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Figure 1: First three levels and final result of our hierarchical iso-surface extraction algorithm.

Abstract

The extraction and display of iso-surfaces is a standard method for
the visualization of volume data sets. In this paper we present a
novel approach that utilizes a hierarchy on both the input and the
output data. For the generation of a coarse base mesh, we construct
a hierarchy of volumes and extract an iso-surface from the coarsest
resolution with a standard Marching Cubes algorithm. We addi-
tionally apply a simple mesh decimation algorithm to improve the
shape of the triangles. We iteratively fit this mesh to the iso-surface
at the finer volume levels. To be able to reconstruct fine detail of the
iso-surface we thereby adaptively subdivide the mesh. To evenly
distribute the vertices of the triangle mesh over the iso-surface and
generate a triangle mesh with evenly shaped triangles, we have in-
tegrated a mesh smoothing algorithm into the fitting process. The
advantage of this approach is that it generates a mesh with subdivi-
sion connectivity which can be utilized by several multiresolution
algorithms such as compression and progressive transmission. As
applications of our method we show how to reconstruct the surface
of archaeological artifacts and the reconstruction of the brain sur-
face for the simulation of the brain shift phenomenon.

1 Introduction

Rendering iso-surfaces is a standard technique in scientific visual-
ization of volume data and the Marching Cubes algorithm (MC)
[16] is commonly used for constructing iso-surfaces which are rep-
resented as triangle meshes. The main drawback of this method is
that it produces meshes with many small and badly shaped trian-
gles. Such meshes require improvement with decimation, smooth-
ing, or remeshing. These post processing algorithms can be very
expensive in terms of time and memory consumption, especially if
the meshes are large. And with the resolution of today’s scanning
devices, the output mesh of MC can easily consist of millions of
triangles.

We therefore propose to down-scale the volume data set and cre-
ate a hierarchy of volumes as described in Section 3. Then we use
MC to extract the iso-surface on the coarsest resolution and fit the
mesh to the iso-surfaces at the finer levels of the volume hierarchy

later. Since the number of triangles in the extracted mesh depends
quadratically on the resolution of the volume, performing MC on
the coarsest level yields a mesh with low complexity which can be
optimized efficiently. We apply a strategy for improving the MC
mesh by removing short edges so as to obtain a base mesh with few
and well-shaped triangles.

Once this base mesh is constructed, we use it as an initial guess
for approximating the iso-surface on the next finer volume level
and iterate this fitting process until we arrive at an iso-surface re-
construction with respect to the original data. Our fitting procedure
is discussed in Section 4 and takes three aspects into account.

Firstly, the vertices of the mesh need to be projected onto the
iso-surface as we want to sample that surface. Secondly, a relax-
ation operator is required to evenly distribute the sample points over
the surface and to ensure well-shaped triangles in the final mesh.
Thirdly, we adaptively subdivide the mesh in order to approximate
the iso-surface within a user-specified accuracy and to capture lo-
cal detail. In this way we finally obtain a semi-regular mesh with a
hierarchical structure that can be utilized by many multiresolution
algorithms such as level-of-detail rendering [3], progressive trans-
mission [10, 14], multiresolution editing [31], and wavelet decom-
position and reconstruction [17, 22].

As an application of the method we have reconstructed the sur-
faces of archaeological artifacts like the one in Figure 1 from CT
scans as well as a human brain from an MRI scan. We present the
results in Section 5 and conclude in Section 6.

2 Related Work

The standard approach for the extraction of iso-surfaces from vol-
ume data is the well known Marching Cubes (MC) algorithm [16].
The algorithm walks through all cells of a regular hexahedral grid
and computes the iso-surface for each cell independently. In order
to avoid ambiguities of MC, several modifications were proposed
[19, 20] and an extension to reconstruct surfaces with sharp fea-
tures from distances volumes was presented by Kobbelt et al. [13].
To improve the performance of MC, several algorithms [6, 27, 29]
use adaptive hierarchies of the volume data set.



(a) (b) (c) (d)

Figure 2: Iso-surface M2(900) using box filter (a), Gauß filter (b), median filter (c), and dilation (d) to compute f2.

The task of converting an arbitrarily triangulated mesh into a
semi-regular mesh is called remeshing. In the approach of Eck et
al. [5], vertices are distributed over the given triangulation and a
base mesh is constructed by growing geodesic Voronoi tiles around
the vertices. A parameterization of the given triangulation within
the base triangles is computed by using harmonic maps which min-
imize the local distortion. The remesh is then determined by uni-
formly subdividing each base triangle and mapping the vertices into
3-space using the parameterization. Lee et al. [15] construct the
base mesh by mesh reduction based on edge collapses and incre-
mentally compute a parameterization of the original triangulation
within the triangles of the remaining mesh. This process leads to
a locally smooth parameterization. In order to achieve a global
smoothness the dyadic points are moved by a variant of Loop’s
subdivision scheme and mapped into 3-space. Kobbelt et al. [12]
describe a shrink-wrapping approach for remeshing. The idea is to
place a semi-regular mesh around the original surface. Analogously
to the physical shrink-wrapping by exhausting the air between both
surfaces the semi-regular mesh is shrunk onto the surface. In addi-
tion, a relaxation force is used to distribute the vertices uniformly
over the surface.

The direct extraction of semi-regular meshes from volume data
is addressed by several papers. Bertram et al. [2] use MC to ex-
tract an initial iso-surface which is coarsened by a mesh simplifi-
cation algorithm based on [7]. Then they use a modified shrink-
wrapping approach to compute their final semi-regular mesh based
on a quadrilateral subdivision scheme. A method for directly ex-
tracting a coarse base mesh from the volume was presented by
Wood et al. [30]. They compute contours of the surface from the
volume data and connect them such that they form a coarse mesh
which is topologically equivalent to the desired iso-surface. The
final semi-regular mesh is constructed by using a multi-scale force-
based solver with an external force moving the vertices to the iso-
surface and an internal force relaxing the vertices of the mesh.

3 Base Mesh Construction

In order to efficiently create a base mesh with few triangles, we run
a marching cubes algorithm on a coarse volume which is computed
by down-sampling the given data. As the number of triangles gen-
erated by marching cubes depends quadratically on the number of
voxels in each dimension, scaling down the volume by a factor of
n reduces the complexity of the extracted mesh by n2.

Suppose the volume data to be represented as a discrete gray
value function f0 : G0 → IN, defined on a regular grid of dimen-

sions nx, ny, and nz ,

G0 = {(xi, yj , zk) : 0 ≤ i ≤ nx, 0 ≤ j ≤ ny , 0 ≤ k ≤ nz}, (1)

with xi = x0 + i hx, yj = y0 + j hy , zk = z0 + k hz . In
order to simplify notation, we further assume a consistent grid
size h = hx = hy = hz . A hierarchy f0, f1, f2, . . . , where
each f l is defined on a grid Gl with grid size 2lh and dimensions
�2−lnx�, �2−lny�,�2−lnz�, can then be computed by iteratively
down-sampling the volume data by a factor of two. This process
is usually realized by convolving the function fl−1 with a suitable
filter and then sampling the filtered signal to obtain fl.

We assume that the gray values of the object we want to recon-
struct are larger than the gray values of the surrounding voxels. We
have tested several filters, including box, Gauß and median filter,
but found the dilation operator to perform best within the scope
of our investigations, as illustrated in Figure 2. This operator se-
lects the largest gray value from the cluster of eight voxels on level
l−1 that are combined to form the corresponding voxel with double
edge length on level l and defines

f l(xi, yj , zk) = max
i′∈{i,i+1}
j′∈{j,j+1}
k′∈{k,k+1}

f l−1(xi′ , yj′ , zk′), (2)

where i, j, and k are multiples of 2l. Given an iso-value v, we
can now extract an approximation Ml(v) of the corresponding iso-
surface from the down-sampled data set fl with a standard march-
ing cubes algorithm [16].

Figure 3 shows that the use of low-pass filters tends to wash
out thin voxel layers which represent the object’s material. This
may result in topological holes as illustrated in Figures 2 (a)-(c).
In contrast, the dilation operator has a growing effect and for a
fixed iso-value, M l can in fact be proven to encompass the meshes
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Figure 3: Filtering the input signal: (a) original voxels, (b) voxels
after low-pass filtering, (c) voxels after dilation.



Figure 4: Iso-surfaces M3(900) (gray) and M0(900) (green).

M l−1, M l−2, . . . , M0 extracted from the finer levels as illustrated
in Figure 4. Although this method may modify the topology of the
iso-surface, as small holes can vanish as a result of the dilation in
general, it is appropriate for the data sets we consider because they
are topologically simple.

A typical phenomenon of the marching cubes algorithm is that
some of the generated triangles are very small. In fact, whenever
the difference δ of a voxel’s gray value to the specified iso-value v
is small, the algorithm cuts off a corner of the underlying grid and
creates a triangle whose size is proportional to δ. Due to their tini-
ness it is reasonable to assume that these triangles do not contain
significant geometrical information. As we finally aim to generate
a triangulated iso-surface with evenly distributed vertices, we per-
form a decimation step before further processing the mesh.

In order to remove all edges that are shorter than a certain thresh-
old length α2lh with α > 0, we first replace all the triangles with
three short edges by a single vertex at their barycenter (see Fig-
ure 5 (a)) and then collapse the remaining short edges to their mid-
points (see Figure 5 (b)). We found that α = 0.5 is a good choice
and this simple strategy reduces the number of triangles by approx-
imately 20%.

(a)

(b)

Figure 5: Removing short edges from the extracted iso-surface with
a two-pass mesh decimation algorithm.

4 Iso-Surface Fitting

Due to the growing effect of the dilation operator, the vertices of
the base mesh do not lie on the iso-surface at level 0 that we actu-
ally want to reconstruct, and we have to shrink the mesh onto that
surface. In order to increase robustness and performance of that
algorithm, we utilize the previously constructed hierarchy of vol-
umes by iteratively fitting the mesh to the next finer level. We first
move the vertices to the iso-surface at level l − 1, then to the one
at level l − 2, and so on, until we finally arrive at level 0. Note that
this always guarantees the vertices of the current mesh to be close
to the iso-surface, namely within distance of 2 voxels. This helps
to avoid self-intersections of the triangulation after projecting the
vertices which may occur if the distance is too large as mentioned
in [12].

The essential step of our hierarchical iso-surface extraction algo-
rithm is to adaptively fit the current mesh to the iso-surface of the
volume at a certain level l. Such an iso-surface Sl(v) is defined as

Sl(v) = {(x, y, z) : f̃ l(x, y, z) = v} (3)

where f̃ l : [Gl] → IR is the continuous extension of fl which tri-
linearly interpolates the values fl(Gl). The three ingredients of this
fitting procedure which are repeated iteratively are the following:

1. Moving the vertices to the iso-surface (projection).

2. Improving the distribution of the vertices (relaxation).

3. Adaptively subdividing the mesh (refinement).

4.1 Projection

As the iso-surfaces Sl+1 and Sl are different, the vertices of the
current mesh will not lie on Sl and we need a method for projecting
them onto that surface. In principle, this can be done by finding the
first intersection of a ray emanating from that vertex in a certain
direction with Sl, but the question remains how to determine the
direction of that ray.

We could, for example, use the gradient of the gray value func-
tion f0, as it is often done in volume rendering [11, 21, 28]. While
this choice works well in medical applications, we found it inappro-
priate for our kind of data for the following reason. The objects that
we wish to reconstruct are made of a rather homogeneous material.
If the volume data had an infinitesimal resolution, it would ideally
be a binary data set with gray value zero in those voxels which
represent the air surrounding the object and a material-dependent
constant gray value in all other voxels. Therefore the gradient of
the gray value function is either zero or undefined. In practice, this
proposition does not hold because any scanning device has finite
resolution only and is susceptible to measuring errors. However,
we found the gray value gradient to be too noisy for our purposes.

Another choice is the gradient of the distance function dl :
[Gl] → IR which gives the shortest signed distance of a point to
the iso-surface Sl [8, 9]. For volumes, such a distance function
is usually defined by the values at the grid points Gl and trilinear
interpolation, just as f̃ l, and the values at the grid points are de-
termined by a fast marching method [23]. The distance gradient
proved to be a better choice than the gray value gradient but it also
has some potential drawbacks. Firstly, it is not properly defined ev-
erywhere, because it is discontinuous along the medial axis of Sl,
and thus the evaluation of the gradient is extremely unstable near
the medial axis. However, since the current mesh is guaranteed to
be close to Sl this is not an issue for our computations, but a more
serious drawback is that the distance gradient is not capable of mov-
ing vertices inside a concave region of the iso-surface as illustrated
in Figure 6.
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Figure 6: Iso-surface Sl with iso-distance lines (dotted) and dis-
tance gradients gv and normals nv at two vertices of the mesh.
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Figure 7: Distance gradient and normal vector at a vertex in four
different situations. The gray-shaded region indicates the region
enclosed by the iso-surface and the dashed line its medial axis.

We therefore move the vertex v along the direction of the normal
vector nv at v which can either be found by averaging the normals
of the triangles adjacent to v or, as we did, by normalizing the cur-
vature normal vector [4]

�(v) =
∑

w∈Nv

(cot αw + cot βw)(v −w), (4)

where Nv is the set of v’s neighboring vertices and αw and βw are
the angles opposite to the edge vw in the adjacent triangles.

Once the normal is computed, we need to evaluate whether the
intersection with the iso-surface can be found in the positive or neg-
ative direction. Figure 7 shows the different cases that can occur
and we use the distance function and its gradient to recognize them.
Normally, the vertex is near the iso-surface and we can simply use
the sign of the distance function to decide on which side of the
surface it lies on. If dl(v) > 0 then the vertex lies ‘outside’ and
we move it into the opposite direction of its normal vector (a). If
dl(v) < 0 then it is located ‘inside’ and needs to be pushed along
the normal direction (b). Both cases have in common that the nor-
mal vector nv and the distance gradient gv point in opposite di-
rections. It may also happen that nv and gv are oriented similarly
as in (c) and (d), indicating that the vertex is beyond the medial
axis and close to the ‘wrong’ iso-surface. This can happen if the
refinement step insert new vertices into the mesh at highly curved

regions where the object is also very thin so that the two parts of the
iso-surface are close. In this case we consider the ray along the pos-
itive normal direction and find the first (c) or second (d) intersection
with the iso-surface. In order to distinguish between the cases (a,b)
and (c,d) we determine the sign of the scalar product < nv|gv >.
Although the distance gradient is not defined on the medial axis no
problems will occur, because in both cases (b) and (c) the vertex
will be moved along the positive normal direction. To check if the
correct intersection was found in case (d) we again use the sign of
the scalar product <nv|gv >.

4.2 Relaxation

A problem of this projection method is that it may lead to a lo-
cal clustering of vertices or even self-intersections of the triangu-
lation. By additionally applying a relaxing force we can overcome
this drawback and ensure an even distribution of the vertices over
the iso-surface. A common approach is to apply a discrete version
of the Laplacian,

L(v) =
1

|Nv|
∑

w∈Nv

(w − v), (5)

as it was done, for example, in [24, 4, 12] in order to smooth or de-
noise meshes. But this operator has a shrinking effect on the mesh
and moves vertices far off the iso-surface in highly curved regions.
We therefore follow the strategy in [30] and use only the tangential
part of the Laplacian,

T (v) = L(v)− <L(v)|nv > nv, (6)

for smoothing the parameterization of the mesh and keeping the
vertices close to the iso-surface.

4.3 Refinement

In order to approximate the iso-surface within a user-specified ac-
curacy and to capture local detail we adaptively subdivide a trian-
gle of the mesh depending on a refinement criterion. For a triangle
T = [u, v,w] we evaluate the distance function at a number of
sample points αu + βv + γw with α + β + γ = 1, and quadri-
sect the triangle if at least one of these vertices is further from the
iso-surface than a given ε. After subdividing a triangle, the newly
inserted vertices are projected onto the iso-surface as described in
Section 4.1.

There are a few restrictions in this adaptive subdivision ap-
proach. As we want to keep the number of special configurations
small we only allow balanced meshes, i.e. the refinement level of
two neighboring triangles may only differ by one and we use the
special technique of red-green triangulations [1, 25, 26] to avoid
cracks in the mesh where two triangles from different levels meet.

5 Results

In cooperation with the Archaeological Institute and the Neurora-
diology Center at the University of Erlangen, we have scanned ar-
chaeological artifacts with a medical CT scanner and used our algo-
rithm to reconstruct the surfaces. The leftmost picture in Figure 1
shows the base mesh as extracted from the coarsest volume after
decimation. In the middle, the meshes are shown after fitting them
to the iso-surfaces of the next finer volume levels. In both steps
a uniform subdivision step was performed. The rightmost picture
shows the final result after two further adaptive subdivision steps
which was fitted to the iso-surface at the finest volume resolution
and smoothed within the user-specified tolerance.



Figure 8: Examples of vertical sections from the reconstructed sur-
faces in Figures 1 and 9.

As can be seen from the vertical section of that mesh in Figure 8,
we did not only reconstruct the outer but also the inner surface of
this item which appears to be hollow. Such cross-sections are of
vital importance since they allow the archaeologist to study the pro-
file and the wall thickness of the object which helps to identify the
period in which they were crafted or even the specific potter. The
other section in Figure 8 was taken from the surface in Figure 9 and
a final example is illustrated in Figure 10.

Although algorithm was originally designed to handle this kind
of objects, we found it appropriate for other purposes as well. Fig-
ure 11 shows the reconstruction of a human brain from an MRI
scan, which was later used for the simulation of the brain shift phe-
nomenon [18]. The data set was segmented with the help of a semi-
automatic algorithm to separate the brain volume from the rest of
the data set.

Table 1 lists the size of the volumes from that were used in the ex-
amples and the number of hierarchy levels used. It also summarizes
the information about the extracted iso-surface and the approxima-
tion error with respect to a mesh produced using marching cubes on
the full resolution of the volume data set. The performance of the
algorithm was measured on an AMD Athlon with 1.2 GHz.

6 Conclusion

In this paper we presented a new approach for hierarchically ex-
tracting iso-surfaces as semi-regular meshes from volume data.
The main purpose of this algorithm is the reconstruction of objects
scanned by a CT or MRI scanner, like Archaeological items or the
brain surface as presented in the previous section.

Our method utilizes a multiresolution representation of the given
volume. The hierarchy levels are computed by filtering the volume
with a dilation filter and subsampling it afterwards. A coarse base
mesh is created by extracting and then simplifying the iso-surface
from the coarsest resolution. The iso-surfaces on the finer volume
levels are iteratively captured by a fitting procedure that not only
projects the vertices of the current mesh onto the iso-surface but
also takes care of the vertex distribution and adaptively refines the
mesh to approximate local detail.

Our method was inspired by the shrink-wrapping approach for
remeshing arbitrarily connected triangle meshes [12] but the hier-
archical setting improves robustness and performance of that algo-
rithm. Using a coarsened volume accelerates the generation of a
coarse base mesh. The alternative approach would be to extract an

iso-surface from the original volume data set, and coarsen it by a
mesh reduction algorithm. In contrast to our approach this would
be much more time and memory consuming. The volume hierarchy
also increases the robustness of our algorithm, since the extracted
surface can be fitted iteratively to finer levels of the volume until
the original resolution is reached.

A potential drawback of our method is that the dilation opera-
tor may change the topology of the iso-surface as small holes can
disappear. Therefore, the presented algorithm may fail to generate
topologically correct iso-surfaces for more complex volume data
sets, like the results from numerical simulations or medical data
sets, where the topology of an iso-surface must not be changed.
This issue was not a problem for the data sets we considered, since
they were topologically simple. However, it remains a problem to
be addressed in future work.
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