
ACM Symposium on Solid Modeling and Applications (2004)
G. Elber, N. Patrikalakis, P. Brunet (Editors)

Fast Continuous Collision Detection for Articulated Models

Stephane Redon 1, Young J. Kim2 , Ming C. Lin 1 and Dinesh Manocha 1

1Department of Computer Science, UNC at Chapel Hill, U.S.A., {redon,lin,dm}@cs.unc.edu
2Computer Science and Engineering, Ewha Womans University, Korea, kimy@ewha.ac.kr

http :I /gamma. cs. unc. edu/ Articulate

Abstract

We present a novel algorithm to perform continuous collision detection for articulated models. Given two discrete configu­
rations of the links of an articulated model, we use an "arbitrary in-between motion" to interpolate its motion between two
successive time steps and check the resulting trajectory for collisions. Our approach uses a three-stage pipeline: (1) dynamic
bounding-volume hierarchy (D-BVH) culling based on interval arithmetic; (2) culling refinement using the swept volume of line
swept sphere (LSS) and graphics hardware accelerated queries; (3) exact contact computation using OBB-trees and continuous
collision detection between triangular primitives. The overall algorithm computes the time of collision, contact locations and
prevents any interpenetration between the articulated model with the environment. We have implemented the algorithm and
tested its performance on a 2.4 GHz Pentium PC with 1 Gbyte of RAM and a NVIDIA GeForce FX 5800 graphics card. In
practice, our algorithm is able to perform accurate and continuous collision detection between articulated models and complex
environments at nearly interactive rates.

1. Introduction

Collision detection (CD) is a fundamental geometric problem that
arises in diverse geometric applications like CAD/CAM, dynamic
simulation, robotics and automation, haptics, virtual environments,
computer games, etc. Given its importance, it has been extensively
studied in these areas.

Most of the work in CD has focused on discrete algorithms,
which check for interferences at fixed time instants only. In such
cases, it is possible to miss a collision between two successive
instances. Such situations can arise in different applications, e.g.
in dynamics simulation [BWOl] when a fast moving object pokes
through small or thin objects in the environment. A typical remedy
to handle these problems is to reduce the size of the time interval
and increase the collision checking rates. However, it can not guar­
antee a collision free path between the two sampled instances. An­
other application is probabilistic roadmap methods (PRM) for robot
motion planning [SSL02]. In these algorithms, the position of a
robot is specified by its configuration. A key step in the PRM com­
putation is checking whether there exists any collision-free path
between two nearby configurations. Finally, in virtual reality appli­
cations the position of a user is tracked using external sensors and
only measured at discrete time instants [Bur96]. It is important to
check for any collisions between the avatar model and the virtual
environment between successive time instants.

To overcome the limitations of discrete collision detection al­
gorithms, techniques have been proposed that model the mo-

© The Eurographics Association 2004.

tion between successive instances as a continuous path and
check the path for collisions with the environment. These are
classified as continuous collision detection (CCD) algorithms
[Can86, RKCOO, RKC02, KR03]. A major issue in the design of
such algorithms is modeling the continuous motion between the
two successive positions and orientations of the object. It is impor­
tant that the motion formulation is generic enough to interpolate
any two given instances of an object, as well as simple enough so
that it can be frequently and efficiently evaluated by the underly­
ing CCD algorithm. Furthermore, it is relatively more expensive to
check for collisions along a continuous path as opposed to a dis­
crete instance.

Most of the prior work in CCD has been limited to rigid ob­
jects [Can86, GLGT99, RKCOO, RKC02, KR03]. In this paper, we
mainly focus on articulated models, including robot arms, kine­
matic or molecular chains that are composed of multiple links and
are frequently used in robotics, CAD/CAM, protein modeling or
other simulated environments. Some of the major challenges in the
design of a CCD algorithm for articulated models include:

1. The complexity of the problem of generating a continuous mo­
tion and evaluating it increases with the number of links in the
articulated model. Furthermore, we need to ensure that the gen­
erated motion should not allow any interpenetration between
different links.

2. Some ofthe commonly known techniques to accelerate collision
detection use bounding-volume hierarchies (BVHs). These hier-

146 S. Redon, Y. J. Kim, M. C. Lin & D. Manocha I Fast Continuous Collision Detection for Articulated Models

archies are typically precomputed and such techniques are not
directly applicable to articulated models with multiple moving
links.

3. A classic approach to check for collisions for a continuously
moving object is to calculate the swept volume (SV) of the ob­
ject along the trajectory and test collisions between the calcu­
lated SV and the rest of the objects in the environment. How­
ever, the computation of the SV of an articulated model is quite
costly and no efficient or robust algorithms are known for exact
computation.

Main results: We present a novel algorithm to perform continuous
collision detection (CCD) for articulated models in a virtual pro­
totyping environment. Our algorithm accurately computes the time
of collision and the contact locations and prevent any interpenetra­
tion of the articulated model with the environment. Since the actual
object's motion is not known, we use an "arbitrary in-between" mo­
tion to interpolate between successive configurations of the articu­
lated model. This motion formulation is used to check for collisions
with the environment, as well as computing the contact location of
the links of the articulated model at the time of collision.

Our approach uses a three-stage pipeline. In the first step, we
use interval arithmetic to dynamically compute a bounding-volume
hierarchy that encloses the links of the articulated model as well
as the volume swept by them. The hierarchy is used to cull away
links that are not in close proximity to the environment. The second
stage refines the culling by performing dynamic collision detection
between the environment and the volumes swept by the line swept
spheres (LSS) that enclose the links. We use graphics hardware to
perform fast collision detection between the swept volume of the
LSS and the environment. Finally, in the third stage, we compute
the exact contact positions and the time of collision between the ar­
ticulated model and the environment. It performs geometric culling
using OBB-trees and performs continuous collision detection be­
tween triangular primitives. We have implemented the algorithm
and tested its performance on a 2.4 GHz Pentium PC with I Gbyte
of RAM and a NVIDIA GeForce FX 5800 graphics card. In prac­
tice, our algorithm is able to perform accurate and continuous colli­
sion detection between articulated models and an environment con­
sisting of tens of thousands of triangles at nearly interactive rates,
as shown in Fig. I.

Organization: The organization of the rest of the paper is as fol­
lows. In Section 2, we briefly review the prior work on CCD, dis­
crete CD methods used in dynamic simulation and path planning,
and various acceleration techniques. We give an overview of our
approach in Section 3. Section 4 presents the first two stages of
our algorithm that localize the collision computation, and Section
5 describes the algorithm for exact collision detection, including
computation of the time of collision. In Section 6, we describe its
implementation and highlight its performance on complex bench­
marks. We analyze its performance in Section 7 and highlight some
of its limitations.

2. Prior Work
Most of the prior work on CD has focused on checking for colli­
sions at discrete time instances (please refer to [LM03] for a re­
cent survey). This includes specialized algorithms for convex poly­
topes that exploit coherence between successive time steps and al­
gorithms for general polygonal or spline models. The latter can be

further classified based on whether they involve any preprocessing
or not. In this section, we give a brief survey of the earlier work on
continuous collision detection, pseudo-continuous collision detec­
tion methods such as backtracking, and acceleration techniques for
collision detection.

Continuous Collision Detection: A few algorithms have been pro­
posed for continuous collision detection (CCD) between a rigid
object and the simulated environment. These algorithms model
the trajectory of the object between successive discrete time in­
stances and check the resulting path for collisions. More specif­
ically, there are four different approaches presented in the lit­
erature: algebraic equation solving approach [Can86, RKCOO],
swept volume (SV) approach [AMBJ02], kinetic data structures
(KDS) approach [KSSOO], and adaptive subdivision approach
[RKC02, SSL02, KR03].

The algebraic equation solving approach attempts to solve the
CCD problem by explicitly solving the underlying CCD equations.
The SV-based approach is based on calculating the SV of moving
objects explicitly and checking for collisions between the SV and
the rest of the environment. The KDS approach is a kind of schedul­
ing scheme that is based on the usage of certificates, which tell us
when a collision might occur. The adaptive subdivision approach
employs a conservative separation test which ensures complete sep­
aration between some time intervals, and it selectively subdivides
the time interval that fails the test until the subdivided interval be­
comes smaller than tolerance along the time dimension.

Dynamics Simulation and Local Motion Planning: There are
many applications that require continuous checking of collisions
or contacts between moving objects. These include motion plan­
ning based on probabilistic roadmap methods (PRM) [KSL096]
and constraint-based dynamics simulation [BWOl]. The PRM com­
putes a plausible path by sampling a number of configurations
in the free space and building a roadmap by connecting the free
configurations. As the roadmap is constructed, the PRM algorithm
needs to check locally whether there exists a collision-free, contin­
uous path between two configurations in the free space [SSL02]. A
sequence of local planning steps are used to compute a global path
from the initial configuration to the goal configuration. However,
earlier work in PRM has been limited to finding a collision-free,
continuous path for a limited class of articulated models with ro­
tational or prismatic joints. Moreover, when a collision is found,
these algorithms are unable to compute whether it is the first time
of contact along a given trajectory. The estimation of time of colli­
sion is particularly important for dynamics simulation since objects
are not allowed to interpenetrate but must reach contacting states.

Acceleration methods using Bounding Volume Hierarchies: In
order to accelerate the performance of CD algorithms, culling tech­
niques based on bounding volume hierarchies (BVHs) have been
proposed for general polygonal models. Essentially, these tech­
niques precompute a BVH for each rigid model and traverse the
hierarchies at runtime to localize the region of potential intersec­
tion. BVHs can be classified based on the underlying bounding
volume or traversal schemes. These include OBB trees [GLM96],
sphere trees [Hub95], k-dop trees [KHM*98], and convex hull­
based trees which use surface-based convex decomposition [ELOl].
Algorithms based on hierarchies that utilize the topology of kine­
matic chains have been proposed for articulated models [LSHL02].

Acceleration methods using Graphics Hardware: Interpolation-

© The Eurographics Association 2004.

S. Redan, Y J. Kim, M. C Lin & D. Manocha I Fast Continuous Collision Detection for Articulated Models 147

Figure 1: Benefits of our continuous collision detection algorithm over discrete methods. These images of our benchmarking system highlight the collision
detection between a 6-dof robot in a CAD environment composed of pipes. The left image shows two discrete positions of the robot, The middle image illustrates
the motion trajectory used by our algorithm. The right image indicates the position of the robot arm at the time of first contact with the CAD environment
along that trajectory. These computations are performed at almost interactive rates.

based graphics hardware is increasingly being used for geomet­
ric applications. This is mainly due to the recent advances in the
performance of the graphics processors as well as the increased
support for programmability. In particular, many algorithms based
on graphics hardware have been proposed to perform interference
or collision queries [RMS92, HZLM01, GRLM03]. Unlike BVH
based algorithms, these techniques involve no preprocessing and
are directly applicable to rigid as well as deformable models. How­
ever, the accuracy of these algorithms is governed by the image­
space precision of the graphics hardware.

3. Overview

In this section, we give an overview of our approach to perform
continuous collision detection between a moving articulated model
and its surrounding environment. We first describe how we model
the continuous motion for an articulated model using an arbitrary
in-between motion [RKCOO, RKC02], and highlight the complexity
of explicitly checking for collisions. Next, we give an overview of
our algorithm which proceeds in three stages.

3.1. Notation

We begin this section by explaining the notation used throughout
the paper. In the following section, we describe the representation
for an articulated chain that we use in the paper.

We use a bold-faced letter to distinguish a vector from a scalar
value (e.g., a vector for a rotation axis u). Let u; denote the 3 x 3
matrix such as u;x = u; x x for every three-dimensional vector x.
Ifu; = (ui,zl;,uf)r, then:

3.2. Articulated Model

0

uf
-ui'

-uf
0 (1)

ui

We represent an articulated model A made of p rigid links
A1, ... ,Ap. We use a directed acyclic graph (DAG) to represent
the articulated chain in the model. Each vertex in the graph rep­
resents a link A; and an edge between A; and A 1 is connected if

© The Eurographics Association 2004.

A; and A1 are connected by a joint. We allow both translation and
rotation for each joint. However, we assume that there is no kine­
matic loop in the graph describing the articulated chain, i.e., there
is no cycle in the graph. Consequently, each link A; has a unique
parent link, except for the root link which has no parent. On the
other hand, any link can have any number of children, as long as
there is no loop induced. For the sake of simplicity of notation, we
assume that the index of link i's parent is i- 1. This can be easily
modified when a parent has multiple children per link.

For a given link i, Jet P; denote the reference frame associated
with it. Let us further represent the orientation of P; relatively to
P;_ 1 as p;-l. Similarly, the motion ofP; relatively to P;_ 1 at time

tis described by M:- 1(t). The time interval oft is normalized to
[0, 1]. Figure 2.(a) illustrates our notation for a link i moving within
the reference frame of its parent.

3.3. Motion Formulation

As is the case in many applications, the actual motion of the mov­
ing articulated model is not known a priori and we are only given
its positions and orientations at discrete time instances. For exam­
ple, when the model is part of a constraint-based multi-body dy­
namics simulation system, the system's dynamics is solved using
discretized techniques (e.g. Euler or Runge-Kutta methods). As a
result, we do not have a closed-form expression of model's motion.

Given these constraints, we arbitrarily choose a motion formu­
lation to interpolate between different model configurations. The
goal is to use a formulation that is general enough to interpolate
between any two successive configurations and preserves the rigid­
ity of the links in the articulation. Moreover, it needs to be simple
enough to allow us to perform the various steps of our collision
detection algorithm.

We first begin by expressing the motion of each link in the ref­
erence frame of its unique parent. The motion of the root link is
similarly expressed in the global frame.

Let's now describe the motion of P; relatively to P;_ 1. We use
the 3-dimensional vector c; and the 3 x 3 matrix R; to denote the
position and orientation ofP; relatively to P;-1 at the beginning of
the time interval [0, 1], respectively. We assume that the motion of

148 S. Redan, Y. J. Kim, M. C. Lin & D. Manocha I Fast Continuous Collision Detection for Articulated Models

Final position

Arbltrory
in-batwven

motion

Figure 2: Link i is moving in the reference frame of its parent. The initial
and final positions of the link as well as the motion trajectory have been
outlined.

P; relatively to P;-1 is composed of a rotation of angle ffi; around
an axis u;, and of a translations;. The parameters c;, R; are deter­
mined by the relative configuration ofP; with respect to P;-1, and
u1, s; by the relative motion ofP1 with respect to Pi-1· Thus, for
a given time step, c;, R;, u; and s; are constants and are expressed
in terms of in P 1_ 1. Moreover, we assume that P; moves with con­
stant translational and rotational velocities.

The position ofP; relatively to P;-J for a given timet in [0, 1]
is thus:

Ti-l()
1 t = c;+ts;, (2)

The orientation of P; relatively to P;-1 is given as:

p;-l (t) = cos(m;t).A; +sin(m1t).B; + C1, (3)

where A1, B1 and C1 are 3 x 3 constant matrices which are com­
puted at the beginning of the time step:

A;= R;- u1.u[.R1

B; =u7.R1 (4)

C1 = u1.u[.R;

Consequently, the motion of P; relatively to P 1_, is described by
the following 4 x 4 homogeneous matrix:

(5)

in the reference frame of the parent link P 1_,. Finally, the matrix:

M~(t) = M?(t).Mi(t) ... M;- 1(t) (6)

describes the motion of link i in the world coordinate system.

Note that this formulation makes it extremely simple to compute
all the motion parameters s1, u1 and m1 for a given timestep. For a
given link i, assume that c~ and c} (resp. R~ and R}) are the ini­
tial and final positions (resp. orientations) of P1 relatively to Pt-1·
Then s; = cJ - c~, and (u;, ffi;) is the rotation extracted from the
rotation matrix R} (R~) T.

Using the continuous motion M~(t) for each link i, our goal is
to check for collisions between all A;'s following the motion in the
articulated model and the other objects in the environment, and, if
there is any collision, to report the first time of contact. Mathemat­
ically, we want to know whether the set in Eq. 7 is non-empty:

{ t E [0, 1]1 M~(t)A;nO # 0,i = 1, ... ,p}. (7)

Furthermore, we want to compute the smallest element fc of this
set. Here, p is the number of links in the articulated model and 0
represents all the objects in the environment.

3.4. Complexity of Continuous Collision Detection

An obvious approach to perform exact CCD is to compute the
swept volume (SV) of a moving object and check the generated SV
against the environment. However, an exact calculation of SV is
very challenging even for a single rigid object because SV compu­
tation requires arrangement or envelope computation. The compu­
tational and combinatorial complexity of arrangement can be super­
quadratic in the number of primitives and its robust implementation
is also non-trivial. Some approximation algorithms have been pro­
posed for SV computation [KVLM03, RKOO]. However, these al­
gorithms can take a few minutes for a single rigid object and can
not be directly used for interactive collision detection.

The SV problem becomes even more complicated when we
need to deal with sweeping articulated models because multiple­
parameter sweeping needs to be considered [AM099]. The
multiple-parameter sweeping involves performing consecutive
sweeping for each joint parameter in an articulated model. The ma­
jor difficulty of multiple-parameter sweeping lies in the mathemat­
ical complexity of its formulation and representation of sweeping.
In addition to checking for collisions, we also want to compute the
time of collision (TOC). Therefore, computing the SV in a three­
dimensional space is not enough and we need to add the time di­
mension to the underlying SV formulation [Cam90].

3.5. Our Approach

Due to the aforementioned challenges in performing exact CCD,
we present an approximate and fast solution to the problem. The
main idea of our approach is as follows. As a preprocess, we build
a static BVH of the given articulated model using a line-swept
sphere (LSS) as the bounding volume (BV). At runtime, we dy­
namically build a BVH of the articulated model using arbitrary in­
between motion formulation by applying interval arithmetic (lA) to
the SV of each leaf node (i.e., LSS) in the static BVH and recur­
sively building the entire hierarchy in a bottom-up fashion. Using
the dynamic BVH, we localize the contact geometry that is likely
to collide with the environment. Once we localize the contact ge­
ometry, we compute the earliest time of collision for each triangle
contained in localized geometric primitives.

The entire pipeline of our algorithm consists of three stages.
We can group the first two stages as contact localization and the
third stage as exact contact computation. Overall, the pipeline, also
shown in Fig. 3, is:

1. Dynamic BVH Culling:

a. Given two successive configurations of the articulated
model, we compute an arbitrary in-between path from the
initial to the final configuration.

b. Using the continuous path for each link, we use interval
arithmetic to compute an enclosing axis-aligned bounding
box (AABB) and recursively construct an AABB hierarchy
around the entire model. This hierarchy is used to cull away
the links which are not in close proximity to the environment.

2. Dynamic SV Culling:

© The Eurographics Association 2004.

S. Redon, Y. J. Kim, M C. Lin & D. Manocha I Fast Continuous Collision Detection for Articulated Models 149

Dynamic 8VH Culling Dynamic SV Culling Exact Contact Computation

I
1 ' Motion Interpolation I ~

Swept LSS Generation Swept 088-trees Culling

BVH Construction I and Equations Generation

I Graphics-hardware I

8VH Culling based LSS culling

I
Equations Resolution

I I
~

Figure 3: The overall pipeline of our continuous collision detection algorithm. Different stages are performed on the CPU and the graphics processor.

a. For the remaining links, we approximate the volume swept
by the precomputed bounding LSS by tessellating the offset
of a ruled surface within some error deviation. The ruling
line in the ruled surface corresponds to the skeleton of the
LSS.

b. We use graphics hardware to check whether the approximate
SV collides with objects in the environment.

3. Exact Contact Computation:

a. As a precomputation, for each link, we build an OBB-tree
which encloses the actual geometry of the link. At runtime,
for each potentially colliding link that is the output of pre­
vious stage in the pipeline, we further cull away portions of
the actual link geometry by using a novel continuous OBB
overlap test based on interval arithmetic. For the remaining
portions of geometry (i.e., triangles), we generate a list of
equations that provide the exact time of contact (TOC) of the
geometry against the objects in the environment.

b. The computation of the time of contact is performed using a
combination of interval arithmetic and subdivision method.
We present a new algorithm for articulated models that si­
multaneously solves the equation corresponding to elemen­
tary continuous collision detection tests. For a given time in­
terval, all the relevant collision equations are solved and the
interval is further subdivided if necessary.

4. Contact Localization

In this section, we describe the first and second stages in the
pipeline.

4.1. Dynamic BVH Culling

Given the motion formulation, the first step in the collision detec­
tion algorithm is to compute a BVH around the swept volume of
the articulated model. Each bounding volume (BV) in the BVH is
an AABB. We compute an AABB for each link, that encloses its
swept volume over the entire trajectory during a given time step.
These leaf-boxes are then used to efficiently compute a complete
hierarchy of AABB's used to quickly cull away links which are far
from the environment.

The leaf-boxes are computed using interval arithmetic (IA)
[Moo79]. We bound each component of the orientation matrices

© The Eurographics Association 2004.

P: - 1 (t) over the entire time interval [0, I J using elementary inter­
val operations. Similarly, we use elementary interval operations to
bound the translation components T:- 1(t). Eventually, we obtain

4 x 4 homogeneous interval matrices M.:- 1 whose interval compo­

nents bound the corresponding components of M:- 1 over the time
interval [0, 1]. These interval matrices are concatenated by again
performing elementary interval operations to compute the interval
version M.? of the matrix M?.

By applying this interval matrix to both Lf and Lf, we obtain
two 3-dimensional interval vectors that bound the coordinates of
the endpoints of the links over the time interval [0, I J. In effect,
these 3-dimensional interval vector are AABBs which enclose the
endpoints over the time interval [0, I J. By using the convexity argu­
ment, it can be seen that the AABB that encloses these two boxes
bounds the entire link over the time interval. Next we enlarge the
box by an offset equal to the radius of the LSS to ensure that the
AABB bounds the LSS and its entire trajectory. Given the AABBs
around the leaf-nodes, we compute a complete AABB hierarchy
in a bottom-up manner around the entire model. After computing
the BVH, we recursively check for overlaps with the environment
and conservatively cull away the links that are far from the environ­
ment.

4.2. Dynamic Swept Volume Culling

For the remaining links that are not culled away by the previous
stage in the pipeline, we check whether their approximate SV is
colliding with the environment. If it is colliding, we proceed to the
next stage in the pipeline where more precise collision checking is
performed.

4.2.1. Swept Volume of Line Swept Sphere

The approximate SV of each link is computed by calculating the
SV of the LSS which encloses the link and tessellating it, as shown
in Fig. 4. The LSS enclosing a link is precomputed using the al­
gorithm proposed in [LGLMOO]. For example, in Fig. 5, we show
a puma robot model and its approximation using LSS. It is well
known that the SV of an LSS is equivalent to the offset surface of a
ruled surface, where the ruling line in the ruled surface corresponds
to the axial line of LSS and the offset radius in the offset surface
corresponds to the radius ofLSS.

The mathematical formulations of a ruled surface, x(t,s), and its

150 S. Redon, Y J. Kim, M. C. Lin & D. Manocha I Fast Continuous Collision Detection for Articulated Models

+ +

Figure 4: The SV (rightmost image) of LSS consists of LSSs at initial and final configurations (leftmost image), ruled surface (center left) and pipe surface
(center right).

offset surface with offset radius d, xd(t,s), are given in Eq. 8 and 9,
respectively:

x(t,s) = b(t) +so(t)

xd(t,s) = x(t,s) ±d n(t,s)

(8)

(9)

Here, b(t) is a directrix and o(t) is the direction of a ruling line in
the ruled surface, and n(t,s) is the unit normal vector field defined
on the surface of x(t, s). Moreover, we assume that x(t, s) is regular.
In case x(u, v) may contain non-regular points, conventional tech­
niques to handle such cases bound n(u, v) with a spherical polygon
[PW01]. Also notice that, in Eq. 9, xd(u, v) is defined as a two-sided
offset surface suited for our application.

Using the relationship between the offset of a ruled surface and
the SV of the LSS, we compute the swept volume by independently
computing the SV of the cap portion of LSS and computing the
union with the remaining portion ofLSS. The SV generated by the
caps of LSS is a pipe surface. As a matter of fact, the pipe surface
is a special case of a canal surface. A canal surface is generated by
sweeping a sphere of varying radii along some continuous trajec­
tory. A pipe surface is a special case of a canal surface where the
radius is fixed. The parametric equation of a pipe surface is formu­
lated as [KL03]:

K(t,e) = C(t) +R(coseb1 (t) +sin8b2 (t)) (10)

c' (t) x c" (t)
b 1 (t) = IIC' (t) x c" (t) II

c' (t) x b1 (t)
bz(t) = IIC'(t) x b1 (t)ll

Here, C(t) is the spline curve that a sphere of fixed radius sweeps
along to generate a pipe surface K(t,e). Once we have computed
the offset of the ruled surface and the pipe surface, we compute the
SV of the LSS by taking the union of them. This relationship is also
illustrated in Fig. 4.

4.2.2. Tessellation of Swept Volume

Given the parametric representation of offset and pipe surfaces,
there are two main challenges in performing collision detection us­
ing these surfaces. These include computing an accurate, explicit
representation of the SV and checking it for interference with the
environment. Since an exact, explicit representation ofSV requires
costly arrangement calculation and surface/surface intersections,
we approximate the SV with piecewise triangular patches and do
not perform the exact intersection or clipping computations. More­
over, we analyze the maximum deviation error from the exact sur­
faces. Since these patches are computed on the fly, we cannot use
preprocessing techniques based on BVHs for fast collision check­
ing. Rather, we use a graphics hardware accelerated interference
checking algorithm that requires no preprocessing.

4.2.2.1. Uniform Tessellation The earlier algorithms for approx­
imating an offset surface assume that the underlying progenitor
surface is a free-form surface such as Bezier or NURBS sur­
face. Under this assumption, there are three typical approaches
to approximate an offset surface [ELK97]; control polygon-based,
interpolation-based and circle approximation approach. In par­
ticular, the interpolation-based approach is based on directly
sampling the positions and derivatives of the exact offset sur­
face and attempts to optimize the approximated offset surfaces
[Far86, Hos88, Kla83]. We adopt this technique in our application
because of its simplicity which makes it better suited for interac­
tive applications. In particular, we uniformly sample the offset of
the ruled surface in the u and v parameter domain, as given in Eq.
9, and create strips of triangles by varying one of the parameters
while fixing the other one. The tessellation of a pipe surface is per­
formed using a similar approach. Given the formulation in Eq. 10,
we uniformly sample the pipe surface along the t and e parameters.

4.2.2.2. Tessellation Error The deviation error of an approx­
imated offset surface is calculated by computing llxd(t,s) -
x(t,s) II- d or squared distance lixd(t,s)- x(t,s) 11 2

- d2 [ELK97].
The error is relatively easy to compute when the progenitor sur­
face is represented as Bezier or NURBS surface. However, progen­
itor surface in our case is a non-rational surface and described us­
ing trigonometric functions. As a result, error calculation becomes
non-trivial. In this case, there are two possibilities to calculate the
error bound. Either we can use iterative numerical techniques like
the Newton-Raphson method to derive the error bound, or if we
can bound the derivatives of the progenitor surface, we can bound
the deviation error as well. We use the second approach because
we needed to calculate the derivatives as part of offset (Eq. 9) and
pipe surface formulation (Eq. 10). The intervals (i.e., bounds) of
the derivatives can be obtained by applying interval arithmetic sim­
ilarly done as in Sec. 4.1.

Our method to derive an error bound is based on a well-known
result in the approximation theory. The theorem by Filip et al.
[FMM86] is stated as follows: Given a C2 surface f : [0, 1] x
[0, 1 J -+ IR3 and a tolerance£, a piecewise linear surface l : [0, 1] x
[0, 1]-+ IR3 with n and m uniform subdivision along each [0, 1]
satisfies sup llf(t,s) -l(t,s)ll:::; £when

(11)

© The Eurographics Association 2004.

S. Redon, Y J Kim, M C. Lin & D. Manocha I Fast Continuous Collision Detection for Articulated Models I5I

Bound ing LSSs

Figure 5: The leftmost image shows an articulated 6-dof Puma robot model, the center image shows LSS' bounding the Puma robot, and the right image
shows the SV of the LSS bounding the end-effector of the Puma robot.

where

Ml = sup lld2/(~s) II
(t,s)E[O,l] x [0,1] du

Mz= sup lld2/(t,s)ll
(t,s)E[O,l] x [0,1] dudv

M ll
d2/(t,s)ll

3 = sup --.-2-
(t,s)E[O,l] x [0,1] oV

In our case, f(t,s) corresponds to the offset surface XJ(t,s) of a
ruled surface x(t,s) in Eq. 8 and 9. The relationship between the
derivatives of xd(t,s) and x(t,s) can be algebraically expressed
[Far86]. Therefore, we first bound the derivatives ofx(t, s) using in­
terval arithmetic, followed by bounding the derivatives ofxd(t,s).
As a result, given error tolerance £, we can determine the required
subdivision step sizes (i.e., n, m in Eq. 11) to tessellate the offset
surface.

Similarly, we apply Eq. II to the parametric representation of
a pipe surface (Eq. I 0) and combine it with interval arithmetic, to
compute the step sizes to tessellate the pipe surface.

4.2.3. Graphics Hardware-based Collision Detection

Once we have tessellated offset and pipe surfaces, we use the graph­
ics processor to check for collisions. Since these tessellated sur­
faces are generated on the fly, we cannot use earlier CD techniques
based on precomputed hierarchies to speed up collision queries.
Instead, we choose the CULLIDE algorithm [GRLM03] that uses
graphics hardware to perform interactive collision detection. The
basic idea of CULLIDE is to pose the collision detection prob­
lem in terms of performing a sequence of visibility queries. If an
object is classified as fully-visible with respect to the rest of the
environment, it is a sufficient condition that the object does not
overlap with the environment. For those objects that are classified
as partially visible, the algorithm performs exact triangle-level in­
tersection tests. CULLIDE performs the visibility queries using the
graphics processors and the exact triangle-level intersection tests
on the CPUs.

Precisely, we perform 2.5D overlap tests between the objects on
the GPU by performing orthographic projections along the X, Y

© The Eurographics Association 2004.

and Z directions. The graphics hardware is very well optimized
to perform these transformations, scan converting the primitives
and performing these pixel level comparisons by using the mul­
tiple pixel processing engines in parallel. In particular, we use the
NVIDIA OpenGL extension GL_NV _occlusion_query[NVI03] to
perform the visibility queries. This query is available on the com­
modity graphics processors.

5. Exact Contact Computation

The contact localization algorithm described in Section 4 is used
to cull away some of the links that are not colliding with the envi­
ronment. In this section, we present an algorithm for exact contact
computation between the links and the objects in the environment.
We also accurately compute the time of contact and the position of
the links at those times. The exact contact computation algorithm
proceeds in two parts. First we use hierarchies of oriented bound­
ing boxes (OBBs) to perform inter-object culling. The second step
involves performing continuous collision detection operations for
triangular primitives. We present novel and improved algorithms
for each step.

5.1. Geometry Culling based on OBB-trees

We use hierarchies ofOBBs to perform the culling [GLM96]. Since
the links in the articulated model and the objects in the environ­
ment are rigid, each OBB-tree is computed offline. We present an
improved algorithm to perform continuous overlap tests between
the OBBs over a given time interval.

Given two discrete positions of the OBBs, we check for overlap
based on the separating axis test [GLM96]. Lets assume that the
first OBB is described by three axes e1, e2 and e3, a center TA, and
its half-sizes along its axes a1, az and a3. Similarly, assume the
second OBB is described by its axes f1, fz and f3, its center Ts,
and its half-sizes along its axes b1, bz and b3. The separating axis
theorem states that two static OBBs overlap if and only if all of
fifteen separating axis tests fail. A separating test is simple: an axis
a separates the OBBs if and only if:

3 3

)a·TATs) > I,ai)a·e;) + I,bi)a·f;). (12)
i=l i=l

152 S. Redan, Y J. Kim, M. C. Lin & D. Manocha I Fast Continuous Collision Detection for Articulated Models

Figure 6: Dynamic SV culling based on graphics hardware (i.e., CULL/DE) applied to the last two links of a Puma robot model. The volume swept by the
LSS which bounds the last link does not collide with the environment, and thus the link is culled away. The dynamic SV culling allows us to perform an efficient
culling even for very large motions.

This test is performed for 15 axes at most [GLM96].

For continuous collision detection, it is necessary to perform
continuous overlap tests between the bounding volumes. We use
the continuous test proposed by Redon eta!. in [RKC02], which ex­
tends the discrete OBB/OBB overlap test to the continuous domain
using interval arithmetic. Since each member of inequality (12) is
a function of time depending on the specific arbitrary in-between
motion, interval arithmetic is used to bound both members very ef­
ficiently over a time interval [tn,tn+d· As before, once the bounds,
M.?(t), on the position matrices M?(t) for the corresponding links
have been obtained, the bounds von the corresponding elements are
computed by performing the interval matrix-vector multiplication
v = M.?(t)v. When the lower bound on the left member is larger
than the upper bound on the right member, the axis a separates the
boxes during the entire time interval [tn, tn+1], and the pair of boxes
is discarded.

However, this continuous overlap test can be quite conservative
in practice. There are two main reasons:

• Two OBBs can be separated over [tn,tn+d even when there does
not exist one axis which separates them on the whole time inter­
val.

• Since the bounds are obtained by recursively performing interval
arithmetic operations, the bounds are not tight. As a result, the
continuous test may fail even when there exists an axis which
separates the boxes during the whole time interval.

5.1.1. Improved Continuous Overlap Test

We present an improved overlap test that computes a refinement
level for the entire link for the given time interval. It is based on the
motion of the link in the world space and uses the same refinement
level for all the OBBs associated with the link.

More precisely, for a given link i, the refinement level r; com­
putes the number n; = 2'; of equally-sized time sub-intervals the
given time interval has been split into for evaluating the bounds
M.?(t) for the link i. When performing a continuous overlap test
between two OBBs, the separating axis tests are executed on the
time sub-intervals processed in the order of increasing time values,
and stop as soon as an overlap has been detected for a given time

sub-interval. The maximum of the refinement levels of the two ob­
jects determines the resolution of the test. For example, given a time
interval, [0, 1], and ro = 1 and r1 = 2. Then at most four continuous
overlap tests are performed with different pairs of bounds:

• one for [0,0.25] with M.8[0,0.5] and M.?[o,0.25],
• one for [0.25,0.5] with M.8[0,0.5] and M.?[0.25,0.5],
• one for [0.5,0.75] with M.g[o.5, 1] and M~[0.5,0.75],
• one for [0.75, 1] with M.8[0.5, 1] and M.?[0.75, 1].

The boxes are known to be disjoint over the given time interval
when they are disjoint over each of the time sub-intervals. Note
that using distinct refinement levels for distinct links is not prob­
lematic and still provides a conservative test, as in this example
where the bounds M8[0,0.5] (resp. M.g[0.5, 1.0]) contain the ex­
act bounds on M8(t) over the two time sub-intervals [0,0.25] and
[0.25, 0.5] (resp. [0.5, 0.75] and [0.75, 1]). The refinement levels and
the bounds M.? (I) are computed only once for a given time inter­
val, and not each time an overlap test between two boxes has to be
performed.

5.2. Elementary Continuous Collision Detection

When two leaf-nodes in the OBB trees overlap, we need to com­
pute the first time of contact (TOC) between the triangular primi­
tives that are contained in the leaf nodes. In this section, we present
a novel and improved algorithm for fast continuous collision de­
tection between the triangular primitives. It is based on techniques
for solving multiple equations simultaneously. We first present the
mathematical formulation of the "elementary tests". Next, we high­
light the performance limitations of prior approaches in solving the
set of resulting equations. Finally, we present our novel algorithm
for simultaneously solving the set of equations resulting from the
elementary tests.

5.2.1. Elementary Tests

Given two triangles i and j, two types of contacts can occur be­
tween them: either a collision between the edges of i with edges of
j or a collision between a vertex of i with the face of j (and vice­
versa). As a result, we need to perform two types of elementary

©The £urographies Association 2004.

S. Redan, Y. J. Kim, M C. Lin & D. Manocha I Fast Continuous Collision Detection for Articulated Models 153

Dynamic BVH Culling Dynamic SV Culling Exact Contact Computation Total Time for CCD
Angle e~ax COL NO-COL COL NO-COL COL NO-COL COL NO-COL

0.0014 0.0012 11.9552 2.9801 11.8 3.3123 23.7566 6.2936

5 0.0017 0.0013 16.1848 4.3327 17.9427 3.6844 32.3713 8.0184

15 0.0018 0.0015 22.1523 3.9728 30.5652 5.4548 52.7193 9.4291

30 0.0018 0.0013 18.6973 4.4477 85.4134 18.7761 104.1125 23.2251

Table 1: Peiformance of our algorithm for different trajectories of the Puma robot in the "Pipes" environment (timings in milliseconds). In the first column,

a higher value oferax implies a larger motion. The other columns show the average time spent in different stages of the algorithm depending on whether a
collision is detected (COL) or not (NO-COL), during the timestep.

tests: edge/edge (E- E) or vertex/face (V- F) tests. The continu­
ous collision detection equations for both tests can be derived eas­
ily [Can86, RKCOO, KR03]. Given two moving edges expressed as
functions of their moving end-vertices: a(t)b(t) ofi and c(t)d(t) of
j. The lines supporting them collide during a given time interval if
there exists a real root of the equation (E -E):

a(t)c(t).(a(t)b(t) /\c(t)d(t)) = 0 (13)

in the given time interval. For each root, it is then checked whether
the edges, and not only the supporting lines, are colliding. In the
degenerate case where the edges are parallel, two contact points
are reported. Similarly, a collision occurs between a vertex a(t) of i
(resp j.) and the plane containing the triangle j (resp. i) b(t)c(t)d(t)
if there is a real root of the equation (V- F):

a(t)b(t).(b(t)c(t) !\ b(t)d(t) = 0 (14)

in the given time interval. For each root, it is then checked whether
at that time the vertex is inside the triangle.

We use an interval numerical method for root computation. Con­
sequently, we need to obtain some bounds on the positions and
derivatives of the elements (i.e. the vertices, edges and face nor­
mals) over the given time intervals. The bounds on the positions
over a given time interval I are determined by first computing
bounds M.?(I) on the position matrices M?(t) over this time in­
terval, and then performing interval matrix-vector multiplications
to obtain the bounds on the elements positions. The bounds on the
derivatives are computed in a similar manner.

Although conceptually simple, the computation of these bounds
can become quite expensive for articulated models. These compu­
tations are performed by concatenating the interval matrices and
therefore, the computational cost of the evaluation of the bounds
M.?(I) grows linearly with the depth of link i (i.e. the number of
links separating it from the root of the articulated model in the
DAG). Consequently, the cost of solving one of the equations is

(15)

where d; and d1 are the depths of links i and j, respectively, in the
DAG, and s is the number of time intervals over which the bounds
have been computed during the resolution of the equation. As are­
sult, if ne equations need to be solved for the pair of links i and
j, and a is the average number of required time intervals user per
equation, then the cost of solving the elementary equations inde­
pendently is

(16)

©The Eurographics Association 2004.

This can be relatively expensive for complex articulated models
consisting of many links.

5.2.2. Simultaneous Solver for Articulated Models

We overcome the high complexity for articulated models by si­
multaneously solving all the elementary equations (13) and (14)
that are generated during the traversal of OBB trees. If we solve
the elementary equations independently for different V - F and
E- E combinations, it requires the computation of bounds, M.?(I),
over each sequence of time intervals for each equation. Instead, we
maintain lists of active equations over the time intervals and com­
pute the bounds M.?(I) only once per time interval. By using such
a simultaneous solver, the cost of solving ne equations becomes

Csim = O(smax.(d; +dj)) + O(a.ne), (17)

where Smax is the total number of time intervals processed simulta­
neously. In practice, Smax is usually much smaller than a.ne. As a
result, the simultaneous solver results in an improved performance.
Next, we present an improved version of simple interval subdivi­
sion method and Newton interval method, which are part of the
simultaneous solver.

5.2.3. Improved Interval Subdivision Method

Given a list of ne elementary continuous collision detection equa­
tions, /1 (t) = 0, ... , fn, (t) = 0, which need to be solved on a given
time interval [l,r]. This list is generated during the traversal of the
OBB-trees and the elementary equations may involve any robot
link or obstacle in the environment. We refer to the equations in this
list as active equations on the time interval [/, r], because they may
have a root in this interval. We first compute the bounds M.? [/, r] for
the links involved in the equations. Next, these bounds are used to
bound the positions of all the elements involved in the equations,
by performing matrix-vector interval multiplications. Finally, we
bound each function fk() by performing elementary interval oper­
ations. If the bounds on a given function fk() have identical signs,
then we know for sure that it does not have any root in [/, r], and
the equation can be discarded. Otherwise, the function fk() may
have a root in [/, r]. A list of all such functions is computed and the
same process is recursively applied to this list on two smaller time
intervals: first on [/,m] and then on [m,r], where m = 1t', since we
are trying to compute the first TOC. The recursion is stopped when
the list of equations becomes empty or when the time interval is
smaller than a user-defined threshold. In the latter case, the validity
of the roots is checked for all active equations and all valid roots
are reported.

154 S. Redan, Y. J. Kim, M. C. Lin & D. Manocha I Fast Continuous Collision Detection for Articulated Models

5.2.4. Improved Newton Interval Method

We now extend the improved interval subdivision method by intro­
ducing a Newton culling step for articulated models. The traditional
Newton interval method attempts to reduce the size of the current
time interval by computing bounds on the derivative of the function
whose roots are being computed. Given a function f() with bounds
on the current time interval [l,r], assume that the bounds have op­
posite signs. We further assume that some bounds [a, b] on its first
derivative/() have been computed as well, with a.b > 0. Then the
search interval can be safely reduced to the interval

(
[m m]- lf(m),J(m)]) n [I r]

' [a,b] '
(18)

where m is any point in [I, r] (usually the midpoint of the interval).

Since we are simultaneously solving for different equations on
identical time intervals, we cannot reduce the interval for each ac­
tive equation fk() independent of the others. Most of the time, we
use the Newton interval method to potentially cull away an equa­
tion and speed up the improved interval dichotomy method, when
the interval used by the Newton test does not intersect one or both
of the time intervals [I,m] and [m,r]. When one of these two time
intervals have been reduced for all of the active equations, we can
replace it by the union of the smaller intervals and recursively pro­
cess the list of active equations on the smaller intervals.

6. Implementation and Results

We have implemented the CCD algorithm described and tested on
a 2.4 GHz Pentium PC with 1 Gbyte of RAM and a NVIDIA
GeForce FX 5800 graphics card. The dynamic SV culling algo­
rithm used during contact localization uses the graphics hardware
to perform overlaps between the SV of the LSS and the rest of the
environment.

Pipes and Puma robot: We first have used a benchmark consisting
of a Puma robot model (800 triangles and 7 links) and a CAD/CAM
model of pipes (38,000 triangles), shown in Fig. 1. It is a rela­
tively dense environment and we place the robot in close proximity
to the pipes. In practice, our algorithm manages to compute the
time of first contact, as well as the contacting location between an
articulated model and a complex environment in tens of millisec­
onds. The average time required to perform a continuous overlap
test (Section 5.1.1) between two moving OBBs is about one mi­
crosecond, when the bounds on the matrix elements have already
been computed.

In order to evaluate the overall performance of our algorithm, we
generated various random paths in the environment visible in Fig­
ure 1, in the following way. Starting from a collision free position,
random motion parameters are generated for the current timestep.
These parameters determine a unique interpolating motion (i.e. the
arbitrary in-between motion), as defined in Section 3.3. Continuous
collision detection is performed using this motion trajectory. If any
link of the robot collides with the pipes, the algorithm computes the
first TOC and the position of each link at that time.

In order to evaluate the influence of the amplitude of the motion
on the performance of our algorithm, we used four different random
trajectories. For each trajectory i = 1, ... , 4, the angular motion of
each link for each timestep is randomly chosen between 0° and
ejax, with e]ax = 1°, eiax =5°, e)ax = 15° and 94'ax = 30°.

Table 1 shows the average time spent in each of the three stages
of our algorithm as well as the total query time. Moreover, we show
the average time when any of the links collides with the environ­
ment (COL) as well as when there is no collision (NO-COL). The
results show that the first stage of dynamic BVH culling takes very
little time as compared to the other two stages. Moreover, the cost
of dynamic SV culling doesn't increase significantly with a larger
motion. On the other hand, the cost of the third stage, computing
the exact time of contact as well as the contact features, depends
directly on the amplitude of the robot motions. There are two main
reasons:

• The exact contact computation includes solving many elemen­
tary continuous collision detection equations. As we take a
higher value of the angular motion and compute the motion tra­
jectory, more features of the first objet penetrate deeply into
the second object. This results in more pairwise collisions be­
tween the OBBs and triangles. As a result, many more elemen­
tary equations are generated during the traversal of the bounding­
volume hierarchies and the CCD algorithm spends more time in
the third stage.

• All the bounds are computed using interval arithmetic. They are
not exact, but only conservative. In fact, they tend to be more
and more conservative as the amplitude of the motion, or the
depth of the links, increases. Consequently, more time is spent
in computing the bounds on equations which have no solutions
for the current time interval.

Auxiliary Machine Room and Puma robot: We have then mea­
sured the cost and benefit of each step of our algorithm by placing
the same Puma robot in a partial model of an Auxiliary Machine
Room (AMR). This new environment, visible in Figure 7, consists
of 1,180 objects and 187,000 triangles. Again, we have used various
values of the maximum rotation angle ejax. This time however, we
have for each trajectory determined the benefit of the two culling
stages by measuring the average times needed by the other steps
when they are deactivated. Table 2 gives the average time required
by each stage, as well as the average total time, depending on the
maximum rotation angle per link ejax and the set of active stages.
Again, the average times are given for two cases: when at least one
of the links collides with the environment (COL), and when there is
no collision (NO-COL). As expected, dynamic SV culling becomes
useful when large motions occur, to counteract the increased con­
servativeness in OBB culling and the simultaneous resolution of
the elementary collision detection equations resulting from the use
of interval arithmetic in the 'exact contact computation stage. The
results show that, even for large motions, the proposed algorithm
is able to compute the first time of collision and the contact state
at nearly interactive rates. Moreover, recent benchmarks show that
SV culling becomes essential as the depth of the articulated model
increases [RKLM03].

7. Analysis and Limitations

We have highlighted the performance of the algorithm in close
proximity configurations in Section 6. We are able to perform con­
tinuous collision detection and compute the first possible time of
contact in tens of milliseconds (when the articulated model is col­
liding with the environment). We are able to achieve this perfor­
mance by using a three-stage algorithmic pipeline. The relative

@ The £urographies Association 2004.

S. Redan, Y. J. Kim, M C, Lin & D. Manocha I Fast Continuous Collision Detection for Articulated Models 155

Figure 7: The Puma robot in the AMR environment (1,180 objects, 187,000 triangles).

Dynamic BVH Culling Dynamic SV Culling Exact Contact Computation Total Time for CCD

Angle Oj"x Stages COL NO-COL COL NO-COL COL NO-COL COL NO-COL

1+2+3 0.33 0.33 41.58 18.54 7.01 2.06 48.92 19.04
10 1+3 0.34 0.33 7.33 1.79 7.67 1.24

2+3 47.60 41.68 23.29 15.00 70.89 43.53

3 82.24 75.05 82.24 75.05

1+2+3 0.33 0.33 30.83 20.18 116.42 46.15 147.58 48.31

30° 1+3 0.33 0.33 121.93 43.43 122.26 115.40

2+3 56.14 44.74 147.00 63.72 203.14 98.90

3 190.79 98.41 190.79 98.41

1+2+3 0.34 0.33 43.13 19.05 480.45 91.74 523.92 40.91

60° 1+3 0.35 0.33 577.70 73.06 578.05 36.79

2+3 62.23 44.70 519.39 107.86 581.62 70.08

3 649.48 107.29 649.48 107.29

Table 2: Average execution times for the AMR environment and the Puma robot (in milliseconds). Dynamic SV culling is useful to counteract the increased
conservativeness in the third stage of our algorithm when large motions occur. Recent benchmarks show that SV culling becomes essential as the depth of the
articulated model increases [RKLM03}.

benefit of each stage depends on the model complexity of the ar­
ticulated model, the simulated environment, and the relative con­
figuration of each link of the articulated model with respect to the
environment. Overall, the algorithm spends very little time in dy­
namic BVH culling, nearly constant time in dynamic SV culling,
and the performance of exact contact computation varies consider­
ably with the length of the motion trajectory.

7.1. Sources of errors and potential solutions

Our algorithm is not exact. The sources of errors can be attributed
to the following processes in the algorithm:

• Surface Tessellation Error: In Sec. 4.2.2, we approximate the
SV of LSS using planar surface patches. As a result, we tessel­
late the pipe and offset surface within some error deviation, £.

Thus, if the articulated object moves closer to some of the ob­
jects in the environment within £ or penetrates the objects by
£, these collisions can be missed. For applications where guar­
anteed conservativeness is absolutely required, dynamic swept-

© The Eurographics Association 2004.

volume culling can be suppressed, to the expense of a higher
overall cost. Recent benchmarks show the importance of dy­
namic swept-volume culling as the depth of the articulated model
increases [RKLM03].

• Image Space Precision Error: We use a graphics-hardware
based collision checking algorithm to check for an collision of
the tessellated SV. As a result, the precision of the algorithm is
limited by the underlying hardware precision such as frame and
depth buffer resolution. However, recent results show that GPU­
based interference checking can be made conservative, so that
no collision is ever missed [GLM04].

• Floating Point Error: Essentially, the precision of the inter­
val arithmetic and root-finding methods are limited by underly­
ing floating-point precision: the interval dichotomy method pre­
sented in Sec. 5.2.3 requires a certain threshold to stop the refine­
ment. This threshold also depends on the floating point precision.
However, with a careful implementation, the interval arithmetic
computations can be made conservative [SWF*93].

156 S. Redon, Y J. Kim, M C. Lin & D. Manocha I Fast Continuous Collision Detection for Articulated Models

8. Conclusions and Future Work

In this paper, we have presented a novel algorithm for continu­
ous collision detection between a moving articulated model and
the simulated environment. The algorithm consists of three stages
that perform dynamic BVH culling, dynamic SV culling and exact
contact computation respectively. We use interval arithmetic to con­
struct the dynamic BVH, and use a graphics hardware accelerated
algorithm to perform the dynamic SV culling. We have applied the
algorithm to an articulated robot model moving in a complex CAD
environment composed of tens of thousands of polygons. Our ini­
tial results are quite promising and the algorithm is able to compute
all the contacts, as well as the time of first possible collision within
tens of millisecond.

There are many avenues for future work. We plan to perform
a more thorough analysis of the potential of the new algorithm.
Preliminary results discuss and show the importance of the various
culling steps in complex benchmarks, especially when the depth of
the articulated body increases [RKLM03].

We believe the algorithm described in the paper can be easily ex­
tended to handle self-collision detection as well as multiple moving
articulated bodies, and we plan to investigate this topic. Also, we
would like to apply our interference algorithm to other potential
applications such as virtual reality-based training, dynamics simu­
lation, etc. In particular, we would like to use it for local planning
in PRM-based planners. Furthermore, we want to extend our algo­
rithm to relax the no-loop constraints in the articulated chain such
that the algorithm is applicable to all articulated models.

Acknowledgements

This project is supported in part by ARO Contract DAAD19-02-
l-0390, NSF awards IIS-982167, ACI 987691 and ACR-0118743,
ONR VIRTE Program ContractN00014-01-l-0496, a Ewha Wom­
ans University research grant of2003, and Intel.

References

(AMBJ02] ABDEL-MALEKL K., BLACKMORE D., JOY K.: Swept volumes: Foundations, per­
spectives, and applications. International Journal of Shape Modeling (2002).

(AM099] ABDEL-MALEK K., OTHMAN S.: Multiple sweeping using the denavit-hartenberg
representation method. Computer-Aided Design 31 (1999), 567-583.

[Bur96] BURDEA G.: Force and Touch Feedback for Virtual Reality. John Wiley and Sons,
1996.

[BW01] BARAFF D., WITKIN A.: Physically-Based Modeling. ACM SJGGRAPH Course
Notes, 2001.

[Cam90] CAMERON S.: Collision detection by four-dimensional intersection testing. Proceed­
ings of International Conference on Robotics and Automation (1990), 291-302.

[Can86] CANNY J. F.: Collision detection for moving polyhedra. IEEE Trans. PAM! 8 (1986),
200-209.

[Duf92] DUFF T.: Interval arithmetic and recursive subdivision for implicit functions and con­
structive solid geometry. In Computer Graphics (S!GGRAPH '92 Proceedings) (July
1992), Catmull E. E., (Ed.), vol. 26, pp. 131-138.

[ELOl] EHMANN S., LIN M. C.: Accurate and fast proximity queries between polyhedra
using convex surface decomposition. Computer Graphics Forum (Proc. of Eurograph­
ics'2001) 20,3 (2001), 50().-510.

[ELK97] ELBER G., LEE 1.-K., KIM M.-S.: Comparing offset curve approximation methods.
IEEE Computer Graphics and Applications 17, 3 (1997), 62-71.

[Far86] F AROUKl R.: The approximation of non-degenerate offset surfaces. Computer Aided
Geometric Design 3 (1986), 15-43.

[FMM86] FILIP D., MAG EDSON R., MARKOT R.: Surface algorithms using bounds on deriva­
tives. CAGD 3 (1986), 295-311.

[GLGT99] GREGORY A., LIN M., GOTTSCHALK S., TAYLOR R.: H-collide: A framework for
fast and accurate collision detection for haptic interaction. In Proceedings of Virtual
Reality Conference 1999 (1999), pp. 38-45.

[GLM96] GOTTSCHALK S., LIN M., MANOCHA D.: OBB-Tree: A hierarchical structure for
rapid interference detection. Proc. of ACM Siggraph '96 (1996), 171-180.

[GLM04] GOVINDARAJU N ., LIN M., MANOCHA D.: Fast and reliable collision detection using
graphics hardware. Tech. rep., University of North Carolina, Department of Computer
Science, 2004.

[GRLM03] GOVINDARAJU N., REDON S., LIN M., MANOCHA D.: Cullide: Interactive colli­
sion detection between complex models in large environments using graphics hardware.
Proc. of ACM S!GGRAPH/Eurographics Workshop on Graphics Hardware (2003), 25-
32.

[Hos88] HOSCHEK J .: Spline approximation offset curves. Computer Aided Geometric Design
5, 1 (1988).

[Hub95] HUBBARD P. M.: Collision detection for interactive graphics applications. IEEE Trans.
Visualization and Computer Graphics 1, 3 (Sept. 1995), 218-230.

[HZLMOl] HOFF K., ZAFERAKIS A., LIN M., MANOCHA 0.: Fast and simple 2d geometric
proximity queries using graphics hardware. Proc. of ACM Symposium on Interactive
3D Graphics (2001), 145-148.

[KHM*98] KLOSOWSKI J., HELD M., MITCHELL J. S. B., ZIKAN K., SOWIZRAL H.: Effi­
cient collision detection using bounding volume hierarchies of k-DOPs. IEEE Trans.
Visua/izat. Comput. Graph. 4, 1 (1998), 21-36.

[KL03] KIM K.-J., LEE I.-K.: The perspective silhouette of a canal surface. In £urographies
(Graphics Forum) (2003), vol. 22, pp. 15-22.

[Kla83] KLASS R.: An offset spline approximation for plane cubic splines. Computer-Aided
Design 15,5 (1983), 297-299.

[KR03] KIM B., ROSSIGNAC J.: Collision prediction for polyhedra under screw motions. In
ACM Conference on Solid Modeling and Applications (June 2003).

[KSL096] KAVRAKI L., SVESTKA P., LATOMBE J. C., 0VERMARS M.: Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Au­
tomat (1996), 12(4):566-580.

[KSSOO] KIRKPATRICK D., SNOEYINK J., SPECKMANN B.: Kinetic collision detection for
simple polygons. In ACM Symposium on Computational Geometry (2000), pp. 322-
330.

[KVLM03] KIM Y., VARADHAN G., LIN M., MANOCHA 0.: Efficient swept volume approxima­
tion of complex polyhedral models. Proc. of ACM Symposium on Solid Modeling and
Applications (2003).

[LGLMOO] LARSEN E., GOTTSCHALK S., LIN M., MANOCHA D.: Distance queries with rectan­
gular swept sphere volumes. Proc. of IEEE Int. Conference on Robotics and Automation
(2000).

[LM03] LIN M., MANOCHA D.: Collision and proximity queries. In Handbook of Discrete
and Computational Geometry (2003).

[LSHL02] LOTAN 1., SCHWARZER F., HALPERIN D., LATOMBE 1.: Efficient maintenance and
self-collision testing for kinematic chains. Proc. of Symposium on Computational Ge­
ometry (2002), 43-52.

[Moo79] MOORE R. E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia,
1979. ISBN 0-89871-161-4.

[NVI03] NVJDIA CORPORATION: http' /loss. sgi. com/projects/ogl- sample/
registry/NV/occlusion_query. txt, 2003.

[PW01] POTTMANN H., WALLNER J.: Computational Line Geometry. Springer, 2001.

[RKOO] ROSSIGNAC J., KIM J.: Computing and visualizing pose-interpolating 3-D motions.
Computer-Aided Design (2000).

[RKCOO] REDON S., KHEDDAR A., COQUILLART S.: An algebraic solution to the problem of
collision detection for rigid polyhedral objects. Proc. of IEEE Conference on Robotics
and Automation (2000).

[RKC02] REDON S., KHEDDAR A., COQUILLART S.: Fast continuous collision detection be­
tween rigid bodies. Proc. of £urographies (Computer Graphics Forum) (2002).

[RKLM03] REDON S., KIM Y. J., LIN M. C., MANOCHA D.: Fast Continuous Collision De­
tection for Articulated Models. Tech. Rep. TR03-038, University of North Carolina at
Chapel Hill, 2003.

[RMS92] ROSSIGNAC J., MEGAHED A., SCHNEIDER B.: Interactive inspection of solids: cross­
sections and interferences. In Proceedings of ACM Siggraph (1992), pp. 353--{iO.

[SSL02] ScHWARZER F., SAHA M., LATOMBE J.-C.: Exact collision checking ofrobot paths.
In Workshop on Algorithmic Foundations of Robotics (WAFR) (Dec. 2002).

[SWF*93] SNYDER J. M., WOODBURY A. R., FLEISCHER K., CURRIN B., BARR A. H.: In­
terval method for multi-point collision between time-dependent curved surfaces. In
Computer Graphics (SJGGRAPH '93 Proceedings) (Aug. 1993), Kajiya J. T., (Ed.),
vol. 27, pp. 321-334.

© The Eurographics Association 2004.

