Constructions in Ramsey theory

Dhruv Mubayi*
Andrew Suk ${ }^{\dagger}$

Abstract

We provide several constructions for problems in Ramsey theory. First, we prove a superexponential lower bound for the classical 4 -uniform Ramsey number $r_{4}(5, n)$, and the same for the iterated $(k-4)$-fold logarithm of the k-uniform version $r_{k}(k+1, n)$. This is the first improvement of the original exponential lower bound for $r_{4}(5, n)$ implicit in work of Erdős and Hajnal from 1972 and also improves the current best known bounds for larger k due to the authors. Second, we prove an upper bound for the hypergraph Erdős-Rogers function $f_{k+1, k+2}^{k}(N)$ that is an iterated $(k-13)$-fold logarithm in N. This improves the previous upper bounds that were only logarithmic and addresses a question of Dudek and the first author that was reiterated by Conlon, Fox and Sudakov. Third, we generalize the results of Erdős and Hajnal about the 3 -uniform Ramsey number of K_{4} minus an edge versus a clique to k-uniform hypergraphs.

1 Introduction

A k-uniform hypergraph H (k-graph for short) with vertex set V is a collection of k-element subsets of V. We write K_{n}^{k} for the complete k-uniform hypergraph on an n-element vertex set. Given k graphs F, G, the Ramsey number $r(F, G)$ is the minimum N such that every red/blue coloring of the edges of K_{N}^{k} results in a monochromatic red copy of F or a monochromatic blue copy of G.

In this paper, we study several problems in hypergraph Ramsey theory. We describe each problem in detail in its relevant section. Here we provide a brief summary. In Section 2, we give new lower bounds on the classical Ramsey number $r\left(K_{k+1}^{k}, K_{n}^{k}\right)$, improving the previous best known bounds obtained by the authors [18]. In particular, we give the first superexponential lower bound for $r\left(K_{5}^{4}, K_{n}^{4}\right)$ since the problem was first explicitly stated by Erdős and Hajnal [12] in 1972. In Section 3, we establish a new upper bound for the hypergraph Erdős-Rogers function $f_{k+1, k+2}^{k}(N)$ that is an iterated logarithm function in N. More precisely, we construct k-graphs on N vertices, with no copy of K_{k+2}^{k}, yet every set of n vertices contains a copy of K_{k+1}^{k} where n is the ($k-13$)-fold iterated logarithm of N. This addresses questions posed by Dudek and the first author [8 as well as by Conlon, Fox, and Sudakov [7] and significantly improves the previous best known bound in [8] of $n=O\left((\log N)^{1 /(k-1)}\right)$. In Section 4 we study the Ramsey numbers for k-half-graphs versus

[^0]cliques, generalizing the results of Erdős and Hajnal [12] about the 3-uniform Ramsey number of K_{4} minus an edge versus a clique. The upper bound is a straightforward extension of the method in [12], while the constructions are new.

All logarithms are base 2 unless otherwise stated. For the sake of clarity of presentation, we systematically omit floor and ceiling signs whenever they are not crucial.

2 A new lower bound for $r_{k}(k+1, n)$

In order to avoid the excessive use of superscripts, we use the simpler notation $r\left(K_{s}^{k}, K_{n}^{k}\right)=r_{k}(s, n)$. Estimating the Ramsey number $r_{k}(s, n)$ is a classical problem in extremal combinatorics and has been extensively studied [13, 14, 16]. Here we study the off-diagonal Ramsey number, that is, $r_{k}(s, n)$ with k, s fixed and n tending to infinity. It is known that for fixed $s \geq k+1, r_{2}(s, n)$ grows polynomially in n [1, 2, 3] and $r_{3}(s, n)$ grows exponentially in a power of n [6]. In 1972, Erdős and Hajnal [12] raised the question of determining the correct tower growth rate for $r_{k}(s, n)$. We define the tower function $\operatorname{twr}_{k}(x)$ by

$$
\operatorname{twr}_{1}(x)=x \quad \text { and } \quad \operatorname{twr}_{i+1}=2^{\operatorname{twr}_{i}(x)}
$$

By applying the Erdős-Hajnal stepping up lemma in the off-diagonal setting (see [17), it follows that $r_{k}(s, n) \geq \operatorname{twr}_{k-1}(\Omega(n))$, for $k \geq 4$ and for all $s \geq 2^{k-1}-k+3$. However they conjectured the following.
Conjecture 2.1. (Erdős-Hajnal [12]) For $s \geq k+1 \geq 5$ fixed, $r_{k}(s, n) \geq \operatorname{twr}_{k-1}(\Omega(n))$.
In [5], Conlon, Fox, and Sudakov modified the Erdős-Hajnal stepping-up lemma to show that Conjecture 2.1 holds for all $s \geq\lceil 5 k / 2\rceil-3$. Recently the authors nearly proved the conjecture by establishing the following.
Theorem 2.2 (18]). There is a positive constant $c>0$ such that the following holds. For $k \geq 4$ and $n>3 k$, we have

1. $r_{k}(k+3, n) \geq \operatorname{twr}_{k-1}(c n)$,
2. $r_{k}(k+2, n) \geq \operatorname{twr}_{k-1}\left(c \log ^{2} n\right)$,
3. $r_{k}(k+1, n) \geq \operatorname{twr}_{k-2}\left(c n^{2}\right)$.

Implicit in work of Erdős and Hajnal [12] is the bound $r_{4}(5, n)>2^{c n}$ for some absolute positive constant c. While the authors [18] recently improved this to $2^{c n^{2}}$ above, there has been no superexponential lower bound given for this basic problem. Here we provide such a lower bound.

Theorem 2.3. There is an absolute constant $c>0$ such that

$$
r_{4}(5, n)>2^{n^{c \log \log n}}
$$

and more generally for $k>4$,

$$
r_{k}(k+1, n)>\operatorname{twr}_{k-2}\left(n^{c \log \log n}\right) .
$$

One of the building blocks we will use in our construction is the following lower bound of Conlon, Fox, and Sudakov [6]: there is an absolute positive constant $c>0$ such that

$$
\begin{equation*}
r_{3}(4, t)>2^{c t \log t} \tag{1}
\end{equation*}
$$

Our lower bound for $r_{4}(5, n)$ is proved via the following theorem.
Theorem 2.4. For n sufficiently large, we have

$$
r_{4}(5, n)>2^{r_{3}(4,\lfloor(\log n) / 2\rfloor)-1} .
$$

Proof. The idea is to apply a variant of the Erdős-Hajnal stepping up lemma (see [17). Set $t=\left\lfloor\frac{\log n}{2}\right\rfloor$. Let ϕ be a red/blue coloring of the edges of the complete 3 -uniform hypergraph on the vertex set $\left\{0,1, \ldots, r_{3}(4, t)-2\right\}$ without a red K_{4}^{3} and without a blue K_{t}^{3}. We use ϕ to define a red/blue coloring χ of the edges of the complete 4 -uniform hypergraph K_{N}^{4} on the vertex set $V=\{0,1, \ldots, N-1\}$ with $N=2^{r_{3}(4, t)-1}$, as follows.

For any $a \in V$, write $a=\sum_{i=0}^{r_{3}(4, t)-2} a(i) 2^{i}$ with $a(i) \in\{0,1\}$ for each i. For $a \neq b$, let $\delta(a, b)$ denote the largest i for which $a(i) \neq b(i)$. Notice that we have the following stepping-up properties (again see [17])

Property A: For every triple $a<b<c, \delta(a, b) \neq \delta(b, c)$.
Property B: For $a_{1}<\cdots<a_{r}, \delta\left(a_{1}, a_{r}\right)=\max _{1 \leq j \leq r-1} \delta\left(a_{j}, a_{j+1}\right)$.

Given any 4-tuple $a_{1}<\cdots<a_{4}$ of V, consider the integers $\delta_{i}=\delta\left(a_{i}, a_{i+1}\right), 1 \leq i \leq 3$. Say that $\delta_{1}, \delta_{2}, \delta_{3}$ forms a monotone sequence if $\delta_{1}<\delta_{2}<\delta_{3}$ or $\delta_{1}>\delta_{2}>\delta_{3}$. Now, define χ as follows:

$$
\chi\left(a_{1}, a_{2}, a_{3}, a_{4}\right)= \begin{cases}\phi\left(\delta_{1}, \delta_{2}, \delta_{3}\right) & \text { if } \delta_{1}, \delta_{2}, \delta_{3} \text { is monotone } \\ b l u e & \text { if } \delta_{1}, \delta_{2}, \delta_{3} \text { is not monotone }\end{cases}
$$

Hence we have the following property which can be easily verified using Properties A and B (see [17]).

Property C: For $a_{1}<\cdots<a_{r}$, set $\delta_{j}=\delta\left(a_{j}, a_{j+1}\right)$ and suppose that $\delta_{1}, \ldots, \delta_{r-1}$ form a monotone sequence. If χ colors every 4 -tuple in $\left\{a_{1}, \ldots, a_{r}\right\}$ red (blue), then ϕ colors every triple in $\left\{\delta_{1}, \ldots, \delta_{r-1}\right\}$ red (blue).

For sake of contradiction, suppose that the coloring χ produces a red K_{5}^{4} on vertices $a_{1}<\cdots<a_{5}$, and let $\delta_{i}=\delta\left(a_{i}, a_{i+1}\right), 1 \leq i \leq 4$. Then $\delta_{1}, \ldots, \delta_{4}$ form a monotone sequence and, by Property C , ϕ colors every triple in $\left\{\delta_{1}, \ldots, \delta_{4}\right\}$ red which is a contradiction. Therefore, there is no red K_{5}^{4} in coloring χ.

Next we show that there is no blue K_{n}^{4} in coloring χ. Our argument is reminiscent of the standard argument for the bound $r_{2}(n, n)<4^{n}$, though it must be adapted to this setting. For sake of
contradiction, suppose we have vertices $a_{1}, \ldots, a_{n} \in V$ such that $a_{1}<\cdots<a_{n}$ and χ colors every 4 -tuple in the set $\left\{a_{1}, \ldots, a_{n}\right\}$ blue. Let $\delta_{i}=\delta\left(a_{i}, a_{i+1}\right)$ for $1 \leq i \leq n-1$. We greedily construct a set $D_{h}=\left\{\delta_{i_{1}}, \ldots, \delta_{i_{h}}\right\} \subset\left\{\delta_{1}, \ldots, \delta_{n-1}\right\}$ and a set $S_{h} \subset\left\{a_{1}, \ldots, a_{n}\right\}$ such that the following holds.

1. We have $\delta_{i_{1}}>\cdots>\delta_{i_{h}}$.
2. For each $\delta_{i_{j}}=\delta\left(a_{i_{j}}, a_{i_{j}+1}\right) \in D_{h}=\left\{\delta_{i_{1}}, \ldots, \delta_{i_{h}}\right\}$, consider the set of vertices

$$
A=\left\{a_{i_{j+1}}, a_{i_{j+1}+1}, \ldots, a_{i_{h}}, a_{i_{h}+1}\right\} \cup S_{h} .
$$

Then either every element in A is greater than $a_{i_{j}}$ or every element in A is less than $a_{i_{j}+1}$. In the former case we will label $\delta_{i_{j}}$ white, in the latter case we label it black.
3. The indices of the vertices in S_{h} are consecutive, that is, $S_{h}=\left\{a_{r}, a_{r+1}, \ldots, a_{s-1}, a_{s}\right\}$ for $1 \leq r<s \leq n$.

We start with the $D_{0}=\emptyset$ and $S_{0}=\left\{a_{1}, \ldots, a_{n}\right\}$. Having obtained $D_{h}=\left\{\delta_{i_{1}}, \ldots, \delta_{i_{h}}\right\}$ and $S_{h}=\left\{a_{r}, \ldots, a_{s}\right\}, 1 \leq r<s \leq n$, we construct D_{h+1} and S_{h+1} as follows. Let $\delta_{i_{h+1}}=\delta\left(a_{\ell}, a_{\ell+1}\right)$ be the unique largest element in $\left\{\delta_{r}, \delta_{r+1}, \ldots, \delta_{s-1}\right\}$, and set $D_{h+1}=D_{h} \cup \delta_{i_{h+1}}$. The uniqueness of $\delta_{i_{h+1}}$ follows from Properties A and B. If $\left|\left\{a_{r}, a_{r+1}, \ldots, a_{\ell}\right\}\right| \geq\left|S_{h}\right| / 2$, then we set $S_{h+1}=$ $\left\{a_{r}, a_{r+1}, \ldots, a_{\ell}\right\}$. Otherwise by the pigeonhole principle, we have $\left|\left\{a_{\ell+1}, a_{\ell+2}, \ldots, a_{s}\right\}\right| \geq\left|S_{h}\right| / 2$ and we set $S_{h+1}=\left\{a_{\ell+1}, a_{\ell+2}, \ldots, a_{s}\right\}$.
Since $\left|S_{0}\right|=n, t=\left\lfloor\frac{\log n}{2}\right\rfloor$ and $\left|S_{h+1}\right| \geq\left|S_{h}\right| / 2$ for $h \geq 0$, we can construct $D_{2 t}=\left\{\delta_{i_{1}}, \ldots, \delta_{i_{2 t}}\right\}$ with the desired properties. By the pigeonhole principle, at least t elements in $D_{2 t}$ have the same label, say white. The other case will follow by a symmetric argument. We remove all black labeled elements in $D_{2 t}$, and let $\left\{\delta_{j_{1}}, \ldots, \delta_{j_{t}}\right\}$ be the resulting set. Now consider the vertices $a_{j_{1}}, a_{j_{2}}, \ldots, a_{j_{t}} \in V$. By construction and by Property B, we have $a_{j_{1}}<a_{j_{2}}<\cdots<a_{j_{t}}$ and $\delta\left(a_{j_{1}}, a_{j_{2}}\right)=\delta_{i_{j_{1}}}, \delta\left(a_{j_{2}}, a_{j_{3}}\right)=\delta_{j_{j_{2}}}, \ldots, \delta\left(a_{j_{t}}, a_{j_{t+1}}\right)=\delta_{i_{j_{t}}}$. Therefore we have a monotone sequence

$$
\delta\left(a_{j_{1}}, a_{j_{2}}\right)>\delta\left(a_{j_{2}}, a_{j_{3}}\right)>\cdots>\delta\left(a_{j_{t}}, a_{j_{t+1}}\right) .
$$

By Property C, ϕ colors every triple from this set blue which is a contradiction. Therefore there is no red K_{5}^{4} and no blue K_{n}^{4} in coloring χ.

Applying the lower bound in (1), we obtain that

$$
r_{4}(5, n) \geq 2^{r_{3}(4,\lfloor\log n / 2\rfloor)-1}>2^{2^{c \log n \log \log n}}=2^{n^{c \log \log n}}
$$

for some absolute positive constant c and this establishes the first part of Theorem 2.3.
We next prove Theorem 2.3 for $k \geq 5$. Independently, Conlon, Fox and Sudakov [4] gave a different proof of Theorem [2.2 part 1. Their approach was to begin with a known 4-uniform construction that yields $r_{4}(7, n)>2^{2 c n}$ and then use a variant of the stepping up lemma to give tower-type lower bounds for larger k. Unfortunately, this variant of the stepping up lemma does not work if one begins instead with a lower bound for $r_{4}(5, n)$ which is our case. However, a further variant of the approach does work, and this is what we do below.

Lemma 2.5. For $k \geq 5$ and n sufficiently large, we have

$$
r_{k}(k+1, n) \geq 2^{r_{k-1}(k,\lfloor n / 6\rfloor)-1} .
$$

Proof. Again we apply a variant of the stepping-up lemma. Let ϕ be a red/blue coloring of the edges of the complete $(k-1)$-uniform hypergraph on the vertex set $\left\{0,1, \ldots, r_{k-1}(k,\lfloor n / 6\rfloor)-2\right\}$ without a red K_{k}^{k-1} and without a blue $K_{\lfloor n / 6\rfloor}^{k-1}$. We use ϕ to define a red/blue coloring χ of the edges of the complete k-uniform hypergraph K_{N}^{k} on the vertex set $V=\{0,1, \ldots, N-1\}$ with $N=2^{r_{k-1}(k,\lfloor n / 6\rfloor)-1}$, as follows.

Just as above, for any $a \in V$, write $a=\sum_{i=0}^{r_{k-1}(k,\lfloor n / 6\rfloor)-2} a(i) 2^{i}$ with $a(i) \in\{0,1\}$ for each i. For $a \neq b$, let $\delta(a, b)$ denote the largest i for which $a(i) \neq b(i)$. Hence Properties A and B hold.

Given any k-tuple $a_{1}<a_{2}<\ldots<a_{k}$ of V, consider the integers $\delta_{i}=\delta\left(a_{i}, a_{i+1}\right), 1 \leq i \leq k-1$. We say that δ_{i} is a local minimum if $\delta_{i-1}>\delta_{i}<\delta_{i+1}$, a local maximum if $\delta_{i-1}<\delta_{i}>\delta_{i+1}$, and a local extremum if it is either a local minimum or a local maximum. We say that δ_{i} is locally monotone if $\delta_{i-1}<\delta_{i}<\delta_{i+1}$ or $\delta_{i-1}>\delta_{i}>\delta_{i+1}$. Since $\delta_{i-1} \neq \delta_{i}$ for every i, every nonmonotone sequence $\delta_{1}, \ldots, \delta_{k-1}$ has a local extremum. If $\delta_{1}, \ldots, \delta_{k-1}$ form a monotone sequence, then let $\chi\left(a_{1}, a_{2}, \ldots, a_{k}\right)=\phi\left(\delta_{1}, \delta_{2}, \ldots, \delta_{k-1}\right)$. Otherwise if $\delta_{1}, \ldots, \delta_{k-1}$ is not monotone, then let $\chi\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ be red if and only if δ_{2} is a local maximum and δ_{3} is a local minimum. Hence the following generalization of Property C holds.

Property D: For $a_{1}<\cdots<a_{r}$, set $\delta_{j}=\delta\left(a_{j}, a_{j+1}\right)$ and suppose that $\delta_{1}, \ldots, \delta_{r-1}$ form a monotone sequence. If χ colors every k-tuple in $\left\{a_{1}, \ldots, a_{r}\right\}$ red (blue), then ϕ colors every ($k-1$)tuple in $\left\{\delta_{1}, \ldots, \delta_{r-1}\right\}$ red (blue).

For sake of contradiction, suppose that the coloring χ produces a red K_{k+1}^{k} on vertices $a_{1}<\cdots<$ a_{k+1}, and let $\delta_{i}=\delta\left(a_{i}, a_{i+1}\right), 1 \leq i \leq k$. We have two cases.

Case 1. Suppose $\delta_{1}, \ldots, \delta_{k-1}$ is monotone. Then if $\delta_{2}, \ldots, \delta_{k}$ is also a monotone sequence, ϕ colors every $(k-1)$-tuple in $\left\{\delta_{1}, \ldots, \delta_{k}\right\}$ red by Property D, which is a contradiction. Otherwise, δ_{k-1} is the only local extremum and $\chi\left(a_{2}, \ldots, a_{k+1}\right)$ is blue, which is again a contradiction.

Case 2. Suppose $\delta_{1}, \ldots, \delta_{k-1}$ is not monotone. Then we know that δ_{2} is a local maximum and δ_{3} is a local minimum. However this implies that $\chi\left(a_{2}, \ldots, a_{k+1}\right)$ is blue, which is a contradiction. Hence there is no red K_{k+1}^{k} in coloring χ.

Next we show that there is no blue K_{n}^{k} in coloring χ. For sake of contradiction, suppose we have vertices $a_{1}, \ldots, a_{n} \in V$ such that $a_{1}<\cdots<a_{n}$ and χ colors every k-tuple blue, and let $\delta_{i}=\delta\left(a_{i}, a_{i+1}\right)$ for $1 \leq i \leq n-1$. By Property D, there is no integer r such that $\delta_{r}, \delta_{r+1}, \ldots, \delta_{r+\lfloor n / 6\rfloor}$ is monotone, since this implies that ϕ colors every ($k-1$)-tuple in the set $\left\{\delta_{r}, \delta_{r+1}, \ldots, \delta_{r+\lfloor n / 6\rfloor}\right\}$ blue which is a contradiction. Therefore the sequence $\delta_{1}, \ldots, \delta_{n-1}$ contains at least four local extrema. Let $\delta_{j_{1}}$ be the first local maximum, and let $\delta_{j_{2}}$ be the next local extremum, which must be a local minimum. Recall that $\delta_{j_{1}}=\delta\left(a_{j_{1}}, a_{j_{1}+1}\right)$ and $\delta_{j_{2}}=\delta\left(a_{j_{2}}, a_{j_{2}+1}\right)$. Consider the k vertices

$$
a_{j_{1}-1}, a_{j_{1}}, a_{j_{2}}, a_{j_{2}+1}, a_{j_{2}+2}, \ldots, a_{j_{2}+k-3}
$$

and the sequence

$$
\delta\left(a_{j_{1}-1}, a_{j_{1}}\right), \delta\left(a_{j_{1}}, a_{j_{2}}\right), \delta\left(a_{j_{2}}, a_{j_{2}+1}\right), \ldots, \delta\left(a_{j_{2}+k-4}, a_{j_{2}+k-3}\right) .
$$

By Property B we have $\delta\left(a_{j_{1}}, a_{j_{2}}\right)=\delta_{j_{1}}$, and therefore $\delta\left(a_{j_{1}}, a_{j_{2}}\right)$ is a local maximum and $\delta\left(a_{j_{2}}, a_{j_{2}+1}\right)$ is a local minimum. Therefore $\chi\left(a_{j_{1}-1}, a_{j_{1}}, a_{j_{2}}, a_{j_{2}+1}, \ldots, a_{j_{2}+k-3}\right)$ is red and we have our contradiction. Hence there is no blue K_{n}^{k} in coloring χ.

By combining Theorem 2.4 with Lemma 2.5, we establish Theorem 2.3.

3 The Erdős-Rogers function for hypergraphs

An s-independent set in a k-graph H is a vertex subset that contains no copy of K_{s}^{k}. So if $s=k$, then it is just an independent set. Let $\alpha_{s}(H)$ denote the size of the largest s-independent set in H.

Definition 3.1. For $k \leq s<t<N$, the Erdős-Rogers function $f_{s, t}^{k}(N)$ is the minimum of $\alpha_{s}(H)$ taken over all K_{t}^{k}-free k-graphs H of order N.

To prove the lower bound $f_{s, t}^{k}(N) \geq n$ one must show that every K_{t}^{k}-free k-graph of order N contains an s-independent set with n vertices. On the other hand, to prove the upper bound $f_{s, t}^{k}(N)<n$, one must construct a K_{t}^{k}-free k-graph H of order N with $\alpha_{s}(H)<n$.

The problem of determining $f_{s, t}^{k}(n)$ extends that of finding Ramsey numbers. Formally,

$$
r_{k}(s, n)=\min \left\{N: f_{k, s}^{k}(N) \geq n\right\}
$$

For $k=2$ the above function was first considered by Erdős and Rogers [15] only for $t=s+1$, which might be viewed as the most restrictive case. Since then the function has been studied by several researchers culminating in the work of Wolfowitz [20] and Dudek, Retter and Rödl 9 who proved the upper bound that follows (the lower bound is due to Dudek and the first author [8]): for every $s \geq 3$ there are positive constants c_{1} and $c_{2}(s)$ such that

$$
c_{1}\left(\frac{N \log N}{\log \log N}\right)^{1 / 2}<f_{s, s+1}^{2}(N)<c_{2}(\log N)^{4 s^{2}} N^{1 / 2}
$$

The problem of estimating the Erdős-Rogers function for $k>2$ appears to be much harder. Let us denote

$$
g(k, N)=f_{k+1, k+2}^{k}(N)
$$

so that the above result (for $s=3$) becomes $g(2, N)=N^{1 / 2+o(1)}$. Dudek and the first author [8] proved that $(\log N)^{1 / 4+o(1)}<g(3, N)<O(\log N)$ and more generally that there are positive constants c_{1} and c_{2} with

$$
\begin{equation*}
c_{1}\left(\log _{(k-2)} N\right)^{1 / 4}<g(k, N)<c_{2}(\log N)^{1 /(k-2)} \tag{2}
\end{equation*}
$$

where $\log _{(i)}$ is the \log function iterated i times. The exponent $1 / 4$ was improved to $1 / 3$ by Conlon, Fox, Sudakov [7]. Both sets of authors asked whether the upper bound could be improved (presumably to an iterated \log function). Here we prove this where the number of iterations is $k-O(1)$. It remains an open problem to determine the correct number of iterations (which may well be $k-2$).

Theorem 3.2. Fix $k \geq 14$. Then $g(k, N)<O\left(\log _{(k-13)} N\right)$.
Proof. We will proceed by induction on k. The base case of $k=14$ follows from the upper bound in (2). For the inductive step, let $k>14$ and assume that the result holds for $k-1$. We will show that

$$
g\left(k, 2^{N}\right)<k \cdot g(k-1, N),
$$

and this recurrence clearly implies the theorem. Indeed, it easily implies the upper bound

$$
g(k, N)<2^{k} k!\log _{(k-13)} N
$$

by induction on k, as $g(k+1, N)$ is at most

$$
\begin{aligned}
g\left(k+1,2^{\lceil\log N\rceil}\right) & <(k+1) g(k,\lceil\log N\rceil) \\
& <2^{k}(k+1)!\log _{(k-13)}\lceil\log N\rceil \\
& \leq 2^{k+1}(k+1)!\log _{(k-12)} N .
\end{aligned}
$$

Our strategy is to apply a variant of the stepping-up lemma. Let us begin with a K_{k+1}^{k-1}-free $(k-1)$ graph H^{\prime} on N vertices for which $\alpha_{k}\left(H^{\prime}\right)=g(k-1, N)$. Note that this exists by definition of $g(k-1, N)$. We will use H^{\prime} to produce a K_{k+2}^{k}-free k-graph H on 2^{N} vertices with $\alpha_{k+1}(H)<$ $k \alpha_{k}\left(H^{\prime}\right)=k g(k-1, N)$.

Let $V\left(H^{\prime}\right)=\{0,1, \ldots, N-1\}$ and $V(H)=\left\{0,1, \ldots, 2^{N}-1\right\}$. For any $a \in V(H)$, write $a=$ $\sum_{i=0}^{N-1} a(i) 2^{i}$ with $a(i) \in\{0,1\}$ for each i. For $a \neq b$, let $\delta(a, b)$ denote the largest i for which $a(i) \neq b(i)$. Therefore Properties A and B in the previous section hold.

Given any set of s vertices $a_{1}<a_{2}<\ldots<a_{s}$ of $V(H)$, consider the integers $\delta_{i}=\delta\left(a_{i}, a_{i+1}\right), 1 \leq$ $i \leq s-1$. For $e=\left(a_{1}, \ldots, a_{s}\right)$, let $m(e)$ denote the number of local extrema in the sequence $\delta_{1}, \ldots, \delta_{s-1}$. In the case $s=k$, we define the edges of H as follows. If $\delta_{1}, \ldots, \delta_{k-1}$ form a monotone sequence, then let $\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in E(H)$ if and only if $\left(\delta_{1}, \delta_{2}, \ldots, \delta_{k-1}\right) \in E\left(H^{\prime}\right)$. Otherwise if $\delta_{1}, \ldots, \delta_{k-1}$ is not monotone, then $\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in E(H)$ if and only if $m(e) \in\{k-4, k-3\}$. In other words, given that $\delta_{1}, \ldots, \delta_{k-1}$ is not monotone, $\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in E(H)$ if and only if $\delta_{1}, \ldots, \delta_{k-1}$ has at most one locally monotone element. Note that we have the following variant of Property D.

Property E: For $a_{1}<\cdots<a_{r}$, set $\delta_{j}=\delta\left(a_{j}, a_{j+1}\right)$ and suppose that $\delta_{1}, \ldots, \delta_{r-1}$ form a monotone sequence. If every k-tuple in $\left\{a_{1}, \ldots, a_{r}\right\}$ is in $E(H)$ (in $\bar{E}(H)$), then every $(k-1)$-tuple in $\left\{\delta_{1}, \ldots, \delta_{r-1}\right\}$ is in $E\left(H^{\prime}\right)\left(\right.$ in $\left.\bar{E}\left(H^{\prime}\right)\right)$.

We are to show that H contains no $(k+2)$-clique and $\alpha_{k+1}(H)<k \alpha_{k}\left(H^{\prime}\right)$. First let us establish the following lemma.

Lemma 3.3. Given $e=\left(a_{1}, \ldots, a_{7}\right)$ with $a_{1}<\cdots<a_{7}$, let $\delta_{i}=\delta\left(a_{i}, a_{i+1}\right)$ for $1 \leq i \leq 6$. If $m(e)=4$, then there is an a_{i} such that $2 \leq i \leq 6$ and $m\left(e-a_{i}\right)=2$.

Proof. Suppose first that δ_{2} is a local minimum, so $\delta_{1}>\delta_{2}<\delta_{3}>\cdots$. Then we have $m\left(e-a_{4}\right)=2$. Indeed, since δ_{4} is a local minimum, Property B implies $\delta\left(a_{3}, a_{5}\right)=\delta_{3}$. If $\delta_{5}>\delta_{3}$, then we have $\delta_{2}<\delta\left(a_{3}, a_{5}\right)<\delta_{5}$ and therefore $m\left(e-a_{4}\right)=2$. If $\delta_{5}<\delta_{3}$, then we have $\delta\left(a_{3}, a_{5}\right)>\delta_{5}>\delta_{6}$ which again implies that $m\left(e-a_{4}\right)=2$.

Now suppose that δ_{2} is a local maximum, so $\delta_{1}<\delta_{2}>\delta_{3}<\cdots$. Then we have $m\left(e-a_{3}\right)=2$. Indeed, by Property B we have $\delta\left(a_{2}, a_{4}\right)=\delta_{2}$. If $\delta_{4}<\delta_{2}$, then we have $\delta\left(a_{2}, a_{4}\right)>\delta_{4}>\delta_{5}$ which implies $m\left(e-a_{3}\right)=2$. If $\delta_{4}>\delta_{2}$, then we have $\delta_{1}<\delta\left(a_{2}, a_{4}\right)<\delta_{4}$ which again implies $m\left(e-a_{3}\right)=2$.
For sake of contradiction, suppose there are $k+2$ vertices $a_{1}<\cdots<a_{k+2}$ that induce a K_{k+2}^{k} in H. Define $\delta_{i}=\delta\left(a_{i}, a_{i+1}\right)$ for all $1 \leq i \leq k+1$. Given the sequence $\delta_{1}, \delta_{2}, \ldots, \delta_{k+1}$, let us consider the number of locally monotone elements in $D=\left\{\delta_{2}, \ldots, \delta_{k}\right\}$.

Case 1. Suppose every element in D is locally monotone. Then $\delta_{1}, \ldots, \delta_{k+1}$ form a monotone sequence. By Property E, every $(k-1)$-tuple in the set $\left\{\delta_{1}, \ldots, \delta_{k+1}\right\}$ is an edge in H^{\prime} which is a contradiction since H^{\prime} is K_{k+1}^{k-1}-free.

Case 2. Suppose there is at least one local extremum $\delta_{\ell} \in D$ and at least two elements $\delta_{i}, \delta_{j} \in D$ that are locally monotone. Then any k-tuple $e \subset\left\{a_{1}, \ldots, a_{k+2}\right\}$ that includes the vertices

$$
a_{i-1}, a_{i}, a_{i+1}, a_{i+2}, a_{j-1}, a_{j}, a_{j+1}, a_{j+2}, a_{\ell-1}, a_{\ell}, a_{\ell+1}, a_{\ell+2}
$$

satisfies $1 \leq m(e)<k-4$. Therefore e is not an edge in H and we have a contradiction.
Case 3. Suppose there is exactly one element $\delta_{i} \in D$ that is locally monotone (and therefore at least one local extremum). Since $k \geq 15$, either $\left|\left\{a_{1}, \ldots, a_{i-1}\right\}\right| \geq 7$ or $\left|\left\{a_{i+2}, \ldots, a_{k+2}\right\}\right| \geq 7$. Let us only consider the former case, the latter being symmetric. By Lemma 3.3, there is an element $a_{j} \in\left\{a_{2}, \ldots, a_{6}\right\} \subset\left\{a_{1}, \ldots, a_{i-1}\right\}$ such that for $e^{\prime}=\left(a_{1}, \ldots, a_{7}\right), m\left(e^{\prime}-a_{j}\right)=2$. Then any k-tuple $e \subset\left\{a_{1}, \ldots, a_{k+2}\right\} \backslash\left\{a_{j}\right\}$ that includes vertices

$$
\left\{a_{t}: 1 \leq t \leq 7, t \neq j\right\} \cup\left\{a_{i-1}, a_{i}, a_{i+1}, a_{i+2}\right\}
$$

satisfies $1 \leq m(e)<k-4$. Hence e is not an edge in H and we have a contradiction.
Case 4. Suppose every element in D is a local extremum. We then apply Lemma 3.3 to the set $A=\left\{a_{1}, \ldots, a_{7}\right\}$ and $B=\left\{a_{8}, \ldots, a_{14}\right\}$ to obtain vertices $a_{i} \in A$ and $a_{j} \in B$ such that $m\left(\left\{a_{1}, \ldots, a_{7}\right\} \backslash\left\{a_{i}\right\}\right)=2$ and $m\left(\left\{a_{8}, \ldots, a_{14}\right\} \backslash\left\{a_{j}\right\}\right)=2$. In particular, this implies that for $e=\left\{a_{1}, \ldots, a_{k+2}\right\} \backslash\left\{a_{i}, a_{j}\right\}$, the corresponding sequence of δ 's has at least two locally monotone elements. Since clearly e has at least one local extremum, we obtain $1 \leq m(e)<k-4$. Hence $e \notin E(H)$ and we have a contradiction.

Therefore we have shown that H is K_{k+2}^{k}-free.
Our final task is to show that $\alpha_{k+1}(H)<k \alpha_{k}\left(H^{\prime}\right)$. Set $n=k t$ where $t=\alpha_{k}\left(H^{\prime}\right)$. Let us assume for contradiction that there are vertices $a_{1}<\cdots<a_{n}$ that induce a $(k+1)$-independent set in H. Let $\delta_{i}=\delta\left(a_{i}, a_{i+1}\right)$ for $1 \leq i \leq n-1$. If the sequence $\delta_{1}, \ldots, \delta_{n-1}$ contains fewer than k
local extrema, then there is a j such that $\delta_{j}, \ldots, \delta_{j+t}$ is monotone. Since $t=\alpha_{k}\left(H^{\prime}\right)$, the $t+1$ vertices $\left\{\delta_{j}, \ldots, \delta_{j+t}\right\}$ contain a copy of K_{k}^{k-1} in H^{\prime}. Say this copy is given by $\delta_{j_{1}}, \ldots, \delta_{j_{k}}$. Then by Property E, the vertices $a_{j_{1}}<\cdots<a_{j_{k}}<a_{j_{k}+1}$ induce a copy of K_{k+1}^{k} which contradicts our assumption that $\left\{a_{1}, \ldots, a_{n}\right\}$ is a $(k+1)$-independent set in H.

We may therefore assume that the sequence $\delta_{1}, \ldots, \delta_{n-1}$ contains at least k local extrema. Now we make the following claim.

Claim 3.4. There is a set of $k+1$ vertices $a_{1}^{*}, \ldots, a_{k+1}^{*} \in\left\{a_{1}, \ldots, a_{n}\right\}$ such that for $\delta_{i}^{*}=\delta\left(a_{i}^{*}, a_{i+1}^{*}\right)$, the sequence $\delta_{1}^{*}, \ldots, \delta_{k}^{*}$ has $k-2$ local extrema.

Proof. Let $\delta_{i_{1}}, \ldots, \delta_{i_{k}}$ be the first k extrema in the sequence $\delta_{1}, \ldots, \delta_{n-1}$.
Case 1. Suppose $\delta_{i_{1}}$ is a local minimum. If k is odd, then consider the $k+1$ distinct vertices

$$
e=a_{i_{1}}, a_{i_{1}+1}, a_{i_{3}}, a_{i_{3}+1}, a_{i_{5}}, a_{i_{5}+1}, \ldots, a_{i_{k}}, a_{i_{k}+1}
$$

Note that the pairs $\left(a_{i_{1}}, a_{i_{1}+1}\right),\left(a_{i_{3}}, a_{i_{3}+1}\right),\left(a_{i_{5}}, a_{i_{5}+1}\right), \ldots$ correspond to local minima. By Property $\mathrm{B}, \delta\left(a_{i_{1}+1}, a_{i_{3}}\right)=\delta_{i_{2}}, \delta\left(a_{i_{3}+1}, a_{i_{5}}\right)=\delta_{i_{4}}, \ldots$. Since $\delta_{i_{2}}, \delta_{i_{4}}, \delta_{i_{6}}, \ldots$ were local maxima in the sequence $\delta_{1}, \ldots, \delta_{n-1}$, we have

$$
\delta\left(a_{i_{1}}, a_{i_{1}+1}\right)<\delta\left(a_{i_{1}+1}, a_{i_{3}}\right)>\delta\left(a_{i_{3}}, a_{i_{3}+1}\right)<\delta\left(a_{i_{3}+1}, a_{i_{5}}\right)>\cdots .
$$

Hence the vertices in e satisfy the claim. If k is even, then by the same argument as above, the $k+1$ vertices

$$
a_{1}, a_{i_{1}}, a_{i_{1}+1}, a_{i_{3}}, a_{i_{3}+1}, a_{i_{5}}, a_{i_{5}+1}, \ldots, a_{i_{k-1}}, a_{i_{k-1}+1}
$$

satisfy the claim.
Case 2. Suppose $\delta_{i_{1}}$ is a local maximum. If k is odd, then the arguments above imply that the set of $k+1$ vertices

$$
a_{1}, a_{2}, a_{i_{2}}, a_{i_{2}+1}, a_{i_{4}}, a_{i_{4}+1}, \ldots, a_{i_{k-1}}, a_{i_{k-1}+1}
$$

satisfies the claim. Likewise, if k is even, the set of $k+1$ vertices

$$
a_{1}, a_{i_{2}}, a_{i_{2}+1}, a_{i_{4}}, a_{i_{4}+1}, \ldots, a_{i_{k}}, a_{i_{k}+1}
$$

satisfies the claim.
By Claim 3.4, we obtain $k+1$ vertices $h=\left(a_{1}^{*}, \ldots, a_{k+1}^{*}\right)$ along with $\delta_{1}^{*}, \ldots, \delta_{k}^{*}$ with the desired properties. Consider the k-tuple $e=h-a_{i}^{*}$. If $i=1$ or $k+1$, then it is easy to see that $m(e)=k-3$, which implies $e \in E(H)$. For $i=2, \delta_{3}^{*}$ is the only possible locally monotone element in the sequence $\delta\left(a_{1}^{*}, a_{3}^{*}\right), \delta_{3}^{*}, \ldots, \delta_{k}^{*}$. Therefore $m\left(e-a_{i}\right) \geq k-4$ and $e \in E(H)$. A symmetric argument for the
case $i=k$ implies that $e \in E(H)$. Therefore we can assume $3 \leq i \leq k-1$. By Property B, we have $\delta\left(a_{i-1}^{*}, a_{i+1}^{*}\right)=\max \left\{\delta_{i-1}^{*}, \delta_{i}^{*}\right\}$. Let us consider the two cases.

Case 1. Suppose $\delta\left(a_{i-1}^{*}, a_{i+1}^{*}\right)=\delta_{i-1}^{*}$. If $\delta_{i+1}^{*}>\delta_{i-1}^{*}$, then δ_{i-1}^{*} is the only element in the sequence $\delta_{1}^{*}, \ldots, \delta_{i-1}^{*}, \delta_{i+1}^{*}, \ldots, \delta_{k}^{*}$ that is locally monotone. Hence $m(e)=k-4$ and $e \in E(H)$. If $\delta_{i+1}^{*}<$ δ_{i-1}^{*}, then δ_{i+1}^{*} is the only possible element in the sequence $\delta_{1}^{*}, \ldots, \delta_{i-1}^{*}, \delta_{i+1}^{*}, \ldots, \delta_{k}^{*}$ that is locally monotone. More precisely, if $i=k-1$ then $m(e)=k-3$, and if $3 \leq i<k-1$ then $m(e)=k-4$. Hence $m(e) \geq k-4$ and therefore $e \in E(H)$.

Case 2. Suppose $\delta\left(a_{i-1}^{*}, a_{i+1}^{*}\right)=\delta_{i}^{*}$. If $\delta_{i-2}^{*}>\delta_{i}^{*}$, then δ_{i}^{*} is the only element in the sequence $\delta_{1}^{*}, \ldots, \delta_{i-2}^{*}, \delta_{i}^{*}, \ldots, \delta_{k}^{*}$ that is locally monotone. Hence $m(e)=k-4$ and $e \in E(H)$. If $\delta_{i-2}^{*}<\delta_{i}^{*}$, then δ_{i-2}^{*} is the only possible element in the sequence $\delta_{1}^{*}, \ldots, \delta_{i-2}^{*}, \delta_{i}^{*}, \ldots, \delta_{k}^{*}$ that is locally monotone. More precisely, if $i=3$ then $m(e)=k-3$, and if $3<i \leq k-1$ then $m(e)=k-4$. Hence $m(e) \geq k-4$ and $e \in E(H)$.

Therefore every k-tuple $e=h-a_{i}$ is an edge in H, and the $k+1$ vertices h induces a K_{k+1}^{k} in H. This is a contradiction and we have completed the proof.

4 Ramsey numbers for k-half-graphs versus cliques

Let $K_{4}^{3} \backslash e$ denote the 3-uniform hypergraph on four vertices, obtained by removing one edge from K_{4}^{3}. A simple argument of Erdős and Hajnal [12] implies $r\left(K_{4}^{3} \backslash e, K_{n}^{3}\right)<(n!)^{2}$. On the other hand, they also gave a construction that shows $r\left(K_{4}^{3} \backslash e, K_{n}^{3}\right)>2^{c n}$ for some constant $c>0$. Improving either of these bounds is a very interesting open problem, as $K_{4}^{3} \backslash e$ is, in some sense, the smallest 3 -uniform hypergraph whose Ramsey number with a clique is at least exponential.

A k-half-graph, denote by B^{k}, is a k-uniform hypergraph on $2 k-2$ vertices, whose vertex set is of the form $S \cup T$, where $|S|=|T|=k-1$, and whose edges are all k-subsets that contain S, and one k-subset that contains T. The hypergraph B^{k} can be viewed as a generalization of $K_{4}^{3} \backslash e$ as $B^{3}=K_{4}^{3} \backslash e$.
The goal of this section is to obtain upper and lower bounds for $r\left(B^{k}, K_{n}^{k}\right)$ that parallel the known state of affairs for $K_{4}^{3} \backslash e$. We begin by presenting a straightforward generalization of the argument of Erdős and Hajnal to establish an upper bound for Ramsey numbers for k-half-graphs versus cliques. Again for simplicity we write $r\left(B^{k}, K_{n}^{k}\right)=r_{k}(B, n)$.
Theorem 4.1. For $k \geq 4$, we have $r_{k}(B, n) \leq(n!)^{k-1}$.
First, let us recall an old lemma due to Spencer.
Lemma 4.2 ([19]). Let $H=(V, E)$ be a k-uniform hypergraph on N vertices. If $|E(H)|>N / k$, then there exists a subset $S \subset V(H)$ such that S is an independent set and

$$
|S| \geq\left(1-\frac{1}{k}\right) N\left(\frac{N}{k|E(H)|}\right)^{\frac{1}{k-1}}
$$

Proof of Theorem 4.1. We proceed by induction on n. The base case $n=k$ is trivial. Let $n>k$ and assume the statement holds for $n^{\prime}<n$. Let $k \geq 4$ and let χ be a red/blue coloring on the edges of K_{N}^{k}, where $N=(n!)^{k-1}$. Let E_{R} denote the set of red edges in K_{N}^{k}.

Case 1: Suppose $\left|E_{R}\right| \leq N / k$. Then one can delete N / k vertices from H and obtain a blue clique of size $(1-1 / k) N \geq n$.

Case 2: Suppose $N / k<\left|E_{R}\right|<\frac{\left(1-\frac{1}{k}\right)^{k-1} N^{k}}{k n^{k-1}}$. Then by Lemma 4.2, K_{N}^{k} contains a blue clique of size n.

Case 3: Suppose $\left|E_{R}\right| \geq \frac{\left(1-\frac{1}{k}\right)^{k-1} N^{k}}{k n^{k-1}}$. Then by averaging, there is a $(k-1)$-element subset $S \subset V$ such that $N(S)=\left\{v \in V: S \cup\{v\} \in E_{R}\right\}$ satisfies

$$
|N(S)| \geq \frac{\left(1-\frac{1}{k}\right)^{k-1} N^{k}}{n^{k-1}\binom{N}{k-1}} \geq((n-1)!)^{k-1}
$$

The last inequality follows from the fact that $k \geq 4$. Fix a vertex $u \in S$. If $\{u\} \cup T \in E_{R}$ for some $T \subset N(S)$ such that $|T|=k-1$, then $S \cup T$ forms a red B^{k} and we are done. Therefore we can assume otherwise. By the induction hypothesis, $N(S)$ contains a red copy of B^{k}, or a blue copy of K_{n-1}^{k}. We are done in the former case, and in the latter case, we can form a blue K_{n}^{k} by adding the vertex u.

We now move to our main new contribution, which are constructions which show that $r_{k}(B, n)$ is at least exponential in n.
Theorem 4.3. For fixed $k \geq 3$, we have $r_{k}(B, n)>2^{\Omega(n)}$.

Proof. Surprisingly, we require different arguments for k even and k odd.
The case when k is odd. Assume k is odd, and set $N=2^{c n}$ where $c=c(k)$ will be determined later. Then let T be a random tournament on the vertex set [N], that is, for $i, j \in[N]$, independently, either $(i, j) \in E$ or $(j, i) \in E$, where each of the two choices is equally likely. Then let $\chi:\binom{[N]}{k} \rightarrow$ \{red, blue\} be a red/blue coloring on the k-subsets of $[N]$, where $\chi\left(v_{1}, \ldots, v_{k}\right)=$ red if v_{1}, \ldots, v_{k} induces a regular tournament, that is, the indegree of every vertex is $(k-1) / 2$ (and hence the outdegree of every vertex is $(k-1) / 2)$. Otherwise we color it blue. We note that since k is odd, a regular tournament on k vertices is possible by the fact that K_{k} has an Eulerian circuit, and then by directing the edges according to the circuit we obtain a regular tournament.

Notice that the coloring χ does not contain a red B^{k}. Indeed, let $S, T \subset[N]$ such that $|S|=|T|=$ $k-1, S \cap T=\emptyset$, and every k-tuple of the form $S \cup\{v\}$ is red, for all $v \in T$. Then for any $u \in S$, all edges in the set $u \times T$ must have the same direction, either all emanating out of u or all directed towards u. Therefore it is impossible for $u \cup T$ to have color red, for any choice $u \in S$.

Next we estimate the expected number of monochromatic blue copies of K_{n}^{k} in χ. For a given k-tuple $v_{1}, \ldots, v_{k} \in[N]$, the probability that $\chi\left(v_{1}, \ldots, v_{k}\right)=$ blue is clearly at most $1-1 / 2^{\binom{k}{2}}$.

Let $T=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of t vertices in $[n]$, where $v_{1}<\cdots<v_{n}$. Let S be a partial Steiner ($n, k, 2$)-system with vertex set T, that is, S is a k-uniform hypergraph such that each 2-element set of vertices is contained in at most one edge in S. Moreover, S satisfies $|S|=c^{\prime} n^{2}$ where $c^{\prime}=c^{\prime}(k)$. It is known that such a system exists. Then the probability that every k-tuple in T has color blue is at most the probability that every k-tuple in S is blue. Since the edges in S are independent, that is no two edges have more than one vertex in common, the probability that T is a monochromatic blue clique is at most $\left(1-1 / 2^{\binom{k}{2}}\right)^{|S|} \leq\left(1-1 / 2^{\binom{k}{2}}\right)^{c^{\prime} n^{2}}$. Therefore the expected number of monochromatic blue copies of K_{n}^{k} in χ is at most

$$
\binom{N}{n}\left(1-1 / 2^{\binom{k}{2}}\right)^{c^{\prime} n^{2}}<1,
$$

for an appropriate choice for $c=c(k)$. Hence, there is a coloring χ with no red B^{k} and no blue K_{n}^{k}. Therefore

$$
r_{k}(B, n)>2^{c n}
$$

The case when k is even. Assume k is even and set $N=2^{c n}$ where $c=c(k)$ will be determined later. Consider the coloring $\phi:\binom{[N]}{2} \rightarrow\{1, \ldots, k-1\}$, where each edge has probability $1 /(k-1)$ of being a particular color independent of all other edges (pairs). Using ϕ, we define the coloring $\chi:\binom{[N]}{k} \rightarrow\{$ red, blue $\}$, where the k-tuple $\left(v_{1}, \ldots, v_{k}\right)$ is red if ϕ is a proper edge-coloring on all pairs among $\left\{v_{1}, \ldots, v_{k}\right\}$, that is, each of the $k-1$ colors appears as a perfect matching. Otherwise we color it blue.

Notice that the coloring χ does not contain a red B^{k}. Indeed let $S, T \subset[N]$ such that $|S|=|T|=$ $k-1$ and $S \cap T=\emptyset$. If, for all $v \in T$, the k-tuples of the form $S \cup\{v\}$ are red, then the set of edges $\{u\} \times T$ is monochromatic with respect to ϕ for any $u \in S$. Hence, χ could not have colored $\{u\} \cup T$ red for any $u \in S$.

For a given k-tuple $v_{1}, \ldots, v_{k} \in[N]$, the probability that $\chi\left(v_{1}, \ldots, v_{k}\right)=$ blue is at most $1-(1 /(k-$ 1)) ${ }^{\binom{k}{2}}$. By the same argument as above, the expected number of monochromatic blue copies of K_{n}^{k} with respect to χ is less than 1 for an appropriate choice of $c=c(k)$. Hence, there is a coloring χ with no red B^{k} and no blue K_{n}^{k}. Therefore

$$
r_{k}(B, n)>2^{c n}
$$

and the proof is complete.

Acknowledgment. We thank the referee for helpful comments.

References

[1] M. Ajtai, J. Komlós, E. Szemerédi, A note on Ramsey numbers, J. Combin. Theory Ser. A 29 (1980), 354-360.
[2] T. Bohman, The triangle-free process, Adv. Math. 221 (2009), 1653-1677.
[3] T. Bohman, P. Keevash, The early evolution of the H-free process, Invent. Math. 181 (2010), 291-336.
[4] D. Conlon, J. Fox, B. Sudakov, personal communication.
[5] D. Conlon, J. Fox, and B. Sudakov, An improved bound for the stepping-up lemma, Discrete Applied Mathematics 161 (2013), 1191-1196.
[6] D. Conlon, J. Fox, and B. Sudakov, Hypergraph Ramsey numbers, J. Amer. Math. Soc. 23 (2010), 247-266.
[7] D. Conlon, J. Fox, and B. Sudakov, Short proofs of some extremal results, Combin. Probab. Comput. 23 (2014), 8-28.
[8] A. Dudek, D. Mubayi, On generalized Ramsey numbers for 3-uniform hypergraphs, J. Graph Theory 76 (2014), 217-223.
[9] A. Dudek, T. Retter, V. Rödl, On generalized Ramsey numbers of Erdős and Rogers, J. Combin. Theory Ser. B 109 (2014), 213-227.
[10] J. Fox, J. Pach, B. Sudakov, A. Suk, Erdős-Szekeres-type theorems for monotone paths and convex bodies, Proc. Lond. Math. Soc. 105 (2012), 953-982.
[11] P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292-294.
[12] P. Erdős, A. Hajnal, On Ramsey like theorems, problems and results, in Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972), pp. 123-140, Inst. Math. Appl., Southhend-on-Sea, 1972.
[13] P. Erdős, A. Hajnal, R. Rado, Partition relations for cardinal numbers, Acta Math. Acad. Sci. Hungar. 16 (1965), 93-196.
[14] P. Erdős, R. Rado, Combinatorial theorems on classifications of subsets of a given set, Proc. Lond. Math. Soc. 3 (1952), 417-439.
[15] P. Erdős, C.A. Rogers, The construction of certain graphs, Canad. J. Math. 14 (1962), 702707.
[16] P. Erdős, G. Szekeres, A combinatorial problem in geometry, Compos. Math. 2 (1935), 463-470.
[17] R. L. Graham, B. L. Rothschild, J. H. Spencer: Ramsey Theory, 2nd ed., Wiley, New York, 1990.
[18] D. Mubayi, A. Suk, Off-diagonal hypergraph Ramsey numbers, J. Combin. Theory Ser. B 125 (2017), 168-177.
[19] J. Spencer, Turán theorem for k-graphs, Disc. Math. 2 (1972), 183-186.
[20] G. Wolfowitz, K_{4}-free graphs without large induced triangle-free subgraphs, Combinatorica 33 (2013), no. 5, 623-631.

[^0]: *Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago, IL, 60607 USA. Research partially supported by NSF grant DMS-1300138. Email: mubayi@uic.edu
 ${ }^{\dagger}$ Department of Mathematics, University of California at San Diego, La Jolla, CA, 92093 USA. Supported by NSF grant DMS-1500153, an NSF CAREER award, and an Alfred Sloan Fellowship. Email: asuk@ucsd.edu MSC (2010): 05C15, 05C55, 05C65, 05D10, 05D40

