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Abstract 

Sustainable approaches have been extensively proposed in product, process and system 

levels. However, a lack of applicable solutions for these methods is identified in the existing 

research. This research considers uncertainties affecting sustainable systems and 

comprehensively discusses the need for optimal design in product and system levels under 

uncertainty.  

Based on the economic, social and environmental requirements of a sustainable product, 

and uncertainties in engineering systems, two innovative methods are proposed. The 

methods, including agent-based modeling (ABM) and Big Data, quantify the effects of users’ 

preference changes as a significant uncertainty source in a product design process. The effect 

of quantified uncertainties on the product sustainability is then evaluated, and solutions to 

reduce the effects are developed. Through a novel control engineering method, uncertainties 

are modeled in the design process of a product. Using two mathematical models, the cost and 

environmental impacts in the design process are minimized under users’ preference changes. 

The models search for an optimal number of iterations in the design process to achieve a 

sustainable solution. 

The proposed methods have been extended to model and optimize the sustainable system 

design under uncertainties. Design of Eco-Industrial Parks (EIPs) is a practical and scientific 

solution to achieve sustainable industries. To improve the feasibility of flow exchanges 

between industries in an EIP under several uncertainties, this research provides a perspective 

analysis for establishing flow exchanges between industries. The sources of uncertainties in 
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the EIPs are then comprehensively studied, and research gaps are highlighted. Finally, 

models to optimize flow exchanges between industries are presented and the validity of 

models is evaluated using real data.  

One of the major contributions in this research is including all sustainability pillars in the 

proposed approach. The research addresses users’ preferences to highlight the role of 

individuals in the society. Moreover, the economic and environmental objective functions 

have been considered for optimal decision making in the design process. This research 

underlines the role of uncertainty studies in sustainable system design. Multiple 

classifications, perspective analysis, and optimization objectives are presented to help 

decision makers with the optimal design of sustainable systems under uncertainties. The 

proposed method can support and promote sustainable design in industries using multiple 

objective optimized decisions. 
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Chapter 1 

 

Introduction 

 

1.1 Sustainable product and system design 

Sustainable development (SD) requires a deep understanding of interconnected factors to 

meet our present needs without compromising the ability of future needs (WCED, 1987). To 

meeting both sustainability and development, it is necessary to integrate multidisciplinary 

approaches (Jabareen, 2008; Murdiyarso, 2010). Sustainable development is a dynamic 

process to adapt, learn, and act on interconnections among the economy, society, and natural 

environment called sustainability pillars (UN, 2014). An everlasting progress is impossible 

without a progress on all pillars simultaneously. Several methods and tools have been 

proposed to integrate these pillars in different disciplines for sustainability assessment 

purposes (Ramani et al., 2010; Sala et al., 2013a). However, it is claimed that overlaps and 

the complexity of challenges presented by SD are difficult to be managed using classical 

disciplines and methods (Sala et al., 2013b).  
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To achieve objectives of SD at the product level, one should consider the entire product 

life cycle (PLC). In the existing research on methods to apply SD, most attention has been 

paid to the life cycle inventory; a component of sustainability studies where a model of the 

product is developed to analyze its material and energy input and outputs (Assies, 1998). 

Methodologies based on life cycle thinking (LCT), specifically the life cycle assessment 

(LCA), provide a valuable support in sustainability evaluations. The LCA delivers a 

systematic evaluation of environmental performance in product development, from the raw 

material to final waste disposal (cradle to grave). The strengths of LCA are its system 

thinking mechanism and the interdisciplinary approach. By system thinking, the linkages and 

interactions of components in a system are analyzed (e.g., analysis of inputs, processes, and 

outputs). Using the interdisciplinary approach, impacts of a product/process are assessed. 

Besides the discussed advantages, methodologies based on the LCA still need to be improved 

to include the environmental life cycle costing (eLCC) and social life cycle assessment 

(Kloepffer, 2008; Sala et al. 2012).  

A comprehensive evaluation of trends in sustainability analysis highlighted the need for 

covering the social and economic aspects in the LCA (Guinée et al., 2010). The evaluation 

showed that the future trend in life cycle sustainability analysis extends the scope of current 

LCA from mostly environmental impacts to covering all three pillars of sustainability. 

Moreover, the scope of analysis should be extended from the predominantly product-related 

level to the sector level or even economy-wide level. Thus, a desired method for SD should 

address the sustainability pillars all together in the product and system levels. 



Introduction                                                                                                                           3 

 

 

 

 

1.2 Effects of uncertainties on product and system design 

The term “uncertainty” has been defined and discussed in many studies to fit the best 

meaning of research contents. In the research on product development (PD) and engineering 

system design, definitions for uncertainty are listed in Table 1.1. 

 

Table 1.1 Definitions of uncertainty in literature related to product development 

No. Definition of uncertainty Source 

1 The inability to determine the true state of affairs of a system McManus and Hastings (2005) 

2 Things that are not known, or known only imprecisely Sage (2015) 

3 The difference between the information required to accomplish a 

task and the information currently residing with the actor charged 

with performing it 

Suss and Thompson (2012) 

4 Lack of definition, lack of knowledge and lack of trust in knowledge Wynn et al. (2011); Afshari and 

Peng (2015b) 

 

In the PD research, uncertainties are classified with different perspectives. One of the 

common classifications is to divide uncertainty into Aleatoric and Epistemic (Engelhardt et 

al., 2011; Saravi et al., 2011). The aleatoric uncertainty stems from the stochastic effects such 

as the random noise and measurement error. Aleatoric uncertainty is quantifiable through 

stochastic terms and the probability theory (Eifler et al., 2010). A challenge with the aleatoric 

uncertainty is that we cannot mitigate it by additional data or analysis. On the other hand, an 

epistemic uncertainty refers to a lack of knowledge or information. Errors in simulating 

processes, data collections or human errors are reasons for this type of uncertainty. In fact, 

increasing the precision of information can help reducing the epistemic uncertainty (Anderi 

et al., 2010). 
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Uncertainties are also classified based on available knowledge and information for an 

uncertain product or process. The categories are stochastic uncertainty, estimated uncertainty 

and unknown uncertainty (Engelhardt et al., 2011). In unknown uncertainty, both the effect 

and resulting deviation of a regarded property of uncertain processes are unknown. This 

happens in the early stages of design where the available information about the product is not 

enough. In the case of estimated uncertainty, effects of a regarded uncertain property are 

known, but the probability distribution of the resulting deviation is partially known. This may 

happen when the property of a product is analyzed randomly, or information about expected 

features of a product is not complete. Finally, in the case of the stochastic uncertainty, effects 

and resulting deviations of a regarded uncertain property are sufficiently explained by 

probability distributions. This type of uncertainty is presented after an extensive analysis and 

quantification of properties by experiments and analysis. 

There are two types of variety in product development (Martin and Ishii; 2002); the 

variety within the current product being designed (spatial), and the variety across the future 

generation of a product (generational). The spatial variety affects product design during 

product development (PD) while the generational variety is witnessed after the PD. In this 

research, the focus is on methods and solutions for the generational variety and its effects on 

the product/process design. 

Most engineering systems operate in uncertain environments; uncertainties require the 

flexibility to avoid a brittle system. Changeability is introduced as a system’s ability to 

respond to changes with flexibility and adaptability (Ross and Hastings; 2006). Flexibility 

can be used to maintain the performance of systems where contextual changes occur. Hence, 
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the key question in product/process design is where and how to embed flexibility. A 

prerequisite to embed flexibility is to recognize functions and components of a 

product/system that are more likely to change under uncertainty. Design parameters related to 

the highlighted functions can be decided afterward. 

Uncertainty has adverse effects on system performance at different levels. For 

example, Pastor and Veronesi  proved that uncertainty in economic policies is negatively 

correlated with industrial production and economic growth (Pástor and Veronesi; 2013). In 

the firm level, such uncertainty could tend to decrease a company’s investment decisions 

(Kang et al., 2014). In the supply chain level, uncertainties (e.g., demand and prices) could 

affect the short-term and long-term feasibility of networks (Afshari et al., 2014a; Afshari et 

al., 2016). A minimum effect of uncertainties on the product level is a lack of inventory to 

satisfy customers’ demand (Bijvank and Vis; 2011). Studies show that only 15% of 

customers who observed a stock-out would wait for replenishment; the other 85% will leave 

to buy from other resources (Gruen et al., 2002). Such effects show the importance of 

applying appropriate strategies to deal with uncertainties in different levels.  

1.3 Importance of the optimal design of sustainable products and systems under 

uncertainty 

Reducing emission effects is essential to achieve sustainable development. Figure 1.1 

depicts the globally averaged GHG emissions from 1850 to 2015 (IPCC, 2014a), which 

shows a significant increase in CO2 emissions. Studies prove that long-term global warming 

and climate change are mainly driven by CO2 emissions (IPCC, 2014a). Thus, strategies and 

action plans are required for substantial emissions reductions over the next decades. To 

http://www.sciencedirect.com.uml.idm.oclc.org/science/article/pii/S0261560616300092?np=y#bib0315
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implement such reduction plans, technological, economic, social, and institutional challenges 

should be undertaken in the production sector. Industries contributed to at least 21% of 

global greenhouse gas (GHG) emissions in 2010 (UNGC, 2015). 

Figure 1.1 Globally averaged GHG concentrations adapted from (IPCC, 2014a) 

It has been proven that decisions made in the early design phase would influence 80-90% 

of a product life cycle in its sustainability performance (May et al., 2011); therefore, the 

design phase of a product/process plays a major role in achieving sustainability goals during 

the product life cycle. In this regard, if a designer could identify future changes of a product 

in the design phase, effects of the uncertainty on environmental impacts of the product can be 

reduced. Nevertheless, a review of the existing research, as presented in chapter 2, identifies 

that methods to model and quantify uncertainty are required to be developed to deliver a 

reliable measurement of uncertainty.  

In the system level, some manufacturing processes may end up with excessive materials, 

energy, water, and by-products. Although they are considered as wasted/unused resources, 

other manufacturers may require these resources as input for processes. Such reuse of 

wasted/unused resources delivers savings in terms of cost and environmental impacts. For 
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example, in cement or metal casting industries, the temperature of processes can reach up to 

2000 ° C. Retrieving the energy available at the end of these processes can supply the 

required heating, steam, or energy in other nearby processes. Designing a network of 

exchanges of wasted/unused resources is a novel approach to reach the sustainable 

development goals. However, several factors such as uncertainties should be deliberated in 

the design process. 

In summary, for the perceived need of reducing industries’ share in the total GHGs, 

efforts should be focused on the design phase of a system. Because of a lack in the method to 

quantify uncertainties, new methods should be developed purposefully in the design phase. In 

particular, the efforts should minimize the total CO2 emissions during the product/process 

life cycle using innovative approaches. 

1.4 Objectives of this research 

Dym and Little (2009) provided a definition of the design process as depicted in Figure 

1.2. Based on this process, after the investigation of customers’ requirements, customers’ 

needs are transformed into product specifications to generate concepts of product. In the 

preliminary design, some details including shapes, sizes and materials are considered to 

solidify the final choice of design concepts. In the detail design, the preliminary design is 

refined and concluded in details for specifications. After the design optimization, the final 

design is documented for manufacturing. Thus, this research aims to find a sustainable 

solution at the detail design for product.  
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Figure 1.2 Three stages of product design process (Dym and Little, 2009) 

 

The goal of this research is to develop optimal methods for the sustainable design of 

products/processes under uncertainty with the following objectives: 

 Propose methods to model and quantify the effects of users’ preference changes 

on the design of sustainable products;  

 Minimize the effects of the quantified uncertainty on time, cost, and 

environmental impacts of sustainable products in the design phase; and 

 Develop methods to the optimal design of sustainable systems with multiple 

objectives. 

To achieve the objectives, several methods and approaches are used including: agent-

based method (ABM), Big Data, axiomatic design (AD), quality function deployment (QFD), 

and mathematical programming. This research focuses on the design phase of a sustainable 

product/process. Among various uncertainties discussed in the research, users’ preference 

changes are studied in the product design level, and the demand uncertainty of customers is 

applied in the process design level.  

By implementing the proposed methods, it is expected that the proposed methods will 

help decision makers in optimizing the product/process design under the discussed 

uncertainties. The methods will also minimize undesired effects of uncertainty on 

stakeholders’ objectives in the product/process life cycle. 

 
Design problem 

Conceptual 

design 

Preliminary 

design 
Detail design Design solution 
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1.5 Contributions of the dissertation 

This research bridges gaps in the existing studies as listed in the following: 

 Two innovative methods (based on agent-based modeling and Big Data analytics) 

are proposed to accurately quantify the uncertainty in users’ preference changes.  

 As a major contribution, all sustainability pillars are involved in the proposed 

approaches for each level. Please see Table 1.1 for details. 

 Methods to minimize effects of the uncertainty are proposed in product, process, 

and system levels. 

 Deterministic and stochastic models to optimize energy symbioses are presented 

to minimize the total cost and environmental impacts of industrial symbioses. 

 Technical and economic measures are embedded in the models to identify the 

most resilient flow exchanges under uncertainty. 

 

1.6 Structure of the dissertation 

This dissertation consists of six chapters. Chapter 1 introduces the research background, 

and highlights the importance of the research, objectives, and research deliverables. 

Chapter 2 reviews the existing research for modeling uncertainty and optimizing design 

objectives under uncertainty. Methods for modeling eco-industrial parks (EIPs) as sustainable 

systems are discussed using the perspective analysis. The modeling approaches are then 

discussed for the uncertainty analysis. The chapter is concluded with advantages, limitations, 

and research gap. 
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Table 1.2 Framework of the research and sequence of chapters 

 

Levels Social Economic Environmental Uncertainty Method to deal with 

uncertainty 

Product Customers’ 

preferences 

Cost 

Rigidity 

Index 

PLC emissions Users’ preferences 

changes 

Axiomatic Design 

Process Customers’ 

preferences 

Cost 

minimization 

Environmental 

Impacts 

minimization 

Users’ preferences 

changes 

Control Engineering 

System Demand / 

Supply 

Cost 

minimization 

Environmental 

Impacts 

minimization 

Tax on Carbon 

Energy prices 

Demand 

supply 

Stochastic / Robust 

Optimization 

 

Table 1.2 presents the framework of the research. Chapter 3 presents two proposed 

approaches (agent-based modeling and Big Data approach) to model users’ preference 

uncertainty. The methods are validated using a case study. The assessed changes measured 

by the proposed methods are compared with real changes of the studied product to evaluate 

the efficiency of the proposed methods. 

In Chapter 4, a method is presented to minimize the impacts of the uncertainty on the 

design of a sustainable product. The method uses the quantified uncertainty to evaluate its 

effects on a product design during the product life cycle. Using an innovative approach, 

control engineering and mathematical programming are combined to optimize such 

uncertainty effects on product design time and environmental impacts. 

Chapter 5 extends the scope of research from a sustainable product to a sustainable 

system design. Two multi-objective optimization models are proposed to evaluate 

stakeholders’ perspective on optimal flow exchanges in an EIP. By applying the uncertainty 

Chapter 3 Chapter 4 Chapter 5 
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analysis, the proposed models have been used to optimize the flow exchanges in the EIP 

under uncertainty.  

Chapter 6 summarizes findings of this research and outlines possible extensions for 

further studies. 

 

 

 

 

 



  

 

 

 

 

Chapter 2 

 

Literature Review 

 

The existing research on modeling, evaluating, and optimizing effects of uncertainty in the 

product design process is reviewed in the following sections. Discussions are presented in the 

product design level and system level. 

In the product design level, methods to quantify uncertainties are classified into three 

categories including change propagation approaches, agent-based models, and Big Data 

methods. As a summary, the methods are compared to highlight advantages and disadvantages 

of the reviewed methods. The research background for the methods to reduce effects of the 

uncertainties is then discussed to identify the best methods to model and reduce effects of the 

quantified uncertainties. A detailed discussion of the method to investigate disturbances on the 

product design process is also presented, and research gaps are highlighted. 
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In the system level, methods to model eco-industrial parks (EIPs) as sustainable systems 

are reviewed. Uncertainties affecting EIPs are then classified in detail to identify research 

gaps. 

2.1 Change propagation approaches 

Product changes are uncertainties considered as important issues in product design 

(Eppinger and Ulrich, 1995; Pahl and Beitz, 2013). Methods have been proposed to model and 

evaluate the effects of product changes. Initially, these approaches were proposed only to 

measure changes in product applications (Marca and McGowan, 1987; Belhe and Kusiak, 

1995). These methods were then extended to integrate the change quantification within the 

product development process as discussed in this section.  

The design structure matrix (DSM) is a method to efficiently represent elements of a 

system and their interactions (Steward, 1981). The primary DSM approach organizes complex 

development projects by determining a sensible sequence of tasks being modeled (Yassine and 

Braha; 2003). The DSM captures the existence and strength of an interaction of design tasks or 

parts of a product (Eppinger and Browning; 2012). Several extensions of the DSM have been 

proposed to determine the design priority and to minimize redesign time and iterations in 

concurrent engineering (Yassine and Braha, 2003; Yassine et al., 2008). Wei et al. (2001) 

proposed a component-based DSM method to arrange high interactive components of a 

product in clusters. Luh et al. proposed a method to develop multiple products for different 

markets based on a quantified DSM (Luh et al., 2011). Using informational structure 

perspective, design priorities are optimized to manage the product variety. Yang et al. (2014) 

developed an overlapping-based DSM to measure the interaction strength for clustering 

components in product development projects. Evolution DSM and sensitivity DSM measure 
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the strength of interactions of teams performing overlapped activities. Despite the extensive 

application of DSM in product design, the external uncertainty is not modeled in existing 

methods. 

Change propagation approaches study the effects of contextual changes on the internal 

structure and components of a product (Eckert et al, 2004). Design for Variety (DFV) 

methodology finds the possible changes of product needs or customers’ preferences and helps 

designers to reduce the impact of variety on the life-cycle costs of a product (Martin and Ishii; 

2002). The method quantifies the magnitude of changes in components of a product to meet the 

future market requirements using Generational Variety Index (GVI). Coupling Index (CI) is 

then used to measure internal effects of the change propagation into other product components. 

Suh et al. proposed Change Propagation Index (CPI) to measure the total changes propagating 

out of components minus changes coming into the components (Suh et al., 2007). Sensitivity 

design structure matrix (sDSM), introduced by Kalligeros, identifies design variables with the 

most sensitivity to changes; a designer could insert flexibility to these highlighted subsystems 

or components (Kalligeros, 2006). Giffin et al. (2009) suggested a normalized CPI to compare 

sensitive components in each design scenario. However, the approach lacks definition of the 

magnitude of changes in the multi-domain analysis.  

Change prediction method (CPM), developed by Clarkson et al. (2004), measures the risk 

of change propagation between components using DSM. The output of CPM is a DSM 

including values for combined (direct and indirect) risks of the change propagation. Ariyo et 

al. (2008) improved the CPM by proposing a hierarchical aggregation method. The method 

could predict the risk across multiple levels including components, systems, and product. Koh 

et al. (2012) presented a model to predict and manage the undesired engineering change 
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propagation during the development of a complex product. House of quality and the CPM are 

the basis of the proposed method. The method can assess change options during engineering 

changes. Hamraz et al. (2013a) proposed a matrix-based algorithm to facilitate model’s 

calculations with spreadsheet programs. The suggested technique accounts for multiple 

changes at a time. Several developments have been presented to the basic CPM (Hamraz et al., 

2012; Hamraz et al., 2013b; Ahmad et al., 2013) to enrich the method with a better prediction 

and change propagation measurements. The most recent extension links the CPM with a 

function-behavior-structure (FBS) linkage method (Hamraz and Clarkson, 2015). The method 

provides details in modeling and analysis of engineering changes.  

2.2 Agent-based models 

Agent-based models (ABMs) or multi-agent systems (MAS) provide an effective approach 

to solve problems with a large size of the domain and frequently changing structure (Barbati et 

al., 2012). An ABM consists of a set of elements (agents) characterized by some attributes that 

interact with each other through defined rules in a given environment (Afshari et al., 2014b). 

Reviewing ABMs, there are limited applications in design fields compared to other areas. 

ABMs are mainly developed in the modular and collaborative design of products (Liu et al., 

2014). The purpose of collaborative design is to meet customers’ requirements using the 

collaboration of researchers from different disciplines. Multi-agent systems provide a structure 

to contribute designers’ ideas in a collaborative fashion. Ostrosi et al. (2012) applied agent-

based modeling to model product families in the conceptual design. The proposed approach 

envisions the configuration of product as a structural and collaborative design problem; 

different actors can be included in agent-based modeling. The final output of the model is a set 

of optimal product configurations. Cao et al. (2008) proposed an agent-based approach for the 
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conceptual design of mechanical products. The approach applied an agent-based structure to 

map behavioral and functional matrixes. A design flow proposed by Xu et al. (2008) 

customized products using the similarity evaluation. This method combines the analysis of 

customer’s requirements using QFD with MAS to optimize decisions. Zhang et al. (2005) 

proposed an agent-based method to analyze assembly methods and assembly sequence of 

components. Rai and Allada (2003) proposed a two-step approach for modular product family 

design. A multi-objective optimization using the multi-agent framework first determines an 

optimized set of modules. A post-optimization then analyzes the quality loss function of each 

module. Other research in applications of ABM for robust product design mostly focused on 

collaborative solutions (Huang et al., 2000; Liang and Huang, 2002; Jia et al., 2004; Chen et 

al., 2014). Maisenbacher et al., (2014) applied agent-based modeling to support the product-

service system development. The research highlighted the dynamic structure of the simulation 

within ABM to enable the uncertainty analysis. Thus, ABM has great potential to help 

designers model uncertainty in product development. 

2.3 Big Data methods 

Applications of data-centric approaches such as Big Data and business analytics have 

tremendously increased recently (LaValle et al., 2011; Chen et al., 2012; Buhl et al., 2013). 

Pattern recognition, machine learning, data mining, and Big Data analytics are tools and 

approaches widely used in industries and organizations. Big Data improves deficiency of other 

methods to quantify external and internal uncertainties in the product design process. In other 

words, Big Data analytics uses real data instead of predicted or simulated data as in other 

methods. Big Data is a buzzword used in academia and industries recently. The application of 

the Big Data is growing for the better data driven decision making (Obitko et al., 2013). Big 
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Data provides a cost-effective way to obtain users’ information for a knowledge economy. As 

a result of the age of information, a lot of user and product data are available in the Internet for 

analysis of the interaction between users and producers. To obtain the advantages of data-

centric approaches, organizations require a good understanding of how the methods should be 

utilized in different decision process contexts (Davenport, 2012; Işık et al., 2013). The study 

by Tien (2013) recommends four steps or components for Big Data processing including: 

acquisition (data capturing), access (data indexing, storing, sharing, and achieving), analytics 

(data analysis and manipulation, and application (data publication). Huge popularity and 

applications of social networks have motivated companies to focus on social or commerce 

mining. Analysis of the customer behavior, opinion mining, user relationship mining and 

clustering, and sales prediction is a growing research in industries (Chon et al., 2006; Al-

Noukari and Al-Hussan, 2008; Cohen et al., 2009; Provost and Fawcett, 2013). Some 

applications include using customer relationship mining to formulate proper strategies for 

managing customer demands (Lam et al., 2014), and the online opinion analytical framework 

to detect weaknesses of a product (Wang and Wang, 2014). Social network mining has shown 

great potentials as a valuable source for Big Data analytics (Song et al., 2014). The study 

showed that if a user’s opinion were stated in online space, the preferences of customers in the 

market would be affected. 

Despite the benefits and potentials of using Big Data, limited studies were found to apply 

Big Data analytics for the uncertainty quantification in product lifetime. Dutta and Bose (2015) 

proposed a framework to implement Big Data projects in manufacturing. The framework 

consists of three main stages including strategic ground work, data analytics, and 

implementation. An application of the proposed framework in a cement manufacturing 
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corporation showed that a clear understanding of the problem, management support, cross-

functional teams, and culture of data-driven decision making are necessary for the success of 

Big Data projects. Van Horn et al. (2012) reviewed the methods and applications to use Big 

Data in early, middle, and late stages of the product design phase. They proposed Design 

Analytics (DA) as a paradigm to transform customer data into design knowledge. The DA 

includes capturing, storing, and leveraging digital information about a product and its 

performance and usage. The model was used to improve the performance of a product. Other 

methods proposed for big data analytics in the product life cycle (Cooper et al., 2013; Rohleder 

et al., 2013) lack applications.  

Within factory and industrial environments, machine-generated data are used for 

predictive manufacturing systems. Therefore, machines and systems are enabled with “self-

aware” capabilities such as predictive maintenance systems (Lee et al., 2013). Considering 

limitations in the research for applying reliability concepts in Big Data analytics (Lee et al., 

2014; Meeker and Hong, 2014), it was suggested to improve reliability and minimize 

uncertainty in Big Data applications for the entire product life cycle as the future research. 

2.4 Summary of methods to model and quantify effects of uncertainties on product in 

the design phase 

The literature in predicting changes during the product life cycle and transferring the 

changes into the product development process is summarized in Table 2.1. Ten criteria are 

considered to evaluate the literature. These criteria are based on requirements in change 

prediction modeling addressed in the literature. Considering a “change prediction method” as a 

system, we divide criteria into input, process, and output to highlight the literature gaps. 
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DSM-based methods and CPM-based methods have problems in the lack of integrating the 

change prediction within change modeling methods. In other words, these methods mostly 

evaluate the internal effects of changes in the model, while external changes are qualitatively 

considered. Therefore, integrated methods to predict and to evaluate changes are required. 

Reviewed ABM methods and Big Data based methods have shown the better compatibility 

with defined criteria. However, a comprehensive model is needed to meet all the criteria.  

Table 2.1 Summary of specifications for reviewed Engineering Change prediction methods 

 

Criteria 

 

DSM
a
 based 

Methods 

CPM
b
 based 

Methods 

Agent-based 

Models 

Big Data based 

Models 

Basic 

model 

Extensions Basic 

model 

Extensions Literature This 

research 

Literature This 

research 

In
p

u
t 

- Integrated measurement of 

external uncertainty 

        

- Considering variety of 

values & magnitudes of 

changes 

        

- Objective input parameters         

- Evaluating sociotechnical 

uncertainty & events 

        

P
r
o

c
e
ss

 

- Considering dependencies 

between components 

        

- Dynamic method to update 

effects of changes 

        

- Evaluating changes in 

various periods of PLC
c
 

        

O
u

tp
u

t 

- Transferring uncertainty 

into components, functions, 

and DPs
d
 

        

- Ability of implementing on 

redesign process 

        

- Ranking of design 

alternatives 

        

Advantages Easy 

implementation 

Quantifying 

components 

dependencies 

Prediction of 

external changes 

Accurate evaluation 

of changes 

Disadvantages Weak to evaluate 

multiple changes 

Weak to evaluate 

external changes 

Dependence on 

developed model 

parameters  

Limitation to access 

data 

 

Notes: DSMa, Design Structure Matrix; CPMb, Change Propagation Method; PLCc, Product Life Cycle; DPsd, Design Parameters 

✓ in this table shows the existence of defined criteria for each method. Thus, it is a 0-1 table and ✓ represents 1 
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2.5 Methods to model uncertainty and reduce its effects 

Simulation-based approaches and agent-based models are widely applied for reducing 

uncertainty effects in the product life cycle (Afshari and Peng, 2014). The ability of testing 

different improvement scenarios makes these methods popular. These methods however are 

limited by the needed details in individual design stages and users’ behavior during the life 

cycle assessment. Moreover, a mistake-proof solution for product design is not guaranteed. In 

other words, retroactive improvement scenarios used in these methods may not be effective for 

unexpected uncertainties.  

Another approach is using the axiomatic design (AD) theory in the product development 

process (Suh, 2001). Two axioms including independence axiom and information axiom are 

defined in the AD. The AD maps customers’ attributes into functional requirements in the 

customer domain, and then functional requirements into design parameters in the physical 

domain, and finally, design parameters into process variables in the process domain.  

Suh (2005) applied the AD to reduce or eliminate the complexity of designs via satisfying 

the functional requirements of products, processes, and systems based on constraints. 

Complexity is defined as a measure of uncertainty in achieving specified functional 

requirements (FRs). A solution using the AD was to reduce or eliminate information 

uncertainty for each type of complexity. Xiao and Cheng (2008) investigated the relationship 

of two axioms and robust design to conclude an inherent connection between them. Their study 

shows that the design satisfying independence and information axioms is more robust than 

other design. This proves the consistency between the AD and robust design. Kulak et al. 

(2010) reviewed the applications of axiomatic design, and showed that the AD is flexible in 
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combination with other methods and tools. None of the reviewed studies provided a solution 

for sustainable product development.  

Kim et al. (2014) proposed a new product assessment approach to find the volume of 

products based on technology changes and environmental impacts of products. The approach 

applied AD as a function of product features to determine drivers of economic and 

environmental impacts. The strength of the method is the joint study of economic and 

environmental impacts of each product generation on the product life cycle. It lacks the study 

of uncertainty on product life cycle decisions. Beng and Omar (2014) proposed a framework 

for the sustainable product realization to facilitate developing products with less environmental 

harms. Axiomatic design principles were used in three areas including design for the 

sustainable end of life (EOL), green supplier selection, and optimization for sustainable 

manufacturing. The environmental effects were minimized by defining a proper relationship 

between FRs and DPs, and by minimizing information content of each alternative. A lack of 

uncertainty studying on environmental impacts during the product life cycle is witnessed.  

In summary, limited research has been found in using the AD theory for the effects of the 

uncertainty on the product sustainability. There is an opportunity to use the AD to minimize 

effects of uncertainty by satisfying independence axiom and information axiom. 

2.6 Methods to analyze disturbances in product design  

The literature on analyzing disturbances in product design is reviewed in Table 2.2. In this 

table, research in internal and external sources of uncertainties and disturbances is categorized 

into three levels. Some papers only assessed effects of disturbances on coupled design tasks 

and the product development process. The other group proposed or applied methods to control 
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effects of such uncertainty. Some papers focused on solutions for optimizing objectives (e.g., 

product development time, design costs) under uncertainty. Moreover, the proposed solution 

approaches are classified into using control engineering principles, heuristic methods, and 

mathematical modeling. 

Smith and Eppinger (1997) discussed a method to identify controlling features of a 

coupled design task in large engineering projects. The method is an extension of Design 

Structure Matrix (DSM) called Work Transformation Matrix (WTM) that can predict slow and 

rapid convergence rates within a project. Although the proposed method only identifies the 

coupled design features, several extended models have used its basis in the literature.  

Ong et al. (2003) proposed the concept of homogenous state-space representation of 

design to assess effects of iterations on product development time. The proposed method was 

compared with the WTM (Smith and Eppinger, 1997). It is concluded that the eigenvector of 

state-space representation can be used as in the WTM to identify the controlling features of 

coupled design tasks. The paper referred to potentials of the state-space representation to 

minimize the duration of a product design process even before any task begun.  

Lee et al. (2004) proposed a generalized homogenous and non-homogenous concept to 

analyze and control the stability and convergence rate of coupled design tasks. Because the 

proposed non-homogenous model considers extra resources for each design task per iteration, 

effects of the disturbances are controlled to reach desired design time. A heuristic solution 

based on control engineering theory was developed to measure a gain matrix of the proposed 

state feedback control. However, the paper lacks in using an optimization model to decide the 

best number of iterations with uncertainties.  
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Table 2.2  Summary of the specifications of the methods to analyze disturbances in product design 

Author(s) Disturbance Analysis Level  Objective(s)   Solution Approach 

Assess Control Optimize  Time Cost Other  Control Engineering Heuristic Mathematical Modeling 

Smith and Eppinger (1997)            

Ong et al. (2003)            

Lee et al. (2004)            

Huang and Chen (2006)            

Kim (2007)            

Chen and Ju (2010)            

Platanitis et al. (2010)            

Xiao et al. (2011)            

Leon et al. (2013)            

Chen and Xiao (2014)            

This research            
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Huang and Chen (2006) presented a method to estimate the project completion time for 

engineering project management. Using a simulation based approach, factors affecting the 

project completion time in dynamic environments were investigated. It is proved that the DSM 

method could overcome limitations of the traditional Program Evaluation Review Technique 

(PERT) and Critical Path Method (CPM) that cannot handle the task rework/iteration.  

Kim (2007) extended previous research by suggesting a framework to analyze the 

dynamics of design iterations. The framework applied control techniques in its analysis to 

accurately predict the required number of design iterations even before the design process 

initiates. Platanitis et al. (2010) extended the homogenous state-space representation and WTM 

methods to include unexpected disturbances in the design process. The proposed method can 

evaluate effects of the disturbances per iteration of the design process by precise measurements 

of increased design lead-time. Using a concept of design rigidity, the amount of rework 

imposed by unexpected disturbances was measured in terms of excessive iterations. The 

method lacks in controlling such disturbance to reach the pre-defined design lead-time. 

Chen and Ju (2010) investigated methods to minimize the design iteration time. A method 

to modify the time and the number of iterations was proposed to minimize the total product 

development time. To determine the time required per iteration, learning the effects of a design 

task are considered in the proposed model as well as the degree of dependency between in the 

design tasks. Xiao et al. (2011) evaluated effects of some uncertain factors on the coupled 

design tasks. They investigated task durations, output branches of tasks, and resource 

allocations as uncertainties in the product design process in a dynamic environment. A fuzzy-

based feedback control approach was proposed to monitor and control these uncertainties by 
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introducing the resource-regulating matrix. The method improved the stability and the 

convergence rate of product development tasks in a dynamic environment.  

Leon et al. (2013) presented an analytical framework for the efficient management of 

projects with uncertain iterations. Using the DSM and GERT, iterative process architectures 

are improved, and the project performance is predicted. Despite the useful framework proposed 

for New Product Development (NPD) projects, the research should be extended to optimize the 

framework for the iteration management. Chen and Xiao (2014) reviewed the existing 

shortcoming of the WTM model to propose a combination of the tearing approach and inner 

iteration methods for complementing the WTM model. In addition, the research introduced an 

algorithm for optimal decoupling schemes. However, the research left the decision for the best 

number of iterations to designers.       

In summary, most of the existing research has focused on assessing and controlling the 

effects of internal and external disturbances on the coupled design tasks during the product 

development process. There is a lack of research to optimize objectives of product 

development costs, sustainability, quality, etc. under uncertainty. Although the optimization 

methods such as operations research have shown a great potential in optimization problems, no 

research has been found for the optimal lead-time of coupled tasks in product design. 

Therefore, this research proposes a combination of control engineering theory and 

mathematical modeling for the multi-objective optimization of coupled design tasks in the 

product development. 
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2.7 Modeling Eco-Industrial Parks (EIPs) as sustainable systems 

As described in the introduction chapter, the aim of establishing an EIP is to utilize the 

competitive advantage in collaborations and the synergies (physical exchange of materials, 

energy, water, and by-products) stemming from geographic proximity (Chertow, 2000). 

Despite numerous research on material exchanges (e.g., water treatment) in EIPs, there is a 

modest number of publications dealing with the energy exchange between units, and even 

lesser on thermal energy networks. Research by Fichtner et al. highlights fundamental 

differences between energy exchange symbioses and other types of networks (2004). First, the 

energy (such as electricity and heat) is hard to store; the balance between supply and demand is 

required. Second, establishing energy exchange networks requires huge investments (e.g., heat 

exchangers, pipes). Third, industries involved in the symbioses should be close enough to 

avoid energy losses in pipes and networks (Korhonen, 2001). Therefore, proposing an optimal 

framework for the optimal design of energy exchange networks is challenging. 

In the literature, symbioses have been generally described in two main models: the 

planned EIP model and self-organizing symbiosis model (Chertow, 2007). Other industrial 

symbioses with a mix form are also reported (Van Beers and Biswas, 2008). A common 

attribute of all models is that the symbioses should be economically feasible (Boix et al., 

2015). In addition, the planned EIPs were initially designed to satisfy other objectives such as 

environmental friendly goals as reported in China. In this case, third parties such as 

government are involved in the establishment of planned EIPs. The self-organized symbioses 

form individual negotiations between industries to achieve business goals by the exchange of 

resources. Table 2.3 summarizes features used to classify industrial symbioses. 
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The early synergies concerned only the material exchange, which has three main 

challenges before building a symbiosis: 

 Industrial units need energy for the thermodynamic consumption of processes, provided 

through utilities such as heating, cooling, and electricity (Hipólito-Valencia et al., 2014). 

Uncertainties in fuel prices and investment costs could increase the concerns. In a 

synergetic relation, the energy coming from recovered heat is cheaper than onsite generated 

energy. 

 Reusing or recovering wasted heat not only can minimize the total cost of industries, but 

also can provide some economic benefits for internal or external use. In most cases, the 

infrastructure cost for exchanging the recovered energy is worth investing from the 

suppliers’ point of view. 

 Environmental concerns should be considered when modifying requirements for industrial 

utilities, because wastes discharged from the utility networks are restricted by 

environmental regulations (Kim et al., 2010). Penalties such as tax on carbon are subject to 

increase. 

It is useful to classify energy exchange networks based on sources of supply. Some 

networks use the inter-firm energy waste to supply their energy demand (type A). Obviously, 

the supply power will be limited to the existing wasted energy after a recovery process. In 

Table 2.3  Summary of main industrial symbioses in EIPs 

Type Deployment 

Approach 

Objective(s) Focus on Example 

Self-organized Bottom-up Mostly business goals Existing industries Kalundborg, Denmark  

(Domenech and Davies, 

2011) 

Planned Top-down  Economic, social, and 

environmental 

Mostly new 

industries 

Ulsan, South Korea ( Behera 

et al., 2012) 
     



Literature Review                                                                                                                  28 

 

 

 

another type, a set of energy hubs is established to supply energy needs of partners (type B). 

An example is using incinerators fed by wastes to supply energy. In type C, industries share 

wasted/unused energy in their processes with other fitted partners. Table 2.4 reviews classified 

energy networks according to selected criteria. In terms of EIP, energy network type C can 

provide more energy symbioses among units. In fact, discussed symbiosis type C can partly 

replace energy generated by fossil fuels, which means that environmental impacts would be 

significantly reduced. 

  Table 2.4 Classification of energy exchange networks  

Criteria Type A Type B Type C 

Investment cost Min   

Supply power  Max  

Shutdown risk  Max  

Energy waste reduction  Min  

Industry to industry connection   Max 

Buyers’ negotiation power   Max 

Environmental impact reduction   Max 

Domain Internal External External 

Optimal decision(s) -Internal recovery 

network 

-Hub location 

-Network 

-Partners 

 

The existing literature shows that Pinch analysis and mathematical programming are major 

approaches in optimizing energy sharing networks in EIP. The Pinch point analysis is 

introduced as a systematic process design methodology that ensures an optimal use of energy. 

A minimum temperature difference ∆𝑇𝑚𝑖𝑛  between hot and cold streams characterizes the 

pinch and designates the location where the heat recovery is the greatest constraint (Chapter 

10, 2003). Many studies have investigated total site heat integration using Pinch analysis 



Literature Review                                                                                                                  29 

 

 

 

(Karimkashi and Amidpour, 2012; Varbanov et al., 2012; Liew et al., 2013; Liew et al., 2014a; 

Liew et al., 2014b). However, Boix et al. (2015) discussed that “energy balances require an 

exact resolution through a Mixed Integer Linear Programing (MILP) or Linear Programing 

(LP) which makes mathematical programming the only approach available to solve the 

problem” (Boix et al., 2015). They also claimed that an energy network between different 

firms is more often managed and designed but barely optimized. The main reasons are the 

specifications of energy sharing networks as reviewed before, and the difficulty in acquiring 

reliable data from plants within the EIP. 

Since decisions in optimizing energy symbioses networks are to select the best set of 

energy flows, MILP is the dominant approach in the literature. Table 2.5 summarizes reviewed 

papers to optimize energy sharing networks. In the table, some attributes are used to classify 

the studies. The perspective analysis decides if both energy suppliers and buyers are included 

in the optimization (EIP perspective) or the analysis is conducted separately (individual based). 

The type of energy sharing networks as well categorizes the studies. Technical constraints, 

optimization objectives, and solution approaches are investigated in Table 2.5. 
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Author(s) 

   

Network 

Type 

Type of 

Objective(s) 

Technical feature(s)  Perspective(s)   Solution    Data 

Temperature  Distance Others  Individuals EIP  Exact Heuristic  Real Assumed 

Chae et al. (2010) 

 

C Min Cost              

Kim et al. (2010) 

 

C Min Cost              

Meneghetti and 

Nardin (2012) 

 

C Min Cost              

Gu et al. (2013) 

 

C Max Benefit, Max 

exchange flows 
            

Hipólito-Valencia et 

al. (2014) 

 

A,C Min Cost             

Taskhiri et al. (2015) 

 

B Max Satisfaction             

This research (2016) 

 

C Min Cost, Max 

symbiosis 

            

Table 2.5 Summary of reviewed literature in modeling industrial symbioses in EIPs  
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Chae et al. (2010) proposed a framework to analyze industrial energy consumption in an 

EIP. The framework was used to construct energy strategies for capturing the wasted heat 

and wasted water. The presented mathematical model minimized the cost as the objective 

function to decide energy flows between industries according to the defined energy 

strategies. They concluded that the establishment of industrial energy complexes provides 

economic and environmental benefits due to the reduction of energy consumption. The model 

lacks in analyzing perspectives and applying various objective functions to decide the most 

efficient energy flows. 

Using thermodynamic principles, mass and energy balances, Kim et al. (2010) developed 

a multi-period mixed integer linear programming model to integrate utility systems in an 

industrial complex. Companies were divided into ‘‘source company’’ and ‘‘sink company’’ 

from the viewpoint of a utility network. A source company produces steam, and a sinking 

company consumes the steam. An objective function was set to minimize the total cost of the 

raw material cost, investment cost, and operating cost. The approach was applied to 

companies in the Yeosu Industrial Complex, considering multi-period utility demands. 

Although the model included the cost of SOx and greenhouse gasses (GHG) cleanup in the 

raw material cost, other environmental impacts have not been considered in the model 

directly. Moreover, the mode is limited to review from the EIP manager point of view. 

Meneghetti and Nardin (2012) developed a district-oriented facility management (FM) 

approach to design a network of firms instead of a single enterprise solution. The presented 

decision support system helps a FM provider with configuring energy-based kernels of 

industrial symbiosis. The total annual cost of a system is considered as the objective function 

to be minimized. The model allows cogenerating power from biomass options as well. The 
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model does not consider individual perspectives in the network optimization as well as not 

including environmental impacts in the objective function. 

Gu et al. proposed a multi-objective model to maximize the total benefits and entire 

exchange of flows in an EIP (2013). They applied a tensor matrix to present possible 

exchanges among industries. A heuristic solution is proposed to solve the multi-objective 

model. Despite strengths of the model in considering two objectives, it is claimed that the 

model may fail to provide an optimal solution for all industries included in symbioses (the 

symbioses could be noneconomic for some businesses). Thus, there is the need for including 

the perspective analysis from individual’s point of view to ensure the validity of a proposed 

solution. Moreover, the model should consider technical features such as temperature when 

matching the demand and supply of industries. 

Hipólito-Valencia et al. (2014) developed a mathematical programming model for the 

optimal heat integration of intra and inter-plant heat and Organic Rankine Cycles (ORCs) 

into an EIP. A set of ORCs was integrated inside the EIP to reuse the waste heat at the low 

temperature. The recovered heat could be used to generate electricity for selling or utilizing 

in the system. The model minimizes the total capital cost and operation cost minus the 

revenue from selling excessive energy. The paper has concluded that additional features such 

as the complexity of arrangements should be considered during detail design steps to 

determine a better configuration to fit and to evaluate effects of these factors on the total cost 

of the EIP. 

Taskhiri et al. (2015) developed a fuzzy mathematical model to optimize the wasted heat 

recovery network in an EIP. Some incinerators were to be located within an EIP to supply 
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energy for involving industries. The model aimed in maximizing satisfaction for individual 

industries and the EIP initiator using a fuzzy single objective function. Since incinerators 

were fed by waste, considerable saving had been observed by replacing the energy demand of 

industries with the generated energy in incinerators. Despite the economic and environmental 

benefits, the need to recover the wasted energy within industrial processes is not satisfied. 

The main points found in reviewed papers are summarized as follows. Some 

comprehensive review papers (e.g., Boix et al., 2015) confirm the listed findings. 

 Technical features are essential for optimizing the energy symbioses. For example, 

because the Pinch analysis requires temperature and distance (Hu and Ahmad, 1994), 

ignoring mentioned technical features in a mathematical model could not provide a 

feasible solution for industries. 

 The existing literature optimizes energy exchange networks using a single objective 

(mostly the cost minimization). This is against the aim to address economic and 

environmental concerns in designing industrial symbioses directly. 

 In some cases, designing energy symbioses from the EIP perspective could not satisfy 

individual industries involved in an EIP. Because sharing recovered energy should be 

economically feasible for suppliers and buyers, individual benefits should be investigated 

in the proposed approach. 

2.8 Methods to evaluate effects of uncertainty in EIPs  

Several studies address the optimization of decisions in an EIP (Boix et al., 2015). A 

review by Kastner et al. (2015) classified the existing models for cultivating symbioses in 

EIPs. The study shows that modeling methods are typically based on tools developed to 
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optimize processes including the pinch analysis (Flower and Linnhoff, 1979) and mixed 

integer linear programming (MILP).  

There is a lack of literature for effects of the uncertainty on the optimization of synergy 

networks. Therefore, a framework to study uncertainty in EIPs is adopted. The uncertainty is 

widely discussed in areas such as the supply chain optimization (Afshari et al., 2014a; 

Afshari et al., 2016). The goal of location decisions in the supply chain optimization is to 

locate the best set of facilities in a network to achieve desired goals. Similarly, in the 

optimization of flow exchanges in EIPs, the optimum set of symbioses’ partners is intended. 

The framework is adopted using reviewed uncertainties in a supply chain (Simangunsong et 

al., 2012). Attributes (Skinner et al., 2014) of the framework are presented in Table 2.6. 

As presented in Table 2.6, uncertainties are categorized for the business with usual 

activities in a supply chain as well as equivalent synergies in an EIP. Synergic uncertainties 

are then assessed using their nature, rank, and type. Despite the existing research in the 

uncertainty evaluation in supply chains, limited studies have addressed uncertainties in an 

EIP. 

Qiu and Huang (2011) proposed to adopt the supply hub in an industrial park (SHIP) as a 

public logistics and warehousing services to industries inside an industrial park. They 

proposed two mathematical models (with and without SHIP) and studied the effect of 

demand uncertainties in the models. Using a simulation approach, the performance of the 

models was analyzed. They concluded strategies such as the application of SHIP could be 

beneficial for an industrial park under the demand uncertainty.  
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Table 2.6 The framework to study uncertainties in optimization of industrial symbioses  

Uncertainty    in    Supply Chains  Uncertainty    in    EIPs Nature Rank Type Existing 

research 
Level Business as Usual  Level Industrial symbiosis 

Firms Product Characteristics   Internal Input specifications (e.g., price) A 2 O  

 Process/Manufacturing   Process change; Technology 

improvement; Operation Failure 

E 2 T  

Network End customer demand   Change of end customer demand  A 1 O  

 Supplier performance   Uncertainty of demand supply A 1 O  

 Configuration, 

infrastructure & facilities 

  Uncertainty in matching proper 

symbioses partners 

E 3 S  

 Energy consumption   Uncertainty of energy, water, etc. 

consumption 

A 1 O  

External Economic Environment   External  Price of other energy sources A 1 S  

 Political Environment   Tax on carbon or other wastes A 2 S  

 Natural Environment   Disasters; weather conditions A 3 S  

Nature: Aleatoric (A), Epistemic (E);  

Rank: Knowing the probabilities (1), Knowing the outcomes (2), Knowing a little (3) 

Type: Operational (O), Tactical (T), Strategical (S) 

 

Maes et al. (2011) explored the literature to apply an appropriate energy strategy within 

the Flanders industrial park. They claimed that the energy management in industrial parks 

can be integrated into the entire development process and park management. To intensify 

local synergies, buildings and processes should be clustered for energy exchanges, collective 

production, and joint contracting of energy services. However, they highlighted that 

uncertainty and variation of the energy consumption can keep developers from tailoring 

industrial park design and utilities. The uncertainty of the future tax on carbon or other 

wastes has been deliberated as well.  

Pérez-Valdés et al. (2012) presented a decision making model for a natural-gas powered 

industrial park. The model maximizes the net present value in the industrial park to 

determine the type of plants and connections between them. A stochastic mixed-integer 
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programming model was employed to handle the uncertainty of future prices and costs of raw 

materials and finished products. It has been discussed that costs of emissions of CO2 and 

nitrogen oxides (NOx) can be considered as a stochastic parameter in the model. The 

application of the model in a Norwegian industrial park showed the model well suited for 

analyzing small to moderately sized scenarios considering variations in the most important 

stochastic parameters.     

The existing research for optimization of decisions in EIPs is summarized as follows: 

 Although the need for uncertainty analysis is discussed in several studies, the majority of 

optimization models are formulated for deterministic parameters. 

 Compared to the uncertainty studies in the supply chain literature (as shown in Table 

2.6), there are several opportunities to optimize decisions of EIPs under uncertainty types.  

 Uncertainties in demand and supply, energy prices, and tax on carbon are of major 

disturbances affecting optimized flow exchanges in the EIPs’ topographies. In this regard, 

addressing these uncertainties in the design of the EIPs would be beneficial for the 

stakeholders.   

Thus, there are opportunities for research in the domain of EIPs to include the 

uncertainty in the problem formulation as well as in problem solving as highlighted above. 

 

 

 

 



  

 

 

 

 

Chapter 3 

 

Modeling and Quantifying Uncertainty in the 

Product Design Phase  

 

3.1 Introduction 

A product life cycle includes stages from the conceptual design to used product at the 

end of its lifetime. Managing a product life cycle requires solutions for uncertain changes and 

unpredicted needs for the product. Studies showed that more than a half of initial user 

requirements will be changed before a project completion (Kobayashi and Maekawa, 2001; 

Ramzan and Ikram, 2005). Improper management of requirement changes imposes negative 

consequences to a system or product such as increased complexity (Chen and Zeng, 2006), 

data loss (Morkos et al., 2010), and wasted time and money (Morkos and Summers, 2010; 
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Morkos et al., 2012). However, if probable changes and uncertainties are predicted in 

advance, the chance of design failures (e.g., customer’s dissatisfaction) can be reduced. 

Therefore, it is essential to deal with uncertainties in the product life cycle. 

Uncertainty is inevitable in engineering systems. The research showed that “customers’ 

need” is a dominant driver of changes in the product life cycle (Eckert et al., 2009). 

Uncertainty in the customer need affects the design solution. Customers may update their 

needs and preferences during the product lifetime. Such uncertainty affects product 

development (PD) in term of cost, adaptability and time.  

It is proved that decisions in the design stage contribute to 70-85% of the total product 

cost (Besterfield et al., 1995; Ullman, 1997; Cao et al., 2008). In terms of sustainability, 

these decisions would affect 80-90% of the final performance of a product during its life 

cycle (May et al., 2011). The design stage decisions contribute to a product quality, 

durability, and adaptability as well. Therefore, if a designer could identify future changes of a 

product in the design stage, a proper decision can be made to minimize cost and 

environmental impacts of the product. 

The existing research methods in the product change mainly study the propagation of 

changes into product components and functions. In other words, the propagation of changes 

within product structure is discussed regardless of the source of changes (Martin and Ishii; 

2002; Yang et al., 2014). The change of customers’ preference in a product life cycle is a 

significant uncertainty for product design. Despite the variety, current qualitative and 

quantitative methods for the change of preferences (e.g., interview with customers and 

experts, questionnaires, QFD, marketing research, and engineering methods) have 
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limitations. For example, the change propagation methods do not provide a metric for 

comparing design alternatives in different scenarios. Thus, two methods are proposed in this 

research to bridge the gap of literature. Both methods use innovative mechanisms to capture 

and transfer changes into the product design.  

The goal of this research is to quantify changes of customers’ preferences during the 

lifetime of a product. By quantifying the changes, a designer will be able to provide 

appropriate solutions in the product design stage. The research is to find ways to measure 

future changes of customers’ needs in the design stage. If the quantified changes of 

customers’ preferences are provided to designers, product components to meet functional 

requirements and design parameters related to the changes can be considered to meet the 

changing need. 

The proposed agent-based model (ABM) simulates changing events and interactions in a 

product life cycle. The Big Data method is proposed for further improvements of the 

presented ABM in term of social and technical factors, and the study scope. Using Big Data 

analytics, product and user data can be collected to be used for product improvement. Among 

discussed types of Big Data analytics including descriptive, predictive, and prescriptive data 

analysis, this research develops a prescriptive analytics for product design process. In this 

type of Big Data analytics, not only past trends are used to mine user data (descriptive 

analysis), the future trends are also predicted (predictive analysis). Solutions for product 

design based on effects analysis are then proposed. The efficiency of methods is justified 

based on the convergence of predicted changes to the real changes of a product. 
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3.2 Proposed methods to model and quantify uncertainty under user preference 

changes 

Existing research recommended two main approaches for changes in the product 

development processes: approaches focusing on the early design process (to anticipate the 

need for changes), and methods to predict the impact of changes (e.g., Eckert et al., 2009). In 

this regard, two methods are proposed to predict changes and to transfer the changes into the 

product development process. Both methods use modules for the change prediction and 

change transferring.  

3.2.1 Agent-based modeling for the prediction and transferring changes into the 

product development  

A model is extended based on the diffusion theory (Bass, 1969) for the prediction of 

changes of customers’ preferences (Afshari et al., 2013). The model addresses needs for the 

quantification and transferring changes into the product development as shown in Figure 3.1. 

The model has multi-domain (social and technical elements embedded), scenario-enabled, 

and customer-oriented features. 

 

 

 

 

The model consists of five processes including QFD survey, data mining, ABM, internal 

evaluation and change evaluation as shown in Figure 3.1. A product is first decomposed into 

its components. The list of product components is used to define a QFD survey. In addition, 

 
Change Prediction Change Transferring 

Internal 

Evaluation 

Change 

Evaluation 
QFD 

Survey 

Data  

Mining ABM 

Figure 3.1 Schematic of the proposed agent-based model (ABM) 
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other decisions such as the scope of study, market, and details of the product specifications 

are necessary to initiate the model. Using an initial House of Quality (HoQ) in the QFD 

technique, collected customers’ preferences are transferred into engineering specifications 

(functional requirements). The functional requirements (FRs) are then mapped into product 

functional parts. These mapping matrices (customers’ preferences into FRs, and FRs into 

parts) are essential to measure parameters in next steps as presented in Appendix A. 

Data mining is an important step in the proposed model. Some tools and analyses such as 

statistical analysis, prediction methods, quantitative and qualitative data collection methods 

are used to estimate the value of parameters. Trends in the technology evolution are 

estimated for the list of components and subsystems. Using retrospective data or consulting 

with experts and manufacturers are two common methods for the quantitative trend 

estimation.  

The collected data are applied to simulate a product life cycle using agent-based 

modeling. Ability of agent-based models to simulate multiple interactions of agents in 

complex systems is used to model and quantify effects of external changes on customers’ 

preferences. A process of agent-based modeling is presented in Figure 3.2.  
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For ABM, research questions, scope, and objectives of the simulation should be defined. 

The collected data are used to define required parameters, variables, and interactions in the 

model. Events and specific regulations are then modeled. The rest of steps for the agent-

based modeling are discussed using a product.  

Figure 3.3 presents a schematic view of interactions in the proposed model. The model 

quantifies the interaction of customer to customer, and customer to technology as shown with 

1 and 2 in Figure 3.3. 

4. Model Calibration 
  Reference mode reproduction 

  Constrain to sensible bounds 

  Structural sensitivity analysis 

5. Model Testing 

  Parameter sensitivity analysis 

  Extreme value test  

  Problem domain tests 

6. Policy Evaluation 
  Investigation of scenarios 

  Investigation of external conditions  

  Cross scenario comparison 

1. Product Conceptualization 

  Research questions 

  Scope 

2. Qualitative Problem Mapping 
  State charts 

  Parameters, variables, events 

  Interaction and measures 

3. Model Formulation 

  Set values 

  Decision\behavior rules 

  Any regulation 

7. Knowledge Translation 

  Learning environments 

  Visualization 

Abstract 

Model 

Figure 3.2 Process of agent-based modeling 
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It is proved that exploring user’s perception and the adoption for a specific product is 

useful for understanding the design of product features (Tsai and Ho, 2013). The basis of the 

agent-based model is an extended version of basic diffusion theory shown in Equation 3.1. 

The aim is to evaluate the effects of social interactions and mass media on people’s 

preferences when such changes of preferences matters for a manufacturer. 

𝑑𝑌(𝑡)

𝑑𝑡
= 𝑚 ∙ [𝑌̅ − 𝑌(𝑡)] +  𝑛 ∙

𝑌(𝑡)

𝑌̅
∙ [𝑌̅ − 𝑌(𝑡)]                                           (3.1) 

 In Equation (3.1), 𝑌(𝑡) is the total number of customers who adopt new products at time t. Y̅ 

is the total number of potential adopters. The coefficient 𝑚 is the share of innovation (hence, 

first part of the equation shows the leading customers who buy a new product without the 

influence of others). The coefficient 𝑛  represents the share of imitation (second part of 

Equation (3.1) shows the people who buy a new product influenced by others). To propose a 

mathematical formulation for changes in customers’ preferences, events affecting the 

 

 

Technologies: 

* Progress Rate 

* Broadcasting Rate 

 

 

Product parts: 

* Internal Dependencies 

* External Effects 

 

 

Customers: 

* Preferences 

* Attributes 

 

Environment: 

* Population of Customers 

* Product lifetime 

* Available Products 

* Available Technologies 

 

Figure 3.3 Schematic view of elements and interactions in the proposed agent-based model  
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preferences are identified. Technology improvements and people interactions are considered 

as two major events invoking uncertainty into the model. It is considered that people 

interaction happens more often than the technology improvement (assuming people 

interaction and technology evolution events to occur in period t and P respectively, t<P).  

 

At t=P1, two different events affect the preferences. The first event is the accumulation 

of interactions between customers, and the second event is the broadcasting and adoption of a 

new technology by leading customers. Equations (3.2) and (3.3) formulate the events. 

 

𝐶𝑃𝑖,𝑗(𝑡𝑛) = ∑ 𝛾𝑓𝑟𝑑(𝑖, 𝑗, 𝑡) ∙ [(1 − 𝜔𝑓𝑟𝑑)𝐶𝑃𝑖,𝑗(𝑡 − 1) + 𝜔𝑓𝑟𝑑 ∙ 𝑃𝑓𝑟𝑑] + (1 − 𝛾𝑓𝑟𝑑(𝑖, 𝑗, 𝑡)) ∙ 𝐶𝑃𝑖,𝑗(𝑡 − 1)𝑡𝑛
𝑡=1       (3.2)    

                 

𝐶𝑃𝑖,𝑗(𝑃𝑟1) = 𝜑𝑡𝑒𝑐ℎ(𝑖, 𝑗, 𝑃1) ∙ [(1 − 𝜔𝑡𝑒𝑐ℎ)𝐶𝑃𝑖,𝑗(𝑡𝑛) + 𝜔𝑡𝑒𝑐ℎ ∙ 𝑃𝑡𝑒𝑐ℎ] + (1 − 𝜑𝑡𝑒𝑐ℎ(𝑖, 𝑗, 𝑃1)) ∙ 𝐶𝑃𝑖,𝑗(𝑡𝑛)         (3.3)   

             

A customer (i) is autonomous to adopt a new technology for component (j) in 

interactions with their friends; the probability of adoption from friends ( 𝛾𝑓𝑟𝑑(𝑖, 𝑗, 𝑡)  ) is 

Figure 3.4 Summary of events affecting customer’s preferences in a product life cycle 

Product Life Cycle 

P1(tn) t2 t3 t2 t0 t1 P2(t2n) Pm(tmn) 

C
u

st
o

m
e
r
`s

 P
r
e
fe

r
e
n

c
e
s 

People Interaction 

Technology Update 

Part 1- Preference 

Part 2- Preference 

Part 3- Preference 



Modeling and Quantifying Uncertainty in the Product Design Phase                                    44 

 

 

 

defined using Bernoulli distribution with p=0.5. At the end of a product life cycle, mutual 

effects of both events are measured using Equation (3.4). 

𝐶𝑃𝑖,𝑗 = ∑ 𝜑𝑡𝑒𝑐ℎ(𝑖, 𝑗, 𝑃𝑚) ∙ [(1 − 𝜔𝑡𝑒𝑐ℎ)𝐶𝑃𝑖,𝑗(𝑃𝑚) + 𝜔𝑡𝑒𝑐ℎ ∙ 𝑅𝑡𝑒𝑐ℎ(𝑗)] + (1 − 𝜑𝑡𝑒𝑐ℎ(𝑖, 𝑗, 𝑃𝑚)) ∙ 𝐶𝑃𝑖,𝑗(𝑃𝑚)𝑇
𝑡=𝑡1  (3.4)    

    

In Equation (3.4), 𝐼 refers to the set of customers (𝑖 ∈ 𝐼), 𝐽 stands for the set of product 

parts and components (𝑗 ∈ 𝐽), and 𝑇 defines the time of events (𝑡 ∈ 𝑃), and (𝑃 ∈ 𝑇). The rest 

of parameters and variables are as follows: 

𝐶𝑃𝑖,𝑗(𝑡) Preference of customer i for part j at time t, 

𝛾
𝑓𝑟𝑑

(𝑖, 𝑗, 𝑡) 
Adoption probability of customer i for part j at time t when interacting with a leading 

friend, 

𝜔𝑓𝑟𝑑  Weight of imitation (inspired by friends) in adopting a new technology, 

𝑃𝑓𝑟𝑑 Technology preference of a friend, 

𝜑
𝑡𝑒𝑐ℎ

(𝑖, 𝑗, 𝑃) Adoption probability of customer i for part j at time P a new technology is introduced, 

𝜔𝑡𝑒𝑐ℎ  Weight of innovation (inspired by media) in adopting a new technology,  

𝑅𝑡𝑒𝑐ℎ(𝑗) Rate of technology improvement for part j, 

𝐶𝑃 𝑗̅̅ ̅̅  Average customers’ preference for part j 

 

The customer’s preferences are used to measure average part’s preferences at the end of 

the product life cycle using Equation (3.5). 

𝐶𝑃𝑗 = ∑ 𝐶𝑃𝑖,𝑗
𝐼
𝑖=1 𝐼⁄          for  𝑗 ∈ 𝐽                                                    (3.5) 

For a large population of customers, it is difficult to run the explained measurements in 

Equations (3.2) to (3.5). Hence, interactions are modeled using software packages. Table 3.1 

summarizes the required attributes in the proposed agent-based model. The elements 

introduced in Table 3.1 are used to simulate interactions and influences of agents and 

environments during a product lifetime. 
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Table 3.1 Summary of elements in the proposed agent-based model 

Standard ABM elements In proposed agent-based method Equivalent in formulations  Type 

Agent Customer’s preference for each 

part 
𝐶𝑃𝑖,𝑗(𝑡) Agent 

Agent attributes Activity; flexibility; sociability N/A; 𝜑
𝑡𝑒𝑐ℎ

(𝑖, 𝑗, 𝑃);  𝛾
𝑓𝑟𝑑

(𝑖, 𝑗, 𝑡)  Parameter 

Agent to agent interaction Customers’ interaction Equation (3.2) Event 

Environment attributes Technology progress rate; 

technology broadcasting time 
𝑅𝑡𝑒𝑐ℎ(𝑗); 𝑃𝑖 

Parameter 

Agent to environment 

interaction 

Technology adoption Equation (3.3) Event 

Other attributes Product lifetime; number of 

customers; number of 

technologies; product components 

Pm(tmn); I; N/A; J Parameter 

 

The output of agent-based modeling is the quantified value of changes in customers’ 

preferences affected by interactions. The changes in customers’ preferences are transferred 

into product components. The magnitude of changes for each product component and 

subsystem are measured. This is considered as the end of the change prediction for studying 

external elements of the product structure.  

Transferring external changes into product components is the next step to evaluate 

interdependencies between components. Two items are considered: the magnitude of changes 

as the output of the agent-based model, and the dependencies between parts to evaluate the 

internal effects. Hence, a new matrix is defined to elicit the dependencies between parts. 

Assuming 𝐼𝑁𝑇  as the dependency matrix of 𝑛  part, and vector 𝑀𝐴𝐺  as the magnitude of 

changes transferred to product parts from external interactions during a product life cycle, 

vector 𝐶𝐻𝐺 is evaluated as the total changes transferred into all components of a product as 

shown in Equations (3.6) and (3.7).   

                                  𝐶𝐻𝐺 = 𝐼𝑁𝑇 × 𝑀𝐴𝐺                                                                              (3.6) 
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[

𝐶𝐻𝐺1

⋮

𝐶𝐻𝐺𝑛

] = [

𝐼𝑁𝑇1,1 ⋯ 𝐼𝑁𝑇1,𝑛

⋮ ⋱ ⋮

𝐼𝑁𝑇𝑛,1 ⋯ 𝐼𝑁𝑇𝑛,𝑛

] × [

𝑀𝐴𝐺1

⋮

𝑀𝐴𝐺𝑛

]                                                       (3.7) 

The dependency matrix (𝐼𝑁𝑇) is evaluated using a cross functional group of experts and 

product designers. Obviously, the diagonal elements on 𝐼𝑁𝑇  are valued as zero. Finally, 

vector 𝐶𝐻𝐺 is used for the product revision and redesign decisions.  

3.2.2 Big Data analytics approach for the prediction and transferring changes into 

product development 

Analyzing uncertain and probabilistic data using Big Data analytics is mostly based on 

traditional databases and data sets that provide some errors in the model (Pei, 2013). Hence, a 

new method to quantify changes in a product life cycle is proposed using Big Data analytics. 

The method is based on huge data sets publicly available to investigate changes in product 

development process (Afshari and Peng, 2015a). This is the first time that internal changes of 

parts are measured under external effects using Big Data analytics. 

 The proposed ABM considers updates in product-related technologies as technical 

events while there are many other technical events that may also affect technical knowledge 

of customers as well. The ABM simulates agents’ interactions in a limited scope of time and 

location. Such isolation is barely witnessed in the real product life cycle. Thus, the Big Data 

analytics method is proposed to overcome the limitations by using the real data. Because the 

data used for the analyses entails the consequences of several social, technical, and 

environmental factors, the analysis quality is ensured and further simulation is not required. 

Table 3.2 summarizes the improvements achieved using the Big Data analytics method. 
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Table 3.2 Comparison of the proposed methods in terms of technical factors, social factors, 

and scope of data 

  Criteria Agent-based modeling Big Data analytics 

Technical Product technology evolution   

 Global technology evolution   

Social Friends and Media   

 Regulations, politics, etc.   

Scope of data All times and locations   

 Customized scope Limited to simulation  
 

 

This study uses three years analyzed data to conclude the interconnectedness between 

customers’ preferences. The proposed model applies potentials of the social network analysis 

to evaluate changes in product design as presented in Figure 3.5. The method initiates with 

choosing a product and defining scope and market. By decomposing the product into its 

components, one can collect customers’ data called the voice of customer. Using the QFD 

technique, the data are transferred into functional requirements (FRs). Some essential 

decisions such as customer region, sample size of survey, and members of the expert team 

are made in this step. The output of QFD survey is a list of functional requirements that is 

used for the keyword search and data aggregation in the next step. 

 

 

 

 

 

 

 

 
Change Prediction Change Transferring 

QFD 

Survey 

Big Data 

Analytics 
Internal 

Evaluation 

Change 

Evaluation 

Figure 3.5 Proposed method to quantify changes of product using Big Data Analytics (BDA) 
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Lack of access to required data is a common challenge affecting most of the Big Data 

analyses. The complexity of available tools and scarcity of reliable data limit Big Data 

analyses. Google Trends and Google Correlate are two online tools for researchers based on 

Google search. Google Trends indicates how often a particular search-term or keyword is 

searched either in total or in detail (languages and regions in the world) since 2004. Google 

Correlate searches across millions of candidate query time series to find the best matches for 

selected time series. Google Correlate finds web searched terms according to user-provided 

time series of data. Google Correlate algorithm uses efficient techniques such as Asymmetric 

Hashing that enables fast searches, high-recall results and supported holdouts (Vanderkam et 

al., 2013). Hence, Google Correlate provides optimal predictions for researchers efficiently. 

Both tools have been popular search tools in different fields. For example, in healthcare 

research, Google Trends was used to track Influenza-like-illnesses in a population (Ginsberg 

et al., 2009). Also in business, Preis et al. (2010) presented a correlation between Google 

Trends data searched for a company and transactions volume of its stocks in market per 

week. The efficiency of proposed examples in addition to the simplicity and applicability of 

Google tools inspired us to use them as a valuable source for Big Data analytics as shown in 

Figure 3.6. 
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Figure 3.6 Detail transactions in Big Data Analytics 

 

http://en.wikipedia.org/wiki/Tobias_Preis
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An effective data collection using Google Trends requires accurate keywords. To 

generate proper keywords for search, a list of FRs prepared by the QFD survey is utilized. 

There are multiple cases that keywords should be revised to start over the search. It should be 

checked if the collected data are properly distributed on the world map (or defined scope of 

study). 

In Data Cleaning, also called data cleansing or scrubbing, inconsistencies and errors 

within the data are removed to improve the quality of data prepared for trend predictions. 

There are several methods and tools to clean the data. For a product life cycle, a major 

concern in data cleaning is unusual fluctuations in the searched trends. To remove such 

sudden changes, the reasons should be investigated and unacceptable results should be 

removed. In our case, the search trends about product features abruptly change when a new 

product is about to release. Moreover, the collected data for all keywords should be for 

similar time.  

To estimate the trends in data sets, several tools and methods are available (Petropoulos 

et al., 2013). Artificial Neural Networks (ANNs) and Statistical analysis methods are widely 

used in the literature for predicting the trends.  

Finally, the trends for FRs are estimated and normalized. Normalization helps comparing 

the trends in a unique framework. The normalized trends are evaluated to highlight the most 

affected functional requirements. The output of Big Data analytics is a vector of quantified 

values of changes transferred into components of a product.  
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Both the ABM method and Big Data analytic method use the “change transferring” 

module as shown in Figure 3.5. The advantage is providing a common basis to compare 

results. In the next section, a product is used to apply the proposed method.         

3.3 Application of proposed methods 

Proposed methods are used to quantify changes of a smartphone. A smartphone consists 

of multiple components with interdependencies of some parts, which makes it a good 

example for applying both methods (see Figure 3.7). The mutual steps in the proposed model 

are described together including: QFD survey, internal evaluation (see Table 3.4), and change 

evaluation (see Table 3.6). Moreover, the proposed methods are compared with the method 

based on Design for Variety (Nadadur et al., 2012). To keep a consistency between 

measurements, similar data and QFD matrices are used in the proposed methods as presented 

in Appendix A. 

 

Figure 3.7 Exploded view of the smartphone to model changes in its life cycle (Afshari and 

Peng, 2015b) 

 

The QFD technique uses two transforming matrices as depicted in Figure 3.8. Using a 

survey, customer’s preferences, features, and expectations from a smartphone were collected. 

An expert team was employed to transfer customers’ preferences into functional 
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requirements (FRs) as presented in Appendix A, Figure A.1. The FRs were then mapped into 

individual components. 

 

Figure 3.8 Houses of quality in the QFD technique 

3.3.1 Application of the agent-based model for the smartphone 

The current and future technologies for each part are searched using a list of 

components. One approach is to consult with manufacturers and follow their strategic plans 

to ensure the accuracy of estimations. To obtain the value of parameters related to events and 

interactions in Table 3.1, associate rule mining and classification algorithms are used (Lee et 

al., 2015). These algorithms are known as efficient techniques to extract unknown parameters 

in databases. After preparing the list of values for defined parameters as presented in Table 

3.3, the software package is used to simulate the product life cycle.  

 

Table 3.3 The values utilized for the defined parameters in the studied smartphone 

Parameter Value  Parameter Value 

𝑪𝑷𝒊,𝒋(𝒕) Initial value = 0  𝝋
𝒕𝒆𝒄𝒉

(𝒊, 𝒋, 𝑷) 0.25 

𝜸
𝒇𝒓𝒅

(𝒊, 𝒋, 𝒕) 0.5  𝝎𝒕𝒆𝒄𝒉 0.1 

𝝎𝒇𝒓𝒅  
0.1  𝑹𝒕𝒆𝒄𝒉(𝒋) Adopted from (Nadadur et 

al., 2012) 

𝑷𝒇𝒓𝒅 Initial value = 0   
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AnyLogic 6.8 is used to simulate the proposed model. The following discussion is based 

on the AnyLogic, but the presented logic is applicable for other software packages. Initial 

setup is defining agents and the type of network. Customers are defined as agents and a list of 

preferences is assigned to each agent. Agents’ interactions with other agents and with the 

environments are modeled using state charts as presented in Figure 3.9.  

 

Figure 3.9 Defined state chart for agents’ interactions 

 

Customers are divided into two groups. Technology followers update their preferences 

when interacting with public media (e.g., advertisement, technical reports, and social 

networks). This event is shown as “publicMsgReceived” in Figure 3.9. After updating 

preferences based on the advertised technology, the second interaction commences called 

“sendMessage”. In this interaction, agents broadcast their preference to other connected 

friends. As agents are autonomous, they may accept other agents’ invitation to update the 

preferences. This is organized by defining a flexibility rate for each agent. If the flexibility 

rate of a receiving agent is more than a sender agent, preferences of the receiving agent are 

updated, shown as “friendMsgReceived”. Otherwise, agents will not update their preferences.  

In the Anylogic package, the type of a network defines how the agents are connected 

together. If “Ring Lattice” is selected, agents will interact to local agents. “Random 

Network” denotes global connections. “Small World” is the combination of both described 
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networks. The type of a network is selected as “Small World” to resemble real world 

conditions  

AnyLogic provides a step-wised graphical representation for simulation, illustrated in 

Figure 3.10. In the figure, friends are connected together using lines. After initializing the 

simulation, all agents are set in blue color. Following interactions in Figure 3.9, the public 

message by media is sent to all agents. Technology follower agents who updated their 

preferences will show up in green color. Specific periods are set for broadcasting 

technologies and interactions with friends. If an agent accepts a friend’s invitation, its 

preferences are updated and its color changes to red. The simulation continues up to a 

particular time (three years) to resemble the product life cycle.  

At the end, an average of preferences is measured as presented in Equations (3.4) and 

(3.5). The output is quantified values of changes transferred into individual components of 

the smartphone. To finalize the quantified values of changes, the effects of internal changes 

should be evaluated. The expert team is again employed to evaluate the relationship between 

parts as formulated in matrix 𝐼𝑁𝑇 of Equation (3.7). Table 3.4 summarizes the analysis of 

dependencies between components of the smartphone. Dependency values are not symmetric 

to diagonal; therefore, it matters if a component is sending or receiving a change. 
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Table 3.4 Evaluation of interdependencies between components of the studied smartphone 

                            To 

From                               
A B C D E F G H I J K L M N Sender 

Display A 0 6 0 3 0 0 0 0 1 3 0 0 6 0 19 

Touchscreen B 6 0 0 1 0 0 0 0 1 1 0 0 3 0 12 

Sound C 0 0 0 1 0 0 0 0 1 1 0 0 0 1 4 

Processor D 3 3 1 0 1 1 6 3 6 3 1 6 0 0 34 

DRAM memory E 1 1 1 0 0 3 0 0 1 0 0 1 0 0 8 

Flash Memory F 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 

Data transfer G 0 0 0 3 0 0 0 9 3 1 1 0 0 3 20 

Internet-connectivity H 0 0 0 1 1 0 6 0 1 3 1 0 0 0 13 

Software I 1 0 1 3 0 0 0 0 0 1 0 0 0 1 7 

Battery J 1 1 1 1 0 0 0 0 1 0 0 1 1 3 10 

GPS K 0 0 0 1 0 0 0 0 1 0 0 0 0 0 2 

Cameras L 0 0 0 1 0 0 0 0 1 3 0 0 1 0 6 

Outer facing M 6 1 0 0 0 0 0 0 0 0 0 0 0 0 7 

Physical Interfaces N 0 0 0 0 0 0 0 0 1 6 0 0 1 0 8 

Receiver 18 12 4 15 3 4 12 12 18 22 3 8 12 8 
 

 
 

Dependencies are rated between 9 (if small changes in the specifications impact the 

receiving component) to 0 (No specifications affecting component). Summation of assigned 

rates shows that changes in some components have significant impacts on others (e.g., 

processor), and some components are vulnerable to changes of other components (e.g., 

Figure 3.10 Graphical representation of simulation steps: (a) Start-up of simulation, all 

agents are in blue color, (b) Technology broadcasting, technology follower agents turn to 

green, (c) agents accepting a friend’s invitation turn to red 

(a) (b)      (c) 
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battery). Using Equation (3.7), the mutual effects of external and internal changes are 

evaluated for each component. Result is discussed in the Analysis and Discussion section. 

3.3.2 Application of Big Data Analytics (BDA) for the smartphone 

Figure 3.11 shows that despite decreasing trends for searching “cell phone” and “mobile 

phone” terms, the interest for “smartphone” is increasing, particularly since 2010. This is a 

simple example to demonstrate how Google Trends works for our research. Because it is 

proven that there is a correlation between google search and success of a product in the 

market, the changes in customers’ preferences, functional requirements (FRs), and product 

components are targeted to evaluate using the proposed method. Moreover, to increase the 

clarity of the proposed methods, a sequence of analysis, outputs, and referred figures and 

tables is presented in Figure 3.12. 

 

 

 

 

 

Figure 3.11 Interest over time for selected key words search "Cell Phone", Mobile Phone", and 

“Smartphone" using Google Trends 
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To keep the consistency of results and being able to compare proposed methods, the 

same results from the QFD survey are used in the proposed agent-based method. The output 

of the first QFD matrix is a list of FRs, which is used to choose keywords. These keywords 

were then used to extract data sets via Google Trends. 

The source of Big Data used in this research is the huge Google searches conducted 

across the world. In terms of the volume and size of data, it is a big challenge to use such 

huge searched items; however, the Google has provided efficient tools including “Google 

Trends” and “Google Correlate” to extract required data from searched items. In other words, 

the tools can summarize and categorize Big Data to be used for further analysis. Thus, using 

keywords through Google Trends we can access huge data in a classified order. 

 Following transactions proposed in Figure 3.6, it was noticed that in several cases the 

selected keywords could not represent the corresponding data set (e.g., limited to specific 

locations or countries, abrupt jumps, unknown distributions). Hence, the keywords were 

revised to collect proper data sets. If several data sets were collected for a unique keyword, 

data sets should be aggregated. Google Trends concludes each keyword search with a simple 

downloadable format; therefore, the data sets for each FR did not require aggregation. For the 

  Change Transferring Change Prediction 

Internal Evaluation 

       (Table 3.4) 

Ranking of parts 

 (Table 3.6, Figure 3.13) 

 

Mapping to Parts 
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Figure 3.12 Sequence of analysis for the proposed Big Data analytics methods 

  2   3   4   5   6 
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smartphone, all keywords across the world in English language are searched since 2004. The 

collected data are refined using a data analytics method described in following paragraphs.   

Data cleaning is essential for using Google Trends. Thus, variations within each data set 

(stemming from seasonal effects or any unpredictable events) are monitored. If a point of 

data is recognised as a noise, the point is deleted to maintain validity of trend. It is noticed 

that the trend for some FRs has been shifted or changed several times since 2004. Because of 

such a long period, multiple events could contribute to the changes. For example, some 

events in macro economy (e.g., recession) had affected customers’ behavior in specific years. 

Filtering the data to specific periods could remove the reviewed effects.  

After data cleaning, a statistical analysis method is used to measure the trend for each 

FR. Different regression types were tested to identify the best fit with the least error. Linear 

regression is the best correlation coefficient among regression types to measure the trends of 

FRs. In Figure 3.13, two examples of the regression analysis for FRs are presented. The slope 

of a trend line represents the amount of changes in interests over time for each FR. 

 

 

 
Figure 3.13 Measured trends for FRs using a linear regression model 
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Considering the linear regression equation (𝑦 = 𝑎𝑥 + 𝑏), the values of slope (𝑎) and 

intercept (𝑏)are listed in Table 3.5. Also, the measured values of slopes are normalized to 

compare changes of interests over time for twenty-five FRs. After mapping FRs into related 

components of the smartphone (Figure A.2 in Appendix A), one could measure the external 

changes (caused by changes in customers’ preferences) transferred into the components.  

 

Table 3.5 Measurement of changes transferred into each FR using linear regression equations 

# FRs 𝑎 𝑏 Norm 𝑎 
 

# FRs 𝑎 𝑏 Norm 𝑎 

1 Display size 0.102 40.49 4.18 
 

14 Baseband processor 0.077 19.55 3.18 

2 Display 

Resolution 

0.038 62.17 1.57 
 

15 Baseband support 0.094 41.54 3.87 

3 Touch-size 0.075 70.76 3.10 
 

16 Download speed 0.085 57.00 3.51 

4 Touch-tech 0.152 64.45 6.26 
 

17 WiFi speed Standards 0.208 42.38 8.56 

5 Audio codec 0.027 49.94 1.10 
 

18 Bluetooth 0.083 35.56 3.40 

6 Mic sensitivity 0.070 60.08 2.89 
 

19 Capacity - power  0.180 55.49 7.43 

7 Speaker loudness 0.056 25.35 2.32 
 

20 Connector cable 0.204 51.82 8.39 

8 Processing speed 0.155 51.81 6.37 
 

21 GPS 0.067 43.27 2.77 

9 Memory capacity 0.105 71.19 4.32 
 

22 Cameras-resolution 0.016 14.73 0.68 

10 Operating System 0.107 42.96 4.41 
 

23 Cameras-video 0.059 21.69 2.42 

11 Apps 0.107 67.99 4.42 
 

24 Casing-housing parts 0.258 49.38 10.63 

12 GSM &CDMA 0.034 29.35 1.42 
 

25 Casing-Interactive parts 0.034 15.04 1.39 

13 Frequencies 0.034 29.35 1.42 
 

     
 

 

To evaluate the internal dependencies between each two components of the smartphone, 

the same matrix 𝐼𝑁𝑇 in the agent-based method is utilized. Detail results for transferring 

changes into components considering interdependencies are presented in the next section.   

3.4 Analysis and discussion 

In both proposed methods, the second module (transferring changes) is common. Using 

Equation (3.7) and interdependency analysis in Table 3.4, the total changes transferred into 

components of the smartphone are measured. Quantified values of changes are presented in 

Table 3.6. To compare efficiency of the proposed methods, the changes (𝐶𝐻𝐺𝑟𝑒𝑎𝑙) in the 

components of the smartphone are presented since the phone was introduced to the market.  
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The magnitudes of changes are normalized to compare the efficiency of proposed 

methods. Error measurement indexes are used to compare normalized magnitudes of the 

changes with the real changes. The best method should present the least measurement error to 

real changes of the smartphone. Summary of error measurements for the methods is shown in 

Table 3.7. In parallel, the proposed methods in this research are compared with the Design 

for Variety method applied by Nadadur et al. (2012); therefore, GVI index is measured for 

the smartphone.  

 

Table 3.6 Evaluated magnitude of changes (MAG) for each component using proposed 

methods and real changes of the smartphone 

 𝑀𝐴𝐺𝐴𝐵𝑀 𝑀𝐴𝐺𝐵𝐷𝐴 𝐶𝐻𝐺𝐴𝐵𝑀 𝐶𝐻𝐺𝐵𝐷𝐴 𝐶𝐻𝐺𝑟𝑒𝑎𝑙 

Value Norm Value Norm Value Norm 

Display 11.93 12.65 913.1 24.08 1346.8 36.26 2 33.33 

Touchscreen 21.93 49.55 684.8 18.06 1059.4 28.52 4 66.67 

Sound 7.41 7.70 204.8 5.40 194.5 5.24 4 66.67 

Processor 100.00 97.02 3791.6 100.0 3714.1 100.0 6 100.0 

DRAM memory 19.21 15.20 293.6 7.74 254.3 6.85 3 50.00 

Flash Memory 18.26 13.15 175. 9 4.64 155.8 4.19 3 50.00 

Data transfer 41.33 40.95 1556.7 41.06 1536.1 41.36 5 83.33 

Internet-connectivity 21.67 22.49 953.7 25.15 952.0 25.63 3 50.00 

Software 55.03 44.10 1225.6 32.32 1199.9 32.31 6 100.0 

Battery 0.99 7.43 679.3 17.92 884.9 23.83 6 100.0 

GPS 4.14 16.64 171.3 4.52 193.7 5.22 2 33.33 

Cameras 10.55 18.49 683.5 18.03 715.7 19.27 4 66.67 

Outer facing 29.93 75.23 376.9 9.94 813.1 21.89 4 66.67 

Physical Interfaces 18.54 36.06 337.7 8.91 485.4 13.07 2 33.33 

 

Table 3.7 Error measurement for the proposed methods 

Source Data Error index 𝐌𝐀𝐆𝐀𝐁𝐌 𝐌𝐀𝐆𝐁𝐃𝐀 𝐂𝐇𝐆𝐀𝐁𝐌 𝐂𝐇𝐆𝐁𝐃𝐀 GVI 

Real 

magnitude of 

Changes 

Least Absolute Deviation 186.5 226.0 194.7 169.0 295.0 

Least Deviation -152.5 -9.3 -162.2 -116.4 137.0 

Mean Percentage Error -31.33 19.06 -34.22 -21.28 58.04 

Mean Squared Error 6.71 4.76 2.59 1.78 5.03 

Rank in real 

number of 

changes  

Least Absolute Deviation 44.0 48.0 41.0 43.0 46.0 

Least Deviation 0.0 0.0 0.0 0.0 -25.0 

Mean Percentage Error 33.98 40.19 19.73 20.22 6.18 

Mean Squared Error 3.21 3.22 1.64 1.40 2.16 
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It is noticed in Table 3.7 that the proposed methods have shown the least error. 

Comparing error indexes for the real magnitude of changes determines that the second 

proposed method (BDA) has the most convergence to the real changes of the smartphone. It 

can be concluded that evaluating the changes using Big Data analytics is the best method 

when both external and internal effects are measured. Ranks in real number of changes 

propose that the agent-based method provides the minimum error. This is the proof of the 

efficiency for proposed methods. 

Evaluating the internal dependencies between parts (𝐼𝑁𝑇) in both methods has provided 

a higher convergence to the real changes of the smartphone. In Equation (3.7), the vector of 

𝑀𝐴𝐺  is multiplied to the matrix of 𝐼𝑁𝑇  to ensure that dependencies between parts are 

considered in modeling and quantification of changes. Results in Table 3.7 show that such 

consideration for change transferring is effective. Reviewing the error indexes per 

𝑀𝐴𝐺𝐴𝐵𝑀 and 𝑀𝐴𝐺𝐵𝐷𝐴 columns, the error indexes are reduced when compared to 

𝐶𝐻𝐺𝐴𝐵𝑀 and 𝐶𝐻𝐺𝐵𝐷𝐴 . Although the efficiency of the proposed method is presented, it is 

believed that the current method to apply internal dependencies can be further improved in 

future work. 

For the proposed agent-based method, a sensitivity analysis was conducted. The main 

purpose is to assess effects of different values of parameters in the agent-based simulation. If 

the method can provide stable results under different scenarios, it is concluded that the results 

of the method is reliable in the selected environment. Otherwise, sensitive parameters are 

highlighted for the designers to monitor. Some scenarios are defined and the rank of changes 

is measured as shown in Table 3.8. The ranks are stable in 5 out of 8 scenarios. Some minor 

changes are witnessed for the scenarios 6-8. Therefore, the reduction of product life cycle, 
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the rate of imitation from others, and rate of innovation are assessed as important parameters. 

Obviously, the sensitivity analysis is not necessary for the Big Data analytics as the 

parameters are obtained from real data sets. 

 

Table 3.8 Sensitivity analysis for the selected parameters in the proposed agent-based method 

Scenarios Direction Ranking of the changes in the smartphone parts 

A B C D E F G H I J K L M N 

Number of customers  11 8 12 1 5 6 3 7 2 14 13 10 4 9 

Number of friends  11 8 12 1 5 6 3 7 2 14 13 10 4 9 

Number of far friends  11 8 12 1 5 6 3 7 2 14 13 10 4 9 

Rate of Tech. evolution  11 8 12 1 5 6 3 7 2 14 13 10 4 9 

Product life cycle  11 8 12 1 5 6 3 7 2 14 13 10 4 9 

Product life cycle  10 5 12 1 7 9 3 6 2 14 13 11 4 8 

Rate of imitation  10 5 12 1 7 9 3 6 2 14 13 11 4 8 

Rate of innovation  10 5 12 1 7 9 3 6 2 14 13 11 4 8 

 

Finally, the quantified changes of parts in the smartphone life cycle are ranked. The 

proposed methods have shown a good prediction of changes in the product life cycle, as the 

graphical presentation illustrates in Figure 3.14.  

 

 

 Figure 3.14 Ranking of the components using the proposed agent-based method and Big Data 

analytics method 



Modeling and Quantifying Uncertainty in the Product Design Phase                                    62 

 

 

 

Both methods reported very similar rankings of the parts. Top five parts are processor, 

data transfer, display, software and touchscreen. Therefore, designers can make proper 

strategies to deal with changes in the smartphone components in the design stage. Martin and 

Ishii (2002) presented a list of strategies to manage changes in the product life cycle. It is 

believed that an accurate knowledge on quantified changes of product components in the 

design stage can help designers in revising product to maximize customers’ satisfaction. 

Consequently, such approaches improve manufacturers’ profitability and market share by 

continuously satisfying its customers.  

The research conducted in this Chapter has been published in the following journal and 

conference proceedings: 

 Afshari H, Peng Q. Modeling and quantifying uncertainty in the product design phase 

for effects of user preference changes. Industrial Management & Data Systems. 

2015b; 115(9):1637-65. 

 Afshari H, Peng Q, Gu P. An agent-based method to investigate customers’ 

preference in product lifecycle. In ASME International Design Engineering Technical 

Conferences and Computers and Information in Engineering Conference. 2013; 

V004T05A046-V004T05A046. 

 Afshari H, Peng Q. Modeling Evolution of Uncertainty in Sustainable Product 

Design. In ASME 2014 International Design Engineering Technical Conferences and 

Computers and Information in Engineering Conference 2014; V004T06A052-

V004T06A052. 
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 Afshari H, Peng Q. Using Big Data to minimize uncertainty effects in adaptable 

product design. In ASME 2015 International Design Engineering Technical 

Conferences and Computers and Information in Engineering Conference. 2015a; 

V004T05A052-V004T05A052.  



 

 

 

 

 

Chapter 4 

 

Design Optimization for Sustainable Products 

under Uncertainty 

 

4.1 Introduction 

Products and services are expected to meet varying customers’ preferences with the 

diversity and short life cycle of products in the competitive market (Beuren et al., 2013). 

Diversified products require higher costs and more development efforts for industries than the 

traditional product using mass manufacturing (Kohtamäki et al., 2013; Reim et al., 2015). 

Moreover, a designer should consider multiple objectives for a product such as reasonable cost, 

high quality, and environmentally friendly during its lifetime. However, inaccurate data in the 

design phase would affect the ability of understanding and addressing these requirements. As 
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the uncertainty accompanies in processes of the product design, having accurate data is always 

a challenge. 

To tackle the uncertainty in the design phase of a sustainable product, two approaches are 

presented in this chapter. The first approach is to evaluate and to adapt changes in the product 

design phase. The second approach looks for minimizing effects of measured changes on the 

product development time and environmental impacts. The approaches are elaborated in the 

following sections. 

4.2 Evaluating effects of uncertainty on sustainable product design 

The research seeks solutions for the variety across the future generation of a product 

known as the generational variety (Martin and Ishii; 2002). The change of customers’ 

preferences during the product life cycle is uncertain in the product design stage. Due to the 

change of customers’ preferences, a product may not satisfy customers’ requirements anymore 

in the application stage. A solution is the product diversity, but it requires the additional cost 

and development efforts. Another solution, proposed in this research, is to evaluate changes 

and to adapt the changes in the product design phase. A design objective is therefore 

considered for minimizing product environmental impacts under customers’ requirement 

change. For example, if the type of materials in a printer frame is identified as the most 

pollutant factor, the designer can replace the frame material to minimize environmental 

impacts of the printer. The proposed method provides a way to minimize product 

environmental impacts with the minimum cost.  

The objective of the research is to investigate effects of the quantified changes in the 

design phase as measured in Chapter 3. The research contribution is an integrated method to 
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 Measure 

changes of FI 

∆𝐹𝐼 

 Investigate 

effective DPs by 

Axiomatic Design 

∆𝐷𝑃𝑠 

Measure 

Environmental 

impact by FIM 

Evaluate FRs 

changes by ABM 

∆𝐹𝑅𝑠𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝐹𝐼 

Uncertainty 

Quantification 

Uncertainty Effect 

Analysis 

Figure 4.1 Methodology to evaluate uncertainty effects on environmental impacts of a product 

 

quantify and assess effects of the uncertainty on products. The proposed model is validated 

using a wheelchair product. 

4.2.1 Proposed methodology to evaluate effects of uncertainty on product design 

The proposed approach studies the environmental impacts of a product in the design stage 

considering the generational variety of the product. To evaluate the generational variety of a 

product, the changes of customers’ preferences are simulated over a product life cycle as 

illustrated in Figure 4.1. In this figure, steps are shown in the numbered rectangular blocks and 

outputs are depicted using the dashed rectangular. Because the first step has been discussed in 

chapter 3, the proposed method is elaborated from the second step. 

The second step of the method measures environmental impacts of a product during the 

product life cycle. The Function Impact Method (FIM) is used in the evaluation of 

environmental impacts for individual product functionalities to connect next steps of the 
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method (Bernstein et al., 2010). The FIM evaluates the environmental impacts in a 

deterministic environment that are not affected by any uncertainty over the course of time. In 

the early design stage, knowledge and experience on the product environmental impacts are not 

as precise as expected. Devanathan et al.  (2010) proposed to use the product Bill of Material 

(BOM) to investigate environmental impacts by benchmarking existing parts in the market. 

Therefore, the evaluation begins with decomposing a product into parts and elements, and then 

measures the material, manufacturing, use, and end of life impacts of each component. In the 

FIM, the functional contribution is measured using the contribution of each component on 

individual functions of a product. The evaluated environmental impacts of components are 

then divided into functions according to the functional contribution. The summation of the 

environmental impacts of product functionalities is calculated as Function Impact (FI).  

In the third step, the effect of the changes in customers’ preferences on environmental 

impacts of the product is measured. Hence, the analyses conducted in steps 1 and 2 are 

integrated into this step. This stage will build the link between the environmental impacts 

analysis and the generational variety of a product. The effect of users’ preference changes over 

the product life cycle on environmental impacts is evaluated using Equation (4.1). 

 

∆𝐹𝐼 = ∆𝐹𝑅𝑠𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 ∗ 𝐹𝐼                                               (4.1) 

 

To verify that the effects of uncertainty on the function impact (FI) are precisely 

measured, the changes of FRs (∆𝐹𝑅𝑠𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦) should be normalized before using Equation 

(4.1). By the end of this step, a list of the most affected functional requirements over the 
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product life cycle is achieved. Such information is very useful in the early design phase; 

however, some arrangements are still required to use the information in product design.  

In the last step, the contribution of each design parameter (DP) on environmental impacts 

of the product is investigated. A designer can use the results to design or redesign a product. 

Among mapping tools, the axiomatic design (AD) theory is utilized in this step. Our focus is 

on the physical domain where functional requirements (FRs) are mapped into design 

parameters (DPs). Two axioms including independence axiom and information axiom are 

evaluated. In the independence axiom, the independence of the functional requirements (FRs) 

is maintained. Here, functional requirements are defined as the minimum set of independent 

requirements that characterizes the design goal to minimize the environmental impacts. The 

information axiom aims to minimize design information content; the design with the least 

information content will be the best solution.   

Two axioms are the tools used by a designer to search the optimum design based on design 

objectives. The independence axiom is used to ensure the decoupled or uncoupled design. 

Equation (4.2) indicates the relationship in a physical domain of the axiomatic design. 

 

𝐹𝑅𝑠 = [𝐴] ∗ 𝐷𝑃𝑠                                                                   (4.2) 

 

To provide an uncoupled or decoupled design, [𝐴] should be diagonal or triangular matrix 

respectively. The knowledge and experience of designers can be used to investigate 

appropriate DPs satisfying FRs independence as shown in Equation (4.3). 

 

∆𝐹𝐼= [𝐴] ∗ ∆𝐷𝑃𝑠                                                                (4.3) 
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In this step, we select proper DPs to satisfy related functional impacts (FI) to make [𝐴] a 

diagonal or triangular matrix. A designer may choose different sets of DPs or different array 

values within [𝐴] to satisfy an uncoupled or decoupled design; therefore, the second axiom is 

used to select the best design. 

In real product design projects, the limitation in budget affects revising the entire product 

design. In this case, DPs should be prioritized according to the budget to optimize the design 

solution. We use the concept of Rigidity of Design Sustainability ( 𝑟̃ ) to ensure that the 

maximum magnitude of environmental impacts is addressed under the available budget. Using 

a step-wised algorithm, the best DP with the maximum G value is selected. The G Index helps 

to choose the most pollutant DP to be revised using the least budget out of all DPs.  

 

𝐺= 𝐸𝐼𝑖 𝑅𝐵𝑖⁄                                                                        (4.4) 

 

In each iteration (t), one DP out of n DPs is selected and 𝑟̃  index is revised using 

Equations (4.5-4.6). 

𝑟𝑡= ∑ 𝐸𝐼𝑖
𝑛
𝑖=1 − ∑ 𝐸𝐼𝑖

𝑡
𝑖=1              ∀ 𝑡 ≤ 𝑛                             (4.5) 

 

𝑟̃= 𝑟𝑡 ∑ 𝐸𝐼𝑖
𝑛
𝑖=1⁄                                                              (4.6) 

 

The algorithm to search DPs stops when Equation (4.7) is satisfied. The required budget to 

design a component (𝑅𝐵𝑖) is estimated in these equations. 

∑𝑅𝐵𝑖

𝑡

𝑖=1

≤ 𝑇𝑜𝑡𝑎𝑙 𝐵𝑢𝑑𝑔𝑒𝑡                                                            (4.7) 
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Efficiency of the proposed approach is discussed in the next section using the example of a 

real product. 

4.2.2 Validation of the proposed approach 

The proposed method is applied to a benchmarked wheelchair design. A sustainable 

solution is required for the wheelchair design to provide a balance among the product cost, 

durability, and low environmental footprints. The aim of this case study is to verify that the 

proposed method can help designers to improve environmental impacts of a product under 

generational variety uncertainty. All analyses are conducted for a benchmark wheelchair 

(Hosseinpour, 2013). 

Initially, a customers’ preference survey was conducted. The preferences were then 

mapped into functional requirements using QFD. A group of experts was contacted to discuss 

the mapping process and relationships of functional requirements and wheelchair components. 

After the QFD implementation, parameters related to the product life cycle and technology 

trends were estimated. If a product exists in the market, the past data are used for estimation; 

otherwise, similar technologies and products are benchmarked to obtain the parameters. 

Product behavioral and interactional functions are investigated using data mining and 

marketing research. It is important to know how customers would react when encountering a 

new technology. The customers’ tendency to advertise a new technology after its adoption is 

investigated. Finally, the estimated parameters are used to simulate the product life cycle using 

agent-based modeling as described in Chapter 3. Agents are defined as customers’ preferences 

that interact each other within an environment (market or city). The innovations of the 

technologies are updated and regularly broadcasted to all agents. Some pioneer agents may 
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adopt the new technology, and then advertise it through a group of connected friends. Through 

the simulation of the product life cycle, customers’ preference changes are investigated over 

time.  

Following the steps in Figure 4.1, the wheelchair life cycle is simulated using ABM. The 

parameters summarized in Table 4.1 are used for the life cycle simulation. Since the 

parameters and the nature of interactions are defined, any software package can be used to 

implement the proposed model; we use the AnyLogic commercial software package to 

simulate customers' preference changes.  

 

Table 4.1 List of parameters used in ABM for the wheelchair life cycle simulation 

Parameters  Value [unit] 

Number of agents (I) 10,000  

Number of parts (J) 20 

Technology update time (P) 90 [day] 

Product life cycle duration (Pm(tmn)) 20 [year] 

Weight of media (innovation),(𝝎𝒕𝒆𝒄𝒉) 0.1  [%] 

Weight of friends (imitation),(𝝎𝒇𝒓𝒅) 0.25 [%] 

Number of FRs 17 

Number of DPs 17 

 

The model broadcasts new technology trends to random customers every 90-steps (equal 

to 90 days) to simulate three months. Then, those clients who follow the technology innovation 

are informed, and they may update their preferences. The trend of technology development is 

evaluated using the changes data of wheelchair parts during the last 20 years.  

After the simulation of the wheelchair life cycle, measured changes in customers’ 

preferences are transferred into changes in FRs (∆𝐹𝑅𝑠𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦). The output is a list of the 
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normalized value of changes in FRs (to remove bias effects of data changeabili ty) for 

measuring uncertainty effects. In the next step, the environmental impacts of the wheelchair 

during its life cycle are evaluated using the function impact method (FIM). The result is shown 

in Figure 4.2. 

In Figure 4.2, the total environmental impacts index (EI) of each part is measured using 

the SolidWorks software package. Thus, the carbon footprint of each part is measured in a unit 

of kg carbon dioxide equivalent (CO2). The environmental impacts measurements are 

conducted for stages of design, manufacturing, and end of life of a component. The next pace 

in the FIM is to distribute the contribution of components into the product functions. The 

weights (W) in Figure 4.2 are assigned based on experts’ experience. The total environmental 

impacts of a component are then distributed over product functions to define the functional 

environmental impacts. The analysis highlights the most contributed functional requirements in 

environmental impacts of the wheelchair including having a moving system, supporting loads, 

and holding hip and thigh.   

The effect of customers’ preference changes on environmental impacts of the wheelchair 

is quantified using Equation (4.1). A change in rankings of FRs is observed when the effect of 

customers’ preference changes on environmental impacts of the wheelchair is measured using 

Equation (4.8). Table 4.2 lists the rankings. 

 

∆𝐹𝐼 = [
0.6 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0.28

] × [
52.66

⋮
3.91

] = [
31.34

⋮
1.10

]                                               (4.8)  
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Table 4.2 Comparing rankings of the FRs (the proposed method versus the FIM only) 

List of FRs Ranking of FRs 

Proposed Method The FIM 

have a moving system 1 1 

Hold hip and thigh 2 5 

Support all loads without fracture 3 4 

have  Reclining back-rest, leg-rest 4 8 

Hold the legs 5 9 

Operate with electrical energy 6 11 

Hold Hands 7 6 

Does not tilt 8 3 

Hold back body 9 2 

Decline pressure point 10 7 

Hold the head 11 10 

 

Table 4.2 shows the influence of users’ preference changes on the ranking of the most 

contributing FRs in wheelchair environmental impacts. Traditionally, decisions to revise the 

design of a product were made only upon life cycle of a product. The proposed method 

enriches the reliability of previous approaches by considering the effects of uncertainties. 

Despite the other methods, the developed method is integrated into the selection DPs using the 

AD as presented in Figure 4.3. 

To identify the effective design parameters contributing to the environmental impacts of 

the wheelchair under uncertainty, the changes of FI are mapped into DPs. For an accurate 

solution, we applied the axiomatic design (AD) theory to provide uncoupled or decoupled 

design. As discussed in the literature, applying AD reduces the effects of uncertainty to specify 

design parameters that affect the functionality of a product.  

Using the AD, the relationship between functional requirements and design parameters is 

depicted. The mapping illustrated in Figure 4.3 shows a decoupled design. The mapping area is 

divided into two main rectangular areas for specific mapping of parts, and the general design 
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parameters to simplify mapping process. If the Pareto rule is applied to decide DPs, the focus 

will be on investigating the DPs that contribute up to 70% of product environmental impacts. 

Within the first rectangular area, DPs are selected for the wheel, seat, main frame, and 

reclining mechanism. The second rectangular area lists some DPs to be considered for 

sustainable design of the wheelchair components including the social, environmental, and 

economic features. The DPs are the cost of components, number of components, material 

properties, component sizes, modular design of components, and component’s service cycle.  
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Figure 4.2 Environmental impacts (EI) analysis based on component weight (W) in product function of the wheelchair 
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Figure 4.3 Mapping Functional Requirements (FRs) to Design Parameters (DPs) using 

Axiomatic Design theory 

 

A comprehensive solution may need to redesign all components to minimize the 

environmental impacts of the product; however, the proposed algorithm chooses DPs to meet 

the minimum environmental impacts for the FRs based on the budget. To initiate assigning 

DPs, a list of given budget for each DP is needed; the budget should consider analyses and 

resources required for each DP. Because of the lack of data, an estimated budget is utilized 

based on the degree of coupling between DPs and the probability of changes for each DP. For 

more accuracy, some indexes are used to quantify design efforts for each DP as the indicator 

of required budget. Table 4.3 presents a list of criteria for the design activities that are 

indexes used by design experts for the wheelchair design. The criteria include the diversity of 

potential materials (C1), Variety of parts and details (C2), Coupling with the other parts (C3), 

Number of technical tests required (C4), Ease of access to developed technologies (C5), and 



Design Optimization for Sustainable Product under Uncertainty                                         77 

 

 

 

difficulties in prototyping (C6). All criteria are measured between 1 -10. A higher number 

reflects more efforts and budget needed to design a DP. 

In Figure 4.4, the environmental impacts (EI) index is used to select DPs according to 

the estimated budget for DPs. The EI index is a normalized measure of functional impacts 

(∆FI) for DPs in Figure 4.3. Figure 4.4 shows that by revising 5 DPs (DP1, DP8, DP9, DP7, 

and DP3) more than 85% of the product environmental impacts can be reduced. The 

developed method helps to prioritize the DPs according to the required budgets.  

 

Table 4.3 List of the criteria to estimate design activities for DPs 

No. DPs C1 C2 C3 C4 C5 C6 Sum 

DP1 Wheels specification 4 4 3 5 5 4 25 

DP2 Electrical Motor power 3 8 6 9 8 6 40 

DP3 Reclining Mechanism 4 5 5 5 4 5 28 

DP4 Arm-rest properties 4 4 4 4 4 5 25 

DP5 Back-rest specification 5 6 4 5 4 4 28 

DP6 Head-rest adjustability  4 5 4 4 5 4 26 

DP7 Leg-rest property 4 5 3 5 5 3 25 

DP8 Seat property 3 6 5 6 6 5 31 

DP9 Main frame strength 7 8 8 7 6 6 42 

DP10 Anti-tip wheel mechanism 3 5 5 4 4 3 24 

DP11 Cushion specification 2 3 5 3 5 4 22 
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Figure 4.4 Prioritizing DPs to minimize the environmental impacts according to the 

normalized index of budget 

 

The established DPs are then used to improve wheelchair’s environmental impacts. The 

original design of the wheelchair can be revised considering general DPs identified in the 

small rectangular area (presented in Figure 4.3). Such improvements include reducing the 

weight of components, the number of components, and using environmentally friendly 

materials. Instead of end-of-pipe solutions, this research proposes a method to reduce 

environmental impacts before manufacturing and introduction of a product to the market. As 

presented in Table 4.4, a traditional analysis would direct us to identify the most pollutant 

components of a product, and improve its design for fewer impacts to the environment. On 

the contrary, this research measures the potential changes of a product in future. The design 

parameters (DPs) are then addressed for detail design improvements as a lack of existing 

methods. Therefore, a sustainable solution is obtained using the social (users’ preference 
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mining), environmental (functional impacts analysis), and economic pillars (the budget or 

design efforts needed as a function of cost). 

 

Table 4.4 Comparing proposed method with the traditional methods to improve product 

environmental impacts 

 Traditional approaches Proposed method 

Used 

Analyses 

-Components’ environmental impacts -Components’ environmental impacts 

-Users’ preference changes 

-Requested functional changes 

-Axiomatic design (resilient for 

changes) 

Pollution 

Reduction 

Scope 

-Product end-of-life Entire product lifecycle including: 

-Design 

-Manufacturing 

-Product end-of-life 

Benefits -Identifies the most pollutant parts of 

a product 

-Simulates/measures future 

functionalities of a product, and hints 

the design parameters to be improved. 

 

4.3 Optimizing sustainable product design under uncertainty 

Decisions made in the product design stage consist of several coupled and 

interdependent design tasks (Cho and Eppinger, 2005; Sapuan et al., 2006). The 

interdependencies among design decisions form multiple search iterations in the design 

process. Design iterations in the solution search increase the product design cost and time, it 

is essential to reduce the design iterations. 

Users’ requirement is dynamic in the competitive market. Changes in users’ preferences 

happen in the product life cycle, as a surge of information affects design tasks leading to 
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more search iterations in the design process. Any internal or external disturbances such as 

technology evolution and changes in users’ preferences will influence the stability of a 

design solution. The stability is defined as the ability of a design process to reduce the 

volume of work within all design tasks to a reasonable solution in a finite number of search 

iterations. The resource allocation needs to be revised to obtain design decisions efficiently. 

By allocating more resources to individual tasks in the design, the entire design process 

expedites to reach the desired solution.   

Methods based on the design structure matrix (DSM) can map the complex engineering 

design problems (Steward, 1981). The ability of DSM to present the interdependencies of 

design tasks has made these methods popular in design processes (Yassine and Braha; 2003). 

Several extensions of these methods such as the work transformation matrix (WTM) have 

been presented (Smith and Eppinger, 1997). The DSM has been adopted rapidly to reduce the 

design time. In addition, the WTM transforms the design process as a vector-matrix model 

similar to the modeling method in the modern control engineering theory. As a result, 

problems, such as iterations in coupled design tasks, modeled by the WTM can be 

dynamically analyzed using control engineering methodologies. This conclusion is approved 

when the control theory was applied in many aspects of production systems to understand the 

dynamic behavior of these systems (Duffie et al., 2014). However, there is a lack of research 

to consider multiple objectives for the coupled design task. Particularly, the combination of 

mathematical optimization methods and the modern control theory has not been applied to 

the design problem. This research bridges the gap in the literature by proposing the 

optimization models considering the cost and environmental impacts in the product 

development process. 
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This research searches a cost-effective and environmentally friendly solution for reduced 

design lead time in a dynamic design environment considering changes in users’ preferences. 

Several generations of a product may be introduced during its life cycle by revising the 

product design. As a result, some products may face either to be redesigned into a new 

product or to be revised to meet the new need. Obviously, it is desired to address user 

requirements with the minimum cost and time. Therefore, the research objectives are first to 

assess effects of the unexpected disturbances on product design, and then to propose a 

method to search an optimum solution considering the minimum cost and environmental 

impacts. 

4.3.1 Proposed methodology to optimize sustainable product design under uncertainty 

The proposed method models product design decisions under uncertainties in three 

stages as shown in Figure 4.5. Uncertainties are defined as changes in users’ preferences for 

a product during its life cycle. There are several methods to measure changes in the users’ 

preferences such as design for variety (Martin and Ishii; 2002), agent-based modeling 

(Afshari et al., 2013), and Big Data analytics (Afshari and Peng, 2015a). The proposed 

method assesses effects of quantified uncertainties on the product design process.  
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Figure 4.5 Stages of the proposed methodology for a design process under uncertainty 

 

The method describes ways to assess and control effects of uncertainties on the design 

process. Since the extended models based on automatic control engineering cannot cope with 

the desired optimal solution, mathematical programming is applied in the sustainable product 

design. 

State-space representation of the design process 

As some design parameters (DPs) are interrelated to each other, a change in a DP 

imposes a rework to the other DPs. In this case, several iterations and design loops are 

required in the design process. In each iteration, values of DPs are revised to reduce the 

remaining work in a design process. Therefore, the amount of work in each iteration depends 

on the remained amount of work in the previous stage and effects of analysis on each stage. 

This resembles the concept of the state-space representation in control engineering in 

Equation (4.9). The index of the discrete time variable (f) denotes a finite number of 

iterations. 

 𝒳(𝑓 + 1) = 𝒜𝒳(𝑓)                                                           (4.9) 



Design Optimization for Sustainable Product under Uncertainty                                         83 

 

 

 

In Equation (4.9), 𝒳(𝑓) is a work vector consisting of 𝑛  coupled design tasks to be 

completed. Matrix 𝒜 (work transformation matrix) represents the information dependency 

between tasks. Thus, the work vector in iteration 𝑓 + 1 is measured using Equation (4.9) that 

is an open-loop state-space representation or homogenous state-space system (HSS). When 

all design tasks are completed in a finite number of iterations, the design project is called 

stable. The stability of an open-loop control system is measured using the eigenvalue of 

matrix 𝒜.  The HSS does not consider external disturbances of a system, only initial 

conditions matter for its response in each iteration. However, in a real system, the existence 

of external disturbances is inevitable. Therefore, a non-homogenous state-space system 

(NHSS) can better reflect real systems. Two types of expected and unexpected disturbances 

are assumed for a system. Unexpected disturbances may include changes in user requests or 

failures to address those requests properly by designers, which conclude to the interruption or 

delay of a design process (Ogata, 1995). Such changes in design requirements as a 

disturbance in a dynamic system can be compensated by more iterations of the design 

process before reaching to stable conditions. This adaptability to handle unexpected 

disturbances in the design phase needs less cost and time compared to other methods such as 

redesigning the entire product. In addition, the advantage of considering unexpected 

disturbances in the design process is to ensure satisfying new requirements with the 

minimum iterations and resources. Equation (4.10) presents a modified model that considers 

unexpected disturbances or changes. 

 

𝒳(𝑓 + 1) = 𝒜𝒳(𝑓) + ℬ𝒲(𝑓)                                                    (4.10) 
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Matrix ℬ  is defined as Disturbance Transformation Matrix (DTM), and 𝒲(𝑓) is the 

disturbance input in iteration f due to unexpected external events (Ogata, 1995). Because 𝒲 

is a function of iterations, the system can consider disturbances in each iteration by setting 

non-zero elements in 𝒲  matrix. Each item in 𝒲(𝑓)  represents the additional rework 

imposed by random events to design tasks.  

There is another type of disturbances, which needs extra resources to minimize design 

loops as shown in Equation (4.11). 

 

𝒳(𝑓 + 1) = 𝒜𝒳(𝑓) + 𝒞𝒰(𝑓)                                            (4.11) 

 

Equation (4.11) denotes that the amount of work to be done by a design task is a linear 

combination of work created by other coupled design tasks in the previous iteration plus the 

effect of control inputs. The input matrix 𝒞 represents the proportion of common resources 

shared by two or more tasks. If resources are not shared among the various tasks, matrix 𝒞 is 

considered as a unit matrix. Vector 𝒰(𝑓) describes the additional resources that each task 

needs to reach the desired state. Thus, the elements of matrix 𝒰 denote the additional 

resources (e.g., overtime work, new methods, new staff, new technologies) to reduce the 

amount of rework. The unit of elements in matrix 𝒰 can be selected as cost, time, volume of 

work, number of design actions.  

The state feedback control proposed by Lee et al. (2004) applies an appropriate state 

feedback gain matrix (𝐾) to achieve the desired stability of a system. In our method, elements 
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of the matrix 𝐾 denote the degree of controls applied by one task on other design tasks. Thus, 

the input control in Equation (4.11) is represented as follows: 

 

𝒰(𝑓) = −𝐾𝒳(𝑓)                                                        (4.12) 

 

Equation (4.12) can be substituted in Equation (4.11), and considering matrix 𝒞 as I (unit 

matrix), the closed-loop control system is obtained using Equation (4.13). 

 

𝒳(𝑓 + 1) = (𝒜 − 𝐼𝐾)𝒳(𝑓)                                             (4.13) 

        = 𝒜∗𝒳(𝑓) 

 

The stability of a closed-loop state feedback system depends on the eigenvalues of 

matrix  𝒜∗ . Since values of elements in matrix 𝐾  are effective in the eigenvalues of 

matrix 𝒜∗, finding the appropriate matrix 𝐾 is essential for a stable system. 

Finally, if the system is accompanied by expected and unexpected input controls, the 

volume of work will be measured using Equation (4.14) (Golnaraghi and Kuo, 2010). Figure 

4.6 represents the model structure of a closed-loop feedback system based on Equation 

(4.14). 

 

𝒳(𝑓 + 1) = 𝒜𝒳(𝑓) + ℬ𝒲(𝑓) + 𝒞𝒰(𝑓)                                       (4.14) 
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Figure 4.6 The structure of a closed-loop feedback system model based on Equation (4.14) 

 

In Figure 4.6, 𝒲(𝑓) represents the unexpected disturbance exerted to the system as a 

result of changes in users’ preferences. Matrix ℬ is defined to apply a direct effect of the 

disturbance on the design process. For simplicity, matrix ℬ  can be substituted by I (unit 

matrix). Matrix 𝐾, as a feedback gain matrix, regulates the disturbances caused by 𝒲(𝑓) and 

𝒜. If the state of the system at iteration k, (𝒳(𝑓)), deviates from a desired state, the matrix 𝐾 

can be used to deal with the deviation. Moreover, the stability of the design process depends 

on the eigenvalues of the state-space representation that is ( 𝒜 − 𝐾 ). This shows the 

importance of matrix 𝐾 in reaching a desired amount of design tasks in the minimum number 

of iterations. 

The quantified uncertainty as an unexpected disturbance is applied in the first iteration of 

the design process. It is assumed that the initial amount of work, 𝒳(𝑓 = 0), is an n-vector 

with elements equal to 1.  Using Equation (4.10), the volume of work required finishing all 

design tasks are updated. Hence, matrix 𝒳(𝑓 = 0) is updated, and the value of the element 

will be either more than or equal to 1. This extension helps to apply effects of the quantified 

uncertainty on a design process. As a result of applying uncertainties in the model, the design 



Design Optimization for Sustainable Product under Uncertainty                                         87 

 

 

 

process will reach a stable state with more iterations. Because the uncertainty is only applied 

to the design process in the first stage of a design process, values of elements in 𝒲 matrix 

are equal to zero for the rest of iterations. By embedding  𝒲(𝑓 ≥ 1) = 0 in Equation (2), the 

equation denotes an open-loop design process in Equation (4.9). Continuing the design 

process using Equation (4.9) does not help to control effect of uncertainties on the number of 

iterations. Therefore, some adjustments are applied in the model. 

In order to control effects of uncertainties, an updated matrix 𝒳(𝑓) is used to serve as 

𝒳(𝑓 = 0) in Equation (4.11). The adjustment in the model includes defining a desired state 

of the system to reach (Lee et al., 2004). In other words, a desired number of iterations to 

finish all design tasks (𝑓𝐷) should be targeted at this stage. Elements of the desired state 

matrix 𝒳(𝑓𝐷) are set as a ratio of the initial matrix 𝒳(𝑓 = 0). A ratio of 0.1 means that a 

design task is considered as complete if the remained amount of work is equal or less than 

0.1 (Ong et al., 2003; Huang and Chen, 2006). However, the ratio can be reduced close to 

zero for more accurate result. 

Based on the control engineering, the number of iterations in a design process can be 

reduced if more resources are assigned to design tasks in each iteration. Equation (4.13) uses 

this concept to compensate the reduced number of iterations by adding more resources in 

matrix 𝒰(𝑓). Thus, the aim is to find the best value of matrix 𝐾 . Fortunately; there are 

several methods to calculate matrix 𝐾 as the trade-off between time and resources (Lee et al., 

2004; Ogata, 1995). Consequently, effects of uncertainties are controlled by adding more 

resources to each design task within individual iterations. 
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Description of the optimization model in a design process 

The real design always has limitations in budget and resources. In addition, there are 

constraints of regulations and environmental concerns for the resources allocation. Thus, the 

constraints and regulations do not allow to control effects of uncertainties by adding more 

resources to the design task. The goal is to optimize the number of iterations in a design 

process under uncertainties considering different objective functions.  

Model 1: Cost Minimization 

The cost optimization aims to find the number of iterations as decision variables to 

minimize the total design cost. The mathematical model of the problems is presented as 

follows: 

 

min𝒵1 = ∑ 𝒞ℐ𝑖

𝐼𝑜𝑝𝑡

𝑓=1

𝑦𝑖 + ∑𝒞ℛ𝑗

𝐽

𝑗=1

∗ ∑ ∑ 𝑈𝑘𝑖𝑗

𝐾

𝑘=1

𝐼𝑜𝑝𝑡

𝑓=1

 (4.15) 

  

Subject to: 

 

 

∑ 𝑦𝑖

𝐼𝑜𝑝𝑡

𝑓=1

= 1 

 

(4.16) 

∑ ∑ ∑ 𝑈𝑘𝑖𝑗

𝐾

𝑘=1

𝐼𝑜𝑝𝑡

𝑓=1

𝐽

𝑗=1

≤ 𝑅𝑗 ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (4.17) 

𝐼𝑜𝑝𝑡 ≥ ∑ 𝑓 ∗ 𝑦𝑖

𝐼𝑜𝑝𝑡

𝑓=1

 

 

(4.18) 

𝑦𝑖 ∈ {0,1},  𝑓 ∈ integer (4.19) 
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Where: 

𝒞ℐ𝑓= cost of iteration f within a design process, 

𝒞ℛ𝑗= unit cost of resource j used to compensate time, 

𝑈𝑘𝑓𝑗= amount of resource j used within iteration f for task k, 

𝑅𝑗= available units from resource j in the design process, 

𝐼𝑚𝑎𝑥= the maximum number of iterations, 

𝐼𝑜𝑝𝑡= the optimum number of iterations (𝐼𝑜𝑝𝑡 ≤ 𝐼𝑚𝑎𝑥), 

 

In this model, Equation (4.15) is the objective function to minimize the total design cost 

including cost of iterations and cost of resources. Variable 𝐼𝑜𝑝𝑡  in the second term of 

Equation (4.15) regulates the cost of resource allocation up to the optimum number of 

iterations. Equation (4.16) denotes that only one optimum iteration should be selected by the 

model. Equation (4.17) shows that resources assigned to design tasks (𝑘) in each iteration (𝑓) 

should not exceed the available resource (𝑗). Equation (4.18) decides the best number of 

iterations among all feasible iterations up to 𝐼𝑚𝑎𝑥. Types of variables are defined in Equation 

(4.19). 

Model 2: Environmental Impacts Minimization 

The goal of the second model is to minimize the total environmental impacts of a design 

process by finding the number of iterations as the decision variable. Since the constraints are 

similar to the first model, the objective function is described in Equation (4.20). 

min𝒵2 = ∑ 𝑦𝑖

𝐼𝑜𝑝𝑡

𝑓=1

∗∑ ∑ 𝑈𝑘𝑓𝑗 𝒫𝑘𝑗

𝐽

𝑗=1

𝐾

𝑘=1

∑ ∑(1−𝑋𝑘𝑓)

𝐾

𝑘=1

𝐼𝑜𝑝𝑡

𝑓=1

⁄  

 

(4.20) 
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In this equation, 𝒫𝑘𝑗  denotes the pollution (e.g., CO2 emissions) from each unit of 

resource j; therefore, the objective is to minimize the total pollution caused by the design 

process because of resources used such as new methods, new staff, and new technologies. By 

increasing iterations, the total environmental impacts of the design process are increased. In 

addition, the total amount of work done by tasks are increased; hence, the aim is to minimize 

the fraction in Equation (4.20) by finding the optimum number of iterations. The parameter 

𝑋𝑘𝑓 denotes the total work done by task 𝑘 in iteration 𝑓.  

Solution approach 

The solution approach proposed for the optimization problem is presented as an 

algorithm in Figure 4.7. The algorithm assesses effects of uncertainties by updating 𝒳(𝑓 =

0) using Equation (4.10). 𝒳(𝑓 = 0) refers to the amount of remained work before the design 

process initiates. The objective function regulates the goals to be satisfied in the optimization 

problem. After deciding the objective function, the homogenous state-space model presented 

in Equation (4.9) is used to reach a predefined level of remained amount of work. The value 

of remained amount of design tasks can be set to any number between 0.1 to 0.01 meaning 

10% to 1% of 𝒳(𝑓 = 0). In the literature, 0.1 is used by researchers; however, for a more 

accurate design process, one may use 0.01 as the value of remained amount of design tasks.  

Thus, the maximum number of iterations ( 𝐼𝑚𝑎𝑥 ) without an extra resource allocation is 

obtained. The value of parameter 𝐼𝑚𝑎𝑥 is influential in the model because it defines a limit for 

the calculations. The rest steps in the algorithm are conducted for a discrete interval of 

iterations as [1, 𝐼𝑚𝑎𝑥). 
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The state-space gain matrix (K) and the vector 𝒰(𝑓) are required as parameters in the 

optimization model. These values are determined using Equation (4.11). An optimization 

model is formulated based on the computed values in each iteration. In other words, the best 

value of the objective function is decided after solving  𝐼𝑚𝑎𝑥-1 mathematical models.  

Two conditions are defined to ensure the optimal objective function (Z). First, the 

optimum number of iterations in each model (𝐼𝑜𝑝𝑡) has to be equal to the iteration number 

(𝑓). If the mathematical model decides 𝐼𝑜𝑝𝑡 < 𝑓, it proves that the selected 𝑓 is not optimum. 

Secondly, the value Z is the best among all other objective function values measured within 

[1, 𝐼𝑚𝑎𝑥). Finally, the model reports the optimum number of iterations (𝐼𝑜𝑝𝑡
∗ ) considering the 

objective and constraints. 

 

Figure 4.7 The proposed solution approach for the optimization model 
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4.3.2 Validation of the proposed approach 

The development of a smartphone is used as an example to verify the proposed method. 

The effect of changes in users’ preferences as uncertainties on the design process is 

evaluated. 

The design process of a smartphone includes multiple dependent and independent tasks. 

Such dependency in design tasks causes rework and iterations in the design process. Using 

the work transformation matrix (WTM), the dependencies are measured. Figure 4.8 presents 

the WTM for a smartphone. 

 

                 From (j) 

 To (i)              
A B C D E F G 

Data transfer A 
0 .9 .3 .1 0 0 .3 

Internet-connectivity B .6 0 .1 .3 0 0 0 

Software C 0 0 0 .1 0 0 .1 

Battery D 0 0 .1 0 .1 .1 .3 

Cameras E 0 0 .1 .3 0 .1 0 

Outer facing F 0 0 0 0 0 0 0 

Physical Interfaces G 0 0 .1 .6 0 .1 0 
 

Figure 4.8 WTM for the smartphone 

 

For the smartphone, the coupled design tasks are selected to be analyzed in Figure 4.8. In 

the WTM, each element 𝑎𝑖𝑗 (𝑖 ≠ 𝑗) reflects the amount of work in a unit created for task 𝑖 if a 

unit of task 𝑗  is completed. Diagonal elements are equal to zero. If an initial work 

vector, 𝒳(𝑓), is available, the work vectors in next iterations are obtained using Equation 

(4.9). For the smartphone, elements of 𝒳(𝑓) are assumed as 1 that shows 100% of the design 
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work is remained to be completed in the design process. All eigenvalues of the matrix 

presented in Figure 4.8 are between -1 and +1 as a sign that the entire design project will 

converge to its completion. Moreover, the greatest eigenvalue belongs to the task A that 

means it needs more iterations than the other tasks to finish a design process. 

Another important issue in the design phase is the effect of changes in user preferences. 

Users have shown a variety of requirements for a smartphone during its life cycle. Since 

several generations of the smartphone have been introduced to the market, changes in user 

preferences have been reflected in the next generation. We assume that the changes in user 

preferences are available as proposed by Afshari and Peng (2015b), but the effects of 

quantified changes are not identified. Thus, the work vector is revised to include disturbances 

𝒲(𝑓) using Equation (4.10). In this case, 𝒲(𝑓) affects the process at 𝑓 = 0 for set ℬ as a 

unit matrix. The measured work vector is presented in Equation (4.21). 

 

𝓧(𝒇 + 𝟏) = 𝓐𝓧(𝒇) + 𝓑𝓦(𝒇)                                                      (4.21) 
 

= 
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=
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2.35
1.39

⋮
0.54
1.14]

 
 
 
 

 

 

The updated amount of work 𝒳(𝑓) after the change of users’ preferences is used to 

measure the eigenvalue, eigenvector, and gain matrix. Equations (4.12-4.13) measure 

controlling features of the smartphone design process based on desired iteration numbers. A 

task is considered to be completed when the remained amount of work is less than 10% of the 

initial work. Thus, 𝐼𝑚𝑎𝑥 is measured when no excessive resources are added to expedite the 

design process using the homogenous presentation of the state-space representation. For the 
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smartphone, the design tasks converge to the desired amount of work in 12 iterations 

(𝐼𝑚𝑎𝑥 =12). Table 4.5 summarizes the amount of work in each iteration. The desired number 

of iterations is then set to obtain the amount of extra resources to meet desired iterations. 

Measured numbers are used as parameters of the proposed mathematical models for 

optimizing design iterations. It is assumed that the used resources in the design process are 

new materials and technologies. 

 

Table 4.5 The amount of work in each iteration 

 

Based on the iPhone components (Nadadur et al., 2012), a BOM of the iPhone is built. 

The BOM and a list of manufacturing processes are used to conduct the environmental 

impact analysis. Environmental impact analysis is conducted using SimaPro8 (PRé 

Consultants, 2015) known as the state-of-the-art software for the life cycle assessment and 

environmental impact analysis (Devanathan et al., 2010). A summary of the environmental 

impact analysis for the parts is presented in Table 4.6. Only physical components with a 

potential to measure the environmental impacts are selected; components such as “operating 

system” and “software” were not selected for the analysis.  

To design new products, companies such as the Apple spend lots of money as presented 

in Figure 4.9. However, because obtaining accurate data for the research and development 

 

Tasks 

Iterations 

1 2 3 4 5 6 7 8 9 10 11 12 

A 2.02 1.82 1.43 1.13 0.86 0.64 0.48 0.36 0.27 0.20 0.15 0.10 

B 1.72 1.40 1.17 0.91 0.69 0.53 0.39 0.29 0.22 0.16 0.12 0.09 

C 0.18 0.11 0.06 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

D 0.58 0.22 0.14 0.06 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00 

E 0.36 0.19 0.08 0.05 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 

F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

G 0.55 0.37 0.14 0.09 0.04 0.02 0.01 0.01 0.00 0.00 0.00 0.00 
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(R&D) costs in detail is a challenge, the fixed and variable costs are normalized for the 

mathematical models. The costs in any unit (e.g., billion dollars or million dollars) can be 

normalized by dividing into a fraction of cost. To overcome our lack of knowledge in 

proportion of the fixed and variable costs, the cost optimization model is solved using 3 

proportions as illustrated in Table 4.7. It is assumed that the fraction of the fixed costs over 

the initial variable cost can reach to 400%, 100%, and 25% in each iteration. The effects of 

presented assumptions are then analyzed in next section. 

 

Table 4.6 The environmental impact analysis for the selected parts in iPhone using PRé 

Consultants (2015) 

Tasks Environmental impacts ( 𝓟𝒌𝒋) [kg CO2]  

A 4.27 

B 4.27 

C 4.27 

D 40.20 

E 10.14 

F 25.74 

G 11.10 

 

 

Table 4.7 The cost analysis for the smartphone 

Cost Iteration normalized cost [$] 

1 2 3 4 5 6 7 8 9 10 11 12 

𝓒𝓘𝒊 26 20 15 11 8 6 4 3 2 2 1 1 

𝓒𝓡𝟏 104 

𝓒𝓡𝟐 26 

𝓒𝓡𝟑 6.5 
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Figure 4.9 The Apple expenses for Research and Development (R&D) (Statista, 2016) 

 

4.3.3 Analysis and discussion 

The proposed approach for the design process of the smartphone is coded using 

MATLAB. The disruption of changes in users’ preferences is added as the input of control 

problem. The objective function values for different iteration numbers are measured using the 

first and second models. Besides the optimization of iterations using the proposed model, 

effects of uncertainties on the objective function values are analyzed. The models are then 

solved, and objective function values are determined. 

For the first objective function (the cost minimization), the presented solution approach 

in Figure 4.7 is used for three cost scenarios in Table 4.7. In addition, each cost scenario is 

utilized to solve deterministic and uncertainty models. The results show that the first model 

with uncertainties reaches to the minimum value of the objective function at the 5
th

 iteration. 

It means that using extra resources (material) to expedite the design process is cost-efficient 

when the desired amount of work is set for the 5
th

 iteration. In reality, it is confirmed that 
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extra resources can reduce the time to finish a job; however, the method used in this research 

guarantees optimal time and cost of design. As an example, Lee et al. proved that using extra 

resources in a Camera design project could reduce the design time (less number of iterations) 

[96].  

The solution approach in Figure 4.7 requires checking the validity of results. As 

discussed before, a solution is valid if the optimum number of iterations is equal to the 

iteration number ( 𝐼𝑜𝑝𝑡 = 𝑓); otherwise, the minimum cost value is not acceptable. Table 4.8 

summarizes the cost objective values and conducted validity test. The results confirm the 5
th

 

iteration as the optimum and valid cost value. 

 

Table 4.8 The analysis of objective function values for the cost model with uncertainty 

 

  Iterations 

 1 2 3 4 5 6 7 8 9 10 11 12 
Optimum 

iteration 
1 1            

2  1           

3   1          

4    1         

5     1        

6      1       

7       1      

8        1     

9         1 1   

10             

11           1 1 

12             
First cost 

scenario (𝓒𝓡𝟏) 

Objective Value 373 282 180 77 60 157 259 363 468 574 678 784 

Validity             

Second cost 

scenario (𝓒𝓡𝟐) 

Objective Value 112 85 56 27 21 43 67 93 118 145 170 196 

Validity             

Third cost 

scenario (𝓒𝓡𝟑) 

Objective Value 47 36 25 15 11 15 19 25 31 37 43 49 

Validity             



Design Optimization for Sustainable Product under Uncertainty                                         98 

 

 

 

To evaluate effects of the cost scenarios on the optimization results, the cost 

optimization model is solved using deterministic and uncertain data. If all cost scenarios 

provide similar result, it is concluded that the optimal iteration number is independent of the 

fractions in Table 4.8. The outcomes of the cost minimization model are depicted in Figure 

4.10.  

  

(a) (b) 

 

(c) 

Figure 4.10 The objective function values for the cost minimization model using (a) first 

cost scenario, (b) second cost scenario, and (c) third cost scenario 
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Although different cost scenarios are used, the model determines the 5
th

 iteration as 

optimum for the uncertain data, and the 6
th

 iteration as optimum for the deterministic data. 

Thus, the cost scenarios do not influence the optimum number of iterations.  

Similar analysis is conducted for the second objective function (the environmental 

impacts minimization). By applying uncertainty in the model, the best objective function 

value is reached at the 5
th

 iteration as presented in Table 4.9. The model is solved using the 

deterministic data as well (see Table 4.10). 

 

Table 4.9 The objective function values and validity test for the second model with 

uncertainty 

 

 

 

 

 

Optimum 

iteration 

Iterations 

1 2 3 4 5 6 7 8 9 10 11 12 

1 1 1 1   1       

2             

3             

4    1         

5     1        

6             

7       1      

8        1     

9         1    

10          1   

11           1  

12            1 

Objective 

Value 
173 147 120 65 49 167 329 527 762 1031 1337 1678 

Validity             
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Table 4.10 The objective function values and validity test for the second model without 

uncertainty 

 

Next analysis is the evaluation of effects of uncertainties on objective function values. 

Therefore, both models are used to measure the optimum number of iterations including and 

excluding effects of changes. As shown in Figure 4.11 (a), the excluding uncertainty for the 

first model shifts the optimum iteration to the sixth iteration. Moreover, the total cost of the 

optimum iteration is less than the process that considers the uncertainty.  

 

Optimum 

iteration 

Iterations 

1 2 3 4 5 6 7 8 9 10 11 12 

1 1 1 1   1       

2             

3             

4    1         

5     1        

6             

7       1      

8        1     

9         1    

10          1   

11           1  

12            1 

Objective 

Value 
182 169 165 132 70 23 147 302 487 705 953 1232 

Validity             
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(a) 

 

(b) 

Figure 4.11 Objective function values for models including and excluding uncertainties 

 

For the second model, some iterations fail to meet conditions in Figure 4.7. Thus, the 

optimum iteration is 5 since iteration 6 fails validity in the proposed solution approach. In 

other words, the second model suggests a different iteration as optimum ( 𝐼𝑜𝑝𝑡 ≠ 𝑖) . 

Therefore, if the design search is set to the end at the 5
th

 iteration, it will meet both objective 
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functions. The result is significant in the reduction of the cost and environmental impacts 

compared to 12 iterations as the less resource usage. 

In conclusion, the presented models could significantly minimize the total cost of a 

design using the optimum number of iterations. Also, the result is significant in the reduction 

of the environmental impacts compared to 12 iterations as the lower resource usage. The 

proposed methods help to distribute workloads and allocate resources during design task 

planning when unexpected disturbances happen. For companies such as the Apple that has 

spent enormously on research and development for new products, the proposed methods can 

provide huge savings in terms of cost and environmental impacts. 

The research conducted in this Chapter has been published in the following journal and 

conference proceedings: 

 Afshari H, Peng Q, Gu P. Design Optimization for Sustainable Products under Users' 

Preference Changes. The ASME Journal of Computing and Information Science in 

Engineering. 2016; 16(4):041001-7. doi:10.1115/1.4033234. 

 Afshari H, Peng Q, Gu P. Reducing Effects of Design Uncertainties on Product 

Sustainability. Cogent Engineering. 2016. doi:10.1080/23311916.2016.1231388. 

 Afshari H, Peng Q, Gu P. Effects of Design Uncertainties on Product Sustainability. 

Proceedings of the International Conference on Innovative Design and Manufacturing 

(ICIDM). 2016. Auckland, New Zealand. 

 

 



 

 

 

 

 

Chapter 5 

 

Multi-objective Design of Sustainable Systems 

under Uncertainty 

 

5.1 Introduction 

This chapter extends the scope of sustainable product design into sustainable system 

design. An eco-industrial park (EIP) is a venue for businesses and local communities to 

cooperate to increase economic gains while minimizing environmental impacts of products and 

processes (Chertow and Lifset, 2004). The process of involving separated industries in a 

collective approach is called Industrial Symbiosis (IS). The aim is to utilize the competitive 

advantage in collaborations and the synergies (physical exchange of materials, energy, water, 

and by-products) stemming from geographic proximity (Chertow, 2000). This definition 

directly refers to the concept of a circular economy within an industrial area, where a goal of 
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the zero waste needs to be reached. Indeed, by minimizing environmental impacts, symbiotic 

relations have to be increased to maximize the resources recycling within the EIP (Boix et al., 

2015). 

Despite numerous research on material exchanges (e.g., water treatment) in EIPs, there is a 

modest number of publications dealing with the energy exchange between units, and even 

lesser on thermal energy networks. Figure 5.1 presents a schematic view of a single industry 

including the energy generation facility and processes.   

 

Figure 5.1 Schematic view of a single industry 
 

The best flow exchanges among a cluster of industries are decided to design industrial 

symbioses. A challenge is that a designer may comprise versatile goals in the symbioses 

design. Besides economic objectives, symbioses are created to minimize environmental 

impacts of flow exchanges. A schematic view of exchanges between industries is presented in 

Figure 5.2. 

 

 

Figure 5.2 Schematic view of industrial symbioses 
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Another major challenge is the need to consider uncertainty in the IS design. To design a 

network of symbioses, numerous data are required. However, studies have addressed the lack 

of access to data as a common challenge to model symbioses (Boix et al., 2015). Designing 

synergies under uncertainty is an approach to overcome the limitation in data.  

The goal of this research is to optimize industrial symbioses networks for a cluster of 

industries considering economic and environmental objectives. Thus, a mixed integer linear 

programming model is developed to optimize the location and capacity of flow exchanges 

between industries under uncertainties. A solution approach is then applied to deal with 

uncertain data during optimization. The research contributions include: (i) considering 

technical features in the modeling of energy demand and supply, (ii) proposing a multi-

objective model for the minimization of the total annual cost and pollutions, (iii) presenting 

different perspectives to the energy symbioses models and investigating effects of these 

perspectives on the optimal solution, and (iv) considering uncertainties in the modeling and 

solution approach to bridge the gap of the literature. 

5.2 Modeling symbioses in eco-industrial parks for versatile perspectives 

Before introducing the proposed method, it would be beneficial to state the problem in this 

research. Each factory can supply the required energy within its own facility or purchase from 

external resources. Depending on the type of a process, different amount of the 

extra/unused/wasted energy could be recovered. A local energy generation, particularly heat 

production, is expensive and with pollution for the environment. Instead, the required energy 

can be supplied either through a supply network or through a line from another process that 

produces the extra heat to match the need properly.  
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To establish energy symbioses for a set of industries, some infrastructure investments are 

required. The investments are for heat exchange networks (HENs) and pipelines to transfer 

energy between firms. Obviously, industries review economic objectives before contributing to 

an energy symbiosis. Figure 5.3 demonstrates the networks of industries before and after 

energy symbioses.  

As shown in Fig. 5.3 (b), although industry #3 may demand to establish symbioses with 

industry #1, some technical or economic concerns prohibit this symbiosis. Maximizing the 

number of energy symbioses should reflect the technical feasibility of solutions. The more 

reasonable features are included in the model, the more feasible symbioses can be achieved. 

 

(a) 

 

 
 

(b) 
 

Figure 5.3 Industries (a) before and, (b) after energy symbioses 
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Sets, parameters, and variables of the proposed model are listed as follows: 

 

Sets, 

𝐼 Set of supplier industries 

𝐽 Set of demand industries 

𝐾 Set of energy types  

 

Parameters, 

𝐷𝑗
𝑘 Demand of industry 𝑗 from energy type 𝑘 

𝑆𝑖
𝑘 Supply of industry 𝑖 from energy type 𝑘 

𝐿𝑖𝑗
𝑘  Distance of industry 𝑖 and 𝑗 for energy network 𝑘 

𝑈𝑖𝑗
𝑘  Unit cost of network between 𝑖 and 𝑗 for energy 𝑘 

𝐶𝐷𝑗
𝑘 Fixed cost of generating energy within industry 𝑗 

𝐶𝐶𝑖𝑗
𝑘  Fixed cost of conditioning energy from industry 𝑖 to 𝑗 

𝐶𝐸𝑖𝑗
𝑘  Selling price of energy 𝑘 from industry 𝑖 to 𝑗 

𝐶𝐼𝑗
𝑘 Variable cost of generating energy within industry 𝑗 

𝑅𝐶𝑖𝑗
𝑘  Cost of recovering energy 𝑘 for industry 𝑗 in 𝑖 

𝑇𝐶𝑗
𝑘 Tax on carbon for energy 𝑘 imposed to industry 𝑗 

𝑇𝑆𝑖
𝑘 Tax saving of industry 𝑖 by exporting energy 𝑘 

𝛼𝑖𝑗
𝑘  Depreciation rate of pipeline between 𝑖 and 𝑗  

𝛽𝑖𝑗
𝑘  Depreciation rate of facilities between 𝑖 and 𝑗 

𝛾 Distance limit for industries to build synergies 

𝑇𝑀𝑃𝑖
𝑘 Temperature of energy 𝑘 supplied by 𝑖 

𝑇𝑀𝑃𝑗
𝑘 Temperature of energy 𝑘 demanded by 𝑗 

 

Variables, 

𝑥𝑖𝑗
𝑘  Percentage of demand supply from 𝑖 to 𝑗 for energy 𝑘 

𝑦𝑖𝑗
𝑘  Binary variable if symbioses exists between 𝑖 and 𝑗 

 

The first objective function maximizes the energy symbioses between industries. Because 

variable 𝑥𝑖𝑗
𝑘  is defined as the independence of energy demands, this objective encourages flow 

exchanges between industries as presented in Equation 5.1. 

 

Max𝑍1= ∑ ∑∑𝑥𝑖𝑗
𝑘

𝐼

𝑖=1

𝐽

𝑗=1

𝐾

𝑘=1

 

 

(5.1) 
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The second objective function minimizes the total annual cost of establishing energy 

symbioses networks between industries. Since the perspective analysis requires different terms 

to be included in the cost objective function, two separated objective functions are defined for 

energy buyers’ (Equation 5.2) and EIP managers’ (Equation 5.3) perspectives. 

 

𝑚𝑖𝑛 𝒵2 = ∑ ∑∑𝐶𝐷𝑗
𝑘𝛽𝑖𝑗

𝑘𝑦𝑖𝑗
𝑘

𝐽

𝑗=1

+

𝐼

𝑖=1

𝐾

𝑘=1

∑ ∑𝐶𝐼𝑗
𝑘𝐷𝑗

𝑘(1 − ∑𝑥𝑖𝑗
𝑘 ) +  

𝐼

𝑖=1

𝐽

𝑗=1

𝐾

𝑘=1

 

 

             

(5.2) 

∑ ∑∑𝐶𝐶𝑖𝑗
𝑘𝛽𝑖𝑗

𝑘𝑦𝑖𝑗
𝑘

𝐼

𝑖=1

𝐽

𝑗=1

𝐾

𝑘=1

− ∑ ∑(𝑇𝐶𝑗
𝑘𝐷𝑗

𝑘 ∑𝑥𝑖𝑗
𝑘

𝐼

𝑖=1

)

𝐽

𝑗=1

𝐾

𝑘=1

 

 
 

min𝒵3 = ∑ ∑∑𝐶𝐷𝑗
𝑘𝛽𝑖𝑗

𝑘𝑦𝑖𝑗
𝑘

𝐽

𝑗=1

+

𝐼

𝑖=1

𝐾

𝑘=1

∑ ∑𝐶𝐼𝑗
𝑘𝐷𝑗

𝑘(1 − ∑𝑥𝑖𝑗
𝑘 ) +  

𝐼

𝑖=1

𝐽

𝑗=1

𝐾

𝑘=1

 

 

∑ ∑∑(𝑈𝑖𝑗
𝑘𝐿𝑖𝑗

𝑘 𝛼𝑖𝑗
𝑘 + 𝐶𝐶𝑖𝑗

𝑘𝛽𝑖𝑗
𝑘)𝑦𝑖𝑗

𝑘

𝐼

𝑖=1

𝐽

𝑗=1

𝐾

𝑘=1

+ ∑ ∑∑𝑅𝐶𝑖𝑗
𝑘𝐷𝑗

𝑘𝑥𝑖𝑗
𝑘

𝐽

𝑗=1

𝐼

𝑖=1

𝐾

𝑘=1

− 

 

 

(5.3) 

∑ ∑(𝑇𝐶𝑗
𝑘𝐷𝑗

𝑘 ∑𝑥𝑖𝑗
𝑘

𝐼

𝑖=1

)

𝐽

𝑗=1

𝐾

𝑘=1

− ∑ ∑(𝑇𝑆𝑖
𝑘 ∑𝐷𝑗

𝑘𝑥𝑖𝑗
𝑘

𝐽

𝑗=1

)

𝐼

𝑖=1

𝐾

𝑘=1

 

 

In Equation 5.2, annual fixed and variable costs of generating energy within buyers’ firms 

are added to the annual cost of conditioning centers embedded inside the firms. If the 

demanded energy is not supplied by external sources, the energy generation facility generates 

unsupplied amount of the energy demand. It is assumed that the supplied firm includes piping 

and HEN costs in the selling price (𝐶𝐸𝑖𝑗
𝑘 ); therefore, the buyer may only purchase conditioning 

centers at its own firm. Because a part of the demand is supplied by external sources, its tax 

saving is reduced from the total cost. 
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From EIP managers’ point of the view, all annual costs should be considered for the cost 

minimization objective; therefore, Equation 5.3 adds some costs of suppliers including costs 

for piping network, energy recovery facilities at suppliers, and tax saving for the recovered 

energy. 

 The third objective function minimizes the environmental impacts of symbioses in 

industries as presented in Equation 5.4. Because the pollution of recovered by-product/ waste/ 

energy is less than the supplying raw material/ energy (𝑃𝐸𝑖𝑗
𝑘 < 𝑃𝐼𝑗

𝑘), Equation 5.4 motivates 

flow exchanges in industries. 

 

min𝒵4 = ∑ ∑𝑃𝐸𝑖𝑗
𝑘 ∑𝐷𝐽

𝑘𝑥𝑖𝑗
𝑘 + ∑ ∑𝑃𝐼𝑗

𝑘𝐷𝑗
𝑘(

𝐼

𝑗=1

𝐾

𝑘=1

1 − ∑𝑥𝑖𝑗
𝑘 )

𝐼

𝑖=1

 

𝐽

𝑗=1

𝐼

𝑖=1

𝐾

𝑘=1

 

 

 

(5.4) 

 

Constraints are categorized for the effect of perspectives as well. The constraints for the 

buyers’ side optimization are as follows: 

 

 

∑𝑥𝑖𝑗
𝑘  ≤ 1          ∀ 𝑘, 𝑗

𝐼

𝑖=1

 

 

(5.5) 

 

 

𝐷𝑗
𝑘𝑥𝑖𝑗

𝑘 ≤ 𝑆𝑖
𝑘 (1 − (

𝑇𝑀𝑃𝑗
𝑘

𝑇𝑀𝑃𝑖
𝑘)) 𝑦𝑖𝑗

𝑘       ∀ 𝑘, 𝑖, 𝑗 
 

(5.6) 

 

 

∑
𝐷𝑗

𝑘𝑥𝑖𝑗
𝑘

(1 − (𝑇𝑀𝑃𝑗 𝑇𝑀𝑃𝑖))⁄

𝐽

𝑗=1

≤ 𝑆𝑖
𝑘            ∀ 𝑘, 𝑖 

 

(5.7) 
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𝐶𝐼𝑗
𝑘𝐷𝑗

𝑘 ∑𝑥𝑖𝑗
𝑘

𝐼

𝑖=1

+ 𝑇𝐶𝑗
𝑘𝐷𝑗

𝑘 ∑𝑥𝑖𝑗
𝑘

𝐼

𝑖=1

− 𝐶𝐷𝑗
𝑘 ∑𝛽𝑖𝑗

𝑘𝑦𝑖𝑗
𝑘

𝐼

𝑖=1

> ∑𝐶𝐸𝑖𝑗
𝑘𝐷𝑗

𝑘𝑥𝑖𝑗
𝑘             ∀ 𝑘, 𝑗

𝐼

𝑖=1

 

 

(5.8) 

 

 

 

 

 

(𝐿𝑖𝑗
𝑘 − 𝛾) 𝑥𝑖𝑗

𝑘 ≤ 0 (5.9) 

 

 

𝑥𝑖𝑗
𝑘 ≤ 𝑦𝑖𝑗

𝑘  (5.10) 

 

 

0 ≤ 𝑥𝑖𝑗
𝑘 ≤ 1, 𝑦𝑖𝑗

𝑘 ∈ {0,1} (5.11) 

 

 
 

Constraint 5.5 refers to satisfy up to 100% buyers’ energy demand. Constraints 5.6 and 5.7 

balance demand and supply equations between industries. Constraint 5.6 demonstrates that in 

terms of temperature, the energy capacity of a supply firm should be enough to be selected for 

supplying demanded energy. Constraint 5.7 highlights that the total supplied demand should 

not exceed the supply capacity of an industry. Constraint 5.8 ensures that each energy buyer 

pays less money when contributing to energy symbioses than it supplies all demand within the 

firm. In other words, only financially feasible symbioses are selected in the model. Constraint 

5.9 seeks for industries within a specified distance limit to build synergies. Constraint 5.10 

checks if energy is supplied from selected industries for symbioses. Constraint 5.11 defines 

variable types in the model. 

Constraint 5.12 checks if an individual investment for each energy symbioses (the piping 

and recovery cost) is economical for the network. Investments should be reimbursed by selling 

the recovered energy in a defined time period. 
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𝐶𝐸𝑖𝑗
𝑘𝐷𝑗

𝑘𝑥𝑖𝑗
𝑘  >  (𝑈𝑖𝑗

𝑘𝐿𝑖𝑗
𝑘 𝛼𝑖𝑗

𝑘 + 𝐶𝐶𝑖𝑗
𝑘𝛽𝑖𝑗

𝑘)𝑦𝑖𝑗
𝑘 + 𝑅𝐶𝑖𝑗

𝑘𝐷𝑗
𝑘𝑥𝑖𝑗

𝑘  

 

                            −𝑇𝑆𝑖
𝑘𝐷𝑗

𝑘𝑥𝑖𝑗
𝑘                          ∀ 𝑘, 𝑖, 𝑗 

(5.12) 

  

 

For the heat required for each industry, constraints 5.6-5.7 are defined. As presented in 

Figure 5.4, temperature is an important parameter to identify the heat supplied for each firm 

(Bergman and Incropera, 2011).  

 

Figure 5.4 Relations between temperature and enthalpy 
 

 

 

For the heat demand of a firm, the required energy follows Equation 5.13: 

 

𝐸̇ = 𝑚̇𝑐𝑝∆𝑇                                                             (5.13) 

 
 

The total heat transfer power (𝐸̇) is measured as a function of the fluid flow rate (𝑚̇), heat 

capacity (𝑐𝑝), and temperature change. By assuming a perfect process, the fraction 𝜂 of the 

supplied heat (from 𝑎 to 𝑏) is measured as shown in Equation 5.14 (Giedt, 1971). Thus, the 

total heat transferred to an industry is measured as presented in Equation 5.15. 

 

https://www.google.ca/search?tbo=p&tbm=bks&q=inauthor:%22Theodore+L.+Bergman%22
https://www.google.ca/search?tbo=p&tbm=bks&q=inauthor:%22Frank+P.+Incropera%22
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𝜂 =
𝑇𝑎−𝑇𝑏

𝑇𝑎
                                                                 (5.14) 

 

𝐸𝑏 = 𝜂 𝐸𝑎 = (1 −
𝑇𝑏

𝑇𝑎
) 𝐸𝑎                                                 (5.15) 

 

5.3 Multi-objective design of symbioses under uncertainty 

The optimization problem in a simplified form is for a set of stakeholders (including 

industries) interested in the synergy creation; we are looking for the best flow exchange 

(named symbioses) considering economic and environmental measures. Since uncertainty can 

affect the optimal decision of symbioses and the further selection of future partners, it is 

necessary to assess effects early in the method. In addition, there is a need to select partners 

under the formulated uncertainty. Figure 5.5 depicts the framework of the proposed method in 

a step by step manner. 

 
 

Figure 5.5 Steps for the optimal design of industrial symbioses under uncertainty  
 

 

 

To identify uncertainties, internal and external sources are investigated. As presented in 

Table 5.1, the demand uncertainty and supply uncertainty are selected as internal uncertainties. 
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If a supplier fails to fulfill its customers’ demand, such failure affects customers’ activities. To 

minimize the impacts, the supply uncertainty as well as the demand uncertainty should be 

considered in the symbioses network design.  

 

Table 5.1 Uncertainties identified to model for industrial symbioses optimization 
 

Uncertainty Type Definition 

Demand/Supply Internal Any drastic variation in predefined values 

of demand/ supply 

Supply Price Internal/ External Any change either internal or external that 

makes other supply sources more interesting  

Tax on carbon External Reduction/ increase in Tax on carbon due to 

national/ international regulations  
 

 

The similar consideration should be taken into account for uncertainty in the supply price 

and tax on carbon. If other supply sources (other than industrial symbioses) provide lower 

prices, industries would revise their ties with current industry partners. For tax on carbon, it is 

expected to increase for a short term, but any reduction in the tax rate would impact established 

symbioses. 

After modeling symbioses as presented in section 5.2, uncertainties should be embedded in 

the model. There are several models to deal with uncertainty in a model. Using the stochastic 

optimization, deterministic values of parameters are substituted by statistics of decided 

uncertainties. Therefore, the new objective functions are formulated as follows: 

 

min𝑍1 =  𝔼(𝑓1(𝜉(𝐷𝑗
𝑘), 𝜉(𝐶𝐼𝑗

𝑘), 𝜉(𝑇𝐶𝑗
𝑘)) ) (5.16) 

 

 

min𝑍2 =  𝔼(𝑓2 (𝜉(𝐷𝑗
𝑘))) (5.17) 
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For example, Equation 5.4 is revised as Equation 5.18. 

 

 min𝒵2 = ∑𝑃𝑠 ∗ ( 

𝑆

𝑠=1

∑ ∑𝑃𝐸𝑖𝑗
𝑘 ∑𝜉(𝐷𝑗

𝑘)𝑥𝑖𝑗
𝑘 + 

𝐽

𝑗=1

𝐼

𝑖=1

𝐾

𝑘=1

 

 

∑ ∑𝑃𝐼𝑗
𝑘𝜉(𝐷𝑗

𝑘)(

𝐼

𝑗=1

𝐾

𝑘=1

1 − ∑𝑥𝑖𝑗
𝑘 ))

𝐼

𝑖=1

 

 

(5.18) 

 

 
 

Therefore, Equations 5.3-5.12 should be revised as well to include uncertain parameters in 

the model.  

As the solution approach, a sample average method (SAM) is applied to handle the 

stochastic nature of the model by estimating the objective functions. Because the most popular 

way to deal with randomness in a model is to optimize the expected value of an arbitrary 

function of parameters, we can rewrite the objective functions as shown in Equation 5.19 

(Gutjahr and Reiter, 2010). Such arbitrary function of parameters should be defined over an 

appropriate probability space. 

 

1

𝑁
∑ 𝑓𝜗(𝑥, 𝜔𝑣)

𝑁

𝑣=1

≈ 𝔼(𝑓𝜗(𝑥, 𝜔)) 

 

(5.19) 

 

In this equation, N random and independent scenarios are used to approximate objective 

function values. Each scenario reflects randomness by  𝜔𝑣 , where 𝑣 = (1, 2, … )  represents 

stochastic parameters. Using an estimation of the expected value of functions, the stochastic 

optimization model is changed to a deterministic one that is relatively easier to be solved. 

Thus, the multi-objective model is simplified as presented in Equation 5.20. 
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𝑚𝑖𝑛 (
1

𝑁
∑ 𝑓1(𝑥, 𝜔𝑣),

𝑁

𝑣=1

   
1

𝑁
∑ 𝑓2(𝑥, 𝜔𝑣),

𝑁

𝑣=1

   … ) 

 

(5.20) 

 
 

Since a weighted method is applied to solve the multi-objective model, an algorithm to 

solve the model is used. First, the model is solved using a single objective. The values are used 

to normalize the weighted multi-objective function. The multi-objective model is then solved, 

and results are stored. The process continues up to testing all desired weights. Because of using 

the sample average method, all described steps are followed for a new set of uncertainty 

scenarios. Finally, solutions are evaluated to decide the desired network topography.  

5.4 Case study 

The proposed models have been applied to optimize energy symbioses using anonymized 

data inspired by a set of industries in France. Figure 5.6 demonstrates the location of industries 

involved to investigate the possible energy symbiosis.  

 

 

 

Figure 5.6 Map of anonymized industries to investigate possible energy symbioses 
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The objective is to find the optimal energy exchange flows between industries considering 

technical and economic constraints. Moreover, the optimum network should motivate more 

exchanges to reduce the fuel consumption for economic and environmental purposes. Tables 

5.2-5.4 present the details of studied industries. 

  

Table 5.2 Distances (KM) between industries in the studied area 

Suppliers Buyers 

1 2 3 4 5 6 

S1 8 17 2 7 4 6 

S2 14 2 11 13 7 4 

S3 10 8 5 3 3 4 

 
 

Table 5.3 Energy specification of industries in the studied area 
 

Energy specs. Suppliers  Buyers 

  S1 S2 S3  1 2 3 4 5 6 

Heat (Ton/yr.)   90   70   100    35   25   10   70   60   30 

Temperature (K)   673   523   473    403   373   443   403   423   383 

 

  

Table 5.4 Major parameters included in the models 

Parameter Unit Value 

Depreciation period of pipelines Year 20 

Depreciation of facilities (e.g., HEN) Year 10 

Interest rate % 5 

Heat recovery cost €/kWh 0.028 

Heat price generated from gas €/kWh 0.06 

Gas pollution rate    kg CO2 / kWh 0.063 

Tax on carbon €/kWh 0.0042 
 

The proposed models are applied to minimize the total annual cost and environmental 

impacts of the network considering maximized energy symbioses. The models are formulated 

in AIMMS optimization package. Using a 4 GB RAM, 2.0 GHz PC, the AIMMS could solve 

the problem in less than one second. 
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5.4.1 Perspective analysis for modeling symbioses in EIPs 

For two perspectives including energy buyers and EIP managers, two separated models are 

formulated. In this regard, the first two objective functions are modeled in the AIMMS. Figure 

5.7 depicts the optimal solution for each model. In this figure, each energy buyer is connected 

to particular energy supplier. The selection of connections is based on the minimum annual 

costs and maximum percentage of demand supply.   

 

Figure 5.7 Energy symbioses network for (a) buyers’ perspective, (b) EIP managers’ perspective 

 
 

Besides the schematic presentation of optimized connections, two energy symbioses 

networks are compared using indexes presented in Table 5.5. The indexes compare the cost 

and the length of optimized network for each perspective.  

Table 5.5 Comparing two energy symbioses networks 

Indexes Buyers EIP managers 

Total annual cost [€] 48,932,363 47,404,740 

Suppliers’ cost [€] 47,791,414    44,472,370    

Buyers’ cost [€] 1,140,949 2,932,370 

Length of pipeline [km] 45 26 
 

 

(a)                                                                      (b) 
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The indexes show that the optimization model based on buyers’ perspectives would 

increase the total annual cost of symbioses. However, the buyers’ cost would be decreased up 

to 2.5 times more than the second network. Because the piping cost is included in the second 

model (EIP managers’ model), shorter energy flows have been selected than the first one. 

Moreover, a more detailed analysis is conducted to investigate the efficiency of each network. 

The analysis looks for the efficiency and sensitivity of optimal networks under presented 

scenarios. The efficiency measures are described as follows: 

Demand Satisfaction (DS): This measure identifies the percentage of buyers’ demand 

covered in each model. Although each buyer would like to maximize this index, some 

technical or economic constraints could reduce its value. Similar weighted index can be 

applied to measure values of the demand satisfaction. The indexes are measured using 

Equations 5.21 and 5.22. 

 

𝐷𝑆𝑗 = ∑𝑥𝑖𝑗                                                    𝑗 = 1 𝑡𝑜 6

𝐼

𝑖=1

 

 

(5.21) 

 

 

𝑊𝐷𝑆𝑗 = ∑𝐷𝑗𝑥𝑖𝑗 ∑𝐷𝑗                           𝑗 = 1 𝑡𝑜 6

𝐽

𝑗=1

⁄  

𝐼

𝑖=1

 

 

(5.22) 

 
 

Supply Utilization (SU): The ideal condition for a supplier is to sell the entire recovered 

heat to consumers. Therefore, the ability of a model to utilize the maximum capacity of 

suppliers is measured as presented in Equation 5.23. The index is also useful to estimate 

suppliers’ ability for future network extension. A very close index value to 0 is the sign of 

network inefficiency. In the contrary, an index value near 1 represents networks brittle state for 

demand fluctuations.  Thus, a middle point between [0, 1] boundaries is as an ideal value.   
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𝑆𝑈𝑖 = ∑𝐷𝑗𝑥𝑖𝑗 𝑆𝑖⁄                    𝑖 = 1 𝑡𝑜 3

𝐽

𝑗=1

 

 

(5.23) 

 
 

Carbon Tax Reduction (CTR): This measure addresses environmental impacts of models 

to minimize the amount of CO2 used for the energy generation. A higher value of the index 

means the better performance of the model. Because the EIP model assesses tax saving for all 

industries, only the tax saving from buyers’ side is used to compare the models.  

 

𝐶𝑇𝑅 = ∑(𝑇𝐶𝑗𝐷𝑗 ∑𝑥𝑖𝑗

𝐼

𝑖=1

)

𝐽

𝑗=1

 

 

(5.24) 

 
 

Supply Capacity under Demand Uncertainty (SCDU): The measure investigates the ability 

of energy suppliers to cover demand fluctuations. Due to unknown nature of variations in 

energy demands, the measure reflects the flexibility of an established symbioses network to 

cover demands. To assess the measure, energy demands have been simulated to quantify 

demand variations. The suppliers’ capacities are then evaluated to deliver the accumulated 

demand. Table 5.6 shows the evaluated measures to compare the effect of the perspectives.   

 
 

Table 5.6 Efficiency measures for symbioses networks 

Indexes Buyers EIP managers 

DS (1,1,0.73,1,1,1) (0.8,1,1,1,1,1) 

WDS 99% 97% 

SU (0.63, 0.48, 0.42) (0.63, 0.53, 0.38) 

CTR 6,273,223 6,153,462 

SCDU (0.68, 0.48, 0.47) (0.66, 0.48, 0.43) 

 
 

Since suppliers in both models have a higher capacity than the total demand, technical 

features (e.g., temperature) and economic measures (e.g., pipeline cost) govern the partner 
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selection. Comparing the DS and WDS indexes shows that the first model could serve demands 

more than EIP managers’ model. As expected, buyers’ perspective model promotes greater 

energy symbioses. However, differences of indexes between two models are not significant.  

Similar results are demonstrated for SU and CTR indexes to conclude that buyers’ model has 

presented a better performance. 

For the last efficiency measure, the existing demand of buyers has been increased by 30%. 

The results show that the topography of the first model (buyers’ perspective) will not change, 

while the second model requires revising the network structure. This means that the EIP 

managers’ model is not resilient to demand variations. Therefore, the managers may decide to 

select buyers’ perspective for a stable performance over demand variations and other efficiency 

measures. 

5.4.2 Studying the effect of uncertainty on optimal symbioses network 

Table 5.7 presents the uncertain parameters. The uncertain data in the model are defined 

using a range or statistical distribution. In each scenario, a sample from bounded 

space/distribution function is obtained for modeling. In this table, the demand and supply 

declared in a normal distribution refers to the current value presented in Table 5.4. 

Table 5.7 Uncertain parameters included in the models 

Parameter Type Data 

Demand Distribution Normal (Demand, 𝛿𝑗) 

Supply Distribution Normal (Supply, 𝛿𝑖) 

Supply Price Range [0.054, 0.063] 

Tax on carbon Range [0.0042, 0.01] 
 

To analyze the effect of objective functions on the solution, each objective function is 

applied separately. The objective functions include minimization of the total annual costs of 
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the network and minimization of the total environmental impacts of the network. Using a 

weighting method, the multi-objective model is then solved and the solutions are compared. To 

provide a comprehensive analysis of the all stakeholders, the models are formulated for EIP 

managers’ perspective. Figure 5.8 presents the physical view of the optimized synergy 

networks using single and multiple objectives. The multi-objective model and cost 

minimization model provide a similar network structure. Arrows in Figure 5.8 show the 

direction of the flow from suppliers (i=3) to buyers (j=6). 

  

                                     

(a) 

 

                                              

      (b) 

Figure 5.8 Optimized symbioses networks using (a) the minimization of environmental impacts, 

(b) the minimization of the total cost, and the multi-objective model  
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The models are compared using indexes presented in Table 5.8. The indexes include 

individual objectives functions. Moreover, the length of a pipeline is used to compare the 

models on required pipeline networks. Because both the multi-objective model and total cost 

minimization provide a similar network structure, the indexes are presented together.  

 

Table 5.8 Comparing optimized symbioses networks using single and multiple objective 

functions 
 

Indexes Min environmental impacts Min total cost & Multi obj. 

Total pollution [kg co2] 90,910,655 91,309,860 

Total cost [€] 48,932,363 47,404,740 

Pipeline [km] 45 26 

 
 

The indexes show that the model for the environmental impacts minimization gives the 

lower pollution compared to other models. In contrast, the other models could save more cost 

compared to the model for the environmental impacts minimization.  

The effects of the uncertainties are evaluated using the weighted multi-objective model. 

Equal weights are assigned to both cost minimization and environmental impacts models. The 

sampling average method is used to solve the multi-objective model. The objective function 

values are estimated based on average values of scenarios generated using Table 5.7. Each 

uncertain parameter is assessed separately to clarify its effects on the model.  

Demand uncertainty: This uncertainty originates from the expansion of industries that 

ends to more raw material/energy consumption. It is assumed that each industry can increase 

its demand up to 50%. After generating N=10 scenarios, the multi-objective model is solved 

and the results are evaluated. The liability of flow exchanges between suppliers and users is 

decided based on the number of confirmed connections and average amount of the supply. To 
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compare effects of the demand uncertainty, results of a deterministic multi-objective model are 

presented as well in Figure 5.9. 

 

Figure 5.9 Comparing effects of the demand uncertainty on the optimized flow exchanges 

in the multi-objective model 

 

As Figure 5.9 presents, no supplier can satisfy the demand of user 3 under the demand 

uncertainty. Also, supplier 3 is considered to supply the demand of user 2, but the connection 

will be established for a sever increase in demand. Other flow exchanges remain unchanged.  

Supply uncertainty: If a supplier cannot support the promised supply, the user will miss a 

required demand. In this case, a user may prepare its material/energy from other sources. It is 

assumed that each supplier may decrease its supply up to 50%. The multi-objective model is 

solved using 10 generated scenarios. Similar to the demand uncertainty, the number of 

confirmed connections and the average amount of supplies are used to decide liability of flow 

exchanges. The effects of the supply uncertainty are evaluated using the deterministic multi-

objective model as presented in Figure 5.10. 
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Figure 5.10 Comparing effects of the supply uncertainty on optimized flow exchanges in the 

multi-objective model 

 

The results show that under the supply uncertainty, user 2 needs to shift its supplier from 2 

to 3. Suppliers can partially support the demand of user 3. The supply of user 5 is weakened as 

well. Under the supply uncertainty, user 6 is always supplied completely. 

Uncertainty in supply prices: In a real condition of the supply market, there are several 

competing sources of supply.  Improvements in technology could lead to the cheaper price for 

a raw material. In the energy market, the evolution of energy generations using renewable 

sources in small and medium size enterprises could reduce supply prices. In this case, a user 

prefers to shift its material/energy supply into other sources. It is assumed that the current cost 

of supplying energy will be reduced to 0.054 [€/kWh] depending on energy sources of users. 

Effects of the supply uncertainty are evaluated using a deterministic multi-objective model as 

presented in Figure 5.11. 

 
 

 
 

 

Figure 5.11 Comparing effects of the uncertainty in the supply prices on the optimized flow 

exchanges in the multi-objective model 
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Figure 5.11 shows that the uncertainty in supply prices would motivate user 4 to increase 

its purchase from supplier 3. For user 6, it is preferred to supply more than 50% of the demand 

from supplier 1 as the result of price uncertainty. Other flow exchanges remain almost the 

same as the deterministic model. 

Tax on carbon: This uncertainty arises from the national or international regulation to limit 

produced carbon in industries’ processes. A review of trends in carbon tax shows that in a short 

term, countries plan to increase the carbon tax (Maes et al., 2011; Pérez-Valdés et al., 2012). 

However, in the long term, another scenario could be regulated. It is assumed that the tax on 

carbon can increase up to 2.5 times of its current rate. For this uncertain parameter, we directly 

applied increased rates in the model to evaluate the effects. The effects of increases in the tax 

on carbon on the multi-objective model show no change in the optimized network. The amount 

of the demand satisfaction is changed for the optimal cost. 

Besides the network structure, other indexes are analyzed to investigate the effects of 

uncertain parameters. The indexes are for the cost and environmental impacts of the synergic 

networks as summarized in Table 5.9. 

In Table 5.9, the percentage of changes in each index compared to the deterministic multi-

objective model is measured. This is useful to evaluate effects of uncertainty parameters on the 

model.  
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Table 5.9 Evaluations of indexes under the demand uncertainty  

 

Index 

Uncertain Parameters 

Demand Supply Price Carbon 

Tax  

Total Cost of Suppliers  46211861    33970565    43437051  45435418    

Change (%) +4% -24% -3% 2% 

Total Cost of users  (Minus tax)  24931145     26913628    3900179  2201293    

Change (%) +850% +917% +33% -25% 

Total Cost (with tax income)  58361994     51775569    35221503  24864281    

Change (%) +66% +47% +0.003% -30% 

Total Cost (Minus tax)  71143006     60884192    47337270  47636711    

Change (%) +50% +28% -0.002% +0.004% 

Total Pollution  120539557     96640362    91628522  91146732    

Change (%) +32% +5% +0.003% -0.002% 

 
 

The initial demand uncertainty seems to have the worst effect on indexes. But the most 

effect is for the increase of flow exchanges, not the uncertainty. Thus, the supply uncertainty 

affects the network more comprehensively than other uncertain parameters. In addition, Figure 

5.11 demonstrates that the uncertainty in the supply uncertainty has provided three uncertain 

connections in the network. A surprising result in Table 5.9 is the limited effect of the increase 

in the carbon tax on reducing pollutions.    

In order to verify the solution of the stochastic optimization method, a robust optimization 

model is developed. The aim is to compare solutions obtained from both methods and discuss 

the compliance and conformity of results. Thus, robust counterparts of the deterministic 

models are developed and modeled in the AIMMS optimization software package.  

Because of complexities in generating the robust counterpart of the proposed model, 

several levels of uncertainty studies have been conducted. The studies include reviewing 

effects of individual uncertain parameters, pairs of the uncertain parameters, and all uncertain 

parameters. To compare the results, outputs of robust models for individual uncertain 

parameters are compared in Figure 5.12. 
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Figure 5.12 Comparing the optimized flow exchanges using the stochastic and the robust models 
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In Figure 5.12, the optimized flow exchanges are mostly compatible specifically for 

Supply price uncertainty and Tax on carbon uncertainty. A minor change in the optimized 

network configuration is witnessed to supply the second and third users (U-2 and U-3) under 

demand and supply uncertainties. The difference could be justified for the value of demand 

and the logic of stochastic optimization. As discussed in the presented solution approach, it is 

assumed that all scenarios (N=10) have the same occurrence probability. A different 

probability for the scenarios could end to different flow exchanges. However, the robust 

model has provided less cost for the optimal configuration; therefore, the result of the robust 

model can be selected for implementation. 

In summary, it is believed that some connections are resilient to be affected by uncertainties. 

The flow exchanges between supplier 2 and user 1 (S2-U1), (S2-U2), (S3-U4), (S1-U5), and 

(S3-U6) exemplify such resilience in the reviewed industrial case. Thus, the EIP managers 

could trust such flow exchanges for the optimized symbioses network. 

The research conducted in this Chapter has been published in the following conference 

proceedings: 

 Afshari H, Peng Q, and Farel R. Improving the Resilience of Energy Flow Exchanges 

in Eco-Industrial Parks: Optimization under Uncertainty. Accepted paper in the 

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: 

Mechanical Engineering. December 2016.  

 Afshari H, Peng Q. Need for Optimization under Uncertainty: Designing Flow 

Exchanges in Eco-Industrial Parks. In the proceedings of ASME International Design 
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 Afshari H, Farel R, Gourlia J-P, Peng Q. Energy symbioses in Eco-Industrial Parks: 

Models and Perspectives. In the proceedings of ASME International Design 

Engineering Technical Conferences & Computers and Information in Engineering 

Conference IDETC/CIE 2016, Charlotte, NC, USA. 
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 Afshari H, Peng Q, and Farel R. Optimizing flow exchanges in eco-industrial parks 

(EIPs) using industrial symbioses: concepts and models. Submitted to the 

International Journal of Cleaner Production. 

 Afshari H, Peng Q, and Farel R. Extension of industrial symbioses to residential 

complexes: models, opportunities and challenges. To be submitted in the Journal 

of  Resource, Conservation and Recycling. 

 

 

 



 

 

 

 

 

Chapter 6 

 

Conclusions and Recommendations 

 

The sustainable solution for product and system design should include all sustainability 

pillars including the economy, society, and natural environment. However, uncertainty as the 

lack of data/knowledge or trust in knowledge affects the sustainable solution. This research 

proposes a framework to include uncertainties of sustainability pillars in the design phase of 

a product. The method is extended to design a sustainable system under uncertainty. The 

research has been conducted in three stages: (1) to quantify uncertainties in social and 

technological aspects of a sustainable product using two innovative methods (agent-based 

model and Big Data); (2) to assess effects of the quantified uncertainty on sustainable 

product design, and minimize the cost and environmental impacts of a product design process 

using control engineering and mathematical programming; (3) to develop a model for the 
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sustainable system design under multiple uncertainties using the multi-objective 

optimization.  

6.1 Concluding remarks and research contributions 

This research bridges the gap in the literature for methods to practically apply 

uncertainty studies in the product design process and sustainable systems. The existing 

deterministic approaches for product design fail to provide the optimal solution in a dynamic 

environment. By including uncertainty quantification and evaluation, a designer can 

efficiently address changes required in a product design to minimize its cost and 

environmental impacts. A list of research accomplishments and major findings of the 

research are summarized as follows: 

 In a knowledge economy, a significant part of a company’s value may consist of 

intangible assets. It is believed that the knowledge economy depends on more intellectual 

capacities than physical inputs as a key aspect (Powell and Snellman, 2004). For an 

efficient use of intellectual properties in the product development process, this research 

developed cost-effective methods to estimate changes in product components using 

agent-based modeling and Big Data during the product life cycle. The early knowledge of 

the product changes will minimize the cost and increase the efficiency of design 

decisions. 

 In Chapter 3, the proposed agent-based method focuses on the ability of agents in the 

multiple domain analysis of changes. Technical and social interactions are defined for a 

set of autonomous agents. Agents’ behavior for a specific duration (the product life cycle) 
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is simulated. The proposed agent-based method can help formulating the mathematical 

representation of interactions. 

 A competence method based on Big Data analytics is developed to overcome 

shortcomings of the proposed agent-based model in terms of technical factors, social 

factors, and scope of study. The method quantifies the changes in customers’ preferences 

using social network mining. After quantifying the external uncertainty, effects of the 

dependencies between components of a product are evaluated. The changes are then 

transferred into components to determine the most affected components during the 

product life cycle. 

 Results of the proposed method for the smartphone are discussed in detail. Real changes 

of the smartphone during its life cycle are used to assess the accuracy and efficiency of 

the proposed methods. Some error indexes are used to quantify the error measurement. 

Moreover, a change propagation method (GVI) applied for the smartphone (Nadadur et 

al., 2012) is used to compare the results. Both of the proposed methods have shown 

interesting results; however, the method based on Big Data analytics has shown a better 

convergence to real changes of the smartphone. It is noticed that evaluating dependencies 

between components of the smartphone could increase the accuracy of the methods.  

 In Chapter 4, a comprehensive approach to reduce effects of the uncertainty on 

environmental impacts of the design process is presented. The method considers changes 

of customers’ preferences using an indicator of the generational variety uncertainty in a 

product life cycle. The research emphasizes the design solution for minimizing 

environmental impacts of products. The research deliverable is the highlighted product 

design parameters (DPs) that affect environments with quantified measures of 
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environmental impacts loads. Moreover, effective DPs are decided under constraints in 

design activities related to the budget limitation. 

 In Chapter 4, a method to evaluate effects of unexpected disturbances on coupled design 

tasks is proposed as well. Two models are developed to optimize design iterations under 

disturbances. The proposed method is based on a non-homogenous state-space 

representation to minimize the design iteration. Two mathematical models are developed 

to minimize the cost and environmental impacts of the design process. The methods are 

applied to a smartphone design process. For the iPhone example, it is proved that changes 

of users’ preferences have increased the cost and environmental impacts of the design 

process. Proposed models can find the optimum number of design iterations under 

changes of users’ preferences. The proposed method is essential for products with a long 

life, as multiple generations of the product may be introduced to the market during the 

product life cycle. 

 One of the major contributions in this research is including all sustainability pillars in the 

proposed approach. The research addresses the users’ preferences to highlight the role of 

individuals in the society. Moreover, the economic and environmental objective functions 

have been considered for optimal decision making in the design process. 

 In Chapter 5, the framework for sustainable design under uncertainty is extended to 

sustainable systems. While creating synergies and symbiosis has all economic and 

environmental advantages, finding the optimum way for the redistribution of energy 

produced in some processes requires other technical matches (e.g., thermodynamic 

compatibility for heat flow). In this case, cost saving is not trivial. In this chapter, 

industrial symbiosis networks with the emphasis on energy networks are discussed. By 
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addressing important decisions in energy symbioses networks, two models to optimize 

energy symbioses networks are presented regarding stakeholders’ perspectives. The 

models search for optimal synergies between individual industries in an EIP. Both models 

minimize the annual cost of networks considering maximized synergies between 

industries. 

 Chapter 5 also brings the attention to the importance of considering uncertainties in the 

optimization problem for the flow exchange optimization in designing EIPs, and proposes 

a multi-objective model for the symbioses creation. The model minimizes the total annual 

cost of synergic exchanges while minimizing the total environmental impacts of flow 

exchanges between industries. This is important because the sustainability of EIPs and its 

symbiosis not only relies on economic bases, such as the oil price decreased recently, but 

also on the environmental motivation such as the CO2 emission regulated by the 

government. This chapter reviews briefly uncertainty factors in EIPs, and studies the 

effect of formulating uncertainty parameters in the optimization problem using a case 

application of industrial but anonymized data. The deterministic multi-objective model is 

then compared to models with uncertain parameters to highlight the effect of 

uncertainties on the industrial symbioses decisions. The contributions are (1) proposing 

multi-objective models for multiple types of symbioses to address minimizing the 

environmental impacts directly; (2) formulating technical and economic measures in the 

flow exchange optimization; (3) integrating uncertain parameters in the optimal structure 

of energy symbioses networks.  
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6.2 Research limitations and recommendations for future research 

Although this research proposed an innovative approach to include uncertainties in 

design of the sustainable product and system design, there are still many opportunities to 

improve in this field. Research limitations in terms of data and resources are lack of the 

access to accurate sources of data for Big Data analytics and the lower number of experts in 

qualitative analyses such as the axiomatic design in case studies. In terms of methods, the 

uncertainty modeling is limited to the basic diffusion theory that is required to be improved. 

Also, the optimization models in Chapter 4 are the single objective, which does not reflect 

the accumulation of environmental and economic indexes. A list of possible future research 

is presented as follows: 

 A common challenge in the Big Data analytics project is a lack of access to accurate data. 

In the proposed Big Data method, the Google trends tool has been trusted in the role of 

valuable source for the Big Data analytics as confirmed in several other studies. 

However, a comprehensive analysis using other Big Data sources is expected for future 

research.  

 The basis of the agent-based model is an extended version of the basic diffusion theory 

shown in Equation 3.1. The aim is to evaluate effects of social interactions and mass 

media on people’s preferences when such changes of preferences matters for a 

manufacturer. However, one may use other theories to include dynamic variables in the 

market analysis such as the utility of consumption in economics.  

 In Chapter 4, two models were introduced to minimize the cost and environmental 

impacts of a product during the product development process. The proposed models can 

be extended to other decisions in the product design process because uncertainty would 
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influence other decisions as well. For example, the uncertainty can affect decisions in the 

product supply chain or manufacturing level. Such integrated framework to incorporate 

uncertainty in different levels is proposed for further research developments. 

 The presented models to optimize symbioses networks can be extended for other 

objectives such as maximizing efficiency indexes. Moreover, values for uncertain 

parameters could be measured instead of assuming the values. Agent-based modeling can 

be used for uncertainty studies. As the uncertainty is inevitable in engineering systems, 

suggesting models to overcome multiple uncertainties will be examined in the future 

research.   

 Harvesting unused/wasted materials or energies in an EIP can benefit users such as 

residential complexes. The residential complexes can be a perfect match/customer in an 

industrial symbiosis because of the almost fixed variation in demand and lower range of 

the heat used in the daily life. Proposing such integrated and sustainable systems can 

extend the application of industrial symbioses to non-industrial users in the society. As a 

result, the society would benefit less CO2 emissions for less new energy generation.  

 The reliability and continuous access to the recovered materials/energy remain as a 

challenge for further applications of industrial symbioses. For energy symbioses 

networks, a talented way to improve the access rate to the required energy is to combine 

existing networks with renewable energy generation sites. In this case, the need for 

burning fossil fuels to compensate unsupplied energy would be satisfied. Therefore, the 

possibility and feasibility of combining industrial symbioses networks with renewable 

energy generation networks are proposed for the future research. 
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Figure A. 1 First QFD matrix for the smartphone
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Figure A. 2 Calculation of magnitude of changes for the smartphone 
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