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ON A DYNAMICAL MORDELL-LANG CONJECTURE

FOR COHERENT SHEAVES

JASON P. BELL, MATTHEW SATRIANO, AND SUSAN J. SIERRA

Abstract. We introduce a dynamical Mordell-Lang-type conjecture for coherent sheaves. When
the sheaves are structure sheaves of closed subschemes, our conjecture becomes a statement about
unlikely intersections. We prove an analogue of this conjecture for affinoid spaces, which we then
use to prove our conjecture in the case of surfaces. These results rely on a module-theoretic variant
of Strassman’s theorem that we prove in the appendix.
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1. Introduction

We formulate a generalized dynamical Mordell-Lang conjecture for coherent sheaves. We prove
our conjecture for surfaces with an automorphism, as well as for quasi-projective varieties X with an
automorphism that lies in an algebraic group acting on X. The heart of our argument relies on first
proving a variant of our conjecture for affinoid algebras. One of our key tools is a module-theoretic
analogue of Strassman’s theorem [St]; Strassman’s original theorem concerns zeros of convergent
power series. We believe this result may be of independent interest, so we include it in an appendix.

Before stating our conjecture and results, we begin with a review of the dynamical Mordell-
Lang conjecture, which is now a theorem in the case of an étale self-map [BGT]. Let X be a
quasiprojective variety over an algebraically closed field of characteristic zero, Φ : X → X a
morphism, and Y a closed subvariety of X. For n ≥ 0 we let Φn denote the n-fold composition
Φ ◦ · · · ◦ Φ. The dynamical Mordell-Lang conjecture asserts that for all x ∈ X, the set of natural
numbers n for which Φn(x) ∈ Y is a finite union of infinite arithmetic progressions along with a
finite set. In the case that there are infinitely many natural numbers n for which Φn(x) ∈ Y , the
dynamical Mordell-Lang conjecture guarantees the existence of an infinite arithmetic progression
of such n. As a result, there is some closed subset Y0 ⊆ Y with the property that Φa(Y0) ⊆ Y0 for
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some a ∈ Z≥1 and such that some iterate of x under Φ lies in Y0. Indeed, if P := m + aZ is an
infinite arithmetic progression such that Φn(x) ∈ Y for all n ∈ P , then we can take Y0 to be the
closure of the Φn(x) with n ∈ P .

In other words, one can interpret the conjecture as follows: one expects that Y contains only
finitely many iterates Φn(x), and this is indeed the case provided there is no compelling geometric
reason to the contrary, namely the existence of Y0 as above. When cast in this form, it is natural
to try to extend the conjecture beyond the case of points. To do so, one must first define what it
means for two subvarieties to intersect “as expected.” Here, one gains some insight from Serre’s
intersection formula [Ha, p. 427], which states that if X is smooth, Y and Z are closed subvarieties
of X, andW is an irreducible component of the set-theoretic intersection Y ∩Z then the intersection
multiplicity of W in the intersection product of Y and Z is given by the alternating sum

(1.1)

∞∑

i=0

(−1)ilengthOX,x
ToriOX,x

(OX,x/I(Y ),OX,x/I(Z)),

where x is the generic point of W and I(Y ) and I(Z) are the ideals given by the set of elements
in the local ring that vanish respectively at Y and Z. We remark that this sum is finite since
all sufficiently high Tor groups are zero. We observe that the first term in this summation is the
length of the tensor product of OX,x/I(Y ) ⊗ OX,x/I(Z) = OW,x. This is what one expects the
intersection multiplicity to be when Y and Z do not intersect in a pathological way. For example,
if X is a smooth complex quasiprojective variety and Y and Z are smooth subvarieties that intersect
transversally (i.e., for every x ∈ Y ∩Z we have TxY +TxZ = TxX) then this is exactly what occurs.
In particular, a non-transverse intersection can be detected by the non-vanishing of some higher
Tor group appearing in Serre’s formula. Thus we see that there is an intimate connection between
the vanishing of higher Tor groups and the subvarieties intersecting in an agreeable, or generic,
manner.

We say that subschemes Y and Z of an ambient scheme X are homologically transverse if the
sheaf TorXj (OY ,OZ) = 0 for j ≥ 1. In light of the above discussion, we see that one can intuitively
think of two subschemes being homologically transverse as saying that their intersection product
is what one would naively guess: the length of the scheme-theoretic intersection. For example, a
point x and a proper subvariety Y of an irreducible variety X are homologically transverse if and
only if x /∈ Y ; curves in P3 are homologically transverse if and only if they do not intersect; and
two irreducible hypersurfaces in Pn are homologically transverse if and only if they are not equal.

Taking this perspective, one can now extend the dynamical Mordell-Lang conjecture to the more
general setting where one considers two subvarieties Y and Z of an ambient complex quasiprojective
variety X. If one has an endomorphism Φ of X then one would like to understand the set of natural
numbers n for which the Zariski closure of Φn(Y ) and Z are homologically transverse. In the case
where Y is a point, the original dynamical Mordell-Lang conjecture states that the set of n for which
Φn(Y ) and Z fail to be homologically transverse is a finite union of infinite arithmetic progressions
along with a finite set. It is natural to expect that this phenomenon extends to the general setting
where Y is no longer a point. Moreover, identifying a subvariety Y with its structure sheaf OY ,
we can view the conjecture as a statement about coherent sheaves. Just as in the setting of the
original dynamical Mordell-Lang conjecture, we expect that in this more general setting, one only
gets infinite arithmetic progressions due to a compelling geometric reason. We thus make the
following conjecture:

Conjecture 1.2. Let X be a quasiprojective variety over an algebraically closed field k of charac-

teristic zero, and let σ : X → X be an endomorphism of X. If M and N are coherent sheaves on

X then for each i ≥ 1, the set of natural numbers n for which

TorXi ((σn)∗M,N ) 6= 0
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is a finite union of infinite arithmetic progressions up to addition and removal of a finite set.

This generalizes an earlier conjecture of the third-named author [Si2, Conjecture 5.15], which
dealt with the case where TorXi ((σn)∗M,N ) vanishes generically.

We remark that Conjecture 1.2 really lies in the intersection of work around the dynamical
Mordell-Lang conjecture and the field of unlikely intersections. To illustrate this, we give the
following special case, which was inspired by discussions with Dragos Ghioca and Joe Silverman.
Let X = (C∗)3 and let Φ : X → X be the map (x, y, z) 7→ (x2, y3, z5). If Y is the rational
curve {(t, t, t) : t ∈ C∗} and Z is a curve given by the zero set of two polynomials A(x, y, z) and
B(x, y, z), then Φn(Y ) and Z are not homologically transverse if and only if there is some c ∈ C∗

such that A(c2
n

, c3
n

, c5
n

) = B(c2
n

, c3
n

, c5
n

) = 0. Thus, although Conjecture 1.2 is inspired in part
by the dynamical Mordell-Lang conjecture, one often must ultimately deal with problems related
to “unlikely intersections” to obtain the desired conclusion.1

We note that the above example only deals with structure sheaves of subvarieties of the ambient
variety, and geometrically this is arguably the most interesting case of our conjecture. The reason
we have formulated our conjecture more generally in terms of coherent sheaves rather than just
structure sheaves of subvarieties is that when computing Tor groups of structure sheaves it is often
very useful to work with exact sequences involving coherent sheaves that are not structure sheaves.
Said another way, we imagine that any (inductive) proof of our conjecture for the case of structure
sheaves will naturally lead one to consider the coherent sheaf formulation.

We hope the above example, which is obviously a very special case of the conjecture, gives some
underpinning to our belief that the conjecture is very difficult in general. Indeed, the dynamical
Mordell-Lang conjecture is already a hard question, but in this higher-dimensional variant one must
also now wrestle with difficult questions involving unlikely intersections. In this paper, we restrict
our attention to the case where σ is an automorphism of X. In this setting we can prove Conjecture
1.2 in two cases: when dim(X) ≤ 2 or σ acts vis an algebraic group.

Theorem 1.3. Let k be an algebraically closed field of characteristic zero, let X be a smooth

quasiprojective variety over k, and let σ : X → X be in Autk(X). Assume that at least one of the

following holds:

(1) X is a surface; or

(2) σ lies in an algebraic group acting as k-rational automorphisms of X.

If M and N are coherent sheaves on X then for each i ≥ 1 the set of n ∈ Z for which

TorXi ((σn)∗M,N ) 6= 0

is a finite union of doubly infinite arithmetic progressions up to addition and removal of finite sets.

The second case of Theorem 1.3 follows from the third-named author’s work on a general
Kleiman-Bertini theorem [Si1]; this case is proved in §6. The surface case is proved in §5, and

1For the experts, we remark that an unlikely intersection in the sense of being non-homologically transverse is
similar in spirit, but not equivalent to, an unlikely intersection in the sense of Zannier [Za]. In the latter sense,
we say subvarieties Y and Z of X intersect properly if every component of Y ∩ Z has the expected dimension of
max(dimY +dimZ − dimX, 0) and otherwise say that Y and Z have unlikely intersection. As shown in the proof of
[Stacks, Lemma 42.16.1], if X is non-singular, and Y and Z are Cohen-Macaulay and intersect properly, then Y and
Z are homologically transverse. On the hand, if Y is a local complete intersection and Y and Z are homologically
transverse, then Y and Z have proper intersection. This follows by looking at the Koszul resolution K∗ of Y , tensoring
with OZ , and noting that Tor≥1(OY ,OZ) = 0 if and only if the higher homology of K∗⊗OX

OZ vanishes. By [Stacks,
Lemma 15.27.7], this implies that the equations locally cutting out Y give a regular sequence on Z, which implies
that Y and Z have proper intersection.

In particular if Y is a local complete intersection, Z is Cohen-Macaulay, and X is smooth, then Y and Z have
proper intersection if and only if they are homologically transverse. For subvarieties which are not Cohen-Macaulay,
we can have proper intersection without being homologically transverse, see [Stacks, Example 42.14.4].
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relies on a version of Conjecture 1.2 for affinoid spaces, along with the original proof of the cyclic
case of the dynamical Mordell-Lang conjecture for étale endomorphisms. The affinoid result is:

Theorem 1.4. Let S = K〈x1, . . . , xd〉 be the Tate algebra over K. Suppose that σ : S → S is a

K-algebra automorphism satisfying |σ(xi)− xi| < p−c for some c > 1/(p − 1) and for i = 1, . . . , d,
where xi denotes the image of xi in S. If M and N are finitely-generated S-modules and i ≥ 1,
then the set of n ∈ Z for which

TorSi ((σ
n)∗M,N) 6= 0

is, up to addition and removal of a finite set, a finite union of arithmetic progressions of difference

pr for some r ≥ 0.

In fact, we prove Theorem 1.4 by establishing a more general result, which we state momentarily.
In §2, using an analytic arc theorem we show that there is an S〈z〉-module M with the property
that M ⊗ S〈z〉/(z − n) = (σn)∗M for all n ∈ Z. In other words, we construct a p-adic family of
modules M that interpolates between the iterates (σn)∗M , see Definition 2.4. Making use of some
technical results in §3, we then prove the following result in §4, which clearly implies Theorem 1.4.

Theorem 1.5. Adopt the assumptions of Theorem 1.4. Then there exist finitely generated S〈z〉-

modules M and N with the following two properties. For i ≥ 1, if Tor
S〈z〉
i (M,N ) = 0, then

TorSi ((σ
n)∗M,N) = 0 for all but finitely many n ∈ Z; if Tor

S〈z〉
i (M,N ) 6= 0, then the set of n ∈ Z

for which TorSi ((σ
n)∗M,N) 6= 0 is, up to addition and removal of a finite set, a finite union of

arithmetic progressions of difference pr for some r ≥ 0.

Finally, as mentioned earlier, all of these results rely on our variant of Strassman’s theorem for
modules, which we prove in the appendix:

Theorem 1.6. Let K be a field with a non-Archimedean absolute value | · | such that |p| = 1/p, and
let R be a subring of the valuation ring of K. If M is a finitely generated K〈x1, . . . , xd, z〉-module,

then the set of c ∈ R for which M|z=c = (0) is open in R. If R is compact, then there exists ε > 0
such that up to the addition and removal of finite sets, the set of c ∈ R for which M|z=c = (0) is a

union of balls in R of radius ε.
In particular, if R = Z, then up to addition and removal of finite sets, the set of c ∈ R for which

M|z=c = (0) is a finite union of arithmetic progressions with difference pr for some r ≥ 0.

Notation. Throughout the paper, we frequently denote (σn)∗M by Mσn

.

Acknowledgments. It is a pleasure to thank Brian Conrad, Dragos Ghioca, Joe Rabinoff, David
Rydh, and Joe Silverman for helpful discussions.

2. Constructing a p-adic family of modules

As outlined in the introduction, the first step in proving Theorem 1.4 is to construct a p-adic
family of modules interpolating between the iterates (σn)∗M . That is our goal in this section.

Notation. Throughout this section and the subsequent two sections we use the following notation
and assumptions.

(1) we let p be a prime number and we let K be a field that is complete with respect to a
non-Archimedean absolute value | · | such that |p| = 1/p;

(2) we let S = K〈xi, . . . , xd〉 be the ring of convergent power series;
(3) we let σ : S → S be a K-algebra automorphism satisfying |σ(xi) − xi| < p−c for some

c > 1/(p − 1) for i = 1, . . . , d;
(4) we let o denote the valuation ring of K.
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In particular, σ restricts to an o-algebra automorphism of o〈x1, . . . , xd〉.
The following result is immediate from Theorem 1 and Remark 3 of [Po]. We include the proof

here since we make use of the notation in Lemma 2.3.

Proposition 2.1 ([Po, Theorem 1]). If c > 1
1−p

and σ(b) ≡ b (mod pc) for all b ∈ o〈x1, . . . , xd〉,

then there exists a map σz : S → S〈z〉 such that σz(b)|z=n = σn(b) for all n ∈ Z.

Proof. Let ∆ : S → S be defined by ∆(b) := σ(b)− b. Let σz : S → S〈z〉 be defined by

σz(b) =
∑

m≥0

(
z

m

)
∆m(b),

where
(
z
m

)
:= 1

m!z(z−1) . . . (z−m+1). We must check that σz is well-defined; that is, | 1
m!∆

m(b)|p →
0 as m → ∞. Since |σ(xi)− xi| ≤ p−c and ∆ is Z[p−c]-linear, we see

|∆m(b)| ≤ p−mc|b| < |m!|,

for m large, which proves σz is well-defined.
Lastly, we note that

σz(b)|z=n =

n∑

m=0

(
n

m

)
∆m(b) = (∆ + id)n(b) = σn(b),

which proves the result. �

We next define the “p-adic powers” of σ:

Definition 2.2. For every element a ∈ Zp (and more generally, for every power bounded element
a ∈ S), we have a surjective map πa : S〈z〉 → S defined by z 7→ a. We define σa : S → S to be
σa = πa ◦ σ

z.

Lemma 2.3. Under the hypotheses of Proposition 2.1, the maps σz and σa satisfy the following

properties:

(1) σz : S → S〈z〉 is an injective homomorphism of K-algebras;

(2) σa+a′ = σa′ ◦ σa for all a, a′ ∈ Zp;

(3) σa is a K-algebra automorphism of S for all a ∈ Zp.

Proof. We first show that σz is additive. Note that for all b, b′ ∈ S and n ∈ N, we have σz(b +
b′)|z=n = σn(b+ b′) = σn(b)+σn(b′) = (σz(b)+σz(b′))|z=n. Since σ

z(b)+σz(b′)−σz(b+ b′) ∈ S〈z〉
and has roots at every element of N, by Strassman’s Theorem (see [St] or [Ca, Theorem 4.1, p. 62])
we know that σz(b+ b′) = σz(b) + σz(b′).

Similarly, we see that σz is multiplicative, and so it is a ring homomorphism. It is clear from
the definition that σz is K-linear. To show it is injective, note that if σz(b) = 0, then σ(b) =
σz(b)|z=1 = 0, and so b = 0. This proves (1).

Next, we recall the Chu-Vandermonde identity, which states that
(
a+a′

m

)
=

∑m
i=0

(
a
i

)(
a′

m−i

)
for all

a, a′ ∈ N. Since N is dense in Zp, we see that the same identity holds when a, a′ ∈ Zp. Since

σa+a′(b) =
∑

m≥0

(
a+ a′

m

)
∆m(b)

and

σa′(σa(b)) =
∑

i,j≥0

(
a

i

)(
a′

j

)
∆i+j(b) =

∑

m≥0

m∑

i=0

(
a

i

)(
a′

m− i

)
∆m(b).

this proves (2).
Property (3) follows from (2) since σ0 = id and σa ◦ σ−a = id = σ−a ◦ σa. �
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Lastly, we define our p-adic family of modules:

Definition 2.4. We use the notation and assumptions given in (1)–(4) at the beginning of this
section. If M is a finitely generated S-module and if we take a presentation M = Sd/〈r1, . . . , rm〉,
with r1, . . . , rm ∈ Sd, then we let M(z) := S〈z〉d/〈σz(r1), . . . , σ

z(rm)〉. For each a ∈ Zp (or more
generally any power bounded element a ∈ S), we then define

M(a) := Sd/〈σa(r1), . . . , σ
a(rm)〉,

which is simply the image πa(M(z)) under the evaluation map sending z 7→ a; i.e., the map
M(z) ⊗S〈z〉 S〈z〉 → M(z) ⊗S〈z〉 S in which S〈z〉 → S is given by specializing at z = a. Since
σz(M)|z=n = (σn)∗(M), we can think of M(z) as a p-adic family interpolating between the
(σn)∗(M) for n ∈ Z.

3. Specializing complexes of modules

In this section, we gather several technical results concerning exactness of sequences of S〈z〉-
modules after specializing z at values of Zp. We recall that a module M over a ring R is saturated
with respect to an element r ∈ R if for all x ∈ M , if rx = 0 then x = 0. We say M is saturated
with respect to a subset of R if it is saturated with respect to every element in the subset.

Lemma 3.1. Let R be a noetherian integral domain, let Σ ⊆ R be an additive subgroup, and let

Σ0 := Σr 0. Fix an element r ∈ R. If M is a finitely generated R-module which is saturated with

respect to Σ0, then M is saturated with respect to r−s for a cofinite set of s ∈ Σ. More specifically,

the size of the set

{s ∈ Σ | M not saturated with respect to r − s}

is at most the number of modules occurring in the primary decomposition of (0) ⊆ M.

Proof. Since R is noetherian and M is finitely generated, we have (0) = N1∩ · · · ∩Nt where the Ni

are primary submodules of M; that is, for each i, if x ∈ R is a zero divisor on M/Ni then there is
some n ≥ 1 such that xnM ⊆ Ni. By taking a minimal decomposition, we may assume that each
Ni is a proper submodule of M and that any proper intersection of N1, . . . ,Nt is non-trivial.

IfM is not saturated with respect to r−s, then there exists nonzero f ∈ M such that (r−s)f = 0.
Since f is nonzero, there exists i such that f /∈ Ni, and so (r − s)cM ⊆ Ni for some c ≥ 1.

Now, if there are distinct elements s1, . . . , sm ∈ Σ0 with m > t and M not saturated with respect
to the r − sj , then we can find i and j 6= k and a positive integer c such that both (r − sj)

cM
and (r − sk)

cM are contained in Ni. Now M 6⊆ Ni and so we can find a submodule M′ ⊆ M
of the form M′ = (r − sj)

a(r − sk)
bM, for some a, b ≥ 0, with the property that M′ 6⊆ Ni but

(r − sj)M
′ and (r − sk)M

′ are both contained in Ni. But now it follows that (sj − sk)M
′ ⊆ Ni.

Since M′ 6⊆ Ni, we see sj − sk is a zero divisor on M′/Ni, and so there is some natural number d

such that (sj − sk)
dM ⊆ Ni. But now if we take nonzero x ∈

⋂
ℓ 6=iNℓ then (sj − sk)

dx is in every

Nℓ and hence (sj − sk)
dx = 0. By our saturation hypothesis, we see that x = 0, a contradiction.

The result follows. �

Applying this to R = A〈z〉, r = z, and Σ = Zp we have

Corollary 3.2. Let A be a noetherian Zp-algebra which is an integral domain, and let M be a

finitely generated A〈z〉-module. If M is saturated with respect to Zp r 0, then M is saturated with

respect to z − a for a cofinite set of a ∈ Zp.

In the following lemma, we discuss how kernels and images of S〈z〉-module maps interact with
specialization at z = a.
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Lemma 3.3. Let K be a field over Qp. Let S = K〈x1, . . . , xd〉 and g(z) : M(z) → M′(z) be a

morphism of finitely generated S〈z〉-modules. Then Im(g(a)) = Im(g(z))|z=a for all a ∈ Zp, and

ker(g(a)) = ker(g(z))|z=a for all but finitely many a ∈ Zp.

Proof. We begin by addressing the statement about kernels. Since K is a field containing Qp,
every S〈z〉-module is automatically saturated with respect to Zp r 0. So, by Corollary 3.2 there
are only finitely many a ∈ Zp for which the finitely generated S〈z〉-module M′(z)/Im(g(z)) is not
saturated with respect to z − a. Assuming that a is not contained in this finite set, we show that
the conclusion of the lemma holds.

Let θ ∈ M(a) be in the kernel of g(a). Since the map M(z) → M(a) is surjective there is some
θ(z) ∈ M(z) with the property that θ = θ(a). Then by assumption g(z)(θ(z)) ∈ (z − a)M(z) =
ker(M(z) → M(a)). Thus we have g(z)(θ(z)) = (z − a)u(z) for some u(z) ∈ M(z). By our choice
of a, we see that u(z) ∈ Im(g(z)) and so u(z) = g(z)(θ′(z)). Thus θ(z)− (z−a)θ′(z) is in the kernel
of g(z). Since θ(z) − (z − a)θ′(z) is a lift of θ, we have shown ker(g(z)) → ker(g(a)) is surjective,
as desired.

Lastly, we show that Im(g(z))|z=a = Im(g(a)) for all a ∈ Zp. First observe that if θ′(z) =
g(z)(θ(z)), then after specialization we have θ′(a) = g(a)(θ(a)); thus, Im(g(z))|z=a ⊆ Im(g(a)). On
the other hand, if θ′ = g(a)(θ) for some θ ∈ M(a) then letting θ(z) ∈ M(z) with θ(a) = θ and taking
ξ(z) = g(z)(θ(z)), we see ξ(z) ∈ Im(g(z)) and ξ(a) = θ. This gives the other containment. �

As an immediate consequence of the above lemma, we have

Corollary 3.4. Let K be a field over Qp. Let S = K〈x1, . . . , xd〉, let

M′′(z)
f(z)
−→ M(z)

g(z)
−→ M′(z)

be a sequence of finitely generated S〈z〉-modules, and let H(z) denote the cohomology module

ker(g(z))/ Im(f(z)). Consider the induced sequence of S-modules

M′′(a)
f(a)
−→ M(a)

g(a)
−→ M′(a)

and denote its cohomology by H(a). Then for all but finitely many a ∈ Zp,

H(a) = H(z)|z=a.

In particular, if the former sequence is exact, then the latter is for all but finitely many a ∈ Zp.

4. Proof of Theorems 1.4 and 1.5

In this section, we prove the following result, which clearly implies Theorem 1.5, and hence
Theorem 1.4.

Theorem 4.1. Adopt the assumptions of Theorem 1.4, let M(z) be as in Definition 2.4, and let

N (z) = S〈z〉 ⊗S N . If Tor
S〈z〉
i (M(z),N (z)) = 0, then TorSi (M(a), N) = 0 for all but finitely many

a ∈ Zp. If Tor
S〈z〉
i (M(z),N (z)) 6= 0, then the set of a ∈ Z for which TorSi (M(a), N) 6= 0 is, up to

addition and removal of a finite set, a finite union of arithmetic progressions of difference pr for

some r ≥ 0.

We prove the theorem after giving a preliminary result relating TorSi (M(a),N (a)) to the spe-

cialization of Tor
S〈z〉
i (M(z),N (z)).

Proposition 4.2. Let K be a field over Qp and let S = K〈x1, . . . , xd〉. If M(z) and N (z) are

finitely generated S〈z〉-modules, then

TorSi (M(a),N (a)) = Tor
S〈z〉
i (M(z),N (z))|z=a

for all but finitely many a ∈ Zp.
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Proof. By [Ke, Proposition 6.5], there is a finite free resolution

0 → Pd(z) → Pd−1(z) → · · · → P0(z) → N (z) → 0.

Then Corollary 3.4 shows that

0 → Pd(a) → Pd−1(a) → · · · → P0(a) → N (a) → 0

is a finite free resolution of N (a) for all a ∈ Zp r T , where T is a finite set.
Tensoring the former resolution with M(z), we obtain a complex

0 → Pd(z)⊗S〈z〉M(z) → Pd−1(z)⊗S〈z〉M(z) → · · · → P1(z)⊗S〈z〉M(z) → P0(z)⊗S〈z〉M(z) → 0.

Notice that this complex specializes to

0 → Pd(a)⊗S M(a) → Pd−1(a)⊗S M(a) → · · · → P1(a)⊗S M(a) → P0(a)⊗S M(a) → 0

and so another application of Corollary 3.4 shows that for all a outside of a finite set T ′, the

cohomology of the former complex, namely Tor
S〈z〉
i (M(z),N (z)), specializes to cohomology of the

latter complex, which we temporarily denote by Hi(a).
Now, for all a /∈ T , the complex P•(a) is exact, and so Hi(a) = TorSi (M(a),N (a)). Thus,

TorSi (M(a),N (a)) = Tor
S〈z〉
i (M(z),N (z))|z=a for all a /∈ T ∪ T ′. �

Proof of Theorem 4.1. By Proposition 4.2, we know

TorSi (M(a), N) = Tor
S〈z〉
i (M(z),N (z))|z=a

for all but finitely many a ∈ Zp. So, if Tor
S〈z〉
i (M(z),N (z)) = 0, then TorSi (M(a), N) = 0 with

finitely many exceptions. If Tor
S〈z〉
i (M(z),N (z)) is a non-zero module, then applying our module-

theoretic Strassman Theorem A.1, we see that after addition or removal of a finite set, the a ∈ Zp

where TorSi (M(a), N) 6= 0 is a finite union of arithmetic progressions with difference pr for some
r ≥ 0. �

Corollary 4.3. Let k be a field of characteristic zero and let R be a k-algebra that is a regular

noetherian local ring such that the field of fractions of R is a finitely generated extension of k and

such that R/m = k. Suppose that σ : R → R is a k-algebra automorphism of R and that M and N
are finitely generated R-modules. Then for each i ≥ 1 we have that

{n : TorRi (M
σn

, N) 6= 0}

is a finite union of arithmetic progressions up to addition and removal of finite sets.

Proof. Let d be the Krull dimension of R. Pick t1, . . . , td ∈ m that generate the maximal ideal. By

Cohen’s structure theorem, we have that the completion, R̂, of R is isomorphic to the power series
ring k[[t1, . . . , td]]. Since σ(m) = m, σ extends to an automorphism of k[[t1, . . . , td]]. Since the field
of fractions of R is finitely generated as an extension of k, we have that Frac(R) is finite over the
subfield k(t1, . . . , td).

Hence σ(ti) = fi(t1, . . . , td) where each fi(t1, . . . , td) is algebraic over k(t1, . . . , td). Now an
algebraic power series has the property that its coefficients lie in a finitely generated Z-algebra.
(This follows from a general result of Denef and Lipshitz [DL], which shows in particular that the
set of coefficients of an algebraic power series in d variables is a subset of the collection of coefficients
of some rational power series in 2d variables.) Thus there is a finitely generated Z-subalgebra A of
k such that f1, . . . , fd ∈ A[[x1, . . . , xd]].

Since Tor commutes with completion for finitely presented modules we may work with R̂ and

replace M by M ⊗R R̂ and N by N ⊗R R̂. Now let J denote the Jacobian of (f1, . . . , fd) at the
origin. Then the determinant of J is a nonzero element of A. By adjoining the inverse of det(J)
to A, we may assume that J is invertible in A. By construction, σ restricts to an automorphism of
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A[[x1, . . . , xd]]. Furthermore, we have that M ∼= R̂t/L and N ∼= R̂s/E for submodules L and E of

R̂t and R̂s respectively. Then by taking generators for L and E and adjoining the coordinates of all
elements in these generating sets to A, we may assume that A is still a finitely generated Z-algebra
and that there are finitely presented A[[x1, . . . , xd]-modules M0 and N0 such that M ∼= M0 ⊗A k
and N ∼= N0⊗A k. Observe that k[[x1, . . . , xd]] is flat over A[[x1, . . . , xd]], as it is a free module over
a localization of A[[x1, . . . , xd]]. Let k0 denote the field of fractions of A. Then we have [Stacks,
Lemma 10.75.1]

Tor
k[[x1,...,xd]]
i (M,N) ∼= Tor

A[[x1,...,xd]]
i (M0, N0)⊗A[[x1,...,xd]] k[[x1, . . . , xd]].

Moreover, since k[[x1, . . . , xd]] is faithfully flat over k0[[x1, . . . , xd]], we see that

Tor
k[[x1,...,xd]]
i (Mσn

, N) = 0

if and only if

Tor
k0[[x1,...,xd]]
i (Mσn

0 ⊗A k0, N0 ⊗A k0) 6= 0.

Now let M1 = M0⊗A k0 and let N1 = N0⊗A k0. Then pick a maximal ideal Q of A such that AQ

is regular. Since A is a finitely generated Z-algebra, A/Q is a finite field. We take the completion,

ÂQ, of AQ. Then by Cohen’s structure theorem [Mat, Section 29], this is a power series ring in a
finite number of variables over a finite unramified extension o of Zp for some prime p. Let F denote
the field of fractions of this completion of AQ. Then since σ is the identity on k0 we may extend the
automorphism σ of k0[[x1, . . . , xd]] to an automorphism of k0[[x1, . . . , xd]] ⊗k0 F . By then taking
limits we may extend this to an automorphism of F [[x1, . . . , xd]].

Since F [[x1, . . . , xd]] is a faithfully flat extension of k0[[x1, . . . , xd]], we see that

Tor
k[[x1,...,xd]]
i (Mσn

, N) = 0

if and only if

Tor
F [[x1,...,xd]]
i ((M ′)σ

n

, N ′) = 0,

where M ′ = M1 ⊗k0[[x1,...,xd]] F [[x1, . . . , xd] and N ′ = N1 ⊗k0[[x1,...,xd]] F [[x1, . . . , xd]. Moreover,
by construction the induced automorphism σ of F [[x1, . . . , xd]] has the property that σ(xi) =

fi(x1, . . . , xd) ∈ (ÂQ)[[x1, . . . , xd]] ⊆ F [[x1, . . . , xd]] has Gauss norm ≤ 1 and the determinant of
the Jacobian at the origin has p-adic norm exactly one, since it is a unit in A by how we defined A.

In particular, since ÂQ has finite residue field, we see that some iterate, σm, of σ has the property

that its Jacobian at the origin is congruent to the identity modulo the maximal ideal of ÂQ.
Now to finish the proof off, let ui = xi/p for i = 1, . . . , d. Then F [[x1, . . . , xd]] = F [[u1, . . . , ud]].

Observe that

σ(ui) =
1

p
· fi(pu1, . . . , pud) ≡ Li(u1, . . . , ud) (mod po),

where Li is the linear part of fi. Then by the above remarks we see that σm(ui) ≡ ui (mod po)
for i = 1, . . . , d. Then by Theorem 1.4 we see that for j = 0, . . . ,m− 1 we have

{n : Tor
F [[u1,...,ud]]
i (σmn+jM ′, N ′) 6= 0}

is, up to addition and removal of a finite set, equal to a finite union of arithmetic progressions. The
result follows. �
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5. Theorem 1.3 for surfaces

In this section we prove the surface case of Theorem 1.3. We first give some preliminary results.

Lemma 5.1. Let (R,m) be a regular local ring of dimension two and let M be a finitely generated

R-module whose support is {P1, . . . , Pd} with each Pi of height at most one. Then projdim(M) ≤ 1.

Proof. If it is not, then projdim(M) ≥ 2 and so TorR2 (R/m,M) 6= 0. Thus it suffices to show that
TorR2 (R/m,M) = 0. Let x and y be generators for m. Then we have a resolution

0 → R → R2 → R → R/m,

where the map R → R2 is the map given by 1 7→ (y,−x) and the map from R2 → R is the map
(a, b) 7→ xa + yb. Then from this resolution we see that TorR2 (R/m,M) is just the kernel of the
map M = M ⊗R R → M2 = M ⊗R R2 given by m 7→ (ym,−xm). Since the maximal ideal of R is
not in the support of M , we see that the kernel is trivial. �

Notice this lemma shows that a torsion-free coherent sheaf T on a smooth surface X has the
property that TorX2 (T ,N ) = 0 for any coherent sheaf N .

Proposition 5.2. Let k be an algebraically closed field, let X be a smooth surface over k, and let

N and T be coherent sheaves on X that each have the property that they are supported on a finite

set of points and a finite set of curves. Then TorX1 (T ,N ) is nonzero if and only if either some

irreducible subvariety in the support of T contains an irreducible subvariety in the support of N or

some irreducible subvariety in the support of N contains an irreducible subvariety in the support of

T .

Proof. Let Supp(T ) = {V1, . . . , Vm} and Supp(N ) = {W1, . . . ,Wq}, where each Vi and each Wj is
either a point or an irreducible curve. Now suppose that either Vi ⊆ Wj for some i, j or Wi ⊆ Vj for
some i, j. Then after switching T and N , if necessary and reindexing if necessary, we may assume
that V1 ⊆ W1. We shall show TorX1 (T ,N ) is nonzero. To see this, suppose that TorX1 (T ,N ) = 0.
Then since Tor commutes with localization we have TorR1 (TV1

,NV1
) = 0, where R = OX,V1

is a
regular local ring. We let P denote the maximal ideal of R. Since V1 is in the support of T we
have that there is an element in TV1

that is annihilated by P . Hence the depth of TV1
is zero. By

a result of Lichtenbaum [Li, Corollary 6] we then have that the homological dimension of NV1
is

zero; that is, TorR1 (R/P,NV1
) = 0. But this implies that NV1

is torsion-free, which is impossible
since W1 ⊇ V1 is in the support of N . Thus we see that TorX1 (T ,N ) is nonzero, completing half
of the proof.

Suppose that no Vi contains a Wj and that no Wi contains a Vj . We claim that TorX1 (T ,N ) = 0.

To see this, suppose that TorX1 (T ,N ) 6= 0. Then there is some p ∈ X such that TorR1 (Tp,Np) 6= 0,

where R = OX,p. Since TorR1 (Tp,Np) 6= 0 there is some i and some j such that p ∈ Vi ∩Wj. Let
m denote the maximal ideal of R. We note that m cannot be an element of the support of Tp
since we would then have p = Vk for some k and so Vk ⊆ Wj, which we have assumed not to be
the case; similarly, m cannot be an element of the support of Np. In particular, the support of Tp
consists of a finite set of height one primes and the same holds for the support of Np. Moreover,
by assumption the support of Tp and the support of Np cannot share a common height one prime

ideal. Thus, m must be in the support of TorR1 (Tp,Np), since the supports of Tp and Np are
both unions of height one primes and they do not share any common primes. Then a result of
Auslander’s [Au, Theorem 2] gives that projdim(Tp)+projdim(Np) ≥ 3. But Lemma 5.1 gives that
projdim(Tp) + projdim(Np) ≤ 2, a contradiction. The result follows. �

The proof of Theorem 1.3 for surfaces is a series of reductions. We first show that the result
holds if both sheaves are supported on proper subvarieties of an affine X. We then prove a lemma
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allowing us to restrict from a quasiprojective variety to an open affine subset. Finally, in Theorem 5
we put the pieces together, using Corollary 4.3 to handle behaviour at points of finite σ-order.

Proposition 5.3. Let k be an algebraically closed field of characteristic zero, let X be a quasipro-

jective irreducible surface over k, and let σ : X → X be an automorphism of X. If M and N
are coherent sheaves on X whose supports each have dimension at most one and U is a non-empty

affine open subset of X then for each i ≥ 1, the set of natural numbers n for which

Tor
OX(U)
i (Mσn

(U),N (U)) 6= (0)

is a finite union of infinite arithmetic progressions up to addition and removal of finite sets.

Proof. We first prove the result when i = 1. Write Supp(M) = {V1, . . . , Vm} and Supp(N ) =
{W1, . . . ,Wq}, where each Vi and each Wj is either a point or an irreducible curve. Then since
SuppMσn

= {σ−n(V1), . . . , σ
−n(Vq)}, by Proposition 5.2, we have that

Tor
OX(U)
1 (Mσn

(U),N (U)) 6= 0

if and only if σ−n(Vi) ⊆ Wj or σ−n(Vi) ⊇ Wj for some i and j with σ−n(Vi) ∩ U and Wj ∩ U
non-empty. For each i ≤ m and j ≤ q such that Vi ∩ U and Wj ∩ U are non-empty we let S(i, j)
denote the set of integers n for which σ−n(Vi) ⊆ Wj and we let S ′(i, j) denote the set of integers n
for which σ−n(Vi) ⊇ Wj . Then

{n ∈ Z : Tor
OX(U)
1 (Mσn

(U),N (U)) 6= 0} =

m⋃

i=1

q⋃

j=1

(
S(i, j) ∪ S ′(i, j)

)
.

Thus it is sufficient to show that for each i and j both S(i, j) and S ′(i, j) are both a finite union
of complete doubly infinite arithmetic progressions up to addition and removal of finite sets. By
symmetry it is enough to just show this for S(i, j). Since Vi is either a point or a curve and Wj

is either a point or a curve, there are four cases to consider. If Vi is a curve and Wj is a point,
then S(i, j) is empty. If Vi is a point and Wi is a point then S(i, j) = {n : σ−n(Vi) = Wj}. This
is easily seen to either the empty set, a single integer, or a single arithmetic progression. If Vi is
a curve and Wi is a curve then S(i, j) = {n : σ−n(Vi) = Wj}, which is again either the empty set,
a single integer, or a single arithmetic progression. Finally, if Vi is a point and Wi is a curve then
S(i, j) = {n : σ−n(Vi) ∈ Wj, σ−n(Vi) ∈ U}. Since U c and Wj are both Zariski closed, we see that
this set is a finite union of arithmetic progressions up to addition and subtraction of finite sets (cf.
[BGT]). Thus we have shown that the set of n for which TorX1 (Mσn

,N ) 6= 0 is a finite union of
arithmetic progressions up to addition and removal of finite sets.

We now quickly argue that for each i ≥ 1, the set of n for which Tor
OX(U)
i (Mσn

(U),N (U)) 6= 0
is a finite union of arithmetic progressions up to addition and removal of finite sets. We have
just proven the case when i = 1. Since X is a smooth surface, it remains only to prove the case

when i = 2. The set of n for which Tor
OX(U)
1 (Mσn

(U),N (U)) 6= 0 is a finite union of arithmetic
progressions up to addition and removal of finite sets. Then we have a short exact sequence

0 → M′ → F → M → 0

with F locally free and coherent and M′ coherent. Since σn(F) is also locally free, we see

Tor
OX(U)
i (Fσn

(U),N (U)) = 0 for all i > 0. Then Tor
OX(U)
1 ((M′)σ

n

(U),N (U)) is isomorphic

to Tor
OX(U)
2 (Mσn

(U),N (U)), and so we obtain the desired result. �

Lemma 5.4. Let k be an uncountable algebraically closed field, let X be an irreducible quasipro-

jective variety over k, and let F be a finite subset of X and let T be a countably infinite subset of

X with F ∩ T = ∅. Then there is a rational function f on X with the following properties:

(1) f is regular at all points in F ∪ T ;
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(2) f(x) = 0 for x ∈ F ;

(3) f does not vanish at any point in T ;
(4) X r V (f) is affine.

Proof. We fix an embedding X → Pn and take homogeneous coordinates [x0 : · · · , xn] for P
n. We

first claim that there is a homogeneous one-form L := c0x0 + · · · + cnxn with [c0 : · · · : cn] ∈ Pn

such that the zero locus of L is disjoint from F ∪ T . To see this, observe that the collection of
homogeneous one-forms can be identified with Pn(k). Then the set of forms that vanish at a point
y ∈ Pn is a proper closed subset of Pn(k). Since F ∪ T is countable and Pn(k) cannot be written
as a countable union of proper subvarieties we see there is some homogeneous one form whose zero
locus completely avoids F ∪ T . By changing variables, we may assume that L = x0. Now for each
y ∈ F , we consider the collection of homogeneous one-forms that vanish at y. As before, this can
be identified with Pn−1 and as before, we see there is some form Ly that vanishes at y and whose
zero locus avoids T . Now X − V (Ly) is a non-empty open affine neighbourhood of X. We now let
f =

∏
y∈F Ly/x0. Then f is a rational function on X satisfying properties (1)–(4). �

We now reduce the general case to the preceding result by using Corollary 4.3.

Theorem 5.5. Theorem 1.3 holds for smooth surfaces.

Proof. We first note that by replacing X by X ×k k′ for some uncountable algebraically closed
extension k′ of k we may assume that our base field k is uncountable and algebraically closed.

Let i ≥ 1 and let p1, . . . , pd denote the σ-periodic points that are elements of SuppM∪ SuppN .
We may replace σ by an iterate and assume that p1, . . . , pd are fixed points of σ. Then for j =
1, . . . , d, we let

Xj = {n ∈ Z : Tor
OX,pj

i ((Mσn

)pj ,Npj) 6= 0}.

By Corollary 4.3 we have that Xj is, up to addition and removal of a finite set, a finite union of
arithmetic progressions. We next let

U = {n ∈ Z : Tor
OX,q

i ((Mσn

)q,Nq) 6= 0 for some q ∈ X r {p1, . . . , pd}}.

Then the set of integers n for which TorXi (Mσn

,N ) 6= 0 is the (not necessarily disjoint) union of the
Xj and U , and so it is sufficient to show that U is, up to addition and removal of a finite set, a finite
union of arithmetic progressions. Now for each n ∈ U we can pick some point qn ∈ Xr{p1, . . . , pd}
that witnesses the non-vanishing of TorXi (Mσn

,N ); we then let T = {σj(qn) : j ∈ Z, n ∈ U . Then
T is a countable subset of X that avoids p1, . . . , pd and so by Lemma 5.4, there is a rational function
f that is regular at p1, . . . , pd and at all points in T with the following properties:

(1) f(pi) = 0 for i = 1, . . . , d;
(2) f does not vanish at any point in T ;
(3) U := X r V (f) is affine.

We note that σ need not induce an automorphism of U .
For n ∈ U we have that TorUi (M

σn

(U),N (U)) does not vanish. Now we have a short exact
sequence of sheaves

0 → N ′ → N → N ′′ → 0

with N ′ having support of dimension at most one and N ′′ being torsion free. By Lemma 5.6, we
have that TorUj (M

σn

(U),N ′′(U)) = 0 for all but finitely many n for all j ≥ 1. This then gives that

TorUi (M
σn

(U),N (U)) ∼= TorUi (M
σn

(U),N ′(U))

for all i ≥ 1 and all but finitely many n. Now we similarly have an exact sequence

0 → M′ → M → M′′ → 0
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with M′ having support of dimension at most one and M′′ being torsion free. Then by Lemma
5.6 we have TorUj ((M

′′)σ
n

(U),N ′′(U)) = 0 for all but finitely many n for all j ≥ 1 and so we get
an isomorphism

TorUi (M
σn

(U),N (U)) ∼= TorUi (M
σn

(U),N ′(U)) ∼= TorUi ((M
′)σ

n

(U),N ′(U)).

By Proposition 5.3, since dimSuppM′ and dimSuppN ′ ≤ 1 we then see that the set of n for which
Tori((M

′)σ
n

(U),N ′(U)) is, up to addition and removal of a finite set, a finite union of arithmetic
progressions. The result now follows. �

Lemma 5.6. Let k be an algebraically closed field of characteristic zero and let X be an irreducible

smooth quasiprojective surface over k, let U be a non-empty affine open subset of X, and let σ ∈
Autk(X). If F is a torsion-free coherent sheaf on X and N is a coherent sheaf on X such that there

are no σ-periodic points in X that are elements of the support of N then TorUj (F
σn

(U),N (U)) = 0

for all but finitely many n for all j ≥ 1 and TorUj (N
σn

(U),F(U)) = 0 for all but finitely many n
for all j ≥ 1.

Proof. We do the case where TorUj (F
σn

(U),N (U)) = 0, the other case following mutatis mutandis.
We have a short exact sequence

0 → F → E → Q → 0

with E coherent and locally free and Q coherent having support of dimension at most one. Then
since E is locally free, we have an isomorphism TorUj (F

σn

(U),N (U)) ∼= TorUj+1((Q
σn

)(U),N (U)).
Since X is a smooth surface, we see that the only case that is not immediate is when j = 1 and so
it is sufficient to show that the set of n such that TorU2 ((Q

σn

)(U),N (U)) is nonzero is finite. Let
q1, . . . , qr be the points in U that are elements of SuppN ; i.e., the associated points of N in U . By
Lemma 5.1 we see that if TorU2 ((Q

σn

)(U),N (U)) is nonzero, then there must be some qi that is
an element of the support of Qσn

and such that TorU2 ((Q
σn

)qi ,Nqi) 6= 0. Thus σ−n(qi) must be an
element of SuppQ. But by assumption, q1, . . . , qr are not σ-periodic points and so the collection
of n for which σ−n(qi) is an element of SuppQ is a finite set.

�

6. Theorem 1.3 when σ lies in an algebraic group

In this section we prove the remaining case of Theorem 1.3.

Theorem 6.1. Let k be an algebraically closed field of characteristic zero, let X be a nonsingular

quasiprojective variety over k, and let G be an algebraic group contained in Autk(X). Let σ ∈ G
and let M, N be coherent sheaves on X. For all i ≥ 1 the sets:

{n ∈ Z | TorXi ((σn)∗M,N ) = 0}

and

{n ∈ Z | TorXi ((σn)∗M,N ) 6= 0}

are finite unions of infinite arithmetic progressions up to the addition and removal of finite sets.

Theorem 6.1 follows from the following result.

Proposition 6.2. Let k be an algebraically closed field of characteristic zero, let X be a nonsingular

quasiprojective variety over k, and let H be a connected component of an algebraic group G contained

in Autk(X). Let M,N be coherent sheaves on X. For all i ≥ 1, there is an open subset V of H so

that either

TorXi (g⋆M,N ) = 0 for all g ∈ V,

or

TorXi (g⋆M,N ) 6= 0 for all g ∈ V.
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Proof. Let

G×X
p

//

q

��

X

G

be the two projection maps, and let µ : G × X → X be the map defining the action of G on X.
Consider coherent sheaves F on G×X and E on X. When we write F ⊗X E , we implicitly assume
that X acts on F via µ. We note that µ is flat and so we have

TorG×X
i (F , µ∗E) ∼= TorXi (F , E).

Let L• → M be a locally free resolution of M (which is finite by assumption). Consider the
complex

C• = p∗L• ⊗X N

of sheaves on G×X. The sheaves p∗L• are an X-flat resolution of p∗M, and so the ith homology
of C• is TorXi (p∗M,N ). These homology groups are computed via exact sequences

0 → Zi+1 → Ci+1 → Bi → 0

and
0 → Bi → Zi → TorXi (p∗M,N ) → 0

for 0 ≤ i ≤ dimX. By generic flatness, there is a dense open subset V ⊂ H such that each of the
finitely many Bi and TorXi (p∗M,N ) are flat over V . Therefore, if g ∈ V , the sequences

0 → Zi+1 ⊗G kg → (p∗Li+1 ⊗X N )⊗G kg → Bi ⊗G kg → 0

and
0 → Bi ⊗G kg → Zi ⊗G kg → TorXi (p∗M,N )⊗G kg → 0

are still exact, and so
Hi(C• ⊗G kg) = TorXi (p∗M,N )⊗G kg

for all i ∈ Z and g ∈ V .
Note that µ induces the multiplication-by-g isomorphism from {g} × X → X. The complex

p∗L• ⊗G kg is a locally free resolution of M on {g} × X. Thus µ maps C• ⊗G kg to the complex
g∗L• ⊗X N , and these complexes are isomorphic considered as sheaves on X. The final complex
computes TorXi (g∗M,N ). It follows that

µ∗(Tor
X
i (p∗M,N )⊗G kg) ∼= TorXi (g∗M,N )

for all i ∈ Z and g ∈ V .
The sheaves TorXi (p∗M,N ) are flat over V by assumption. Since V is an open subset of a con-

nected variety, it is connected. Thus for each i it is the case that either the sheaf TorXi (p∗M,N )⊗G

kg is 0 for all g ∈ V or that it is never 0 for g ∈ V . Replacing g by g−1, the result follows. �

Proofs of Theorem 6.1. By replacing G by the Zariski closure of the subgroup generated by σ we
may assume that the forwards and backwards iterates of σ are Zariski dense in G. By replacing σ
by an iterate, we may assume that σ lies in the connected component of the identity of G and that
its iterates are dense in the connected component of the identity of G. Since the result holds for σ if
it holds for an iterate of σ, we may then assume that G is connected. Let i ≥ 1. By Proposition 6.2,
there is a nonempty open subset V of G such that either TorXi (g∗M,N ) is zero for every g ∈ V or
it is nonzero for every g ∈ V . Now consider the map f : G → G given by f(g) = σ ◦g. Then f is an
automorphism and V is open, so the collection of integers n for which fn(1) ∈ XrV is a finite union
of arithmetic progressions along with a finite set (cf. [BGT]). Moreover, since S := {fn(1) : n ∈ Z}
is Zariski dense in G, we see that there cannot possibly be an infinite arithmetic progression upon
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which fn(1) ∈ X r V , since the Zariski closure of elements in this progression would be a proper
closed subset and would be invariant under an iterate of σ, contradicting the fact that S is dense in
G. Thus there are only finitely many n for which fn(1) ∈ X rV . This means that TorXi (Mσn

,N )
is either zero for all but finitely many n or it is nonzero for all but finitely many n. Noting that we
replaced σ by an iterate, we then obtain the desired result. �

A. Appendix: Module-Theoretic Analogue of Strassman’s Theorem

Strassman’s theorem [St] is a cornerstone finiteness result in p-adic analysis, controlling the
zeros of a convergent power series. Specifically, it states that if K is a non-Archimedean field with
valuation ring o, then every nonzero element f(z) of the ring of convergent power series K〈z〉 has
only finitely many zeros in o. The goal of this appendix is to prove a module-theoretic analogue of
Strassman’s theorem. Throughout this section, we take K to be a non-Archimedean field containing
Qp, take o to be its valuation ring, and R to be a subring of o.

Theorem A.1. Let M be a finitely generated K〈x1, . . . , xd, z〉-module. Then the set of c ∈ R for

which M|z=c = (0) is open in R. If R is compact, then there exists ε > 0 such that up to the

addition and removal of finite sets, the set of c ∈ R for which M|z=c = (0) is a union of balls in R
of radius ε.

In particular, if R = Z then up to addition and removal of finite sets, the set of c ∈ R for which

M|z=c = (0) is a finite union of arithmetic progressions with difference pr for some r ≥ 0.

Remark A.2. Using Theorem A.1, we recover a weak version of Strassman’s theorem, namely the
case where K/Qp is a finite extension. Let d = 0, M = K〈z〉/(f(z)), and R = o. Since K/Qp is
finite, R is compact and so Theorem A.1 tells us that there exists ε > 0 such that up to addition
and removal of finite sets, the set of c ∈ R with M|z=c = (0) is a union of ε-balls. Since there are
only finitely many balls of radius ε, this set is a finite union of ε-balls, and hence closed.

Now notice that M|z=c = (0) if and only if f(c) 6= 0. As a result, up to addition and removal
of finite sets, the set of c ∈ R where f vanishes is open. Since f(z) has infinitely many zeros in R
by assumption, it must vanish on a ball, say of radius ε′. Recentering the ball, we can assume that
f(z) vanishes for all |z| < ε′. If f(z) is non-zero, then it has the form f(z) = anz

n+
∑

i>n aiz
i with

an 6= 0. However, for |z| sufficiently small, anz
n has larger norm than

∑
i>n aiz

i, and so f does not
vanish at z. We conclude that f(z) = 0.

Before proving Theorem A.1, let us give some motivation as to why one would expect this
statement to be true. We begin with a simple proof of Strassman’s theorem using the commutative
algebra of affinoids. For each λ ∈ o, the ideal (z − λ) is a maximal ideal of K〈z〉. If f(λ) = 0
then f(z) ∈ (z − λ). Suppose f(λ) = 0 for all λ ∈ S where S is an infinite subset of o. Then
f(z) ∈ I :=

⋂
λ∈S(z − λ). Note that I is a radical ideal and it has finitely many minimal prime

ideals P1, . . . , Pr above it. Then since each (z − λ) is above I, each (z − λ) contains some Pi. In
particular, there is some j and an infinite set of λ such that (z − λ) ⊇ Pj . But by Krull’s principal
ideal theorem we have that (z−λ) is a height one prime ideal and since they are pairwise comaximal
we then see that Pj = (0) and so I = (0).

Taking this point of view, it is natural to seek an extension expressed in terms of ideal mem-
bership. More precisely, one has an affinoid algebra S := K〈x1, . . . , xd, z〉 and an ideal I(z). One
would like to conclude that if f(z) ∈ S has the property that f(z) ∈ I(z) + (z − c)S for infinitely
many c ∈ o then f is in I(z). Notice that if one had such a statement, then taking d = 0 and I(z)
to be the zero ideal gives Strassman’s theorem. Unfortunately, this is false as stated. For example,
the ideal I(z) = (z) has the property that 1 ∈ I(z) + (z − c)S for all nonzero c ∈ o. Another
example, when K is an extension of Qp, is given by the ideal I(z) := (xz− 1) in K〈x, z〉, which has
the property that 1 ∈ I(z) + (z − c)R for all c ∈ pZp. Notice that in the latter example, this set of
c is an open ball; in the former example it is an open ball minus a point.
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We begin the proof of Theorem A.1 by showing that the desired set of c is open in R.

Lemma A.3. If M is a finitely generated K〈x1, . . . , xd, z〉-module, then the set of c ∈ R for which

M|z=c = (0) is open in R.

Proof. Now let T denote the collection of c ∈ R for which M|z=c = (0), or equivalently, (z−c)M =
M. We show that T is open. To see this, let g1, . . . , gℓ be a set of generators for M and let c ∈ T .
Then (z − c)hi = gi for some hi ∈ M for i = 1, . . . , ℓ. We can write hi =

∑
ai,jgi. Let ε be a

positive number that is less than the reciprocal of the Gauss norm of each nonzero ai,j. Then for
α ∈ B(c, ε) ∩ R, the ball of radius ε centered at c, we have (z − α)hi = (z − c)hi + (c − α)hi =
gi +

∑
(c− α)ai,j(z)gj . We can write this in the form

(z − α)




h1
...
hℓ


 = (I + T )




g1
...
gℓ


 ,

where T is a ℓ×ℓ matrix with entries in K〈x1, . . . , xd, z〉 that are of Gauss norm is strictly less than
1 and I is the identity matrix. In particular, I+T is invertible with inverse I−T +T 2−T 3+ · · · ∈
Md(K〈x1, . . . , xd, z〉). Thus multiplying our vector equation on the left by (I + T )−1 we see that
(z − α)hi with i = 1, . . . , ℓ generate M. Thus B(c, ε) ⊆ T , showing that T is open. �

We next reduce the general case to that of cyclic modules.

Lemma A.4. Let S = K〈x1, . . . , xd〉 and M be a finitely generated S〈z〉-module. If N =
S〈z〉/Ann(M). Then

{c ∈ R | M|z=c = (0)} = {c ∈ R | N |z=c = (0)}.

Proof. Let J = Ann(M). First if N|z=c = (0), then 1 = f + (z − c)g with f ∈ J and some
g ∈ S〈z〉, and so every m ∈ M can be expressed as m = fm+ (z − c)gm = (z − c)gm ∈ (z − c)M
showing that M|z=c = (0).

Conversely, suppose M|z=c = (0) and let m1, . . . ,mℓ be a set of generators of M. Then there is
a matrix A ∈ Mℓ(S〈z〉) such that




m1
...
mℓ


 = (z − c)A




m1
...
mℓ


 .

Let f = det(I − (z − c)A) ∈ S〈z〉 which is non-zero since it is of the form 1 + (z − c)g with
g ∈ S〈z〉, and z − c is not a unit in S〈z〉. Letting B be the adjugate matrix of I − (z − c)A, we
know B(I − (z − c)A) = fI. Multiplying by mi, we see fmi = 0 for all i, and so f ∈ J . Thus,
1 = f − (z − c)g ∈ J + (z − c)S〈z〉 showing that N|z=c = (0). �

Lemma A.5. Let S = K〈x1, . . . , xd〉. Given an ideal I of S〈z〉, let MI = S〈z〉/I and TI be the

set of c ∈ R for which MI |z=c = (0). If J is the intersection of prime ideals Q1, . . . , Qr, then

TJ =
⋂

i TQi
. Moreover, if each TQi

is, up to addition and removal of finite sets, a union of εi-balls,
then TJ is as well.

Proof. Notice that c ∈ TI if and only if (z − c) and I are comaximal. For ease of notation, let
Ti := TQi

. It is clear that if (z − c) + J = S〈z〉, then (z − c) +Qi = S〈z〉 for all i. Conversely, we
have 1 = (z − c)ai + qi for fi ∈ S〈z〉 and qi ∈ Qi. So

∏
i(1 − (z − c)ai) ∈ J and it is of the form

1 + (z − c)f , so (z − c) + J = S〈z〉. This establishes the first statement.
Now suppose that there are finite sets Si1 and Si2 such that (Ti ∪ Si1) ∩ Sc

i2 is a finite union of
ǫi-balls. Now,

⋂
i((Ti ∪ Si1)∩ Sc

i2) = (
⋂

i Ti ∪
⋂

i Si1)∩
⋂

i S
c
i2. Since

⋂
i Si1 is a finite set and

⋂
i S

c
i2
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is the complement of a finite set, we see that up to addition and removal of finite sets, TJ is the
intersection of unions of εi-balls.

Without loss of generality, ε1 ≥ · · · ≥ εr. Let (Ti ∪ Si1) ∩ Sc
i2 be the union of εi-balls Di,j where

j runs through an index set Si. Then up to addition and removal of finite sets, TJ is the union of
sets of the form D1,j1 ∩· · ·∩Dr,jr where ji ∈ Si. Since K is non-Archimedean, if two balls intersect,
then one of them is contained in the other. Therefore, D1,j1 ∩ · · · ∩Dr,jr is either empty, or is an
εr-ball, which finishes the proof. �

Finally, we handle the case where M is cyclic and R is compact.

Proposition A.6. Let S = K〈x1, . . . , xd〉 and let M = S〈z〉/J . If R is compact, then there exists

ε > 0 such that, up to the addition and removal of finite sets, the set of c ∈ R for which M|z=c = (0)
is a union of ε-balls.

In particular, it follows that if R = Z then up to addition and removal of finite sets, the set of

c ∈ R for which M|z=c = (0) is a finite union of arithmetic progressions with difference pr for some

r ≥ 0.

Proof. Since there are only finitely many balls of a given radius in Z, the statement concerning the
case R = Z is immediate from the more general statement about compact R.

To prove the general claim about compact R, first notice that M|z=c = (0) if and only if (z− c)
and J are comaximal. Since S〈z〉 is Jacobson, this is equivalent to (z − c) and rad(J) being
comaximal, so we can assume J is a radical ideal. Now, since S〈z〉 is Noetherian, J is a finite
intersection of prime ideals Q1, . . . , Qr. Then by Lemma A.5, we may assume that J is prime.

By Noether normalization, M is a finitely generated module over some T = K〈t1, . . . , tr〉. Since
T is a domain, the stalk of M at the generic point of SpecT is a vector space, hence free, and so
there is an open neighborhood of SpecT where M is free. So, there is some non-zero q ∈ T such
that the localization Mq is a free Tq-module, say of rank n. Then the action map of M on itself
gives a map ι : M → Mn(Tq) which is an embedding since J is prime. Notice that M|z=c = (0) if
and only if z − c ∈ M is a unit if and only if det(ι(z − c)) ∈ T ∗

q . Indeed, it is clear that if z − c is
invertible then det(ι(z − c)) ∈ T ∗

q , and the converse follows from the Cayley-Hamilton theorem.
Let t be an indeterminate and consider the minimal polynomial f(t) of ι(z). Since the minimal

polynomial divides the characteristic polynomial, there is a polynomial g such that f(t)g(t) =
det(ι(z)−t). Away from the finitely many roots of g(t), we see f(c) ∈ T ∗

q if and only if det(ι(z−c)) ∈
T ∗
q . Thus, we must prove that, up to addition and removal of a finite set, the set of c for which

f(c) ∈ T ∗
q is closed. In fact, we prove the stronger statement that there is an ε > 0 such that the

set of such c is a finite union of ε-balls.
If there exists c ∈ R with f(c) = 0, then f(t) = (t− c)r(t) in M, and so (z − c)r(z) = 0 in M.

Since M is a domain, z − c = 0 or r(z) = 0 in M. Since f is the minimal polynomial, the only
case is that f(t) = u(t − c), for some unit u ∈ T ∗

q . But then f(c′) = u(c′ − c), which is always a

unit for c 6= c′, which proves the claim.
We now handle the case where 0 /∈ f(R). Since R is compact, there is an ε > 0 such that

||f(c)|| > ε. Let f(t) = a0 + a1t + · · · + adt
d with the ai ∈ Rq; in fact, since q ∈ R∗

q and
we are only concerned with whether or not f(c) ∈ R∗

q , we can clear denominators and assume
ai ∈ R. Let N be the maximum of the Gauss norm of the ai. We show that if f(c) is a unit and
|c− c′| < ε/(2Npd), then f(c′) is a unit. To see why this is true, first consider the Taylor expansion
f(t) = f(c) + (t− c)r(t), where

r(t) = f ′(t) + (t− c)
f ′′(t)

2
+ · · ·+ (t− c)d−1 f

(d)(t)

d!
.

We know that for 1 ≤ k ≤ d, the norm of 1/k is bounded by pd. The coefficients of f (k)(t) are
integer linearly combinations of the coefficients of f(t), so have norm bounded by N . Since R is a
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subring of the valuation ring, |c′| and |c − c′| are at most 1. It follows that |r(c′)| ≤ Npd, and so
|(c′ − c)r(c′)| < ε/2. Since |f(c)| > ε, we see (c′ − c)r(c′)/f(c) has norm at most 1/2. Therefore,

f(c′)

f(c)
= 1 +

(c′ − c)r(c′)

f(c)

is a unit. �
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