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Anticoncentration for subgraph statistics

Matthew Kwan ∗ Benny Sudakov† Tuan Tran‡

Abstract

Consider integers k, ℓ such that 0 ≤ ℓ ≤
(

k

2

)

. Given a large graph G, what is the fraction of

k-vertex subsets of G which span exactly ℓ edges? When G is empty or complete, and ℓ is zero

or
(

k

2

)

, this fraction can be exactly 1. On the other hand, if ℓ is far from these extreme values,

one might expect that this fraction is substantially smaller than 1. This was recently proved by

Alon, Hefetz, Krivelevich and Tyomkyn who intiated the systematic study of this question and

proposed several natural conjectures.

Let ℓ∗ = min{ℓ,
(

k

2

)

− ℓ}. Our main result is that for any k and ℓ, the fraction of k-vertex

subsets that span ℓ edges is at most logO(1)(ℓ∗/k)
√

k/ℓ∗, which is best-possible up to the log-

arithmic factor. This improves on multiple results of Alon, Hefetz, Krivelevich and Tyomkyn,

and resolves one of their conjectures. In addition, we also make some first steps towards some

analogous questions for hypergraphs.

Our proofs involve some Ramsey-type arguments, and a number of different probabilistic

tools, such as polynomial anticoncentration inequalities, hypercontractivity, and a coupling trick

for random variables defined on a “slice” of the Boolean hypercube.

1 Introduction

For an n-vertex graph G and some 0 ≤ k ≤ n, consider a uniformly random set of k vertices
A ⊆ V (G) and define the random variable XG,k = e(G[A]) to be the number of edges induced by
the random k-set A. The point probability Pr(XG,k = ℓ) is then the fraction of k-vertex subsets of
G which induce exactly ℓ edges. If G is an empty graph and ℓ = 0, or if G is a complete graph
and ℓ =

(k
2

)

, this probability is exactly one. However, if ℓ is far from these extreme values, and G
is sufficiently large, one might expect Pr(XG,k = ℓ) to be small. For example, Ramsey’s theorem
tells us that all sufficiently large graphs must have induced k-vertex subgraphs that are empty or
complete, so if ℓ 6= {0,

(k
2

)

} and G is sufficiently large then certainly Pr(XG,k = ℓ) < 1. In general,
what upper bounds can we give on Pr(XG,k = ℓ) for large G?

Recently, Alon, Hefetz, Krivelevich and Tyomkyn [4] initiated the systematic study of this ques-
tion, motivated by its connections to graph inducibility1. They proved some upper bounds on
Pr(XG,k = ℓ) for various values of k and ℓ, and made some appealing conjectures. To state these,
we recall some of their notation. Let I(n, k, ℓ) = max{Pr(XG,k = ℓ) : |V (G)| = n} be the maximum
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value of Pr(XG,k = ℓ) over all n-vertex graphs, and let ind(k, ℓ) = limn→∞ I(n, k, ℓ) (one can use
a standard averaging argument to show that I(n, k, ℓ) is a monotone nonincreasing function of n).
The following three conjectures appear as [4, Conjecture 1.1, Conjecture 6.1 and Conjecture 6.2].

Conjecture 1. For all 0 < ℓ <
(k
2

)

we have ind(k, ℓ) ≤ 1/e+ ok(1).

Conjecture 2. For all k, ℓ satisfying min
{

ℓ,
(k
2

)

− ℓ
}

= ωk(k), we have ind(k, ℓ) = ok(1).

Conjecture 3. For all k, ℓ satisfying min
{

ℓ,
(k
2

)

− ℓ
}

= Ωk

(

k2
)

, we have ind(k, ℓ) = O
(

k−1/2
)

.

The authors of [4] proved some partial results for all of these conjectures. Specifically, under
the assumptions of Conjecture 1 they proved that ind(k, ℓ) = 1 − Ωk(1), under the assumptions of
Conjecture 2 they proved that ind(k, ℓ) ≤ 1/2 + ok(1), and under the assumptions of Conjecture 3
they proved that ind(k, ℓ) = O

(

k−0.1
)

.
Our main result is the following theorem, simultaneously implying Conjecture 2 and an asymp-

totic version of Conjecture 3. This improves two of the aforementioned results in [4].

Theorem 1.1. For all k and all 0 ≤ ℓ ≤
(k
2

)

, let ℓ∗ = min
{

ℓ,
(k
2

)

− ℓ
}

. We have

ind(k, ℓ) ≤ logO(1)(ℓ∗/k)

√

k

ℓ∗
.

We remark that we allow the “O(1)” term to equal zero, so the above statement still makes sense
(and is in fact trivial) if ℓ∗ ≤ k. Note that up to the logarithmic factor Theorem 1.1 is essentially
best-possible. Indeed, for any s ≤ k and any f = ω(1), let n = fk and consider the n-vertex
complete bipartite graph G = Kfs,fk−fs. Then for ℓ = s(k − s) we have

Pr(XG,k = ℓ) ≥
(

fs
s

)(

fk−fs
k−s

)

(

fk
k

) = Θ

(
√

k

s(k − s)

)

= Θ

(
√

k

ℓ

)

.

We prove Theorem 1.1 in Section 3. Our proof depends on a polynomial anticoncentration inequality
due to Meka, Nguyen and Vu [33], which itself depends on a weak version of the so-called Gotsman–
Linial conjecture in the theory of Boolean functions, proved by Kane [24]. Any improvements to
this anticoncentration inequality, potentially via progress towards the Gotsman–Linial conjecture,
would result in corresponding improvements to Theorem 1.1. We discuss this further in Section 6.

It is also interesting to study related questions for hypergraphs; indeed, in [4] the authors specif-
ically suggested that a natural analogue of Conjecture 1 might also hold for r-uniform hypergraphs.
We make a first step in this direction, generalising a result in [4]. For 0 < ℓ <

(k
r

)

and an r-
uniform hypergraph G with at least k vertices, we may define XG,k, Ir(n, k, ℓ) and indr(k, ℓ) in
the obvious way: XG,k is the number of edges induced by a uniformly random k-vertex subset of
G, Ir(n, k, ℓ) is the maximum value of Pr(XG,k = ℓ) over n-vertex r-uniform hypergraphs G, and
indr(k, ℓ) = limn→∞ Ir(n, k, ℓ).

Theorem 1.2. For any r there exists ε = ε(r) > 0 such that for any 0 < ℓ <
(

k
r

)

we have

indr(k, ℓ) ≤ 1− ε.

A proof of this theorem for graphs appears as [4, Theorem 1.3], and proceeds via a long and com-
plicated fourth-moment calculation. We give a short proof of Theorem 1.2 in Section 4 using a hy-
percontractive inequality. For concreteness, we remark that Theorem 1.2 holds with ε = 2−4/33−16r.

Finally, the natural hypergraph generalisation of Conjecture 3 is that for any fixed r and any
k, ℓ satisfying min{ℓ,

(k
2

)

− ℓ} = Ωk(k
r), we have indr(k, ℓ) = O

(

k−1/2
)

. This problem appears to be
quite difficult; we make a first step in the case r = 3.
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Theorem 1.3. For all k, ℓ satisfying ℓ∗ = min
{

ℓ,
(

k
3

)

− ℓ
}

= Ωk

(

k3
)

, we have

ind3(k, ℓ) ≤
logO(1) k√

k
.

We prove Theorem 1.3 in Section 5.

1.1 Discussion and main ideas of the proofs

Let A = (axy)x,y be the adjacency matrix of a graph G. We can express XG,k as a homogeneous
quadratic polynomial

1

2
ξAξT =

∑

1≤x<y≤n

axyξxξy,

where ξ = (ξ1, . . . , ξn) is a uniformly random length-n zero-one vector with exactly k ones. To prove
Theorem 1.1 we need to upper-bound ind(k, ℓ), which essentially comes down to upper-bounding
probabilities of the form Pr

(

ξAξT = 2ℓ
)

.
This point of view suggests the application of quadratic anticoncentration inequalities. Indeed,

initially motivated by applications in random matrix theory [10], several authors [35, 40, 9, 33] have
studied probabilities of the form Pr

(

γAγT = x
)

, for γ a sequence of independent random variables.
The general theme is that if there are many nonzero entries arranged appropriately in A, then this
probability is small.

Of course, due to the condition that ξ has exactly k ones, it is not a sequence of independent
random variables, but one might hope that the dependencies are not too severe. For example, ξ is
in some sense quite similar to the random vector ξBer = (γ1, . . . , γn) where each γi is independently
(k/n)-Bernoulli-distributed2 . If A has few nonzero entries, then one can prove using a concentration
inequality that ξBerAξ

T
Ber is likely to be small (and therefore not equal to ℓ, unless ℓ is itself small). It

is therefore very straightforward to apply a quadratic anticoncentration inequality to prove a variant
of Theorem 1.1 with ξBer in place of ξ (meaning that XG,k is the number of edges in a (k/n)-Bernoulli
random set, instead of a uniformly random set of exactly k vertices). Actually, in general, for any
r-uniform hypergraph G, the random variable XG,k can be expressed as a homogeneous degree-r
polynomial of ξ. So, using a cubic anticoncentration inequality we can similarly give an easy proof of
the “Bernoulli version” of Theorem 1.3, and using the Bonami–Beckner hypercontractive inequality
we can give an easy proof of the “Bernoulli version” of Theorem 1.2.

However, in the setting of this paper, approximating ξ with ξBer is quite unsatisfactory, because
in addition to the “genuine” anticoncentration coming from the combinatorial structure of G, there is
also spurious anticoncentration arising from fluctuation in the number of ones in ξBer. For example,
if G is a graph clique then ξAξT is constant, while ξBerAξ

T
Ber is anticoncentrated purely because the

number of vertices in a (k/n)-Bernoulli random set is itself anticoncentrated.
In the setting of Theorem 1.2 it is straightforward to overcome this issue: we merely apply a dif-

ferent hypercontractive inequality in place of the Bonami–Beckner inequality. Despite the widespread
utility of the Bonami–Beckner inequality, the wider theory of hypercontractive inequalities does not
seem to be well-known in the combinatorics community. In our case the necessary inequality is
essentially due to Lee and Yau [30].

For Theorems 1.1 and 1.3, we use a coupling argument: it turns out that there is a natural way
to realise the distribution of ξ as a function of a random permutation σ and a certain sequence γ of
i.i.d. random variables. If we condition on any outcome of σ, then XG,k can be viewed as a (non-
homogeneous) degree-r polynomial fσ(γ) of γ, to which we can apply standard anticoncentration

2We say that γ has the p-Bernoulli distribution if Pr(γ = 1) = p and Pr(γ = 0) = 1− p .
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inequalities. For a non-homogeneous polynomial, anticoncentration inequalities tend to give bounds
depending on the nonzero coefficients of maximum degree, so the remaining difficulty lies in studying
the nonzero maximium-degree coefficients in fσ (which depend on σ).

It turns out that these coefficients have a combinatorial interpretation: for example, if G is a
graph (as in Theorem 1.1), then the nonzero degree-2 coefficients in fσ in some sense arise from
4-tuples of vertices (x, x′, y, y′) such that

axy − axy′ − ax′y + ax′y′ 6= 0.

In the special case where ℓ∗ = Ω
(

k2
)

, we can use a simple Ramsey-type argument to show that G
has Ω

(

k4
)

such tuples (this turns out to follow from the fact that 2-edge-coloured complete graphs
with many blue and red edges have many alternating paths of length 3). This allows us to show that
fσ is likely to have many nonzero coefficients, allowing us to deduce Theorem 1.1 via a quadratic
anticoncentration inequality. For the general case of Theorem 1.1 we need to use a more refined
anticoncentration inequality due to Meka, Nguyen and Vu [33] for which it suffices to find a large
matching in an auxiliary graph defined in terms of the nonzero degree-2 coefficients. In the proof of
Theorem 1.1 this auxiliary graph will be a random graph depending on σ. We will carefully define
a greedy procedure that finds the required matching with high probability.

The situation for hypergraphs is much less straightforward than for graphs, which is why
Theorem 1.3 is so much weaker than Theorem 1.1. In contrast to the graph case, even in the setting
of Theorem 1.3 where G is a 3-uniform hypergraph with ℓ∗ = Ω

(

k3
)

, it may happen that fσ(γ)
has very few degree-3 coefficients, which prevents us from directly applying an anticoncentration in-
equality. To overcome this, we prove a variant of the Meka–Nguyen–Vu anticoncentration inequality
which (under certain specific circumstances) allows us to take coefficients of non-maximum degree
into account. We then prove an approximate classification of 3-uniform hypergraphs G such that
f(γ) has few nonzero degree-3 coefficients (using a theorem of Fox and Sudakov on “unavoidable
patterns” and the induced hypergraph removal lemma), and we study the lower-degree coefficients
of f for all such G. This unfortunately involves some slightly complicated case analysis.

1.2 Notation

We use standard asymptotic notation throughout. For functions f = f(n) and g = g(n) we write
f = O(g) to mean there is a constant C such that |f | ≤ C|g|, we write f = Ω(g) to mean there
is a constant c > 0 such that f ≥ c|g| for sufficiently large n, we write f = Θ(g) to mean that
f = O(g) and f = Ω(g), and we write f = o(g) or g = ω(f) to mean that f/g → 0 as n → ∞.
All asymptotics are as n → ∞ unless specified otherwise (specifically, notation of the form ok(1)
indicates that asymptotics are as k → ∞).

For a positive integer n , we write [n] to mean the set {1, . . . , n}. For a set S we write
(S
k

)

for

the collection of all subsets of S of size exactly k, and we write
( S
≤k

)

for the collection of all subsets
of size at most k. Less standardly, for a zero-one sequence x = (x1, . . . , xn), we write |x| for the
number of ones in x. For any sequence x = (x1, . . . , xn), and any I ⊆ [n], we write xI to mean the
monomial

∏

i∈I xi.
We also use standard (hyper)graph theoretic notation. In particular, for a hypergraph G on the

vertex set V and a set of vertices S ⊆ V , let deg(S) be the number of edges e ∈ E(G) such that
S ⊆ e. Also, we write “r-graph” as shorthand for “r-uniform hypergraph”.
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2 Probabilistic Tools

For any 0 ≤ k ≤ n let BL(n, k) be the uniform distribution on sequences x ∈ {0, 1}n with |x| = k.
This is precisely the distribution of ξ as outlined in Section 1.1. It is sometimes informally known as
the uniform distribution “on the slice”, and is also known as the limiting distribution of the Bernoulli–
Laplace model of diffusion. For an r-graph G on the vertex set [n], note that the random variable
XG,k can be interpreted as a homogeneous degree-r polynomial of ξ ∈ BL(n, k): if aS = 1S∈E(G)

indicates the presence of an edge S ⊆ [n] in G, then we can write

XG,k =
∑

S

aSξ
S .

In this section we collect a number of general results about BL(n, k) which will be useful for our
proofs. Some of these are known, and some are new.

2.1 Concentration

There are a number of well-known concentration results which can be applied to functions of
BL(n, k)-distributed random zero-one sequences (see for example [20, Corollary 2.2]). In the proof
of Theorem 1.1 we will use the following “non-uniform” concentration inequality, which we were not
able to find elsewhere in the literature.

Lemma 2.1. Consider f : {0, 1}n → R such that

|f(x1, . . . , xi−1, 0, xi+1, . . . , xn)− f(x1, . . . , xi−1, 1, xi+1, . . . , xn)| ≤ ci

for all x ∈ {0, 1}n and all i ∈ [n]. Let ξ ∈ BL(n, k). Then

Pr(f(ξ)− Ef(ξ) ≥ t) ≤ exp

(

− t2

8
∑n

i=1 c
2
i

)

.

Proof. We may assume without loss of generality that c1 ≥ · · · ≥ cn. Consider the Doob martingale
Zi = E[f(ξ)|ξ1, . . . ξi], so Z0 = Ef(ξ) and Zn = Zn−1 = f(ξ). Let L(x1, . . . , xi) be the conditional
distribution of ξ given ξ1 = x1, . . . , ξi = xi.

We want to show that

|E[f(L(x1, . . . , xi−1, 0))]− E[f(L(x1, . . . , xi−1, 1))]| ≤ 2ci

for all feasible x1, . . . , xi−1 ∈ {0, 1}; this will imply that |Zi − Zi−1| is uniformly bounded by 2ci,
so the desired result will follow from the Azuma–Hoeffding inequality (see for example [23, Theo-
rem 2.25]).

If ξ is distributed as L(x1, . . . , xi−1, 0), we can change ξi to 1 and then randomly choose one of
the ones among ξi+1, . . . , ξn and change it to 0; we thereby obtain the distribution L(x1, . . . , xi−1, 1).
This provides a coupling between L(x1, . . . , xi−1, 0) and L(x1, . . . , xi−1, 1) that differs in only two
coordinates i and j > i, and since cj ≤ ci this implies the required bound.

2.2 “Weak” anticoncentration via hypercontractivity

The key ingredient in our proof of Theorem 1.2 is the following “weak” anticoncentration inequality.

Lemma 2.2. Let f be an n-variable polynomial of degree d, and let ξ ∈ BL(n, n/2). Suppose that

the random variable f(ξ) is not constant. Then, for any ℓ ∈ R, we have

Pr(f(ξ) = ℓ) ≤ 1− e−O(d).

5



To prove Lemma 2.2 it will suffice to control the fourth moment of low-degree polynomials
of BL(n, k)-distributed random vectors. This is due to the fact (also observed in [4]) that if a
random variable has fourth moment comparable to its variance squared then it is reasonably likely
to have fluctuations comparable to its standard deviation. The following lemma is a corollary of [3,
Lemma 3.2 (i)].

Lemma 2.3. Let Z be a non-constant real random variable satisfying EZ = 0 and EZ4 ≤ b
(

EZ2
)2

.

Then for any ℓ ∈ R, Pr(Z 6= ℓ) ≥ 1/(24/3b).

Now, to bound the fourth moment of a low-degree polynomial of a BL(n, k)-distributed random
vector, we will want a hypercontractive inequality that can be applied to BL(n, k) analogously to
standard applications of the Bonami–Beckner hypercontractive inequality (see for example [37]) in
discrete Fourier analysis. We will use a hypercontractive inequality for (the Markov semigroup of)
Bernoulli-Laplace diffusion, which can be deduced (see for example [11]) from a log-Sobolev inequal-
ity proved by Lee and Yau [30]. We will present this hypercontractive inequality in a convenient
self-contained form due to Filmus [15].

First, we need the notion of a harmonic polynomial, originally introduced by Dunkl [12, 13]: a
polynomial g in the variables x1, . . . , xn is said to be harmonic if

n
∑

i=1

∂g

∂xi
= 0.

It turns out that every random variable of the form f(ξ), for ξ ∈ BL(n, k), can be represented
in the form g(ξ), for g a harmonic multilinear polynomial. We will moreover need the fact that if
f is a polynomial of degree d, then g also has degree at most d. The following lemma effectively
appears as [17, Lemma 3.17].

Lemma 2.4. Let f be an n-variable polynomial of degree d, and let ξ ∈ BL(n, k). Then there

is a harmonic multilinear polynomial g such that f(ξ) = g(ξ); this polynomial has degree at most

min{d, k, n − k}.

Now, for a harmonic multilinear polynomial f , let f=d be the d-th homogeneous part of f
consisting of terms with degree exactly d. Each of these parts is “orthogonal” in the sense that for

ξ ∈ BL(n, k) and d 6= d′ we have E

[

f=d(ξ)f=d′(ξ)
]

= 0 (see [15, Theorem 3.1]). For each t, let Ht

be the operator on n-variable harmonic multilinear polynomials defined as follows. For a harmonic
multilinear polynomial f , let

Htf =
n
∑

i=0

exp

(

−t
2i(n+ 1− i)

n(n− 1)

)

f=i.

We are now in a position to state the promised hypercontractive inequality, which essentially appears
as [15, Proposition 6.2].

Proposition 2.5. Let ξ ∈ BL(n, pn) and let

ρ = − 2

n log 2 log(p(1− p))
.

Then for any t ≥ 0 and q ≥ 2 satisfying q − 1 ≤ e2ρt, and any n-variable harmonic multilinear

polynomial g, we have

E[|Htg(ξ)|q]2/q ≤ Eg(ξ)2.

6



The only reason we need Proposition 2.5 is for the following corollary.

Corollary 2.6. Let ξ ∈ BL(n, n/2) and let f be an n-variable polynomial of degree d. Then

Ef(ξ)4 = eO(d)
(

Ef(ξ)2
)2

.

Proof. By Lemma 2.4, there is a harmonic multilinear polynomial g of degree at most d such that
f(ξ) = g(ξ). By Proposition 2.5 with p = 1/2, q = 4 and t = Θ(n), and orthogonality of the
different homogeneous parts, we have

(

Ef(ξ)4
)1/2

≤ E(H−tf(ξ))
2

=

d
∑

i=0

eO(i)
E
(

f=i(ξ)
)2

= eO(d)
E(f(ξ))2.

Lemma 2.2 is now a direct consequence of Corollary 2.6 and Lemma 2.3, applied to f(ξ)−Ef(ξ).

2.3 Coupling

Many standard probabilistic tools are designed to work for product distributions, where indepen-
dence can be exploited. Although BL(n, k) is not a product distribution, there is a well-known
way to approximate BL(n, k) with a product of Bernoulli-distributed random variables, and for
many purposes these distributions can be considered essentially equivalent (see for example [23,
Corollary 1.16] and the invariance principles in [16, 17]). However, for the purposes of proving
Theorems 1.1 and 1.3 this kind of approximation is too coarse. Instead we will use a non-standard
coupling between BL(n, n/2) and Radn/2, where Rad is the Rademacher distribution (that is, the
uniform distribution on {−1, 1}). The following observation essentially appears in the proof of [31,
Proposition 4.10] (a similar coupling also appears in [4, p. 15]).

Fact 2.7. The distribution ξ ∈ BL(n, n/2) can be obtained as follows. Let σ be a uniformly random

permutation of [n] and let γ ∈ Radn/2 be a sequence of n/2 i.i.d. Rademacher random variables.

Then set ξσ(i) = 1 for all i such that γi = 1 and set ξσ(i+n/2) = 1 for all i such that γi = −1. For

all other indices j set ξj = 0.

In order to use Fact 2.7, we need to translate polynomials of ξ ∈ BL(n, n/2) into polynomials of
γ ∈ Radn/2.

Lemma 2.8. Consider a random variable X of the form

X =
∑

S∈([n]
d )

aSξ
S ,

where ξ ∈ BL(n, n/2). Under the coupling in Fact 2.7, X is a function of γ, σ. If we condition on

any outcome of σ, then X is a multilinear polynomial in the γi with degree at most d. Consider a

subset I ⊆ [n/2] of size at least d− 1, and write I = {i1, . . . , iq}; then the coefficient gI of γI is

1

2d

∑

b∈{0,1}q

(−1)|b|a
({

σ
(

ij + bj
n

2

)

: 1 ≤ j ≤ q
})

,

where for R ⊆ [n], a(R) is the sum of all aS with S ⊇ R.

7



Proof. Given a permutation σ of [n], define the functions α : [n] → {0, 1} and σ̃ : [n] → [n/2] by

(α(x), σ̃(x)) =

{

(

0, σ−1(x)
)

σ−1(x) ≤ n/2
(

1, σ−1(x)− n/2
)

otherwise.

Also, for S ⊆ [n], let |α(S)| be the number of x ∈ S for which α(x) = 1.

Now, observe that ξx =
(

1 + (−1)α(x)γσ̃(x)

)

/2. We may write

X =
1

2d

∑

S∈([n]
d )

aS
∏

x∈S

(

1 + (−1)α(x)γσ̃(x)

)

=
1

2d

∑

S∈([n]
d )

aS
∑

R⊆S

(−1)|α(R)|
∏

x∈R

γσ̃(x).

Consider any I = {i1, . . . , iq} ⊆ [n/2] with q ≥ d−1. We have γI =
∏

x∈R γσ̃(x) if and only if R is of
the form {σ(ij + bjn/2) : 1 ≤ j ≤ q} for some b ∈ {0, 1}q, in which case |α(R)| = |b|. (If q < d− 1
then there are other possibilities for R due to the fact that γ2i = 1). The desired result follows.

As an illustration of Lemma 2.8, we consider the special case where X is of the form
∑

i<j aijξiξj,
for ξ ∈ BL(n, n/2). If G is an n-vertex graph with adjacency matrix (aij), then this random variable
has precisely the distribution of XG,n/2. Under the coupling in Fact 2.7, if we condition on any
outcome of σ, then X is a quadratic polynomial in the γi, and the coefficient of γiγj is

1

4

(

aσ(i)σ(j) − aσ(i)σ(j+n/2) − aσ(i+n/2)σ(j) + aσ(i+n/2)σ(j+n/2)

)

.

2.4 Polynomial Anticoncentration

In the proof of Theorems 1.1 and 1.3 we will use an anticoncentration inequality for polynomials of
Rademacher random variables proved by Meka, Nguyen and Vu [33]. For x = (x1, . . . , xn), consider
a degree-d polynomial

f(x) =
∑

S∈([n]
≤d)

fSx
S

in x. The rank of f is the size of the largest matching in the d-uniform hypergraph on the vertex
set [n] obtained by putting an edge S ⊆ [n] whenever |S| = d and fS 6= 0. The following theorem is
a direct corollary of [33, Theorem 1.6].

Theorem 2.9. Fix d ∈ N and let γ ∈ Radn. Let f be a degree-d polynomial with rank r. Then for

any ℓ ∈ R,

Pr(f(γ) = ℓ) ≤ logO(1)(r)√
r

.

A drawback of Theorem 2.9 is that it ignores coefficients of f that are not of maximum degree.
We deduce the following result, which allows us to take these coefficients into account under certain
circumstances. We will need this for the proof of Theorem 1.3.

Corollary 2.10. Fix d ∈ N, let γ ∈ Radn, and consider a degree-d polynomial

f(x) =
∑

S∈([n]
≤d)

fSx
S .

8



Let md = max{|fS | : |S| = d} be the maximum coefficient of degree d, and let H ′ be the (d− 1)-
uniform hypergraph with edge set {S : |S| = d− 1, |fS| ≥ rmd}. Suppose that H ′ has a matching of

size r. Then for any ℓ ∈ R,

Pr(f(γ) = ℓ) ≤ logO(1)(r)√
r

.

Proof. Let H be the d-uniform hypergraph used to define the rank of f , with an edge for every
nonzero degree-d coefficient. If H has a matching of size r/(2d) then we are done by Theorem 2.9.
Otherwise, H has an independent set I of size larger than n − r/2. Condition on any outcome of
the values γi for i /∈ I. Now, f(γ) can be expressed as a polynomial g

(

(γi)i∈I
)

of the remaining γi,
depending on the values of γi for i /∈ I. This polynomial has degree at most d− 1. Specifically, for
S ⊆ I with size d− 1, the coefficient of S in g is

fS +
∑

i/∈I

fS∪{i}γi.

If fS ≥ rmd, then this coefficient is nonzero (in fact, fS ≥ (r/2)md suffices), so each edge of
H ′[I] corresponds to a nonzero degree-(d− 1) coefficient in g. Moreover, by assumption H ′[I] has
a matching of size at least r − (n − |I|) ≥ r/2. Therefore, g has rank at least r/2, so the desired
result again follows from Theorem 2.9.

3 Anticoncentration in graphs

In this section we present the proof of Theorem 1.1. It suffices to prove that Pr(XG,k = ℓ) =

O
(

logO(1)(ℓ∗/k)/
√

ℓ∗/k
)

for every graph G with 2k vertices, because I(n, k, ℓ) is a monotone non-

increasing function of n. So, let G be a graph on the vertex set [n], for n = 2k. Let X = XG,k. We
may assume that e(G) ≤

(n
2

)

/2, by taking the complement of G if necessary. We express X in the
form X(ξ) =

∑

1≤x<y≤n axyξxξy, where the axy are the entries of the adjacency matrix of G and
ξ ∈ BL(n, n/2).

Note that EX ≈ e(G)/4. We first want to use Lemma 2.1 to show that if e(G) is not at least of
the same order as ℓ then Pr(XG,k = ℓ) is very small.

Claim 3.1. For any constant ε > 0, if ℓ ≥ (1 + ε)EX or ℓ ≤ (1− ε)EX then

Pr(X = ℓ) ≤ exp

(

−Ω

(

ε2ℓ

k

))

.

Proof. Note that X is of the form required to apply Lemma 2.1, with cx = deg(x). Then

Pr(X = ℓ) ≤ exp

(

−Ω

(

ε2e(G)2
∑n

x=1 deg(x)
2

))

≤ exp

(

−Ω

(

ε2e(G)2

n2(e(G)/n)

))

≤ exp

(

−Ω

(

ε2ℓ

k

))

,

where in the second inequality we have used the upper bound on
∑n

x=1 deg(x)
2 obtained by taking

deg(x) = n for as many x as possible, and in the third inequality we have used the fact that
ℓ ≤ (1− ε)EX = O(e(G)).
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From now on we will assume that e(G) = Ω(ℓ), which also implies that ℓ = Θ(ℓ∗). Now, let σ
be a uniformly random permutation of [n], and let H be the (random) graph on the vertex set [k]
with an edge between i and j if

aσ(i)σ(j) − aσ(i)σ(j+k) − aσ(i+k)σ(j) + aσ(i+k)σ(j+k) 6= 0.

The heart of the proof of Theorem 1.1 is the following claim.

Claim 3.2. The graph H has a matching of size Ω(ℓ/k), with probability 1−O(k/ℓ).

Before proving Claim 3.2, we will show how it implies Theorem 1.1.

Proof of Theorem 1.1. Let E be the event that H has a matching of size Ω(ℓ/k). We learn from
Lemma 2.8 (see the discussion at the end of Section 2.3) that X is a quadratic polynomial in γ ∈
Radn/2, and the coefficient of γiγj is 1

4

(

aσ(i)σ(j) − aσ(i)σ(j+k) − aσ(i+k)σ(j) + aσ(i+k)σ(j+k)

)

. Hence
the rank of X (as a polynomial in the γi) is equal to the size of a maximum matching in H. Thus

Pr(X = ℓ
∣

∣E) ≤ logO(1)(ℓ/k)
√

k
ℓ , by Theorem 2.9. Combined with Claim 3.2, we obtain

Pr(X = ℓ) ≤ Pr(E) + Pr(X = ℓ
∣

∣E) ≤ logO(1)(ℓ/k)

√

k

ℓ
.

In order to prove Theorem 1.1, it remains to show Claim 3.2. As a warm-up, we first sketch the
proof of Claim 3.2 in the regime where ℓ = Ω

(

k2
)

. A key observation is that if avw = av′w′ 6= av′w
(that is, the path vwv′w′ alternates between edges and non-edges) then avw−avw′ −av′w+av′w′ 6= 0.
That is to say, edges in H arise from alternating paths of length 3 in G. When ℓ = Ω

(

k2
)

, we can
show that G has Ω

(

k4
)

alternating 3-paths. Roughly speaking, the reason is that G can be divided
into two parts V1 and V2 such that all vertices in V1 have reasonably high degree and all vertices
in V2 have reasonably high non-degree. If there were many non-edges in V1 or many edges in V2

this would immediately give us many alternating 3-paths. Otherwise V1 is almost a clique and V2 is
almost an independent set, in which case almost every pair of edges between V1 and V2 gives rise to
an alternating 3-path through V2, and almost every pair of non-edges between V1 and V2 gives rise
to an alternating 3-path through V1, and there must be many alternating 3-paths of at least one of
these two types. Now, if G has Ω

(

k4
)

alternating 3-paths, it follows from a concentration inequality
that H is very likely to have Ω

(

k2
)

edges, and hence a matching of size k.
In the general case this simplistic approach does not suffice, and the way we find our matching

in H will differ slightly depending on the structure of G. Let U ⊆ [n] be the set of “high-degree”
vertices with degree at least 0.9n. We divide the proof of Claim 3.2 into two cases: the case when
many edges are incident to U will be handled in Section 3.1, and the case where many edges avoid
U will be treated in Section 3.2.

3.1 Case 1: many edges are incident to the high-degree vertices

First, consider the case where e(G)/2 edges are incident to U . In this case, 2k|U | ≥ e(G)/2,
so |U | = Ω(ℓ/k). We can in fact assume that |U | ≥ 3, because if ℓ = O(k) the statement of
Theorem 1.1 is trivial. Now consider the following procedure to iteratively build a matching M in
H. At step t, let Vt be the set of vertices v ∈ [n] such that the value of σ−1(v) has not yet been
revealed, choose any distinct u,w ∈ U ∩ Vt, and reveal the values of i = σ−1(u) and j = σ−1(w). If
i, j ≤ k and the values of σ(i+ k) and σ(j + k), have not already been revealed, reveal them, and
if we find that {i, j} is an edge in H then we add {i, j} to M .

The above procedure can continue while 4t + 2 ≤ |U | (that is, t ≤ (|U | − 2)/4). Let T =
min{(|U | − 2)/4, 0.01n} = Ω(ℓ/k). We claim that every step t ≤ T has probability Ω(1) of success-
fully adding an edge to M .
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Claim 3.3. For any t ≤ T = Ω(ℓ/k), condition on any outcome of the information revealed before

step t. Then the probability that an edge is added to M in step t is at least 0.02.

Proof. Let Qt be the set of indices q ∈ [k] such that σ(q) or σ(q + k) have already been revealed in
previous steps (that is, σ(q) /∈ Vt or σ(q + k) /∈ Vt). Observe that |Qt| ≤ 8T . Now, reveal the values
of i = σ−1(u) and j = σ−1(w). The probability that i, j ≤ k and σ(i+ k), σ(j + k) ∈ Vt is at least

k − |Qt|
n

· k − |Qt| − 1

n
≥
(

k − 8T − 1

n

)2

≥ 0.2. (1)

Condition on such an outcome of i, j. Note that |Vt| ≥ n − 4t ≥ 0.9n, and recall that u and
w have degree at least 0.9n (as vertices in U). It follows that |NVt(u)|, |NVt(w)| ≥ 0.8n. Let
P ⊆ NVt(w)×NVt(u) be the set of distinct ordered pairs of vertices (u′, w′) with u′ ∈ NVt(w) \ {u}
and w′ ∈ NVt(u) \ {w}, so that |P | ≥ (0.8n − 1)(0.8n− 2) ≥ 0.6n2. Recall that we are assuming
e(G) ≤

(n
2

)

/2, so at most n2/2 of the pairs in P are edges of G. Let P ′ be the set of pairs of P
which are not edges, so that |P ′| ≥ 0.1n2. Observe that if (σ(i+ k), σ(j + k)) ∈ P ′ then the vertices
σ(i), σ(j + k), σ(i+ k), σ(j) form an alternating path, so

aσ(i)σ(j) − aσ(i)σ(j+k) − aσ(i+k)σ(j) + aσ(i+k)σ(j+k) = aσ(i)σ(j) − 2 6= 0,

meaning that {i, j} is an edge of H and can be added to M . The probability of this is at least
|P ′|/n2 ≥ 0.1. Recall that this is a conditional probability, so we multiply by (1) for the desired
result.

Claim 3.3 implies that the eventual size of M stochastically dominates the binomial distribution
Bin(T, 0.02), so by the Chernoff bound we have |M | ≥ 0.01T with probability 1− e−Ω(ℓ/k).

3.2 Case 2: many edges avoid the high-degree vertices

Let U = [n] \ U ; it remains to consider the case where U induces at least e(G)/2 = Ω(ℓ) edges.
Observe that in G

[

U
]

we can greedily find a matching of size at least s := e
(

G
[

U
])

/k = Ω(ℓ/k); let

S ⊆ [n]2 be such a matching. Now consider the following procedure to iteratively build a matching
M in H. At step t, let Vt be the set of vertices v ∈ [n] such that the value of σ−1(v) has not yet
been revealed, choose any (u, v) ∈ S ∩ V 2

t , and reveal the values of i = σ−1(u) and j = σ−1(w). If
i, j ≤ k and the values of σ(i+ k) and σ(j + k), have not already been revealed, reveal them, and
if we find that {i, j} is an edge in H then we add {i, j} to M .

The above procedure can continue while 4t + 1 ≤ |S| (that is, t ≤ (|S| − 1)/4). Let T =
min{(|S| − 1)/4, 0.01n} = Ω(ℓ/k). As in Section 3.1, we claim that every step t ≤ T has probability
Ω(1) of successfully adding an edge to M .

Claim 3.4. For any t ≤ T = Ω(ℓ/k), condition on any outcome of the information revealed before

step t. Then the probability that an edge is added to M in step t is at least 0.0004.

Proof. Reveal the values of i = σ−1(u) and j = σ−1(w). As in Case 1, the probability that i, j ≤ k
and σ(i+ k), σ(j + k) ∈ Vt is at least ((k − 8T − 1)/n)2 ≥ 0.2. Condition on such an outcome
of i, j. Note that |Vt| ≥ n − 4t ≥ 0.95n, and recall that u and w have degree at most 0.9n, so
|Vt \N(u)|, |Vt \N(w)| ≥ 0.05n. Let P ⊆ V 2

t be the set of distinct ordered pairs of vertices (u′, w′)
with u′ ∈ (Vt \N(u)) \ {u,w} and w′ ∈ (Vt \N(w)) \ {u,w}, so that |P | ≥ (0.05n− 2)(0.05n − 3) ≥
0.002n2. Observe that if (σ(j + k), σ(i+ k)) ∈ P then the vertices σ(i+ k), σ(j), σ(i), σ(j + k) form
an alternating path and

aσ(i)σ(j) − aσ(i)σ(j+k) − aσ(i+k)σ(j) + aσ(i+k)σ(j+k) = 1 + aσ(i+k)σ(j+k) 6= 0,
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meaning that {i, j} is an edge of H and can be added to M . The probability of this is at least
|P |/n2 ≥ 0.002.

As in Section 3.1, it follows that the eventual size of M stochastically dominates the binomial
distribution Bin(T, 0.0004), so by the Chernoff bound we have |M | ≥ 0.0002T with probability
1− e−Ω(ℓ/k).

4 “Weak” anticoncentration in hypergraphs

Theorem 1.2 will be an almost immediate consequence of Lemma 2.2. The only combinatorial fact
we need is as follows.

Lemma 4.1. The following holds for any r. Let G be an r-graph on 2k vertices. Then either G
induces a clique on k vertices, or an independent set on k vertices, or else it induces two k-vertex
subgraphs with different numbers of edges.

Proof. We can assume k ≥ r, because otherwise G trivially induces an independent set on k vertices.
We will assume that every k-vertex subset of G induces the same number of edges, and prove that
G is a clique or independent set.

We claim that for all s ≤ k, deg(S) takes a constant value among vertex subsets S of size s.
This will imply the desired result, because if S has r vertices, then deg(S) is either zero or one,
depending on whether S is an edge in G. We prove our desired claim by induction on s, so assume
it holds for all sizes less than some s. For i < s, let di be the common value of deg(S) among S of
size i.

Now, let St(v) be the set of edges of G which contain a vertex v. For a set S of s vertices, by
the inclusion-exclusion principle, the number of edges of G which intersect S is

∣

∣

∣

∣

∣

⋃

v∈S

St(v)

∣

∣

∣

∣

∣

=

s
∑

i=1

(−1)i+1







∑

S′∈(Si)

∣

∣

∣

∣

∣

⋂

v∈S′

St(v)

∣

∣

∣

∣

∣






=

s−1
∑

i=1

(−1)i+1

(

s

i

)

di + (−1)s+1 deg(S).

So, if we had S1, S2 ⊆ V with |S1| = |S2| = s and (−1)s+1 deg(S1) < (−1)s+1 deg(S2), it would
imply that e(V \ S1) > e(V \ S2). Since we are assuming k ≥ s and |V | = 2k, we would have
|V \ S1| = |V \ S2| ≥ k, so by averaging there would be k-vertex subsets U1 ⊆ V \S1 and U2 ⊆ V \S2

such that e(U1) > e(U2). This would be a contradiction.

Now we can prove Theorem 1.2. Similarly to the proof of Theorem 1.1, by monotonicity it
suffices to show that Pr(XG,k = ℓ) ≤ 1 − ε, for some ε depending only on r, whenever G is an
r-graph on n = 2k vertices. If XG,k is identically equal to 0 or

(n
k

)

then we are done, and otherwise,
by Lemma 4.1, XG,k must be supported on at least two values (meaning that it is not a constant).

Then, note that we can express XG,k in the form f(ξ), for f a polynomial of degree at most r
and ξ ∈ BL(n, k). The desired result therefore follows from Lemma 2.2.

5 Anticoncentration in dense 3-graphs

In this section we prove Theorem 1.3. Let G be a 3-graph on the vertex set [n], for n = 2k; as in
Section 3, it suffices to prove that Pr(XG,k = ℓ) ≤ logO(1) k/

√
k. Also, with the same arguments as

in Claim 3.1, we can assume that min
{

e(G),
(n
3

)

− e(G)
}

= Ω
(

n3
)

.
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Now, we express X = XG,k as
∑

1≤x<y<z≤n

axyzξxξyξz,

where axyz = 1{x,y,z}∈E(G) and ξ ∈ BL(n, n/2). One might hope that Conjecture 5 would follow
from a 3-graph generalisation of the arguments in Theorem 1.1. Indeed, it would suffice to show
that G has Ω

(

n6
)

“good” 6-tuples of vertices (x, x′, y, y′, z, z′) such that

axyz − axyz′ − axy′z − ax′yz + axy′z′ + ax′yz′ + ax′y′z − ax′y′z′ (2)

is nonzero. Unfortunately, in contrast with the 2-uniform case in Theorem 1.1, there exist 3-graphs
G satisfying min

{

e(G),
(n
3

)

− e(G)
}

= Ω
(

n3
)

which have no good 6-tuple at all. It will be useful to
classify all such 3-graphs, which we will do after making some definitions. Fix a set {x, x′, y, y′, z, z′}
of size 6, and let F be the set of all 3-graphs on this vertex set such that the expression in (2) is
nonzero. We say that a 3-graph is F-free if it induces no 3-graph from F . Also, we define a family
of F-free 3-graphs as follows. For two disjoint sets A and B and a set of disjoint pairs M ⊆ A×B,
let GA,B,M be the 3-graph on the vertex set A∪B, whose edges are the triples which intersect both
A and B, except those triples which include a pair from M .

Lemma 5.1. Consider an F-free n-vertex 3-graph G with min
{

e(G),
(n
3

)

− e(G)
}

= Ω
(

n3
)

. Then,

provided n is sufficiently large, G or its complement is of the form GA,B,M , for some partition A∪B
of the vertex set of G and some set of disjoint pairs M ⊆ A×B.

The proof of Lemma 5.1 involves some somewhat complicated casework, so we defer it to
Section 5.1.

Now, under the coupling in Fact 2.7, X is a function of a random permutation σ : [n] → [n] and
a random vector γ ∈ Radn/2. By Lemma 2.8, for any outcome of σ, X is a polynomial in the γi of
degree at most 3. The coefficient gijq of γiγjγq is

∑

b∈{0,1}3

(−1)|b|aσ(i+kb1)σ(j+kb2)σ(q+kb3)

(note that |gijq| ≤ 4) and the coefficient gij of γiγj is

deg(σ(i), σ(j))− deg(σ(i+ k), σ(j))− deg(σ(i), σ(j + k)) + deg(σ(i+ k), σ(j + k)).

Let H be the random 3-graph on the vertex set [n/2] with an edge {i, j, q} whenever gijq 6= 0. First
suppose that G contains Ω

(

n6
)

induced subgraphs from F , and let N = Ω
(

n6
)

be the number of
ordered 6-tuples (x, x′, y, y′, z, z′) such that the expression in (2) is nonzero. Then

Ee(H) =
n

2

(n

2
− 2
)(n

2
− 4
) N

n(n− 1) . . . (n− 5)
= Θ

(

n3
)

Also, note that modifying σ by a transposition changes e(H) by at most 2
(n
2

)

. By a McDiarmid-type
concentration inequality for random permutations (see for example [32, Section 3.2]), we therefore
have

Pr(e(H) ≤ Ee(H)/2) = exp

(

−Ω

(

(

n3
)2

n ·
(n
2

)2

))

= e−Ω(n).

But if e(H) ≥ Ee(H)/2 = Ω
(

n3
)

then we can greedily find a matching of size Ω(n) in H, and
Theorem 2.9 finishes the proof.
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It remains to consider the case where G contains o
(

n6
)

induced subgraphs from F . In this case,
by the induced hypergraph removal lemma (see [41, Theorem 6]), we can add and remove o

(

n3
)

edges
from G to obtain a 3-graph with no induced subgraphs from F . By Lemma 5.1, we can assume this
3-graph is of the form GA,B,M . Note that only O(|M |n) = o(n3) edges of GA,B,M can involve a
pair in M , so we can actually obtain G′ := GA,B,∅ by adding and removing o

(

n3
)

edges from G.
Recall that min

{

e(G),
(n
3

)

− e(G)
}

= Ω
(

n3
)

, so we must have |A|, |B| = Ω(n). Also observe that if
x, y′ ∈ A and x′, y ∈ B, then

∣

∣degG′

(

x, y
)

− degG′

(

x′, y
)

− degG′

(

x, y′
)

+ degG′

(

x′, y′
)∣

∣ =
∣

∣2(n− 2)− |A| − |B|
∣

∣ = n− 4. (3)

There are Ω
(

n4
)

such choices of (x, x′, y, y′). We claim that in fact there are N ′ = Ω
(

n4
)

choices of
(x, x′, y, y′) such that

degG(x, y)− degG
(

x′, y
)

− degG
(

x, y′
)

+ degG
(

x′, y′
)

≥ n/2. (4)

Indeed, recall that G′ is obtained from G by adding and removing o
(

n3
)

edges, and adding or
removing an edge from G can affect the value of the above expression by at most 1, for at most
O
(

n2
)

4-tuples (x, x′, y, y′). Therefore there can be only o(n4) 4-tuples which satisfy (3) but not (4).
Now, let H ′ be the random graph on the vertex set [n/2] with an edge {i, j} if gij ≥ n/2. We

have

Ee
(

H ′
)

=
n

2

(n

2
− 2
) N ′

n(n− 1)(n− 2)(n− 3)
= Θ

(

n2
)

,

and, as in the previous case, by a concentration inequality e(H ′) = Ω
(

n2
)

with probability 1− e−Ω(n),
in which case H ′ has a matching of size m = Ω(n). The desired result then follows from Corollary 2.10,
with d = 3 and r = min{m,n/8}.

5.1 Characterising F-free 3-graphs

In this subsection we prove Lemma 5.1, as an inductive consequence of the following two lemmas.

Let K
(3)
a,b be the complete bipartite 3-graph with parts of sizes a and b (meaning that the vertex set

can be partitioned into two parts of sizes a and b, and the edges are those triples which intersect
both parts).

Lemma 5.2. Under the conditions of Lemma 5.1, G contains a copy of K
(3)
5,5 or its complement.

Lemma 5.3. Consider an F-free 3-graph G and let v be one of its vertices. Suppose that G− v =
GA,B,M for some partition A∪B of the vertex set of G−v and some set of disjoint pairs M ⊆ A×B.

Suppose also that |A|, |B| ≥ 5. Then there is a partition A′ ∪B′ of the vertex set of G, and a set of

disjoint pairs M ′ ⊆ A′ ×B′, satisfying A′ ⊇ A, B′ ⊇ B, M ′ ⊇ M , such that G = GA′,B′,M ′.

To prove Lemma 5.2, we use the following theorem due to Fox and Sudakov [18, Theorem 4.2],
which states that certain natural “patterns” are unavoidable in hypergraphs with density bounded
away from zero and one. This theorem was actually stated in [18] without proof (Fox and Sudakov
were mainly concerned about an analogous theorem for graphs), so for completeness we include a
proof in Appendix A.

Theorem 5.4. Consider a red-blue colouring of the edges of the complete n-vertex 3-graph, with

Ω
(

n3
)

red edges and Ω
(

n3
)

blue edges, and consider any t ∈ N.

If n is sufficiently large then G contains disjoint vertex subsets V1, V2, V3 each of size t, such that

for every function f : {1, 2, 3} → {1, 2, 3}, all the edges {v1, v2, v3} with vi ∈ Vf(i) for i ∈ {1, 2, 3}
have the same colour, but the edge colouring of V1 ∪ V2 ∪ V3 is not monochromatic.
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Now we prove Lemma 5.2 and Lemma 5.3. Note that n-vertex 3-graphs are equivalent to red-blue
colourings of the complete n-vertex 3-graph; we switch between these points of view interchangeably.

Proof of Lemma 5.2. We may assume that G contains disjoint vertex subsets V1, V2, V3 satisfying
the conclusion of Theorem 5.4, with t = 5. Suppose first that for some i1, i2, the set Vi1 ∪ Vi2 is

not monochromatic and the induced colouring is not isomorphic to K
(3)
5,5 or its complement. For all

remaining possibilities of the induced colouring, one can check that if x, y, z ∈ Vi1 and x′, y′, z′ ∈ Vi2

then the expression in (2) is nonzero, meaning that G is not F-free, which is a contradiction.
Alternatively, if each Vi1 ∪ Vi2 is monochromatic, then there is only one possibility (up to swapping
colours) for the colouring of V1 ∪ V2 ∪ V3, and one can check that if x, y, z ∈ V1, x

′, y′ ∈ V2 and
z′ ∈ V3, then the expression in (2) is nonzero, which is again a contradiction.

Proof of Lemma 5.3. First, consider xa, x
′
a ∈ A and xb, x

′
b ∈ B such that (xa, x

′
b), (x

′
a, xb) /∈ M .

By the assumption that |B| ≥ 5, there is x∗b ∈ B \ {xb, x′b} such that (x′a, x
∗
b), (xa, x

∗
b) /∈ M . If

(x, x′, y, y′, z, z′) = (v, x∗b , xa, xb, x
′
a, x

′
b) then the expression in (2) is equal to

1 + avxax′
a
+ avxbx

′
b
− avxax′

b
− avx′

axb
= 0. (5)

This implies that at most one of {v, xa, x′a} and {v, xb, x′b} can be an edge. But for any xa, x
′
a ∈ A

and any two vertices in B, we can assign those two vertices the labels xb and xb′ in such a way that
(xa, x

′
b), (x

′
a, xb) /∈ M . So either there is no edge containing v and two vertices from A, or there is

no edge containing v and two vertices from B. Without loss of generality, suppose the former is the
case.

Now, we wish to study the edges of the form {v, xa, xb}, for xa ∈ A and xb ∈ B. Let Γ be the
auxiliary bipartite graph on the vertex set A ∪B with an edge (xa, xb) ∈ A×B if {v, xa, xb} is not

an edge in G.

Claim. Either Γ = M or Γ is obtained from M by adding every edge (xa, x
∗) incident to a single

vertex x∗ ∈ B which does not appear in any pair of M .

Proof of claim. For any xa, x
′
a ∈ A, xb, x

′
b ∈ B with (xa, x

′
b), (x

′
a, xb) /∈ M , by (5) at least one of

{v, xa, x′b} and {v, x′a, xb} is an edge. So Γ \M does not have a matching of size 2, and by Kőnig’s
theorem the edges in Γ \M are all incident to a single vertex x∗, which may be in A or B. (If Γ \M
consists of just one edge, then we can take x∗ ∈ B, and if Γ \M has no edges, we set x∗ = ∅).

Consider any xa, x
′
a ∈ A and xb ∈ B. Choose x∗b ∈ B \ {xb} and x∗a ∈ A \ {xa, x′a} such

that (x∗a, xb), (x
∗
a, x

∗
b), (xa, x

∗
b), (x

′
a, x

∗
b) /∈ M . If (x, x′, y, y′, z, z′) = (v, x∗b , xb, x

∗
a, xa, x

′
a) then the

expression in (2) is equal to

1(x′
a,xb)/∈M − 1(xa,xb)/∈M + avxaxb

− avx′
axb

= 0. (6)

If (xa, xb) ∈ M , then (x′a, xb) /∈ M , so (6) immediately implies that {v, x′a, xb} is an edge of G, and
{v, xa, xb} is not. This implies that M ⊆ Γ, and it also allows us to rule out the possibility that x∗

is a vertex in B that appears in some pair of M (in this case we would have proved that Γ \M has
no edges incident to x∗, which would contradict the choice of x∗).

Also, if (xa, xb), (x
′
a, xb) /∈ M then (6) implies that (xa, xb) is an edge of Γ if and only if (x′a, xb)

is an edge of Γ. This rules out the possibility that x∗ ∈ A, and proves that if x∗ 6= ∅ then actually
(xa, x

∗) ∈ Γ for all xa, finishing the proof of the claim

Given the above claim, it now remains to consider edges of the form {v, xb, x′b}, for xb, x
′
b ∈ B.

For any xb, x
′
b ∈ B \ {x∗} we may choose xa, x

′
a ∈ A such that (xa, x

′
b), (x

′
a, xb) /∈ M , so by (5),

{v, xb, x′b} is an edge of G. If Γ = M we may now conclude that G = GA′,B,M for A′ = A ∪ {v}.
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Alternatively, if Γ 6= M , we may similarly deduce from (5) that for any xb ∈ B \{x∗}, {v, xb, x∗}
is not an edge of G. We may then conclude that G = GA′,B,M ′ for A′ = A ∪ {v} and M ′ =
M ∪ {(v, x∗)}.

6 Further directions of research

6.1 Possible generalisations and improvements

An obvious conjecture is that the logarithmic term in Theorem 1.1 is unnecessary, as follows.

Conjecture 4. For all k and all 0 ≤ ℓ ≤
(k
2

)

, let ℓ∗ = min
{

ℓ,
(k
2

)

− ℓ
}

. We have

ind(k, ℓ) = O
(

√

k/ℓ∗
)

.

We remark that the logarithmic term in Theorem 1.1 arises purely because of the corresponding
logarithmic term in Theorem 2.9. In turn, this logarithmic term arises from an estimate due to
Kane for the so-called Gotsman–Linial conjecture, as follows. For an n-variable Boolean function
f : {−1, 1}n → R, the average sensitivity of f is defined by

AS(f) =
n
∑

i=1

Pr(f(γ1, . . . , γi−1, γi, γi+1, . . . , γn) 6= f(γ1, . . . , γi−1,−γi, γi+1, . . . , γn)),

where γ ∈ Radn. The Gotsman–Linial conjecture essentially3 states that if a Boolean function f has
the form f(x) = 1p(x)>0 for a degree-d polynomial p (that is, f is a degree-d polynomial threshold

function), then AS(f) = O(d
√
n). Kane [24] proved that if f is a degree-O(1) threshold function

then AS(f) =
√
n logO(1) n. To prove Conjecture 4 via the methods in [33] and the methods in

Section 3, it would suffice to prove that AS(f) = O(
√
n) under the same assumptions. In particular,

a bound of the form AS(f) ≤ g(n) would imply that under the conditions of Conjecture 4 we have
ind(k, ℓ) = O(g(ℓ∗/k)k/ℓ∗).

Next, the appropriate generalisation of Conjecture 4 to hypergraphs seems to be as follows.

Conjecture 5. For any r, k and any 0 ≤ ℓ ≤
(k
r

)

, let ℓ∗ = min
{

ℓ,
(k
r

)

− ℓ
}

. We have

indr(k, ℓ) = O
(

√

kr−1/ℓ∗
)

.

It is likely that the arguments in Section 5 can be pushed to hypergraphs with uniformity higher
than three, but our proof of Theorem 1.3 involves some rather complicated checking of cases, which
would likely be even more complicated for higher uniformities. To be specific, the part of the proof
that really depends on the uniformity-3 assumption is Lemma 5.1, which (essentially) classifies the
3-graphs such that

axyz − axyz′ − axy′z − ax′yz + axy′z′ + ax′yz′ + ax′y′z − ax′y′z′ = 0

for every choice of distinct vertices (x, x′, y, y′, z, z′). In general, one might try to classify the r-graphs
such that

3The original conjecture due to Gotsman and Linial [19] was slightly sharper than what is stated here, but it was
recently disproved [8, 26].
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∑

b∈{0,1}r

(−1)|b|a
z
b1
1 ...zbrr

= 0

for every choice of distinct vertices
(

z01 , z
1
1 , z

0
2 , z

1
2 , . . . , z

0
r , z

1
r

)

. As a natural family of r-graphs with this

property, consider the complete (r − 1)-partite r-graphs K
(r)
n1,...,nr−1 , whose vertex set is partitioned

into r − 1 parts of sizes n1, . . . , nr−1, and whose edge set is defined to consist of all sets of r
vertices which intersect every part. Is it true that every r-graph with the aforementioned property

resembles some K
(r)
n1,...,nr−1? If so, using the same approach as for Theorem 1.3 one could prove that

if ℓ∗ = Ωk(k
r) then

indr(k, ℓ) ≤
logO(1) k√

k
.

However, since our proof uses the induced hypergraph removal lemma, new ideas would be necessary
to address the “sparse” case where ℓ∗ = ok(k

r).
As observed in [4], it also makes sense to generalise Conjecture 1 to hypergraphs:

Conjecture 6. For all 0 < ℓ <
(k
r

)

we have indr(k, ℓ) ≤ 1/e+ ok(1).

It would be interesting even to prove a bound of the form indr(k, ℓ) ≤ 1− ε+ ok(1) for any ε > 0
that does not depend on r; perhaps this can be accomplished with a careful bare-hands fourth-
moment computation as in [4]. We remark however that the bound indr(k, ℓ) ≤ 1 − 2−4/33−16r

in Theorem 1.2 is clearly not best-possible; instead of using hypercontractivity for BL(n, n/2) via
Lemma 2.2, it would have been possible to give a less direct proof using the much more developed
theory of hypercontractivity for Radn, then appealing to the invariance principle in [17]. This would
have given the bound indr(k, ℓ) ≤ 1− 9−r + ok(1). Of course, this still depends exponentially on r.

6.2 Ramsey graphs

It is also interesting to study the probabilities Pr(XG,k = ℓ) for restricted classes of (hyper)graphs
G. If these probabilities are small it would seem to give some evidence that the graphs in question
are very “diverse” or “disordered”. In particular, say that a graph is C-Ramsey if it has no clique or
independent set of size C log2 n. There has been a lot of work on diversity of Ramsey graphs from
various points of view; in particular, Kwan and Sudakov [28] recently resolved a conjecture of Erdős,
Faudree and Sós which effectively says that if G is an O(1)-Ramsey graph then for many values of
k, the random variables XG,k have large support (see also [2, 6, 5, 1, 34, 29] for related work). It
would be very interesting to study the probabilities Pr(XG,k = ℓ) for Ramsey graphs. For example,
if G is an n-vertex O(1)-Ramsey graph, is it true that

Pr
(

XG,n/2 = ℓ
)

= O(1/n)

for all ℓ?
As mentioned in [29], it would also be interesting to ask a more tractable version of this question

for X = e(G[A]), where A is a uniformly random vertex subset of an O(1)-Ramsey graph G. In
this case X can be interpreted as a quadratic polynomial of a random vector γ ∈ Radn, so this
question is closely related to a conjecture of Costello [9, Conjecture 3] attempting to characterise
the quadratic polynomials f in n variables with point probabilities Pr(f(γ) = ℓ) much larger than
1/n (see also a related inverse theorem of Nguyen [35]).
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6.3 Anticoncentration “on the slice”

Historically, almost all the work on anticoncentration has focused on sums or low-degree polynomials
of independent random variables (for example, see the survey of Nguyen and Vu [36] concerning
the Littlewood–Offord problem and its variants). A recent exception is a Littlewood–Offord-type
theorem “on the slice” due to Litvak, Lytova, Tikhomirov, Tomczak-Jaegermann and Youssef [31,
Proposition 4.10]. The aforementioned authors proved an upper bound on the point probabilities
Pr(f(ξ) = ℓ) for an n-variable degree-1 polynomial f of a random vector ξ ∈ BL(n, n/2), using the
coupling in Fact 2.7, and used this result to study the singularity probability of a random zero-one
matrix with fixed row and column sums. Specifically, they were able to show that f(ξ) has good
anticoncentration if f has many pairs of different coefficients, which means that f is far from a
multiple of the polynomial x1 + · · ·+ xn.

In this paper we generalised the above methods to higher-degree polynomials, and effectively
showed that for a degree-d polynomial f , the random variable f(ξ) has good anticoncentration if
there are many 2d-tuples of coefficients which satisfy a certain inequality. This is in some sense a
combinatorial criterion, and it would be interesting if an algebraic criterion could be proved to also
suffice. For example, does f(ξ) have good anticoncentration whenever f is in some sense far from a
polynomial with (x1 + · · · + xn) as a factor?

There is also the possibility that more natural anticoncentration theorems could be stated in
terms of harmonic polynomials (recall the definition from Section 2.2), which are in some sense the
correct representation of functions on the slice (see for example [17]). For harmonic polynomials
of BL(n, pn) random vectors, the invariance principle in [17] can be used to apply standard anti-
concentration theorems, but the error terms in this invariance principle prevent one from obtaining
optimal bounds in this way.

Finally, one could also study anticoncentration phenomena for more general combinatorial ran-
dom variables; for example, functions of random permutations, as in Hoeffding’s combinatorial
central limit theorem [22].

Acknowledgments. The authors would like to thank the referee and Lisa Sauermann for their
careful reading of the manuscript and their valuable comments.
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A Unavoidable patterns in Hypergraphs

For the sake of completeness and the convenience of the reader, in this section we provide a proof
of (a generalisation of) Theorem 5.4. This theorem appears as [18, Theorem 4.2], but was stated
without proof.

Theorem A.1. For each ε > 0 and positive integers r and t, there is a positive integer N = N(t, r, ε)
such that the following holds. Consider any red-blue colouring of the complete r-graph with n ≥ N
vertices which has at least εnr edges in each colour. Then there are disjoint vertex subsets V1, . . . , Vr,

each of size t, such that for every function f : {1, . . . , r} → {1, . . . , r}, all the edges {v1, . . . , vr} with

vi ∈ Vf(i) for i ∈ {1, . . . , r} have the same colour, but the edge colouring of V1 ∪ · · · ∪ Vr is not

monochromatic.

We remark that our proof will actually give the slightly stronger statement that the edges con-
tained in V1 have a different colour than the edges with a vertex in each Vi.

At the heart of our proof of Theorem A.1 is the following lemma.

Lemma A.2. For each ε > 0 and positive integers r and q, there is a positive integer M = M(q, r, ε)
such that the following holds. Consider any red-blue colouring of the complete r-graph with n ≥
M vertices which has at least εnr edges in each colour. Then there exist disjoint vertex subsets

V1, . . . , Vr−1, R,B, each of size q, such that

(i) {v1, . . . , vr−1, v} is coloured red for v1 ∈ V1, . . . , vr−1 ∈ Vr−1, v ∈ R, and

(ii) {v1, . . . , vr−1, v} is coloured blue whenever v1 ∈ V1, . . . , vr−1 ∈ Vr−1, v ∈ B.

We will deduce Lemma A.2 from the following lemma together with some classical extremal
results.

Lemma A.3. For any r ∈ N and ε > 0, let αr(ε) = (ε/3)4
r

. Consider a red-blue colouring of
([n]
r

)

with at least εnr edges in each colour. Then there are αr(ε)n
r−1 (r − 1)-sets of vertices that are

simultaneously contained in αr(ε)n red edges and αr(ε)n blue edges.

Proof. We will prove by induction the stronger version of this statement for partial red-blue colour-
ings where we allow αr+1(ε)n

r edges to be uncoloured. The base case r = 1 is trivial, so assume
that this claim holds for all uniformities less than some r ≥ 2.

Suppose to the contrary that this statement is false. Let R contain the (r − 1)-sets of vertices
which are in fewer than αr(ε)n blue edges, and let B contain the (r − 1)-sets which are in fewer
than αr(ε)n red edges. Then let S contain the remaining (r−1)-sets, which are each simultaneously
contained in αr(ε)n red edges and αr(ε)n blue edges. We are assuming that |S| < αr(ε)n

r−1.
The number of red edges is then at most |R|n + |S|n + αr(ε)n|B| ≤ |R|n + αr(ε)n

r + αr(ε)n
r, so

|R| ≥ (ε− αr(ε)− αr(ε))n
r−1 ≥ (ε/3)nr−1. We may similarly deduce that |B| ≥ (ε/3)nr−1.

Now, consider the red-blue colouring of the edges of the complete n-vertex (r − 1)-graph, where
we colour an edge red if it is in R and blue if it is in B. By induction, since at most |S| < αr(ε)n

r−1

edges are uncoloured, there are αr−1(ε/3)n
r−2 (r − 2)-sets that are simultaneously contained in

αr−1(ε/3)n sets from R and αr−1(ε/3)n sets from B. Since fewer than αr+1(ε)n
r edges are un-

coloured in total, we can find such an (r − 2)-set Z with the extra property that Z is contained in
at most

(r
2

)

αr+1(ε)n
r

αr−1(ε/3)nr−2
< αr(ε)n

2

uncoloured edges. Let Q be the collection of all r-sets of the form X ∪ Y , for Z ⊆ X ∈ R
and Z ⊆ Y ∈ B. Note that X,Y are uniquely determined by their union because we can write
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(X ∪ Y ) \ Z = {x, y}, where {x} ∪ Z = X is red and {y} ∪ Z = Y is blue. So |Q| ≥ (αr−1(ε/3)n)
2.

On the other hand, let NZ ≤ n be the number of X ∈ R which include Z. By the choice of R, fewer
than NZαr(ε)n ≤ αr(ε)n

2 of elements of Q are blue, and by the choice of B fewer than αr(ε)n
2 are

red. But we have seen above that fewer than αr(ε)n
2 are uncoloured, so |Q| ≤ 3αr(ε)n

2. One can
check that

αr−1(ε/3)
2 > 3αr(ε),

yielding our desired contradiction.

Proof of Lemma A.2. By Lemma A.3, there is a collection S of Ω(nr−1) (r− 1)-sets of vertices that
are simultaneously contained in Ω(n) red edges and Ω(n) blue edges. Let Gred be the bipartite graph
with vertex set V (Gred) = S ∪ [n] and edge set E(Gred) = {(S, v) : S ∈ S, v ∈ [n], S ∪ {v} is red},
and define Gblue in exactly the same way, using blue edges instead of red edges. As e(Gred) =
Ω(|S|n) = Ω(nr), it follows from the Kővári–Sós–Turán theorem [25] that Gred must contain a
complete bipartite graph with parts S ′ ⊆ S and R ⊆ [n] satisfying |S ′| = |S|1−o(1) = nr−1−o(1) and
|R| = q. Similarly, applying the Kővári–Sós–Turán theorem to the induced subgraph Gblue[S ′ ∪ [n]],
we can find a complete bipartite subgraph of Gblue with parts S ′′ ⊂ S ′ and B ⊂ [n] such that
|S ′′| = |S ′|1−o(1) = nr−1−o(1) and |B| = q. Since S ′′ is an (r − 1)-graph on [n] with nr−1−o(1)

edges, a result due to Erdős [14, Theorem 1] (essentially generalising the Kővári–Sós–Turán theorem
to hypergraphs) tells us that S ′′ contains a complete (r − 1)-partite (r − 1)-graph whose parts
V1, . . . , Vr−1 have the same size q. Clearly, the vertex subsets V1, . . . , Vr−1, R,B have the desired
properties.

To prove Theorem A.1 we also need the following Ramsey-type result.

Lemma A.4. For all r, t ∈ N, there is Qr(t) ∈ N such that the following holds. Consider a red-blue

colouring of the edges of the complete r-graph, and consider vertex sets V ′
1 , . . . , V

′
r each of size at

least Qr(t), such that all the edges with a vertex in each V ′
i have the same colour, and all the edges

within V ′
1 have the other colour. Then there are subsets Vi ⊆ V ′

i of size t satisfying the conclusion

of Theorem A.1.

Proof. For every function f : {1, . . . , r} → {1, . . . , r}, we say that V1, . . . , Vr is f -good if all the
edges {v1, . . . , vr} with vi ∈ Vf(i) for i ∈ {1, . . . , r} have the same colour. Provided Qr(t) is large
enough, we can iteratively apply the Product Ramsey Theorem (see for example [39, Theorem 9.2])
to shrink the V ′

i until they are f -good for every f .

We are finally ready to prove Theorem A.1.

Proof of Theorem A.1. By Ramsey’s theorem, there is a function Rr : N → N such that every
red-blue colouring of the edges of the complete r-graph on Rr(k) vertices has a monochromatic
k-clique.

We apply Lemma A.2 to obtain vertex subsets V ′′
1 , V

′′
2 . . . , V ′′

r−1, R,B each of size Rr(Qr(t)). Let
V ′
1 be a monochromatic Qr(t)-clique in V ′′

1 , and assume without loss of generality that it is red.
Choose V ′

2 ⊂ V ′′
2 , . . . , V

′
r−1 ⊂ V ′′

r−1 and V ′
r ⊂ B such that |V ′

i | = Qr(t) for every 2 ≤ i ≤ r. Then
apply Lemma A.4.
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