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CARTAN SUBGROUPS AND REGULAR POINTS OF

O-MINIMAL GROUPS

ELÍAS BARO, ALESSANDRO BERARDUCCI, AND MARGARITA OTERO

Abstract. Let G be a group definable in an o-minimal structure M.
We prove that the union of the Cartan subgroups of G is a dense subset
of G. When M is an expansion of a real closed field we give a charac-
terization of Cartan subgroups of G via their Lie algebras which allow
us to prove firstly, that every Cartan subalgebra of the Lie algebra of G
is the Lie algebra of a definable subgroup – a Cartan subgroup of G –,
and secondly, that the set of regular points of G – a dense subset of G
– is formed by points which belong to a unique Cartan subgroup of G.

1. Introduction

Let G be an arbitrary group, a subgroup H of G is called a Cartan sub-
group (in the sense of Chevalley) of G if H is a maximal nilpotent subgroup
of G, and for any subgroup X EH of finite index in H, X has finite index
in its normalizer NG(X).

Cartan subgroups have been studied mainly in two classes of groups:
algebraic groups and Lie groups. The study in the first class goes via the
rigidity of the algebraic context and in the second one through the nice
behaviour of analytic functions and the possibility of considering integration,
that is, through the exponential map. For example, Bourbaki works with
Lie groups over non-discrete complete ultrametric fields (see [5, Ch. VII §4])
where it makes sense to talk of analyticity and the exponential map.

Here we work with groups definable in o-minimal structures, where we
neither have such a rigidity as in the algebraic case nor the nice behaviour
of analytic functions. Even worse, integration – in general – makes no sense.
However, at the kernel of the theory there is a finiteness phenomena that
allows us to define dimension and has a good relation with the algebraic
context (in the linear case). More important, even though we cannot inte-
grate, when our o-minimal structure is an expansion of a real closed field,
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we can take derivatives, so Lie algebras make sense. With these tools we
will be able to develop a theory concerning both Cartan subgroups and reg-
ular points in groups definable in o-minimal expansions of real closed fields.
As a general remark, it is worth mentioning that the regular points in Lie
groups have nice properties from which properties of the Cartan subgroups
can be deduced. In definable groups we work the other way around: firstly,
we prove properties of Cartan subgroups making use of ideas of K.H. Neeb
(in [16] and [15]) and from there we get new insight about regular points.
Some of the techniques used could be useful in other weak contexts where
there is a lack of analiticity or algebraic structure.

In §3 we answer positively the main questions left open in [2]. The study of
Cartan subgroups of groups definable in o-minimal structures was initiated
in [2], where it was proven that Cartan subgroups of a definable group
exist, are definable, and fall into finite many conjugacy classes [2, Thm. 1].
In Corollary 3.16 we prove, among other results, that the union X of the
Cartan subgroups of a given definable group G is a dense subset of G (see
[2, Question 84]). The latter implies that the set X is syndetic in G (also
called “generic”) i.e., there is a finite E ⊆ G such that XE = G, and we
conjecture (Conjeture 3.18) that it suffices to consider the conjugates of a
specially chosen Cartan subgroup to get a syndetic subset of G. As far as
we know, this is not known even when G is a simple Lie group.

In §4, working with groups definable in o-minimal expansions of real closed
fields, we give a characterisation of the concept of Cartan subgroup of a de-
finable group inspired by the corresponding characterization for Lie groups
given by H.K. Neeb in [16]. In general, the possible lack of the exponential
map (when working with o-minimal structures) implies the lack of an ana-
logue to the Lie correspondence. Nevertheless, some examples of realisations
of Lie subalgebras as Lie algebras of subgroups of a definable group are given
in [18, Claim 2.31] via normalizers and centralizers (see Remark 3.3). Here,
the mentioned characterisation allows us to prove that Cartan subalgebras
can be realised as Lie algebras of Cartan subgroups (Corollary 4.12).

Finally, in §5, we introduce the concept of regular element of a definable
group G. Given g ∈ G, the rank r(g) of g is the dimension of the maximal
subspace g1(Ad(g)) of the eigenvalue 1 of the endomorphism Ad(g) : g→ g,
and one says that g is regular if the rank function r is locally constant around
g. In the context of Lie groups, it follows immediately from analyticity that
the rank assumes a global minimum around any regular point. Moreover,
using the exponential map it is possible to show that the global minimum
equals the rank of the Lie algebra g and that the regular points belong to
a unique Cartan subgroup of G. Even though we are not working in an
analytic context, we will be able to prove all these properties of regular
points in Proposition 5.4 and Corollary 5.15. We would like to stress that
the path we use could be interesting also in the Lie context. The classical
approach [5] uses the exponential map to relate the regular points of the
group and those of its Lie algebra. We will instead quotient by the centre to
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assume that G is a definable subgroup of GL(n,R), and then we will be able
to relate the regular points of G and those of its Zariski closure (Proposition
5.13).

2. Preliminary notions

Definable groups. We recall that an o-minimal structureR = (R,<, . . .) is
an ordered set (R,<) equipped with some relations or functions (for instance
field operations) with the property that every subset of R definable in R (in
the sense of first order logic) is a finite union of points and intervals (a, b)
with a, b ∈ R ∪ {±∞}. By the Tarski-Seidenberg result, an ordered field
is o-minimal if and only if it is real closed, so in particular the field of real
numbers is o-minimal. Another example of o-minimal structure – given by
Wilkie [22]– is the ordered field of real numbers with the real exponential
function.

The definition of o-minimality is a condition on definable subsets of R,
but it has nice consequences for definable subsets of Rn. By the cell decom-
position theorem, any definable subset of Rn can be decomposed into finitely
many cells (see Proposition 5.5) and every definable function f : Rn → R is
piecewise continous, namely it is continous on each cell of a suitable decom-
position of its domain. Here the continuity refers to the topology induced
by the order of R. The cell decomposition theorem provides also a natural
geometric notion of dimension on definable sets.

We shall often assume that R expands a field (necessarily real closed). In
this case every definable set can be definably triangulated and every defin-
able function is piecewise differentiable. By the Tarski-Seidenberg results,
when R is a real closed field with no additional structure, the definable sets
are just the semialgebraic ones. More generally, the definable sets in an
o-minimal structure share many of the tameness properties of semialgebraic
and subanalytic sets, as the above results already suggest.

Let us now introduce the notion of definable group. A group G is definable
in the o-minimal structure R if its domain is a definable subset of Rn, for
some n, and the graph of the group operation is a definable set. Such groups
have been studied since the 80’s, two pioneering papers being [20] and [21].
When R has field operations, the general linear group GL(n,R) and its
(semi)algebraic subgroups are definable. By definable choice (which holds
when R expands a field, or even a group), given a definable equivalence
relation E on a definable set X, there is a definable choice of representatives
for the equivalence classes, so we can identify X/E with a definable set. In
particular, given a definable group G and a definable normal subgroup H,
the quotient group G/H is definable (this holds in any o-minimal structure
[8]).

We can define the algebraic closure K = R[i] of R via the identification
R[i] = R2, and speak about algebraic groups over algebraically closed fields.
Thus an elliptic curve over R or K is definable, and so is any abelian variety
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(we need to observe that the projective space Pn(K) = Kn+1/ ∼ can be
identified with a definable set). More examples of definable groups can be
found in [21]. Thanks to the above observations, all the results of this paper
apply in particular to algebraic groups over a real closed or algebraically
closed field.

Notice that in the definition of definable group, we do not assume that
the group operation is continuous (with respect to the topology induced by
the ambient space Rn), however [20] shows that any definable group G in R
has a unique topology, called t-topology, which makes G into a topological
group and coincides with the topology induced by Rn on a large definable
subset V ⊆ G, where large means of codimension < dim(G), see Remark
3.15. The t-topology makes G into a definable manifold (locally definable
homeomorphic to Rn, with a finite atlas) and when the underlying set of
R is the real line we get an actual topological manifold, so every definable
group in an expansion of the reals is a real Lie group. When R is not based
on the reals, the order topology of R is neither locally compact nor locally
connected, but there are definable substitutes for these notions. One says
that G is definably compact if every definable curve f : (a, b)→ G (a, b ∈ R)
has a limit in G in the t-topology, and G is definably connected if it has no
definable subgroups of finite index. The latter is equivalent to saying that
G cannot be partitioned into two non-empty definable open subsets, which
in turn is equivalent to the condition that any two points of G can be joined
by a definable continous curve f : (a, b) → G. The connected component
Go of G is the intersection of all the subgroups of G of finite index. It can
be shown that Go is definable and has finite index in G.

When R is an expansion of an arbitrary real closed field the definable
group manifold can be definably embedded in some Rm so that the t-topology
coincides with that of the ambient space. In this case, definably compact
is equivalent to closed and bounded. Definably compact groups are well
understood and there are strong functorial connections with real Lie groups
via the quotient by the “infinitesimal subgroup” [9, 3, 13]. Much less is
known in the non-compact case (but see [7]), and this paper is a contribution
in this direction. See [17] for basic properties of definable groups.

Except in a few stated cases, we work over an o-minimal structure R
expanding a real closed field R, K will denote its algebraic closure and F
either R or K. By definable we mean definable in R.

Lie algebras and Cartan subalgebras. All the Lie algebras we are going to
consider are finite dimensional Lie algebras over F , unless otherwise stated.
If g is a Lie algebra over R we will denote by gK := g⊗K its complexification,
a Lie algebra over K.

We recall some basic definitions and facts about Lie algebras (see [5, Ch.
VII]). We will use the following notation. Let V be a finite dimensional
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F -vector space, ϕ ∈ End(V ) and s ∈ F then

V s(ϕ) := {X ∈ V | (ϕ− sid)n(X) = 0 for some n ∈ N}.

A subalgebra h of a Lie algebra g is a Cartan subalgebra of g if it is nilpotent
and h = ng(h) := {X ∈ g : [X, h] ⊆ h}. A Cartan subalgebra of g is maximal
among nilpotent subalgebras of g. If h is a Cartan subalgebra of g then its
complexification hK is a Cartan subalgebra of gK .

Let g be a Lie algebra and h a nilpotent subalgebra. Let ρ : hK →
gl(gK) : Z 7→ ad(Z) be the restriction of the adjoint representation of gK .
A linear form λ : hK → K is a root if there is X ∈ gK , X 6= 0, such that
ρ(Z)(X) = λ(Z)X, for all Z ∈ h (or equivalently for all Z ∈ hK). Λ(g, h)
denotes the set of roots of g with respect to h. Given λ ∈ Λ(g, h),

gλK(hK) := {X ∈ gK : ∀Z ∈ hK , [ρ(Z)− λ(Z)id]n(X) = 0 for some n ∈ N}.

Note that if λ ∈ Λ(g, h) is such that λ(h) ⊆ R then gλK(hK) is the complex-
ification of

gλ(h) := {X ∈ g : ∀Z ∈ h, [ρ(Z)− λ(Z)id]n(X) = 0 for some n ∈ N}.

Since hK is solvable, by Lie’s Theorem (see, e.g., [14, Thm.1.25]), there
is a simultaneous eigenvector for all members of ρ(hK). Therefore, roots
exist. Moreover, gK =

⊕
λ∈Λ gλK(hK). In fact, for each Z ∈ hK we have

that {λ(Z) : λ ∈ Λ(g, h)} is the set of eigenvalues of ρ(Z) and

gK =
⊕

λ∈Λ g
λ(Z)
K (hK).

Clearly 0 : hK → K : Z 7→ 0 is a root since h is nilpotent. Moreover, we
have the following.

i) h ⊆ g0(h);
ii) ng(g

0(h)) = g0(h), in particular the same holds for the complexifica-
tions, and

iii) h is a Cartan subalgebra of g of if and only if h = g0(h).
Next we consider our definable context. We will use results of §2.3 of [18]

and §2 of [19] concerning basic facts of Lie algebras over R.
Given a definable C1-manifold M and a point a ∈M we define the tangent

space Ta(M) as the set of all equivalence classes of definable C1-curves α :
I → M with α(0) = a, where two curves are equivalent if they are tangent
at 0. We denote by α the equivalence class of α and we endow Ta(M) with
the natural vector space structure as in the classical case.

Remark 2.1. Given a local chart ϕ : U → Rn around a ∈ U ⊆ M we can
identify Ta(M) with Rn via the isomorphism sending α to (ϕ ◦ α)′(0).

Fact 2.2. Given a definable finite dimensional vector space V we identify
Te(GL(V )) with End(V ) via the natural isomorphism sending α to α′(0) :=

limt→0
α(t)−α(0)

t where the curve α takes values in GL(V ) and the limit is
taken in End(V ) ⊇ GL(V ).
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Remark 2.3. If α, β ∈ Te(GL(V )) then α + β = α · β, where (α · β)(t) =
α(t) ◦ β(t).

3. Cartan subgroups

The main purpose of this section is to prove that given a definable group
G in an arbitrary o-minimal structure M, all Cartan subgroups of G have
the same dimension and their union is dense in G (Corollary 3.16). We will
show that both problems can be reduced to the case of G being a subgroup
of GL(n,R) definable in an o-minimal expansion R of a field. In the latter
context, the two key ingredients will be the relation between Cartan sub-
groups of G and those of its Zariski closure in GL(n,R) (Proposition 3.11)
and a kind of ”identity principle” for definable groups (see Proposition 3.12
and Remark 3.13).

We survey some preliminary results proved in [2] for o-minimal structures
(not necessarily expansions of real closed fields).

Fact 3.1. Let G be a group definable in an o-minimal structure M. Then,
(1) [2, Thm. 1] Cartan subgroups of G exist, are definable in M and they

fall into finitely many conjugacy classes, and
(2) [2, Cor. 75] if G is definably connected and H is a Cartan subgroup of

G then H = CG(Ho)Ho, in particular if H1 and H2 are Cartan subgroups
of G then Ho

1 = Ho
2 implies H1 = H2.

Let G be a group definable in an o-minimal structure M. We recall that
a Carter subgroup of G is a definably connected nilpotent subgroup of G
which has finite index in its normalizer.

Remark 3.2. Let G be a group definable in an o-minimal structure M. For
each Carter subgroup Q of G, H := CG(Q)Q is the unique Cartan subgroup
of G containing Q by [2, Lem. 5]. The definably connected component of a
Cartan subgroup is a Carter subgroup. Moreover, if Q is a Carter subgroup

of G, then Q is contained in a maximal nilpotent subgroup Q̃ of G, and

any such subgroup Q̃ is a Cartan subgroup of G with Q̃o = Q (see [2,
Lem. 5 (b)]).

We go back to our setting of groups definable in our o-minimal expansion
R of a real closed field R, where we can make sense of the Lie algebra of a
definable group. For a definable group, its Lie algebra will be denoted (unless
otherwise stated) by the corresponding lower case letter in gothic font.

Remark 3.3. We recall that if G is a definable group and h is a subspace of
its Lie algebra g then Lie(NG(h)) = ng(h) and

Lie(ZG(h)) = zg(h) := {X ∈ g : [X, h] = 0} ,

where

NG(h) := {g ∈ G : Ad(g)(h) ⊆ h} and ZG(h) :=
{
g ∈ G : Ad(g)|h = idh

}
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are definable subgroups of G. Also that if H is a normal definable subgroup
of G and h its Lie algebra (an ideal of g) then Lie(G/H) = g/h.

Lemma 3.4. Let G be a definable group and let H be a definably connected
subgroup of G. Then NG(H) = NG(h) and ZG(H) = ZG(h).

Proof. If g ∈ NG(H) then Hg ⊆ H so that Ad(g)h ⊆ h. For the converse,
take g ∈ NG(h) then Lie(Hg) = Ad(g)(h) = h = Lie(H) and therefore
Hg = H, since H is definably connected.

On the other hand, if g ∈ ZG(H) then the map Int(g) : H → H : h 7→
ghg−1 is the identity in H so its derivative Ad(g)|h is the identity on h. For
the other inclusion, take g ∈ ZG(h) and observe that since H is definably
connected, Ad(g)|h = idh implies Int(g)|H = idH . �

Lemma 3.5. Let G be a definable group and let H1 and H2 be definable
subgroups such that the commutator H := [H1, H2] is definable. Then,
[h1, h2] ⊆ h.

Proof. Let α ∈ h1 and β ∈ h2. Then, by definition

[α, β] = ad(α)(β) = (Ad ◦ α)′(0)(β) = lim
t→0

1

t
((Ad ◦ α)(t)− id) (β)

= lim
t→0

1

t

(
Ad(α(t))(β)− β

)
= lim

t→0

1

t

(
Int(α(t)) ◦ β − β

)
= lim

t→0

1

t

(
s 7→ [α(t), β(s)]

)
∈ h

as desired (the last equality follows by Remark 2.3). �

Let G be a definably connected group. Then, clearly G is abelian if and
only g is abelian. In [18] it is proved that G is semisimple if and only g is
semisimple. We next prove the corresponding statement for nilpotency and
solvability. We first need the following.

Fact 3.6 ([1, § 6]). Let G be a solvable definable group. Then the subgroups
of G of the lower central series and the derived series of G are definable,
and definably connected if G is definably connected.

Proposition 3.7. Let G be a definable group and H ≤ G a definably con-
nected subgroup. Then,

(1) H is nilpotent if and only if h is nilpotent;
(2) H is solvable if and only if h is solvable, and
(3) H is a Carter subgroup of G if and only if h is a Cartan subalgebra

of g.

Proof. Let H be nontrivial. (1) Suppose first that H is nilpotent. Let
C1h, C2h, . . . be the lower central series of h. Let C1H, C2H, . . . be the
lower central series of H, which are all definable by Fact 3.6 since H is
solvable. Then, by Lemma 3.5, C1h := [h, h] ⊆ Lie([H,H]) = Lie(C1H) and
by induction Cmh ⊆ Lie(CmH). Hence Cmh = 0 for some m. Now suppose
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h is nilpotent and we prove by induction on the dimension of H that H is
nilpotent. Suppose dimH > 1 and let Z(H) be its centre. If Z(H) is finite
z(h) = Lie(Z(H)) is trivial, which is impossible since h is nilpotent. Hence
dimH/Z(H) < dimH, and since h/z(h) = Lie(H/Z(H)) is nilpotent so is
H/Z(H), thus H is nilpotent.

(2) The left to right implication is similar to case (1). Suppose h is solv-
able. H cannot be semisimple since h semisimple would imply h (and hence
H) trivial. Thus, there is a definably connected nontrivial abelian normal
subgroup N of H. Hence reasoning as above we get H/N solvable and so H
solvable, as required.

(3) By (1) and the fact that ng(h)/h = Lie(NG(H))/h = Lie (NG(H)/H) .
�

Corollary 3.8. Let G be a definable group. Then, all the Cartan subgroups
of G have the same dimension.

Proof. Let H1, H2 Cartan subgroups of G. Then Ho
1 , Ho

2 are Carter sub-
groups of G by Remark 3.2, and so their Lie algebras are Cartan subalgebras
of the Lie algebra of G and therefore (since the base field is of zero charac-
teristic) of the same dimension. �

The last corollary answers positively – for o-minimal expansions of real
closed fields – a question left open in [2]. To answer this and other questions
of [2] in their full generality it will be convenient to consider definable linear
groups. The latter were first studied in [19].

Let G be a definable subgroup of GL(n, F ). Let G
F

be the Zariski closure

of G in GL(n, F ). Then G
F

is a definable group; it is the smallest algebraic
subgroup of GL(n, F ) that contains G. Moreover, if G ≤ GL(n,R) is defin-

able then G
K

is defined over R and G
K ∩GL(n,R) = G

R
. A Lie subalgebra

of gl(n, F ) is said to be algebraic if it is the Lie algebra of an algebraic sub-
group of GL(n, F ). Given a Lie subalgebra g of gl(n, F ), a(g) denotes the
minimal algebraic Lie subalgebra of gl(n, F ) containing g. We recall that if
a is a subalgebra of gl(n, F ) and U and V are linear subspaces of gl(n, F )
such that U ⊆ V , then [a, V ] ⊆ U implies [a(a), V ] ⊆ U (see [11, Ch.VIII.3
p. 112]). Also note that if H is an algebraic subgroup of GL(n,R) then the

Lie algebra of H
K

in GL(n,K) is hK := h⊗K.
The first two conclusions of the following proposition are proved in [6,

Ch.VI § 5 Lem. 2] for analytic linear groups.

Proposition 3.9. Let G be a definable subgroup of GL(n, F ) and G its
Zariski closure. Then, Lie(G) = a(Lie(G)). Moreover, if G is definably
connected then G is irreducible and G is normal in G.

Proof. Suppose first that G is definably connected. Let G1 be an algebraic
irreducible subgroup of GL(n, F ) such that a(g) = Lie(G1). Since g ⊆ a(g)
and G is definably connected we have G ⊆ G1 and so G ⊆ G1. On the other
hand g ⊆ Lie(G) and the latter being algebraic imply a(g) ⊆ Lie(G), and
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since G1 is irreducible we have G1 ⊆ G. Therefore, G = G1 and hence G
irreducible and Lie(G) = a(g), as required. Next we prove that G is normal
in G. Note first that NG(g) is algebraic and contains G, hence G = NG(g).
Since G is definably connected, by Lemma 3.4 we have NG(g) = NG(G).

For the general case, it suffices to note that G – being definable – is a
finite union of translate of its definably connected component Go, and so G
is a finite union of translates of Go and so Lie(G) = Lie(Go). �

As we have already mentioned above, all the Cartan subalgebras of a Lie
algebra over a field of characteristic 0 have the same dimension, called the
rank of the Lie algebra and denoted by rk(−).

Corollary 3.10. Let G be a definably connected subgroup of GL(n, F ) and
G1 its Zariski closure in GL(n, F ). Then, rk g1 = rk g + dim g1 − dim g.

Proof. By Proposition 3.9 g1 = a(g). So we have that g is a subalgebra of
gl(n, F ), F is a characteristic 0 field and g1 is the minimal algebraic Lie
algebra containing g. Hence, we are exactly under the hypothesis of [6,
Ch.VI § 4 Prop. 21], where the required equality is concluded. �

Next, we adapt the proof of [6, Ch.VI § 5 Prop. 1] for analytic linear groups
to our context which gives us the relationship between the Cartan subgroups
of a definable linear group and those of its Zariski closure.

Proposition 3.11. Let G be a definably connected subgroup of GL(n, F ) and
G its Zariski closure. Then, the Cartan subgroups of G are the intersection
with G of the Cartan subgroups of G.

Proof. Let g′ = Lie(G). Firstly, note that by Proposition 3.9 G is an irre-
ducible algebraic subgroup of GL(n, F ) and so we are under the hypothesis
of no 2 of [6, Ch.VI § 4].

Let H ′ be a Cartan subgroup of G. By Proposition 3.7 h′ is a Cartan
subalgebra of g′. We first check that h′ = a(h′ ∩ g) and that h′ ∩ g is a
Cartan subalgebra of g. By [Ibid. Prop.5] H ′ is algebraic and by [Ibid. Thm.2]
H ′ is irreducible. Hence h′ ⊇ a(h′ ∩ g). For the other inclusion, we can
apply [Ibid. Prop.21] and get first that h′ ∩ g is a Cartan subalgebra of g
since g′ = a(g), and hence also that a(h′ ∩ g) is a Cartan subalgebra of
g′. Finally by maximality of the Cartan subalgebras we get the required
equality. We must prove that H ′ ∩ G is a Cartan subgroup of G. First
note that Lie(H ′ ∩ G) = h′ ∩ g, by [18, Thm. 2.21], thus Lie(H ′ ∩ G) is a
Cartan subalgebra of g, hence we have that (H ′ ∩G)o is a Carter subgroup
of G by Proposition 3.7, so by Remark 3.2 it suffices to prove that H ′ ∩ G
is maximal nilpotent. Nilpotency is clear being a subgroup of the Cartan
H ′. Let H ′ ∩ G ≤ Q ≤ G with Q nilpotent. Let Q′ := Q, then Q′ is
also nilpotent and H ′ ∩G ⊆ Q′. Note that H ′ ⊆ Q′. Indeed, since both
subgroups are algebraic and H ′ is irreducible, it suffices to prove that h′ ⊆ q′,
and we have that h′ = a(h′ ∩ g) = a(Lie(H ′ ∩ G)) = a(Lie((H ′ ∩ G)o)) =

Lie((H ′ ∩G)o) ⊆ Lie(Q′) = q′. Now, H ′ being maximal nilpotent subgroup
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of G implies H ′ = Q′, and so Q ⊆ Q′ ∩G = H ′ ∩G. Therefore, H ′ ∩G is a
Cartan subgroup of G.

Let H be a Cartan subgroup of G. By Proposition 3.7 h is a Cartan
subalgebra of g. Then, the rest of the proof follows as in [6, Ch.VI § 5
Prop.1], here there are the details. Let h′ = a(h). Again by Prop.21 of [6,
Ch.VI § 4] h′ is a Cartan subalgebra of g′ and by [Ibid. Prop.5] h′ = Lie(H ′)
for some Cartan subgroup H ′ of G. Then H ′ ⊆ H , the Zariski closure of
H in GL(n, F ). Indeed, since both are algebraic and H ′ is irreducible, it
suffices to check that h′ ⊆ Lie(H ). Now, H ⊆ H implies h ⊆ Lie(H ) and the
latter is an algebraic Lie algebra so it also contains a(h) = h′. Then, since
H ′ is maximal nilpotent and H is nilpotent for H is so, we have H ′ = H .
Hence H ⊆ H ′, and so H ⊆ H ′∩G. Finally, we get H = H ′∩G since H ′∩G
is nilpotent and by maximal nilpotency of H. �

The next proposition is a key fact to prove the density of the union of the
Cartan subgroups in a definably connected linear group.

Proposition 3.12. Let G be a definably connected subgroup of GL(n, F ).
Let X ⊆ GL(n, F ) be a Zariski closed set such that X ∩ G has non-empty
interior in G. Then, the Zariski closure G is contained in X.

Proof. For Z ⊆ GL(n, F ), Z will denote its Zariski closure. Let IntG(X∩G)
denote the interior in G of X ∩ G. Let g ∈ IntG(X ∩ G) and consider the
open neighbourhood of the identity V := g−1IntG(X ∩ G). Now, for each
open neighbourhood of the identity U ⊆ V consider its Zariski closure U in
GL(n, F ). Let

Y :=
⋂
U⊆V

U .

Thus, Y is a finite intersection and hence Y = U0 , for some open neighbour-
hood of the identity U0 ⊆ V , which we can assume to be symmetric, that
is, U−1

0 = U0.

We claim that Y is a subgroup of GL(n, F ). Clearly Y ⊆ G. Let U1 be
an open symmetric neighbourhood of the identity in G with U1U1 ⊆ U0. We
first show that Y Y = Y . Take h ∈ U1 and consider the algebraic subset
Zh = {x ∈ G : hx ∈ Y } of Y . If x ∈ U1 then hx ∈ U1U1 ⊆ U0 ⊆ U0 = Y .
That is, U1 ⊆ Zh and therefore Y = U0 ⊆ Zh. Note that we have showed
that the algebraic subset of G given by {h ∈ G : hY ⊆ Y } contains U1,
therefore it contains its Zariski closure U1 = Y . In particular, Y Y = Y .
Now, let us see that Y −1 = Y . Take the algebraic set W := {x ∈ G : x−1 ∈
Y }. Since U1 is symmetric we have that U1 ⊆ W and therefore U1 = Y is
also contained in W . Thus, Y −1 ⊆ Y , as required, what proves the claim.

Now, by the claim Y ∩ G is a subgroup of G, and since it contains the
open subset U0, we can deduce that dim(Y ∩ G) = dimG and therefore,
Y ∩G = G by connectedness of G. That is, G ≤ Y . In particular, Y = G.
Finally note that

G ⊇ X ∩G ⊇ gU0 = gU0 = gG = G
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and hence G = X ∩G, therefore G ⊆ X. �

Remark 3.13. The above is a rudimentary version for definable linear groups
of the analytic ‘identity principle”. For, if G denotes a connected closed
subgroup (or more generally, a connected analytic submanifold) of GL(n,R)
and X denotes an analytic subset of GL(n,R) such that IntG(X ∩ G) 6= ∅,
then clearly G ⊆ X.

Let Ctn(L) denote the set of Cartan subgroups of a group L.

Theorem 3.14. Let G be a definably connected subgroup of GL(n,R). Then,
the union of the Cartan subgroups of G is dense in G.

Proof. Let G be the Zariski closure of G in GL(n,R). Then, as above, we
are under the hypothesis of [6, Ch.VI § 4 Def. 2]. Let U be the set of regular
elements of the algebraic group G (in the sense of [Ibid. Def. 2], see below
Proposition 5.6). Then, by [Ibid. Prop. 6] U is a nonempty Zariski open
subset of G.

Claim: The set U ∩G is dense in G.
Indeed, if not (G \ U) ∩ G has nonempty interior in G, and by Proposi-

tion 3.12 we get G \ U = G, a contradiction.
On the other hand, by [Ibid. Thm.2] U ⊆

⋃
{H ′ : H ′ ∈ Ctn(G)} and

hence ⋃
{H ′ ∩G : H ′ ∈ Ctn(G)} =

⋃
{H ′ : H ′ ∈ Ctn(G)} ∩G

is dense in G. Finally, by Proposition 3.11 we have that⋃
{H ′ ∩G : H ′ ∈ Ctn(G)} =

⋃
{H : H ∈ Ctn(G)}.

�

We end this section by giving a positive answer to the main questions left
open in [2].

Remark 3.15. Note that since groups definable in an o-minimal structure
are definable manifolds, a definable subset is dense if and only if is large
(small codimension).

Corollary 3.16. Let G be a definably connected group definable in an o-
minimal structure M.Then,

(1) all the Cartan subgroups of G have the same dimension;
(2) the union of the Cartan subgroups of G is dense in G;
(3) Cartan subgroups of G/Ro(G) are exactly of the form HRo(G)/Ro(G)

with H a Cartan subgroup of G, where R(G) denotes the radical of G, and
(4) for every Cartan subgroup H of G and a ∈ H such that, modulo Ro(G),

a is in a unique conjugate of aHo, (aHo)R
o(G) is dense in aHoRo(G).

Proof. The statement of [2, Prop. 85] says that (2) implies (3) and (4).
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To prove (1) and (2) we first consider the canonical definable projection
G→ G/Z(G). By [2, Lem. 8] each Cartan subgroup of G contains Z(G) and

Ctn(G/Z(G)) = {H/Z(G) : H ∈ Ctn(G)}.
Thus, it suffices to prove (1) and (2) for G/Z(G). By Frécon Theorem [10,
Thm. 5.15] G/Z(G) = G1 × · · · ×Gm, where, for each i = 1, . . . ,m, Gi is a
definable group and there are a definable real closed field Ri and an integer
ni such that Gi is a definable subgroup of GL(ni, Ri). By [2, Cor. 10]

Ctn(G/Z(G)) = {H1 × · · · ×Hm : Hi ∈ Ctn(Gi), i = 1, . . . ,m}.
Thus, clearly it suffices to prove (1) and (2) for each Gi, and moreover we
can assume that each Gi is definable in an o-minimal expansion of Ri. We
conclude by applying Corollary 3.8 and Theorem 3.14. �

Corollary 3.17. Let G be a definably connected group definable in an o-
minimal structure M. Then, the union of the Cartan subgroups of G, X :=⋃

Ctn(G), is syndetic in G, i.e., there is a finite E ⊆ G such that XE = G.

Proof. The set X is dense in G by Corollary 3.16 (2). Now, since X is defin-
able this is equivalent to X being of small codimension, i.e. dim(G \X) <
dimG, and this in turn implies that finitely many translates of X covers
G. �

In [2, Remark 57] we proved that in the case of SL(2,R), it suffices to
consider the conjugates of a specially chosen Cartan subgroup (the diagonal
matrices) to get a syndetic subset of SL(2,R), and we conjecture that this
is always the case.

Conjecture 3.18. Let G be a definably simple group definable in an o-
minimal structure M. Then, there is a Cartan subgroup H of G such that
HG is syndetic in G.

As we have already mentioned, this is not known even when G is a simple
Lie group. Note also that if the definable group is not definably compact,
definably simple is equivalent to simple [19, Cor.6.3].

Proposition 3.19. If Conjecture 3.18 holds true, then every definable group
G has a Cartan subgroup H of G such that HG is syndetic in G.

Proof. Let Ro := Ro(G) be the connected component of the radical of G.
The quotient G/Ro is a central product of finite-by-definably simple sub-
groups [2, Remark 87]. Moreover, by [2, Lemma 9], a Cartan subgroup of
G/Ro is a product of Cartan subgroups of the factors. Therefore, it follows
from the hypothesis that G/Ro has a Cartan subgroup whose set of conju-
gates is syndetic. In other words, by Corollary 3.16 (3) there is a Cartan
subgroup H of G such that (HRo)G is syndetic in G.

On the other hand, (Ho)R
o

is dense inHoRo. For, Ho is a Carter subgroup
of the solvable definably connected group HoRo, so it follows from [2, Thm
40]. Now, we claim that HRo

is dense in HRo. Indeed, let aHo be a
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coset of Ho in H. By Corollary 3.16.(3) we have that HRo/Ro is a Cartan
subgroup of G/Ro. In particular, HoRo/Ro is its connected component and
aHoRo/Ro a coset. By [2, Thm 82] we can assume that, modulo Ro, a is
in a unique conjugate of aHo. Therefore, by Corollary 3.16.(4) we get that
(aHo)R

o
is dense in aHoRo. In particular, we deduce that HRo

is dense in
HRo.

Finally, since HRo
is dense in HRo, we get that (HRo

)G = HG is dense
in (HRo)G. Since (HRo)G is syndetic in G there is a finite E ⊆ G such that
E(HRo)G = G. Thus, EHG is dense in G, and so syndetic in G. It follows
that HG is also syndetic in G, as required. �

4. A characterisation of Cartan subgroups

In this section we fix a definably connected group G definable as usual in
our o-minimal expansion of a field R. Given such G with Lie algebra g, and
a Cartan subalgebra h of g, we want to show that there is a Cartan subgroup
H ≤ G whose Lie algebra is h. The problem is that in the definable context
we do not have a general correspondence between analytic subgroups and
Lie subalgebras, mainly because of the lack of an exponential map. To that
aim, we shall introduce an alternative definition of Cartan subgroups of G,
given by Karl-Hermann Neeb in [16] for connected Lie groups (see Definition
4.2).

As in the classical case we have the following fact.

Remark 4.1. Let h be a nilpotent subalgebra of g. Then there is a definable
action of NG(h) on the set of roots Λ := Λ(g, h)

NG(h)× Λ → Λ
(g, λ) 7→ λ ◦Ad(g)|hK

Proof. We use the notation introduced in § 2, in particular ρ is the restric-
tion to hK of the adjoint representation of gK . We have to show that
λ ◦ Ad(g)|hK ∈ Λ, for each g ∈ NG(h) and each λ ∈ Λ. By definition of
Λ there is X ∈ gK , X 6= 0, such that ρ(Z)(X) = λ(Z)X for all Z ∈ h. On
the other hand, recall that Ad(g−1)[X1, X2] = [Ad(g−1)X1,Ad(g−1)X2], for
all X1, X2 ∈ gK so that, for all Z ∈ h,

ρ(Ad(g−1)(Z))Ad(g−1)(X) = [Ad(g−1)(Z),Ad(g−1)(X)] = Ad(g−1)[Z,X]

= Ad(g−1)ad(Z)(X) = Ad(g−1)ρ(Z)(X)

= Ad(g−1)λ(Z)(X) = λ(Z)Ad(g−1)X

= (λ ◦Ad(g))(Ad(g−1)(Z))Ad(g−1)X.

This shows that λ ◦Ad(g)|hK is a root. �

Definition 4.2. Let h be a Cartan subalgebra of g. Then

C(h) := {g ∈ NG(h) : λ ◦Ad(g)|hK = λ, for all λ ∈ Λ(g, h)}.
is a definable subgroup of G which we call a C-Cartan subgroup of G.
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Our aim is to prove that the concepts of Cartan subgroup and C-Cartan
subgroup coincide. We begin by establishing some basic properties of C-
Cartan subgroups and their Lie algebras.

Lemma 4.3. Let h be a Cartan subalgebra of g. Then Lie(C(h)) = h.

Proof. C(h) is the kernel of the action of NG(h) on the finite set Λ, hence it
has finite index in NG(h), and therefore it has the same Lie algebra, namely
ng(h), which is h since h is a Cartan subalgebra of g. �

Corollary 4.4. Let H be a definable subgroup of G. Then, H is a C-Cartan
subgroup of G if and only if h is a Cartan subalgebra of g and C(h) = H.

Proposition 4.5. Let H be a Cartan subgroup of G. Then, h is a Cartan
subalgebra of g, and H is contained in the C-Cartan subgroup C(h) of G.

Proof. By Proposition 3.7 h := Lie(H) = Lie(Ho) is a Cartan subalgebra of
g, so by definition C(h) is a C-Cartan of G. Let us show that H ≤ C(h). By
Lemma 4.3 h = Lie(C(h)), and therefore Ho = C(h)o ⊆ C(h). On the other
hand, by Fact 3.1(2) we have that H = HoCG(Ho). Let g ∈ CG(Ho). Then
Ad(g)|hK = idhK , thus g ∈ C(h). Therefore H = HoCG(Ho) ⊆ C(h). �

Proposition 4.6. Let h be a Cartan subalgebra of g. Then C(h)o is a Carter
subgroup of G. Moreover, if C(h) is nilpotent then it is a Cartan subgroup
of G.

Proof. By Lemma 4.3 Lie(C(h)o) = h. The latter being a Cartan subalgebra
of g, we get that C(h)o is a Carter subgroup of G by Proposition 3.7. Then,
by Remark 3.2 there is a unique Cartan subgroup H of G containing C(h)o,
and Ho = C(h)o. By Proposition 4.5 we have that H ≤ C(h), so if C(h) is
nilpotent, then by maximality of H we get that H = C(h). �

By the above, to show that the concepts of Cartan and C-Cartan sub-
groups of G coincide, it remains to prove that the C-Cartan subgroup are
nilpotent. We do that by reducing the problem to the linear case (see Re-
mark 4.7 below).

Consider Ad : G → Aut(gK). The Lie algebra of Aut(gK) ⊆ GL(gK)

is Der(gK), which is a subset of gl(gK). Let G1 := Ad(G)
K

. Hence g1 ⊆
Der(gK) ⊆ gl(gK).

Given a subalgebra b of gl(gK), let us consider bs := {Xs : X ∈ b} and
bn := {Xn : X ∈ b}, where Xs and Xn denote the semisimple and nilpotent
parts of the endomorphism X in the additive Jordan decomposition. We
recall that if b is an algebraic Lie algebra then bs, bn ⊆ b (see [11, Ch.V
Thm.2.3]).

Remark 4.7. In the context of Lie groups, H.K. Neeb shows that C(h)
is nilpotent by proving that Ad(C(h)) is contained in the Zariski closure

exp(ad(h)) ⊆ Aut(gC), which is a Cartan subgroup of G1. For, A. Borel
[4, 12.6] proves that Cartan subgroups of G1 are exactly the centralizers of
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maximal tori. On the other hand, exp(ad(h)) turns out to be ZG1(T ) where

T = exp({(adX)s : X ∈ h}) is a maximal complex torus of G1.
We will avoid the use of the exponential map in the following way. Denote

n := ad(hK). We first show that the Zariski closure of Ad(C(h)) inside
G1 coincides with the centralizer ZG1(ns). In view of the argument in the
paragraph above, ZG1(ns) should be a Cartan subgroup of G1. Indeed, using
results of abelian algebraic groups, we show that it is irreducible, nilpotent
and equals the irreducible component of its normalizer. This is enough since
we work in an algebraically closed field.

We will use the following characterization of C-Cartan groups whose proof
can be carried out word by word in our context.

Fact 4.8 ([16, Lem. A.2]). Let h be a Cartan subalgebra of g. Then

C(h) = {g ∈ NG(h) : Ad(g)ad(X)s = ad(X)sAd(g) for all X ∈ h}.

(or alternatively for all X ∈ hK).

Proposition 4.9. Let h be a Cartan subalgebra of g. Then zg1(ns) is a
Cartan subalgebra of g1, where n := ad(hK). Moreover zg1(ns) = a(n).

Proof. We first note that ad(gK) ⊆ g1. Indeed, take X ∈ g and consider

ad(X) : gK → gK : Y 7→ [X,Y ] ∈ Der(gK).

We have that Ad : G → Ad(G) ⊆ G1 ⊆ Aut(gK) so that the derivative is
ad : g→ g1 ⊆ Der(gK), complexifing we get ad : gK → g1 ⊆ Der(gK).

Now, since h is a Cartan subalgebra of g, n is a Cartan subalgebra of
ad(gK), in particular n ⊆ gl(gK) is nilpotent. By [15, I.8] we have that the
subalgebra ns of g1 ⊆ gl(gK) is abelian, commutes with n, and

a(n) = n + a(ns).

Now, [15, I.9] says that a(n) is a Cartan subalgebra of a(ad(gK)) = g1,
thus a(n) = zg1(a(n)s) by [5, Ch.VII § 5 Prop.6].

On the other hand, since n commutes with ns it also commutes with a(ns).
Hence a(n)s = (n + a(ns))s = ns + a(ns)s = a(ns)s. Thus,

a(n) = zg1(a(n)s) = zg1(a(ns)s) ⊇ zg1(a(ns)) = zg1(ns).

Finally, we have that [n, ns] = 0 and so a(n) ⊆ zg1(ns). Therefore, we
have that zg1(ns) = a(n) is a Cartan subalgebra of g1. �

Corollary 4.10. Let h be a Cartan subalgebra of g. Then ZG1(ns) is a
Cartan subgroup of G1, where n is ad(hK).

Proof. First recall that for algebraic groups being irreducible is the same as
being (Zariski) connected, and that G1 is a irreducible algebraic subgroup
of GL(n,K). Thus, by [4, 12.6] it is enough to show that ZG1(ns), being
closed, is irreducible, nilpotent and equal to the irreducible component of
its normalizer.
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First we check that ZG1(ns) = ZG1(a(n)s). Clearly, ZG1(a(n)s) ⊆ ZG1(ns)
because ns ⊆ a(n)s. For each f ∈ G1, consider the algebraic subgroup
ZG1(f) = {X ∈ G1 : fX = Xf} of G1, then Lie(ZG1(f)) = {X ∈ g1 :
fX = Xf}. Assume f ∈ ZG1(ns). Then we have that ns ⊆ Lie(ZG1(f)) and
therefore a(ns) ⊆ Lie(ZG1(f)). In particular a(n)s = a(ns)s ⊆ Lie(ZG1(f))
and therefore f ∈ ZG1(a(n)s).

Let us prove that ZG1(a(n)s) is irreducible. First note that since a(ns)
is abelian and algebraic a(ns) = Lie(A) where A ≤ GL(gK) is an abelian
algebraic group. By [4, 4.7] A = Au × As, with the unipotent part Au and
the semisimple part As algebraic (and abelian). Hence a(ns) = Lie(A) =
Lie(As) + Lie(Au). Then (a(n)s =) a(ns)s is Lie(As). Since As is abelian
and consists of semisimple elements (of GL(gK)) by [4, 8.4] is a subtorus of
G1. By [4, 11.12] ZG1(As) is irreducible. Now ZG1(As) = ZG1(Lie(As)) and
Lie(As) is a(n)s. Therefore, ZG1(a(n)s) is irreducible.

Finally, note that Lie(ZG1(ns)
o) = zg1(ns) and therefore by Proposi-

tions 4.9 and 3.7 ZG1(ns)
o is a Carter subgroup of G1. It follows that

ZG1(ns)
o is nilpotent and NG1(ZG1(ns))

o = ZG1(ns)
o. On the other hand, by

Proposition 3.9 the nilpotent subgroup ZG1(ns)o
K

is clearly the irreducible

component of ZG1(ns), and so ZG1(ns)o
K

= ZG1(ns). Moreover,

ZG1(ns) = ZG1(ns)o
K

= NG1(ZG1(ns))o
K

is the irreducible component of NG1(ZG1(ns)), as required.
�

Theorem 4.11. The concepts of Cartan subgroup and C-Cartan subgroup
of a definably connected group G coincide.

Proof. We first prove that every C-Cartan subgroup of G is a Cartan sub-
group of G. By definition a C-Cartan is of the form C(h) for some Cartan
subalgebra h of g. By Corollary 4.10 ZG1((ad(hK))s) is a nilpotent subgroup

of G1(= Ad(G)
K ⊆ Aut(gK)). Now

ZG1((ad(hK)s) := {f ∈ G1 : Ad(f)(ad(X)s) = ad(X)s, for all X ∈ hk}
= {f ∈ G1 : f ◦ ad(X)s = ad(X)s ◦ f, for all X ∈ hk}

since in the linear case Ad is the usual conjugation. Hence Ad(C(h)) =
{Ad(g) : g ∈ C(h)} ⊆ ZG1((ad(hK))s) by Fact 4.8, and so Ad(C(h)) is
nilpotent and thus so is C(h) since the kernel of Ad is the centre of G. By
Proposition 4.6 C(h) is a Cartan subgroup of G.

Conversely, by Proposition 4.5 if H is a Cartan subgroup of G, then H is
contained in C(h) where h is the Lie algebra of Ho. On the other hand C(h)
is a Cartan subgroup, so it must coincide with H. �

As we have mentioned, in our definable context we do not have an ana-
logue to the Lie correspondence. However, the last theorem implies that
Cartan subalgebras can be realised as Lie algebras of Cartan subgroups, as
follows.
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Corollary 4.12. Let G be a definably connected group and h be a Cartan
subalgebra of g. Then, there is a unique Cartan subgroup H of G with Lie
algebra h.

Proof. Take H := C(h) and use Lemma 4.3. For the unicity clause, note that
if H1 and H2 are Cartan subgroups of G and Lie(H1) = Lie(H2) then the
corresponding Carters Ho

1 and Ho
2 coincide, thus H1 = H2 by Fact 3.1. �

We finish this section with a result from [12] which will be useful in the
study of the regular points.

Proposition 4.13. Let g ∈ G be such that

g1(Ad(g)) := {X ∈ g | (Ad(g)− id)n(X) = 0, for some n ∈ N}

is a Cartan subalgebra of g. Then g ∈ C(g1(Ad(g))).

Proof. Let h := g1(Ad(g)) and let Λ := Λ(g, h) be the set of roots. Let E :=
SpanKΛ ⊆ h∗K .The action of Ad(g) on Λ induces the obvious automorphism

Ãd(g) : E → E ∈ Aut(E) ⊆ End(E).

Consider Γ∗ the group generated by Ãd(g) in Aut(E). The group Γ∗ is finite
because Ad(g) is a permutation on the finite set Λ. In particular, there is

m ∈ N such that [Ãd(g)]m = id, so that tm − 1 is null on the endomor-

phism Ãd(g). Since the roots of tm − 1 are simple, the endomorphism is
diagonalizable.

We are going to show that Ãd(g) − id is nilpotent. This means that its

unique eigenvalue is 0, and since Ãd(g) is diagonalizable, we deduce that

Ãd(g) = id, so that the permutation Ad(g) is trivial as required. Clearly
(Ad(g)−id)|hK is nilpotent because hK is by definition the maximal subspace
of the eigenvalue 1. In particular, given n ∈ N big enough and any λ ∈ Λ
we have that

(Ãd(g)− id)n(λ) =

n∑
k=0

(
n

k

)
(−1)n−kÃd(g)

k
(λ) =

=

n∑
k=0

(
n

k

)
(−1)n−kλ ◦Ad(g)k = λ ◦

( n∑
k=0

(
n

k

)
(−1)n−kAd(g)k

)
=

= λ ◦ [(Ad(g)− id)|hK ]n = 0,

so Ãd(g)− id is nilpotent. �
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5. Regular points

We fix a definably connected definable group G, an n-dimensional F -
vector space V , where F = R or R(i) as usual, and a definable representation
of G on V , i.e. a definable continuous homomorphism ρ : G → GL(V )
e.g., the adjoint representation Ad : G→ GL(g).

For each g ∈ G consider

det(ρ(g)− (T + 1)id) = a0(g) + · · ·+ an−1(g)Tn−1 + Tn.

The functions ai : G→ R are definable and continuous. Let r and r0 be the
maps from G to N defined as follows. For each g ∈ G,

r(g) := min{j : aj(g) 6= 0} and r0(g) := min{j : (aj)g 6= 0},
where (aj)g denotes the germ of aj at g.

We recall the following notation. For each λ ∈ F ,

V λ(ρ(g)) := {X ∈ V : (ρ(g)− λid)n(X) = 0}
where n = dimV .

Remark 5.1. Let g ∈ G.
(1) dimV λ(ρ(g)) is the multiplicity of λ as a root of the characteristic

polynomial of ρ(g). In particular, we have that r(g) = dim(V 1(ρ(g))), which
a priori it can be zero.

(2) There is an open neighbourhood U ⊆ G of g such that r(h) ≤ r(g)
for all h ∈ U . Indeed, if r(g) = r then ar(g) 6= 0 and therefore there is an
open neighbourhood U of G such that ar(h) 6= 0 for all h ∈ U .

(3) r(g) ≥ r0(g) for all g ∈ G because aj(g) 6= 0 implies that (aj)g 6= 0.

Definition 5.2. An element g ∈ G is called regular with respect to ρ if
r(g) = r0(g). The set of regular points is denoted by Regρ(G), which is
clearly definable. We say regular point of G if ρ is Ad, and then we just say
write Reg(G).

Remark 5.3. The above definition is the natural adaptation to our context
of [5, Ch.VII,§4, Def.1], the standard reference in the literature concerning
regular points. In the case of Lie groups, the coefficients are analytic and
therefore if k is the minimum such that ak 6= 0 then g is regular if and only
if ak(g) 6= 0. In particular, Reg(G) is a dense subset of G and r is constant
on Reg(G). Then, working with the exponential map, it is possible to prove
that the constant value of r in Reg(G) is equal to rk g. In fact, g ∈ Reg(G)
if and only if g1(Ad(g)) is a Cartan subalgebra of g.

To prove in the o-minimal context that Reg(G) is an open dense subset
of G is relatively easy, even though we do not know a priori if r is con-
stant on Reg(G) (Proposition 5.5). It becomes more difficult to prove that
g ∈ Reg(G) if and only if r(g) = rk g if and only if g1(Ad(g)) is a Cartan
subalgebra of g (Theorem 5.14). The proof is again a reduction to the lin-
ear algebraic case, passing through the Zariski closure G1 of Ad(G) inside
GL(gK). To carry out this reduction we first need to study the behaviour of
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g1(Ad(g)) under exact sequences of definable groups (see Proposition 5.8),
so we can control it under the adjoint representation. In particular, we will
be able to relate the regular points of both G and G1. Once we have proved
that if g ∈ Reg(G) then h := g1(Ad(g)) is a Cartan subalgebra, thanks
to the main result in Section 4, we deduce that C(h) is the unique Cartan
subgroup containing g (Proposition 5.13).

We begin by proving some basic facts about regular points of a definable
representation of G.

Proposition 5.4. Let g ∈ G. Then, g ∈ Regρ(G) if and only if r is constant
in a neighbourhood of g.

Proof. Assume that g is regular and denote r = r(g) = r0(g). Since ar(g) 6=
0 and aj is continuous there is a neighbourhood U of g such that ar(h) 6= 0,
for all h ∈ U . On the other hand, since r0(g) = r, we know that (aj)g = 0,
for all j < r. So we can assume that (aj)h = 0, for all h ∈ U . This shows
that r0(h) = r(h) = r for all h ∈ U , as required.

Conversely, assume that r(h) = r for all h in a neighbourhood U of g.
Then, by definition that means that ar(h) 6= 0 and aj(h) = 0 for all h ∈ U
and j < r, so (aj)h 6= 0 and (aj)h = 0 for all h ∈ U , so that r0(h) = r for
all h ∈ U . In particular, g (and all the points in U) are regular points. �

Proposition 5.5. Regρ(G) is an open and dense subset of G.

Proof. Regρ(G) is open in G because of Proposition 5.4. Let us see that
it is dense in G. Take C a cellular decomposition of G compatible with
the definable sets Xi = {g ∈ G : r(g) = i} for i = 0, . . . , n − 1. Clearly
G = X0 ∪ · · · ∪Xn−1. Let X be the union of the cells of maximal dimension
dimG. Clearly X is open and dense in G. On the other hand, if g ∈ X
then g belongs to a cell C of dimension dimG with C ⊆ Xi for some i. In
particular, r is constant (equal to i) in the open subset C of G, thus g is
regular by Proposition 5.4. �

We define the rank of a definable group G as

rk(G) := min{dim g1(Ad(g)) : g ∈ G}.

If G is an irreducible algebraic subgroup of GL(n, F ) we have two concepts
of regular point of G. Let Rega(G) denote the set of regular points of G in
the sense of [6, Ch. VI § 4 Def. 2], that is,

Rega(G) := {g ∈ G : r(g) = rk(G)}.

As we have mentioned in the proof of Theorem 3.14, Rega(G) is a nonempty
Zariski open subset of G. In fact, we have the following.

Proposition 5.6. If G is an irreducible algebraic subgroup of GL(n, F ) then
Rega(G) = Reg(G).
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Proof. Let g ∈ Rega(G). Since Rega(G) is open and r is constant on
Rega(G), r is locally constant around g, thus g ∈ Reg(G) by Proposition 5.4.
Conversely, let g ∈ Reg(G) and take U an open neighbourhood of g such
that r is constant on U . Since Rega(G) is a Zariski open subset of G it is
dense in G because G is irreducible, and so Rega(G)∩U 6= ∅. In particular,
r(g) = rk(G). �

Corollary 5.7. Let G be a definable subgroup of GL(n, F ) and G its Zariski
closure. Then, the set Reg(G) ∩G is dense in G.

Proof. By Proposition 5.6 and the claim in the proof of Theorem 3.14. �

The next result will be useful when we consider quotients.

Proposition 5.8. Let H be a definable group and let f : G → H be a
surjective definable homomorphism. Then,

(1) for every g ∈ G we have the following exact sequence

0→ K1(Ad|K(g))→ g1(Ad(g))→ h1((AdH ◦ f)(g))→ 0,

where K := Lie(Ker(f)), Ad := AdG and AdH are the adjoint representa-
tions of G and H respectively, and Ad|K : G→ GL(K), and

(2) f(Reg(G)) ⊆ Reg(H).

Proof. (1) Consider the exact sequence of Lie algebras

0→ KK → gK → hK → 0.

Let λ ∈ K := R(i). Firstly note that for all g ∈ G and Y ∈ gK we have
that (AdH ◦ f)(g)(def(Y )) = def(Ad(g)(Y )) and by induction we deduce
that

[(AdH ◦ f)(g)− λid]`(def(Y )) = def
(
[Ad(g)− λid]`(Y )

)
, for each ` ∈ N.

This shows that def(gλK(Ad(g))) ⊆ hλK((AdH ◦ f)(g)). Since f is surjective

and gK =
⊕

λ∈K gλK(Ad(g)), we deduce

hK = def(gK) =
⊕
λ∈K

def
(
gλK(Ad(g))

)
⊆
⊕
λ∈K

hλK((AdH ◦ f)(g)) ⊆ hK

Thus, def(gλK(Ad(g))) = hλK((AdH ◦ f)(g)) and hence, for each λ ∈ R,

def(gλ(Ad(g))) = hλ((AdH ◦ f)(g)). In particular,

def(g1(Ad(g))) = h1((AdH ◦ f)(g)).

Finally, the computation of the kernel is easy since def(Y ) = 0 implies that
Y ∈ K ∩ g1(Ad(g)) = K1(Ad|K(g)).

(2) From (1) we have that, for every g ∈ G,

dim g1(Ad(g)) = dimK1(Ad|K(g)) + dim h1((AdH ◦ f)(g)).

Therefore, if we denote by r, r′ and r′′ the functions introduced at the be-
ginning of this section of Ad,Ad|K and AdH ◦ f , respectively, then we have
proved that r(g) = r′(g) + r′′(g) for all g ∈ G.
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Now, take g ∈ Reg(G) := RegAd(G). By Proposition 5.4 there exists a
neighbourhood V of g such that r is constant in V . Moreover, by Remark
5.1(2) we can assume that for all y ∈ V we have r′(y) ≤ r′(g) and r′′(y) ≤
r′′(g). In particular, for all y ∈ V since

r′(y) + r′′(y) = r(y) = r(g) = r′(g) + r′′(g)

and r′(y) ≤ r′(g) and r′′(y) ≤ r′′(g), we have that r′(y) = r′(g) and r′′(y) =
r′′(g). So we have that r′′ is also constant in V .

Finally, since f is a definable homomorphism then it is an open map, so
that f(V ) is an open neighbourhood of f(g). Moreover, for each z ∈ f(V )
we have that z = f(y) for some y ∈ V so that

dim h1(AdH(z)) = dim h1((AdH ◦ f)(y)) = r′′(y)

so that dim h1(AdH(z)) is constant, for all z ∈ f(V ). Thus, f(g) ∈ Reg(H).
�

We have also the following corollaries of the above proposition, the first
one will allow us to transfer results from the linear case to the general
definable case.

Corollary 5.9. Let H be a definable group and let f : G→ H be a surjective
definable homomorphism with Ker(f) = Z(G). Then, given g ∈ G we have
the following exact sequence

0→ z(g)→ g1(Ad(g))→ h1((AdH ◦ f)(g))→ 0.

Moreover, g ∈ Reg(G) if and only if f(g) ∈ Reg(H).

Proof. The exact sequence follows from (1) of Proposition 5.8 noting that
since Ker(f) = Z(G) we have that K1(Ad|K(g)) = z(g). Note that in partic-
ular,

dim(g1(Ad(g))) = dim z(g) + dim h1((AdH ◦ f)(g)).

for all g ∈ G.
For the last clause, by Proposition 5.8, it remains to prove that if f(g) ∈

Reg(H) then g ∈ Reg(G). In particular, since f(g) ∈ Reg(H) then there is
an open neighbourhood W of f(g) in H such that for all z ∈ W we have
that dim h1(AdH(z)) = dim h1(AdH(f(g))). Thus, for every y ∈ f−1(W )
we have that dim g1(Ad(y)) = dim z(g) + dim h1((AdH ◦ f)(y)) = dim z(g) +
dim h1(AdH(f(g))) so that dim g1(Ad(y)) is constant for every y in the open
neighbourhood f−1(W ) of g, that is, g ∈ Reg(G). �

Corollary 5.10. Let H be a definable normal subgroup of G. Then, for
every g ∈ H we have the following exact sequence

0→ h1(Ad(g))→ g1(Ad(g))→ g/h→ 0.

Proof. We apply Proposition 5.8 to the projection π : G→ G/H and obtain,
for each g ∈ H, the exact sequence

0→ h1(Ad|h(g))→ g1(Ad(g))→ (g/h)1(AdG/Hπ(g))→ 0.
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We conclude noting that since g ∈ H we have h1(Ad|h(g)) = h1(Ad(g)) and
(g/h)1(AdG/Hπ(g)) = (g/h)1(idg/h) = g/h. �

Next result will allow us to prove that a regular point of G belongs to a
unique Cartan subgroup of G.

Lemma 5.11. Let h be a Cartan subalgebra of g. Then h ⊆ g1(Ad(g)), for
any g ∈ C(h).

Proof. Let g ∈ C(h). Since z(g) belongs to both h and g1(Ad(g)), to prove
that h ⊆ g1(Ad(g)) it suffices to show that ad(h) ⊆ ad(g1(Ad(g))), or equiv-

alently, that n := ad(hK) is contained in ad(g1
K(Ad(g))). Let G1 := Ad(G)

K

(as in § 4). Note that Lie(Ad(G)) = ad(g) and

AdAd(G)(h) = AdG1(h)|ad(g) for each h ∈ Ad(G),

so we apply Corollary 5.9 to the map Ad : G→ Ad(G) and, after complex-
ifying, obtain

0→ z(gK)→ g1
K(Ad(g))

ad−→ ad(gK)1((AdG1 ◦Ad)(g))→ 0.

In particular, since ad(gK) ⊆ g1, we get

ad(g1
K(Ad(g))) = ad(gK)1(AdG1(Ad(g))) = g1

1(AdG1(Ad(g))) ∩ ad(gK).

Since n is contained in ad(gK) it only remains to prove that

n ⊆ g1
1(AdG1(Ad(g))).

Let H1 := Ad(C(h))
K

. We claim that H1 = ZG1(ns). Indeed, first note
that by Corollary 4.10 ZG1(ns) is a Cartan subgroup of G1, hence algebraic
and irreducible. Thus, it suffices to prove that Ad(C(h)) ⊆ ZG1(ns) and
Lie(H1) = zg1(ns). The inclusion is obtained by Fact 4.8 (see proof of The-
orem 4.11). On the other hand, we have

h1 = a(Lie(Ad(C(h))) = a(ad(h)) = zg1(ns)

by Proposition 3.9, Lemma 4.3 and Proposition 4.9, respectively.
Next, note that, since a(n) is a nilpotent subalgebra of g1, each of the en-

domorphisms in ada(n)(a(n)) is nilpotent. We also have that ada(n)(a(n))
is the Lie algebra of AdH1(H1) which is an irreducible algebraic group
because H1 is so. Therefore, by [6, Ch V § 3 Prop. 14] we deduce that
AdH1(h) − id = [AdG1(h) − id]|h1 is nilpotent, for every h ∈ H1. In par-
ticular, since Ad(C(h)) ⊆ H1 the endomorphism [AdG1(Ad(g)) − id]|h1 :

h1 → h1 is nilpotent and therefore h1 ⊆ g1
1(AdG1(Ad(g))) and a fortiori

n ⊆ g1
1(AdG1(Ad(g))). �

Proposition 5.12. Let G be a definably connected subgroup of GL(n, F )
and G its Zariski closure. For any g ∈ Reg(G) ∩G, g1(Ad(g)) is a Cartan
subalgebra of g and g belongs to the Cartan subgroup C(g1(Ad(g))) of G.
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Proof. Let G1 := G. Let g ∈ Reg(G1)∩G. By Proposition 4.13 it suffices to
prove that g1(Ad(g)) is a Cartan subalgebra of g. To do this firstly note that
g1 = a(g) and g1(Ad(g)) = g1

1(Ad(g)) ∩ g. Hence, by [6, Ch VI § 4 Prop. 21]
will be enough to prove that g1

1(Ad(g)) is a Cartan subalgebra of g1. The
latter is classical, here are the details. By [Ibid. Prop. 13] g1

1(Ad(g)) ⊇ h1 for
some Cartan subalgebra h1 of g1. Now, g ∈ Reg(G1) means dim g1

1(Ad(g)) =
rk g1. On the other hand h1 being a Cartan subalgebra of g1 has dimension
equal to rk g1, hence g1

1(Ad(g)) = h1. �

Proposition 5.13. Let G be a definably connected subgroup of GL(n, F )
and G its Zariski closure. For any g ∈ G, the following conditions are
equivalent.

0) g ∈ Reg(G);
1) g ∈ Reg(G);
2) dim g1(Ad(g)) = rk g, and
3) g1(Ad(g)) is a Cartan subalgebra of g.

Proof. 0) implies 3) follows from Proposition 5.12, and by definition of rank
of a Lie algebra we have 3) implies 2).

0) implies 1): Let g ∈ Reg(G)∩G. Let U ⊆ G open such that g ∈ U and
dim g1(Ad(h)) ≤ dim g1(Ad(g)), for all h ∈ U . Suppose that there is h ∈ U
such that dim g1(Ad(h)) < dim g1(Ad(g)). Then, there is an open subset V
of U such that for all h ∈ V , dim g1(Ad(h)) < dim g1(Ad(g)). On the other
hand, Corollary 5.7 implies that there is h ∈ V ∩ Reg(G) ∩ G, and by 2)
g1(Ad(h)) and g1(Ad(g)) have equal dimension (= rk g), a contradiction.

1) implies 0): Let g ∈ Reg(G). By Proposition 5.4 there is an open neigh-
bourhood U ⊆ G of g such that for all h ∈ U , we have that dim g1(Ad(g)) =
dim g1(Ad(h)). On the other hand, by Proposition 3.9 G is normal in G so
we can apply Corollary 5.10 and get that for any g′ ∈ G the exact sequence

0→ g1(Ad(g′))→ g1
1(Ad(g′))→ g1/g→ 0,

where g1 := Lie(G). Thus, dim g1
1(Ad(g′)) = dim g1(Ad(g′)) + dim g1/g, for

any g′ ∈ G. In particular, for every h ∈ U , dim g1
1(Ad(g)) = dim g1

1(Ad(h)).
Now, Corollary 5.7 implies that there is h ∈ U ∩ Reg(G) and so, for this h
we have dim g1

1(Ad(h)) = rk g1. Hence, g ∈ Reg(G).
2) implies 0): Let g ∈ G such that dim g1(Ad(g)) = rk g. Then,

dim g1
1(Ad(g)) = dim g1(Ad(g)) + dim g1/g = rk g + dim g1/g = rk g1,

the first equality as above by Proposition 3.9 and Corollary 5.10, the last one
by Corollary 3.10. �

We recall that if a is a Lie algebra, z its centre and h a vector subspace
of a then, h is a Cartan subalgebra of a if and only if h contains z and h/z
is a Cartan subalgebra of a/z. In particular, rk a = rk(a/z) + dim z.

Theorem 5.14. Let G be a definably connected group. For any g ∈ G, the
following conditions are equivalent.
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1) g ∈ Reg(G);
2) dim g1(Ad(g)) = rk g, and
3) g1(Ad(g)) is a Cartan subalgebra of g.

Proof. Let f : G → H ≤ GL(n,R) be the map f(g) = AdG(g), for any g ∈
G, and H := AdG(G). Note that Ker(f) = Z(G) and rk g = rk h+ dim z(g).

1) implies 2): Let g ∈ Reg(G). By Corollary 5.9 we have that f(g) ∈
Reg(H). By Proposition 5.13 we have that dim h1(AdH(f(g))) = rk h. By
Corollary 5.9 again we have that

dim g1(AdG(g)) = dim z(g) + dim h1(AdH(f(g))) = dim z(g) + rk h = rk g

as required.
2) implies 3): Take g ∈ G with dim g1(Ad(g)) = rk g. By Corollary 5.9

we have that

dim h1(AdH(f(g)) = dim g1(AdG(g))− dim z(g) = rk g− dim z(g) = rk h,

so that by Proposition 5.13 we have that h1(AdH(f(g)) is a Cartan subalge-
bra of h. Since h1(AdH(f(g)) = ad(g1(Ad(g))) because of Corollary 5.9, we
deduce that g1(Ad(g)) is a Cartan subalgebra of g.

3) implies 1): Let g ∈ G with g1(Ad(g)) a Cartan subalgebra of g. By
Corollary 5.9 we have that h1(AdH(f(g)) = ad(g1(AdG(g))) and therefore
h1(Ad(f(g)) is a Cartan subalgebra of h. Thus, by Proposition 5.13 f(g) is
regular element of H and so g is regular in G by Corollary 5.9. �

Corollary 5.15. Let G be a definably connected group. Then, Reg(G) is
a dense subset of G, and if g ∈ Reg(G) then g belongs to a unique Cartan
subgroup of G.

Proof. The first statement is by Proposition 5.5. Also, we already know
that g1(Ad(g)) is Cartan subalgebra of g and thus C(g1(Ad(g))) is a Cartan
subgroup containing g by Proposition 4.13. If H is another Cartan subgroup
of G with g ∈ H, then H = C(h), where h is the Lie algebra of H, by
Theorem 4.11. By Lemma 5.11 we have that h ⊆ g1(Ad(g)), and since both
h and g1(Ad(g)) are Cartan subalgebras of g, we get h = g1(Ad(g)). So that
H = C(h) = C(g1(Ad(g))), as required. �

Remark 5.16. Just for the record, we write an alternative proof of the above
corollary in the linear case (the general case can be deduced easily from this).
Let G be a definable subgroup of GL(n, F ) and G1 := G. Let g ∈ Reg(G)

and let H and H̃ be Cartan subgroups of G with g ∈ H ∩ H̃. Let h and h̃ be

the Lie algebras of H and H̃ respectively, which are Cartan subalgebras of g.

Let h1 = a(h) and h̃1 = a(h̃). By [6, Ch.VI § 4 Prop.21] we have that h1 and

h̃1 are Cartan subalgebras of g1. Let H1 and H̃1 be the Cartan subgroups

whose Lie algebra are h1 and h̃1 respectively (see [6, Ch.VI § 4 Prop.5]).
On the other hand, take the Zariski closure H of H in G1. Clearly, the

Lie algebra h1 is contained in the Lie algebra of H , and therefore, since H1

is irreducible [5, Ch.VII § 4 Thm.2] we have that H1 is a subgroup of H .
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But since H is nilpotent we have that H is nilpotent, so by maximality of

H1 we get that H1 = H . By a similar argument, H̃1 = H̃ .
Now, by Proposition 5.13 we have that g ∈ Reg(G1), so that g belongs to

a unique Cartan subgroup (see [5, Ch.VI § 4 Thm.2]). Thus, we have that

H1 = H̃1, and therefore h1 = h̃1. In particular, the Cartan algebras h = h1∩g
and h̃ = h̃1 ∩ g are equal, so that h = h̃. Finally, H = C(h) = C(h̃) = H̃, as
required.
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