consider big finitistic dimensions of triangle functors which commute with
direct sums. Further, to show Theorem 3.17, we observe the following facts for a given recollement:

(i) The functorsj!, j ! , i∗ andi∗ commute with direct sums.
(ii) The functorsj! andi∗ preserve compact objects and restrict to triangle functors

X (R3)
j!

−→ X (R2) and X (R2)
i∗

−→ X (R1).

(iii ) If i∗(R1) ∈ X (R2), theni∗ and j ! restrict to triangle functors

X (R1)
i∗−→ X (R2) and X (R2)

j !
−→ X (R3).

Now, one can use the methods in the proof of Theorem 3.11 to show Theorem 3.17. Here, we omit the details.
�

Concerning global dimensions, we can describe explicitly upper bounds for the global dimension of a
ring in terms of the ones of the other two rings involved in a recollement. These upper bounds imply the
finiteness of global dimensions mentioned in [2, Proposition 2.14].

Theorem 3.18. Let R1, R2 and R3 be rings. Suppose that there exists a recollement among the derived
module categoriesD(R3), D(R2) andD(R1) of R3, R2 and R1 :
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D(R1)
i∗ // D(R2)

j !
//

i!

ff

i∗

xx

D(R3)

j∗

ff

j!
xx

Then we have the following:
(1) If gl.dim(R2) < ∞, then gl.dim(R3) ≤ gl.dim(R2) + cw

(
j !(HomZ(R2,Q/Z))

)
and gl.dim(R1) ≤

gl.dim(R2)+w(i∗(R2)).
(2) If gl.dim(R1) < ∞ and gl.dim(R3) < ∞, thengl.dim(R2) ≤ gl.dim(R1)+gl.dim(R3)+w

(
i∗(R1)

)
+

w
(

j!(R3)
)
+1.

Sketch of the proof.From [2, Proposition 2.14] and its proof, we observe the following two facts:
(i) If gl .dim(R2) < ∞ or gl.dim(R3) < ∞, theni∗(R1) is isomorphic inD(R2) to a bounded complex of

projectiveR2-modules.
(ii) gl.dim(R2)< ∞ if and only if both gl.dim(R1)< ∞ and gl.dim(R3)< ∞. In this case, the recollement

among unbounded derived categories can restrict to a recollement of bounded derived categories.
Moreover, for a ringR, if gl.dim(R)< ∞, then gl.dim(R) = Fin.dim(R). Now, Theorem 3.18 becomes a

consequence of Theorem 3.17.�

3.3 Proofs of Theorem 1.2 and Corollary 1.3

Now let us turn to proofs of our results on exact contexts thatarise from different situations.

Proof of Theorem 1.2.
Given an exact context(λ,µ,M,m), we have defined its noncommutative tensor productT ⊠RSand the

following two ring homomorphisms

ρ : S→ T ⊠RS, s 7→ 1⊗s for s∈ S, and φ : T → T ⊠RS, t 7→ t ⊗1 for t ∈ T.

Note thatT ⊠RShasT ⊗RSas its abelian groups, while its multiplication is different from the usual tensor

product (see [8] for details). LetB :=

(
S M
0 T

)
, C := M2(T ⊠RS) and

θ :=

(
ρ β
0 φ

)
: B−→C,

whereβ : M → T ⊗RS is the uniqueR-R-bimodule homomorphism such thatφ = (m·)β andρ = (·m)β.
Let

ϕ :

(
S
0

)
−→

(
M
T

)
,

(
s
0

)
7→

(
sm
0

)
for s∈ S.

Thenϕ is a homomorphism ofB-R-bimodules. Denote byP• the mapping cone ofϕ. ThenP• ∈C b(B⊗ZRop)
andBP• ∈ C b(B-proj). In particular,P• ∈ Dc(B).

By [8, Theorem 1.1], if TorRi (T,S) = 0 for all i ≥ 1, then there is a recollement of derived categories:

D(C)
D(θ∗)

// D(B)
j !

//
ff

C⊗L

B−

xx

D(R)
ff

j!
xx

where j! := BP•⊗L
R−, j ! := Hom•

B(P
•,−) andD(θ∗) is the restriction functor induced from the ring homo-

morphismθ : B→C. First of all, we have two easy observations:
(i) SinceC := M2(T ⊠RS) is Morita equivalent toT ⊠RS, we have fin.dim(C) = fin.dim(T ⊠RS).
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(ii) SinceB is a triangular matrix ring with the ringsSandT in the diagonal, it follows from Corollary
3.14 that fin.dim(B)≤ fin.dim(S)+fin.dim(T)+1.

We first apply Corollary 3.7 to show Theorem 1.2(1). In fact, by [8, Lemma 5.4], we see thatR≃
EndD(B)(P

•) as rings (via multiplication) and that HomD(B)

(
P•,P•[n]

)
= 0 for anyn 6= 0. It remains to show

thatP•
R is isomorphic inD(Rop) to a bounded complex of flatRop-modules.

Since the sequence 0→ R
(λ,µ)
−→ S⊕T

( ·m
−m·)
−→ M → 0 is exact, we have Con(·m)≃ Con(µ) in D(Rop). This

implies thatP•
R≃T⊕Con(·m)≃T⊕Con(µ) in D(Rop), where Con(µ) is the complex 0→R

µ
−→T → 0 with

T in degree 0. If flat.dim(TR)=∞, then Theorem 1.2(1) is trivially true. So we may suppose flat.dim(TR)<∞.
Let t := max{1,flat.dim(TR)}. ThenP• is isomorphic inD(Rop) to a bounded complex

F• := 0−→ F−t −→ F−t+1 −→ ·· · −→ F−1 −→ F0 −→ 0

such thatF i are flatRop-modules for−t ≤ i ≤ 0. It follows from Corollary 3.7 that fin.dim(R)≤ fin.dim(B)+
t ≤ fin.dim(S)+fin.dim(T)+ t +1. This shows Theorem 1.2(1).

Next, we shall apply Theorem 3.11 to the above recollement and give a proof of Theorem 1.2(2).
By the proof of [9, Theorem 1.3(2)], we see thatD(θ∗)(C) = BC∈P<∞(B) if and only if RS∈P<∞(R).

SupposeRS∈ P<∞(R). It follows from [8, Corollary 5.8(1)] that

proj.dim(BC)≤ max{2,proj.dim(RS)+1}.

SinceC⊗L
B B ≃ C in D(C), we see from Theorem 3.11(2)(a) that fin.dim(C) ≤ fin.dim(B). Note that

fin.dim(T ⊠RS) = fin.dim(C) and fin.dim(B)≤ fin.dim(S)+fin.dim(T)+1. Thus(a) holds.
SinceD(θ∗)(C) = BC and j!(R)≃ BP• in D(B), we know thatw(P•) = 1 and

w
(
D(θ∗)(C)

)
= w(BC) = proj.dim(BC)≤ max{2,proj.dim(RS)+1}.

Now, it follows from Theorem 3.11(2)(b) that

fin.dim(B)≤ fin.dim(R)+fin.dim(T ⊠RS)+max{2, proj.dim(RS)+1}+1+1.

Clearly, fin.dim(S)≤ fin.dim(B). Thus(b) holds.�

Let us point out the following fact related to Theorem 1.2(2): Suppose that(λ,µ,M,m) is an exact content
with TorRi (T,S) = 0 for all i ≥ 1. If λ : R→ S is a homological ring epimorphism such thatRS∈ P<∞(R),
then fin.dim(S)≤ fin.dim(R) and fin.dim(T ⊠RS)≤ fin.dim(T).

In fact, in this case, the Tor-vanishing condition, that is,TorRi (T,S) = 0 for all i > 0, is equivalent to
thatφ : T → T ⊠RS is a homological ring epimorphism (see [8, Theorem 1.1(1)] for details). Moreover, we
haveT ⊠RS≃ T ⊗RSasT-S-bimodules. It follows that ifRS∈ P<∞(R), thenTT ⊠RS∈ P<∞(T) by the
Tor-vanishing condition. Therefore the above-mentioned fact is a consequence of Corollary 3.8.

Proof of Corollary 1.3.
Let τ : S⊆ Rbe the inclusion of fromS into R, and letπ : R→ R/Sbe the canonical surjection. We define

σ : S−→ R′ = EndS(R/S), s 7→ (r 7→ rs) for s∈ Sandr ∈ R/S

to be the right multiplication map. Then the quadruple
(
τ,σ,HomS(R,R/S),π

)
determined by the extension

is an exact context (see the examples in [8, Section 3]) and its noncommutative tensor productR′
⊠SR is

defined. IfSR is flat, then TorSi (R
′,R) = 0 for all i ≥ 1. Particularly, under the assumption onSR in Corollary

1.3(2), the quadruple fulfills the Tor-vanishing conditionin Theorem 1.2(2).
Now, we apply Theorem 1.2 to the exact context(τ,σ,HomS(R,R/S),π), and see that the statements

(a) and(b) in Corollary 1.3 follow from the statements(a) and(b) in Theorem 1.2, respectively. To show
Corollary 1.3(1), we shall apply Theorem 1.2(1). For this aim, we shall prove

flat.dim(R′
S)≤ max{flat.dim

(
HomS(R,R/S)S

)
,flat.dim

(
(R/S)S

)
}.
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However, this can be concluded from the following exact sequence of rightR′-modules (also rightS-modules):

0−→ R′ −→ HomS(R,R/S)−→ HomS(S,R/S)−→ 0.

which is obtained by applying HomS(−,R/S) to the exact sequence 0→ S→ R→ R/S→ 0. Now, the
statement(1) follows from Theorem 1.2(1).�

3.4 Proofs of Corollaries 1.4 and 1.5

In the following, we shall show that under the assumptions inCorollaries 1.4 and 1.5, we can get exact pairs,
a special class of exact contents, which satisfy the Tor-vanishing condition in Theorem 1.2, and then apply
Theorem 1.2 to each case. Here, noncommutative tensor products will be replaced by coproducts, and the
latter will be interpreted further as some usual constructions of rings.

Let λ : R→ Sandµ : R→ T be ring homomorphisms, and letM be anS-T-bimodule withm∈ M. Recall
that an exact context(λ,µ,M,m) is called anexact pairif M = S⊗RT andm= 1⊗1. In this case, we simply
say that(λ,µ) is an exact pair. By [8, Corollary 4.3], if the mapλ in the exact context is a ring epimorphism,
then the pair(λ,µ) is exact. Moreover, by [8, Remark 5.2], for an exact pair(λ,µ), we haveT ⊠RS≃ S⊔RT,
the coproduct of theR-rings ofSandT.

Proof of Corollary 1.4.
We defineT := R⋉M, µ : R→ T to be the inclusion fromR into T, andλ̃ : R⋉M → S⋉M to be the

canonical map induced fromλ. By Lemma 2.2, the ringS⋉M, together with the inclusionρ : S→ S⋉M
andλ̃ : T → S⋉M, is the coproduct ofSandT overR.

Now, we show that(λ,µ) is an exact pair. Actually, the split exact sequence 0→ R
µ

−→ T → M → 0
of R-R-bimodules implies thatRTR ≃ R⊕M asR-R-bimodules. Sinceλ is a ring epimorphism andM is an
S-S-bimodule, the map

S⊗RT −→ S⋉M, s⊗ (r,m) 7→ (sr,sm)

for s∈ S andm∈ M, is an isomorphism ofS-T-bimodules. Under this isomorphism, we can identify the
mapµ′ = idS⊗µ : S→ S⊗T with the inclusionρ : S→ S⋉M, and the mapλ′ = λ⊗ idT : T → S⊗RT with

λ̃. Note that 0→ S
ρ

−→ S⋉M → M → 0 is also a split exact sequence ofS-S-bimodules. It follows that
Cok(µ)≃ Cok(ρ)≃ M asR-R-bimodules, and therefore the sequence ofR-R-bimodules:

0−→ R
(λ,µ)
−→ S⊕T

(
ρ
−λ̃

)

−→ S⋉M −→ 0

is exact. This means that the pair(λ,µ) is exact.
Consequently, we know thatT ⊠RS≃ S⊔RT ≃ S⋉M as rings. Note that TorR

i (T,S)≃ TorRi (R⊕M,S)≃
TorRi (M,S) = 0 for all i ≥ 1. Thus Corollary 1.4(a) follows immediately from Theorem 1.2(2)(a).

Now we turn to the proof of Corollary 1.4(b).
Note that, if we apply Theorem 1.2(2)(b) to the exact pair(λ,µ), then we only get fin.dim(S)≤ fin.dim(R)+

fin.dim(S⋉M)+max{1,proj.dim(RS)}+3. So, to obtain the better upper bound given in Corollary 1.4(b),
we need the following statement:

(∗) Let f : Λ → Γ andg : Γ → Λ be ring homomorphisms such thatf g= IdΛ. If fin.dim(ΓΓ⊗L
Λ −) =

s<+∞, then fin.dim(Λ)≤ fin.dim(Γ)−s.

To show(∗), we setF := ΓΓ⊗L
Λ − : D(Λ)→ D(Γ). If fin.dim(F) = −∞, then(∗) is automatically true.

So, we suppose that fin.dim(F) = s is an integer andΛ 6= 0. SinceF(Λ) ≃ Γ 6= 0, we haves≤ 0. Let
X ∈ P<∞(Λ). Then there exists a finite projective resolution 0→ Pn → ··· → P1 → P0 → X → 0 of ΛX
with all Pi in Λ-proj. Now we defineY := Ω−s

Λ (X), the(−s)-th syzygy module ofΛX. ThusY ∈ P<∞(Λ).
Since fin.dim(F) = s, we see that TorΛ

j (Γ,Y) = TorΛj−s(Γ,X) ≃ Hs− j(F(X)) = 0 for all j > 0. It follows
thatΓ⊗Λ Y ∈ P<∞(Γ) andΓ⊗Λ Ωi

Λ(Y) = Ωi
Γ(Γ⊗Λ Y)⊕Qi for all i ≥ 0, where allQi are finitely generated

projectiveΓ-modules. Further, we may suppose that fin.dim(Γ) = t < ∞. Then proj.dim(ΓΓ⊗Λ Y) ≤ t, and
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thereforeΓ⊗Λ Ωt
Λ(Y) = Ωt

Γ(Γ⊗ΛY)⊕Qt ∈ Γ-proj. Sincef g= IdΛ, we haveΩt
Λ(Y)≃Λ⊗Γ (Γ⊗Λ Ωt

Λ(Y))∈
Λ-proj. Consequently,

proj.dim(ΛX)≤ proj.dim(ΛY)−s≤ proj.dim(ΛΩt
Λ(Y))+ t −s≤ t −s.

Thus fin.dim(Λ)≤ fin.dim(Γ)−s. This finishes the proof of(∗).
Now, we takeΛ := SandΓ := S⋉M. Let f : S→ S⋉M andg : S⋉M → Sbe the canonical injection

and surjection, respectively. Clearly, we havef g = IdS. We assumeS 6= 0. ThenΓΓ⊗L
Λ Λ = Γ 6= 0, and

fin.dim(ΓΓ⊗L
Λ−)≤ 0. Suppose fin.dim(R) = m< ∞. Due to(∗), in order to show Corollary 1.4(b), we only

need to prove that fin.dim(ΓΓ⊗L
S −) ≥ −m. This is equivalent to saying that TorS

n(Γ,X) ≃ TorSn(M,X) = 0
for all X ∈ P<∞(S) and for alln> m.

To check the latter, we first prove that TorS
j (M,N) ≃ TorRj (M,N) for anyS-moduleN and for all j ≥ 1.

Indeed, letP• be a deleted projective resolution of theRop-moduleM. Since TorRi (M,S) = 0 for all i ≥ 1,
we see thatP•⊗R S is a deleted projective resolution of theSop-moduleM ⊗RS. Note thatM ⊗RS≃ M as
Sop-modules sinceλ : R→ S is a ring epimorphism andM is anSop-module. It follows thatP• ⊗R S is a
deleted projective resolution of theSop-moduleM. Since(P•⊗RS)⊗SN ≃ P•⊗RN as complexes, we have
TorSj (M,N)≃ TorRj (M,N) for all j ≥ 1.

Let SX ∈ P<∞(S). Since proj.dim(RS)< ∞, the Change of Rings Theorem implies that proj.dim(RX)≤
proj.dim(SX)+proj.dim(RS) < ∞. Hence proj.dim(RX)≤ m= fin.dim(R) and TorSn(M,X)≃ TorRn(M,X) =
0 if n > m. This implies that fin.dim(ΓΓ⊗L

S −) ≥ −m. Now, by the result(∗), we obtain fin.dim(S) ≤
fin.dim(Γ)+m= fin.dim(S⋉M)+fin.dim(R). This completes the proof of Corollary 1.4(b).�

We remark that the statement(∗) also implies that for any trivial extension ofR by anR-R-bimoduleM,
we always have fin.dim(R)≤ fin.dim(R⋉M)+flat.dim(MR).

Proof of Corollary 1.5:
Let λ : R→ S := R/I1 andµ : R→ T := R/I2 be the canonical surjective ring homomorphisms. Since

I1∩ I2 = 0, we see that(λ,µ,R/(I1+ I2),1) is an exact context, where 1 is the identity of the ringR/(I1+ I2).
Even more, sinceR is a pullback of the surjective mapsR→ R/Ii overR/(I1+ I2), the pair(λ,µ) is exact (for
example, see [8, Section 3]). SoT⊠RS≃ S⊔RT as rings. Note thatS⊔RT = (R/I1)⊔R(R/I2) = R/(I1+ I2)
by Lemma 2.3(2). ThusT ⊠RS≃ R/(I1+ I2) as rings.

Now, we apply Theorem 1.2 to show Corollary 1.5. Clearly, it remains to check that if TorR
i (I2, I1) = 0 for

i ≥ 0, then TorRi (R/I2,R/I1) = 0 for all i > 0. In fact, fori > 2, we have TorRi (R/I2,R/I1)≃ TorRi−2(I2, I1) = 0
by assumption. Note that TorR

1(R/I2,R/I1) ≃ (I2 ∩ I1)/(I2I1) = 0 and TorR2(R/I2,R/I1) ≃ TorR1(I2,R/I1) =
Ker( f ) where f : I2⊗R I1 → I2I1 is the multiplication map. SinceI2⊗R I1 = 0, we have TorR2(R/I2,R/I1) ≃
Ker( f ) = 0. Thus TorRi (R/I2,R/I1) = 0 for all i > 0. �

Finally, we apply our results to exact contexts related to homological ring epimorphisms. First of all, we
establish a method to construct new homological ring epimorphisms from given ones.

Lemma 3.19. Let λ : R→ S be a homological ring epimorphism. Suppose that I is an ideal of R such that
the image J′ of I underλ is a left ideal in S and that the restriction ofλ to I is injective. Let J be the ideal of
S generated by J′. Then the following statements are equivalent:

(1) The homomorphism̃λ : R/I → S/J induced fromλ is homological.

(2) TorR/I
i

(
J/J′, S/J

)
= 0 for all i ≥ 1.

(3) The multiplication map I⊗RS→ J is an isomorphism andTorRj (I , S) = 0 for all j ≥ 1.
(4) TorRj (R/I ,S) = 0 for all j ≥ 1.

Let B:=

(
S S/J′

0 R/I

)
. If one of the above statements holds true, then there is a recollement of derived

module categories:
D(S/J) // D(B) //

gg

ww

D(R)
ff

xx

.
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Proof. We takeT := R/I and chooseµ : R→ T to be the canonical surjective homomorphism of rings.
SinceJ′ is a left ideal ofS, we haveS⊗RT = S⊗R(R/I)≃ S/(S· I) = S/J′. On the one hand, the pair(λ,µ)
is exact if and only ifλ|I : I → J′ is an isomorphism. On the other hand, by Lemma 2.3(2), we see that
S⊔RT = S⊔ (R/I) = S/J with J = J′S, and that the ring homomorphismφ : T → S⊔RT in [8, Theorem 1.1]
can be chosen as the canonical mapλ̃ : R/I → S/J induced fromλ. Thus(1) and(4) are equivalent by [8,
Theorem 1.1(1)]. Moreover, the recollement follows from [8, Theorem 1.1(2)].

In the following, we shall show that(3) and(4) are equivalent.
Applying the tensor functor−⊗RS to the exact sequence 0→ I → R→ R/I → 0, we obtain

TorR1(R/I , S)≃ Ker(δ) and TorRj+1(R/I , S)≃ TorRj (I , S) for all j ≥ 1,

whereδ : I ⊗R S→ J is the multiplication map defined byx⊗ s 7→ (x)λs for x ∈ I ands∈ S. Clearly, this
implies that(4) is equivalent to(3).

Now we show that(1) and(2) are equivalent.
According to Lemma 2.3(1) and the fact thatλ is a ring epimorphism, it follows that̃λ is a ring epimor-

phism. By assumption,J′ is a left ideal ofS, and thereforeS⊗R (R/I) ≃ S/(S· I) = S/J′. Thanks to the
general result proved in the last part of the proof of [8, Lemma 5.6], we see

TorR/I
i (S/J′,W)≃ TorR/I

i (S⊗R(R/I),W) = 0

for all i ≥ 1 and allS/J-modulesW. It then follows that TorR/I
i (S/J′, S/J) = 0 for all i ≥ 1. Consider the

short exact sequence of rightR/I -modules:

0−→ J/J′ −→ S/J′ −→ S/J −→ 0.

If we apply the functor−⊗R/I (S/J) to this sequence, then TorR/I
i (J/J′, S/J)≃ TorR/I

i+1(S/J, S/J) for all i ≥ 1

and the connecting homomorphism TorR/I
1 (S/J, S/J)→ (J/J′)⊗R/I (S/J) is injective.

Clearly, if TorR/I
1 (S/J, S/J) = 0, then TorR/I

j (S/J, S/J) = 0 for all j ≥ 1 if and only if TorR/I
i (J/J′, S/J) =

0 for all i ≥ 1. This will imply that (1) and (2) are equivalent. So it is enough to demonstrate that

TorR/I
1 (S/J, S/J) = 0 always holds under the assumptions of Corollary 3.19. However, this is true if we

can show(J/J′)⊗R/I (S/J) = 0.
In fact, if C → D is a ring epimorphism, thenD⊗C X ≃ X asD-modules for anyD-moduleX, andY⊗C

D≃Y as rightD-modules for any rightD-moduleY. This fact, together with properties of ring epimorphisms,
implies the following isomorphisms:

(J/J′)⊗R/I (S/J)≃ (J/J′)⊗R(S/J)≃ (J/J′)⊗R
(
S⊗R(S/J)

)
≃

(
(J/J′)⊗RS

)
⊗R(S/J).

SinceSJ′ = J′ andJJ′⊆ J′, we deduce
(
(J/J′)⊗RS

)
J′ = 0. This means that(J/J′)⊗RSis a rightS/J-module.

Clearly, the composite of the two ring epimorphismsR→ S andS→ S/J is again a ring epimorphism. It
follows that

(
(J/J′)⊗RS

)
⊗R(S/J)≃ (J/J′)⊗RSas rightS/J-modules.

In the following, we shall show(J/J′)⊗R S= 0. Actually, applying the functor−⊗R S to the exact
sequence

0−→ J′
α

−→ J −→ J/J′ −→ 0

of right R-modules, we get an exact sequence

J′⊗RS
α⊗RS
−→ J⊗RS−→ (J/J′)⊗RS−→ 0

of right S-modules. SinceJ is a right S-module andλ : R→ S is a ring epimorphism, the multiplication
map ψ : J⊗R S→ J, defined byx⊗ s 7→ xs for x ∈ J and s∈ S, is an isomorphism. Note that the map
(α ⊗R S)ψ : J′ ⊗R S→ J is surjective. This yields thatα⊗R S is surjective and(J/J′)⊗R S= 0. Hence

TorR/I
1 (S/J, S/J) = 0. This finishes the proof.�
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A special case of Lemma 3.19 appears in trivial extensions. Let λ : R→ Sbe a homomorphism of rings
andM be anS-S-bimodule. Thenλ is homological if and only if̃λ : R⋉M → S⋉M is homological. The
necessity of this condition follows from [8, Theorem 1.1(1)] and the proof of Corollary 1.4. The sufficiency
can be seen from Lemma 3.19.

Applying Theorem 1.2 to the exact pair(λ,µ) in the proof of Lemma 3.19, we obtain the following
estimations on finitistic dimensions, which can be applied to a class of examples of Milnor squares.

Corollary 3.20. Let λ : R→ S be a homological ring epimorphism. Suppose that I is an ideal of R such that
the image J′ of I underλ is a left ideal in S and that the restriction ofλ to I is injective. Let J be the ideal of
S generated by J′. Suppose that one of the conditions(1)-(4) in Lemma 3.19 holds. Then

(1) fin.dim(R)≤ fin.dim(S)+fin.dim(R/I)+max{1,flat.dim((R/I)R)}+1.
(2) If RS∈ P<∞(R), then

(a) fin.dim(S)≤ fin.dim(R) andfin.dim(S/J)≤ fin.dim(R/I).

(b) fin.dim(B)≤ fin.dim(R)+fin.dim(S/J)+max{1,proj.dim(RS)}+3, where B:=

(
S S/J′

0 R/I

)
.
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