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Automatic Discovery of Design
Task Structure Using Deep
Belief Nets
With the arrival of cyber physical world and an extensive support of advanced informa-
tion technology (IT) infrastructure, nowadays it is possible to obtain the footprints of
design activities through emails, design journals, change logs, and different forms of
social data. In order to manage a more effective design process, it is essential to learn
from the past by utilizing these valuable sources and understand, for example, what
design tasks are actually carried out, their interactions, and how they impact each other.
In this paper, a computational approach based on the deep belief nets (DBN) is proposed
to automatically uncover design tasks and quantify their interactions from design docu-
ment archives. First, a DBN topic model with real-valued units is developed to learn a
set of intrinsic topic features from a simple word-frequency-based input representation.
The trained DBN model is then utilized to discover design tasks by unfolding hidden units
by sets of strongly connected words, followed by estimating the interactions among tasks
on the basis of their co-occurrence frequency in a hidden topic space. Finally, the pro-
posed approach is demonstrated through a real-life case study using a design email
archive spanning for more than 2 yr. [DOI: 10.1115/1.4036198]

1 Introduction

The increasing demand for better, faster, and efficient design
has driven companies to constantly improve their capabilities of
efficient design process management, as a large percentage of
defects in product development arise due to an ineffective man-
agement of design process [1]. One of the key challenges in design
process management is to develop a consistent understanding
among design engineers [2]. For this purpose, process modeling has
been a prevailing approach that includes various techniques to
describe a desired process, define the scope boundary between
design tasks, and predict the interaction among design tasks, from
flow charts, graphs to agent-based models [3–6]. The current pro-
ject management practices usually create process models with itera-
tive discussions, which highly rely on the expert evaluation, and
many times, the results do not match their initial expectations. The
root reasons are usually the uncertainty characteristics of design
processes, which is difficult to predict at an early stage, as well as
the bias of expert knowledge that is caused by the different back-
grounds of designers.

Despite the fact that more appropriate resources are nowadays
available due to the increasing application of IT systems in design,
study shows that a large percentage of design information required
for design process management or process modeling are satisfied
only by the designers’ individual knowledge base [7]. The design
information archived in other forms, such as emails, regular reports,
design journals, change logs, and different kinds of social data, are
underutilized and completely unexploited in most cases. Actually,
all these resources were generated with a specific level of valuable
information about the design process. It is essential to make all the
audiences contribute to the design process management effectively
[8]. However, only a handful of studies [9–11] are found working
on extracting useful information from these valuable textual resour-
ces for improving the design process understanding.

In order to reduce both the ambiguity introduced by subjective
assessment and the time spent in searching for and absorbing
information from a large amount of available resources, this paper

aims to automatically discover the design task structure from rele-
vant documents collected from completed projects using natural
language processing techniques. The ultimate purpose is to help
the design engineers to quickly gain insights from the past (one or
several completed projects), which would offer great assistance in
the management of current and even future projects. The under-
standing of design tasks, their categorization, and execution pat-
terns harvested from this automatic approach serves as a solid
empirical basis for helping the design engineers to make more rea-
sonable and doable decisions.

With the above purpose, this paper mainly focuses on the tech-
nical aspect of automatically discovering design tasks and task
interactions from design documents. The topic modeling tech-
nique which has been widely used in text processing is adopted.
In machine learning, a topic model is a type of statistical model
that learn latent topics in a collection of documents [12], e.g.,
latent Dirichlet allocation (LDA) [13], deep belief network (DBN)
[14], and Softmax model [15]. For our particular application of
design document processing, topic modeling opens the possibility
of automated design process analysis for developing a fast under-
standing of, for example, task executions by transforming raw
data in natural language format to task-relevant topics, temporal
dynamics of design processes by identifying the changes in task-
relevant topics over time, and task interaction patterns by analyz-
ing the co-occurrence frequency of task-relevant topics. In detail,
a DBN-based topic modeling approach is proposed in this paper
to learn a set of task-relevant topics from design document collec-
tions. To deal with documents with different lengths, real-valued
units that represent documents in word-frequency vectors are used
at the input layer of the proposed DBN topic model. Furthermore,
to make the learned topics representative, “label” information that
summarizes the central theme of a document, e.g., document title
and keywords, is used as the output layer to fine-tune the topic
model. Based on the learned topic model, the interaction strength
of design tasks are estimated by the co-occurrence frequency of
task-relevant topics throughout the document collection.

Section 2 presents a related work about the design process man-
agement using process modeling and the art-of-state of topic mod-
eling techniques. Section 3 describes the proposed topic model to
discover design tasks, and its utilization to quantify the interaction
strength of design tasks. Section 4 reports and discusses the results
of applying the proposed approach on a design email archive
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collected from a real design project. Section 5 discusses some lim-
itations of our current approach. Section 6 gives the conclusions.

2 Related Work

2.1 Modeling Approaches for Design Process Management.
In common with all the creative processes, design processes can-
not be produced in a strictly linear manner, and the procedure is
ever changing throughout the entire lifecycle of the product devel-
opment. In this context, effective management is of central signifi-
cance to enable the achievement of product quality, capital in
budget, and timeliness. Generally, an effective management to
design the process usually commences with ensuring that all
designers have a clear understanding of the client’s brief, their own
scope, and the interactions between design tasks. To address this
issue, process modeling has always been an actively researched
topic in the filed of design process management. According to the
literature, this type of research provides not only a means to repre-
sent design process by describing design processes in terms of task
dependencies, workflows, inputs, outputs, and so on [8], but also a
means to manage the design process by providing a baseline that
allows designers to follow a systematic way of thinking about
design tasks and their implementations by providing multiple views
or single specific view of the entire design system [7].

In the literature, a number of formal design process models
have been proposed to provide theoretical support for design pro-
cess understanding and improvement. Sinha et al. [16] presents a
detailed overview of the state-of-the-art in modeling for engineer-
ing system design. In this paper, they are classified into three main
streams: parameter-based model, task-based model and process-
based model.

A typical parameter-based model puts more focus on modeling
the connections between bottom-level parameter elements. It is
assumed that the parameters of design tasks or functions are a sig-
nificant aspect of product design, and decisions should be carefully
made for these parameters [17]. Generally, these well-founded
models confine to a single purpose, which limits their applications
in obtaining an overall understanding of a design process. Besides,
collecting the detailed information required by this kind of model is
a tedious job.

On the basis of parameter-based models, task-based models
[18,19] support multiparameter problems via using tasks’ parame-
ter connections to quantify design task interaction. The literatures
about this kind of model witness the popularity of applying vari-
ous kinds of design structure matrices (DSMs) on facilitating
design process management [20–22]. As a management tool,
DSM provides a compact and clear way to present the complex
system and highlight the system architecture with multiple views,
including process architecture, product architecture, function
architecture, and organization architecture. However, the applica-
tion of DSM in process management is greatly limited by its size.
It is difficult to gather reliable information for a DSM with more
than ten elements.

Unlike previous two kinds of models, the process-based
model aims to provide a good top-level view of the design process
with good visibility of different design goals [23]. However, this
kind of model is generally with high level of abstraction and
cannot support designers with detailed information in process
management [7].

Based on the above analysis, we found that although all kinds of
process modeling approaches have their potential of being applied
to a variety of disciplines, their successful application in design
management are often constrained by their capability of integrat-
ing reliable and detailed information of design process, which may
cause uncounted man-years of meetings, debates, and wastage of
both time and money. Besides, it is difficult to model an ever-
changing design process only based on experts’ evaluations.

In order to address the above problem, this paper aims to pro-
pose a way that enables designers to learn design knowledge from

the past, which serves as solid and objective experience basis
to facilitate process modeling. The arrival of the information-
economical world put forward the urgent need of taking advantage
of any audience, such as emails and different forms of social data
transferred among designers, and regular reports, to support the
design process management. Furthermore, the situation that about
20% time of a design is spent by the designers in searching for and
absorbing useful information for process improvement speeds this
need as well [8]. However, extracting useful information from
design documents is an important issue which has not been fully
stressed in the literature of design engineering.

2.2 Topic Modeling for Text Document Analysis. In
machine learning, a topic model is a type of statistical model for
automatically discovering low-dimensional latent topic representa-
tion of documents [12]. Intuitively, the per-document word assign-
ments are observed variables, while the topics and per-document
topic distributions are hidden variables. Hence, the central problem
of topic modeling is using the observed variables to infer the hidden
variables.

The most common approach of topic modeling is based on the
idea that documents are mixtures of topics, where the word multi-
nomial distributions over a fixed vocabulary correspond to topics.
LDA [13] is such a directed graphical model, in which joint distri-
bution is utilized to compute the posterior distribution of the hid-
den variables. In the literature, LDA is found as the most popular
topic model, and its extensions [24–27] also have been applied
successfully in finding semantically related words. However,
exact inference in these models is difficult, so that the posterior
distributions are only computed approximately. Furthermore,
these models assume that documents always share the same set of
topics.

More recently, neural network-based undirected graphical mod-
els are witnessed to outperform LDA models in terms of the low-
dimensional latent representation of documents [28–30]. In order
to achieve a fast inference, which is difficult for LDA approaches,
Gehler et al. [31] used two-layer restricted Boltzmann machines
(RBMs) to model word-count vectors as a Poisson distribution.
However, they are unable to deal with documents of different
length. In order to fix this problem, Hitton and Salakhutdinov [15]
proposed the replicated Softmax model. Compared to LDA mod-
els, the biggest advantage of these undirected graphical models is
that, once trained, it is quite efficient to infer a document’s topic
feature representation via a simple matrix multiplication.

Even though the inference of the replicated Softmax model [15]
is efficient, its representation ability is constrained by the simple
network structure of single-hidden layer. In this context, DBN [14]
are proposed to learn more complex latent features. A typical DBN
consists of one input layer of observations, one output layer of
reconstructions of the input data, and several hidden layers. Each
hidden layer attempts to reconstruct the input data at a different
abstraction level. This deep architecture of DBN allows it to learn
more complex topic features than those ones with single network
structure. Furthermore, its efficient inference via a simple matrix
multiplication makes it possess the capability of outperforming
LDA when inferring the topic feature representation of a new docu-
ment beyond the training dataset.

3 Discover Design Task Structure Via DBN-Based

Topic Modeling

Motivated by the great value carried by the available document
resources related to design process and the difficulty of mining
valuable information from a large set of document resources, this
paper proposes a DBN-based topic modeling approach for discover-
ing the design task structure from document collections. Figure 1
illustrates the framework of the proposed approach, where the thin
arrow indicates workflows, while the blank arrow indicates input
and output flows. In Fig. 1, the starting point is a set of time-
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stamped design documents from a real design project. The training
process of topic modeling consists of two stages: pretraining and
fine-tuning, which create a DBN topic model that learns the latent
topics in the input documents. Based on the learned topic model,
design tasks are reflected by topics of semantically related words,
and task interactions are estimated from the co-occurrence fre-
quency of task-relevant topics. The learned design tasks and their
interactions are expected to help designers to gain insight into what
design tasks were actually carried out and how they impacted each
other in practice, so as to facilitate decision making eventually.

3.1 DBN for Topic Modeling. As shown in Fig. 2, DBN is a
probabilistic model composed of one input layer of observations,
one output layer of reconstructions of the input data, and several
hidden layers [14]. The units of each hidden layer aim to learn the
topic representation of the input data (observation) at different
abstraction levels. Generally, the abstract topics tend to become
more complex as the hidden layer grows.

In order to apply the deep belief networks to extract design
tasks from design documents, we consider a document collection
D that consists of two parts, i.e., “body” information
fD1;…;Di;…;DNg and label information fY1;…; Yi;…; YNg.
The body information of each document is represented by a word-
frequency vector Di ¼ ðv1;…; vj;…; vMÞ, where vj is the occur-
rence frequency of the jth word in the body text of document Di,
and M is the vocabulary size of D. The label information is
reflected by words in the document title, keywords, and abstract,
which summarize a document’s central theme and provide signifi-
cant supplements to text analysis. Taking advantage of such kinds
of information to supervise and fine-tune the training process is
quite helpful in guaranteeing that the learned latent topics are
related to the central theme of a document. Therefore, the label
information of a document is defined as Yi ¼ ðy1;…; yj;…; yMÞ,
where yj 2 f0; 1g, and “1” indicates the occurrence of the jth word
in Di ’s label information parts. Due to the low frequency of words
in the label information, all the words in Y are treated with the
same significance. In other words, yj indicates a word’s occurrence
in the label information rather than the occurrence frequency in vj.

By mapping the word-frequency vectors into the visible units in
the first layer, the label information into the output units in the
highest layer, and the design tasks into the topics captured by hid-
den units, the problem of discovering design tasks is transformed
to find a set of topic features H ¼ ðh1;…; hi;…; hKÞ that not only
reconstruct the input data to the largest extent but also mostly con-
nect to the central theme of a document.

As shown in Fig. 2(a), the layers of a deep belief network can
be split pairwise. Each pair forms a separated restricted RBM, as
shown in Fig. 2(b), aiming to learn the statistical relationship
between the visible units and the hidden units. By this means, the

DBN can be greedily trained in a layer-by-layer manner, where
the output of the lower-layer RBM is the input data for training a
higher-layer RBM. In order to deal with documents with different
length and distinguish words with different degrees of contribu-
tion, we perform each RBM with a real-valued visible layer and a
binary hidden layer.

In detail, a normal distribution is used to model the observed
word frequency data V given the hidden topic features H, and a
sigmoid function is used to model the hidden topic features H
given the observed data V

p vijHð Þ ¼ Normal

exp
Xj¼K

j¼1

wjihj þ ai

0
@

1
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l¼1
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(1)

pðhj ¼ 1jVÞ ¼ sigm bj þ
Xi¼M

i¼1

wjivi

 !
(2)

where wji is the symmetric interaction weight between the visible
unit (word) vi and hidden topic hj, ai is the bias of the visible unit
vi, and bj is the bias of hidden unit vi. The value of visible units
stands for the frequency of corresponding words in a document,
valued in a range of 0–1. Given a set of topic features, the occur-
rence frequency over all the words sum up to be one, which is
important to deal with documents with different lengths.

The one-step contrastive divergence [32] is adopted to learn the
hidden parameters, which are updated by

Fig. 1 The framework of discovering design task structure via DBN-based topic modeling

Fig. 2 The architecture of deep belief network (DBN): (a) an
example DBN with one input layer and three hidden layers,
where each pair of succeeded layers is treated as a RBM model
and (b) the restricted Boltzmann machine (RBM)

Journal of Computing and Information Science in Engineering DECEMBER 2017, Vol. 17 / 041001-3

Downloaded From: http://computingengineering.asmedigitalcollection.asme.org/ on 12/21/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



�wij ¼ e EPdata½vihj� � EPrecon½v̂iĥj�
� �

(3)

�ai ¼ e EPdata½vi� � EPrecon½v̂i�ð Þ (4)

�bi ¼ e EPdata½hi� � EPrecon½ĥi�
� �

(5)

where e is the learning rate, and EPdata½vihj� is the expectation of
the co-occurrence frequency of word vi and hidden feature hj

given the observed input data, Pdataðvi; hjÞ ¼ pðhjjviÞpðviÞ. Simi-
larly, EPrecon½v̂iĥj� corresponds to the expectation given the recon-
structed data via one-step Gibbs sampling.

The training process of DBN consists of two steps: pretraining
and fine-tuning. The pretraining step aims to approximate parame-
ters greedily. Each RBM is trained separately. The bottom RBM
feeding with the word-frequency vector is expected to learn a set
of low-level topic features of a document. The renormalized topic
features over the learned posterior distribution PðHjVÞ are then
used as the input data for training a higher-level RBM, which is
expected to learn more complex topic features. This layer-by-
layer training process is repeated several times to learn a deep
belief network in Fig. 3(a).

After pretraining, an extra layer of binary units is added to
the top of the DBN, as shown in Fig. 3(b). The label information
Yi ¼ ðy1;…; yj;…; yMÞ is used to back-propagate the whole net-
work to adjust the weights for learning topic features that are
mostly related to document labels. For those documents without
the label information, we use the words with high frequency in a
document for substitution, considering those with low frequency
are less significant to reflect the main idea of a document. The
fine-tuning process makes the entire DBN tend to learn the mostly
relevant topics in a document.

3.2 Implementing DBN for Discovering Design
Task Structure

3.2.1 Discovering Design Tasks. This step advances to use
the learned topics to interpret design tasks, which are recorded in
design documents. After training, each hidden unit in the topic
model is connected to a set of words in the visible layer by
weights in W. In turn, the words that are strongly connected reveal
the semantic meaning of the corresponding topics, which might
refer to a design task in the real word.

In detail, each topic learned by the lowest hidden layer (e.g., H1

in Fig. 3) is directly represented by words with strongest positive
weights to the corresponding hidden unit. Take Fig. 4 as an exam-
ple, where thick lines indicate strong connections between words
and topics. Three words i 2 f1; 2; 3g with largest wji in wj;: are
selected to compose Topic1

j . Similarly, using the low-level topics
in place of words in the visible layer, topics learned by higher-

level hidden units are represented by groups of strongly connected
lower-level topics and tend to convey more complex information
about design tasks.

3.2.2 Measuring the Interaction Strength of Design Tasks.
After identifying the relevant design tasks by interpreting each
hidden units using the words that strongly connect to it, the trained
DBN model is again utilized to assess the interaction strength
between design tasks in a hidden topic space. It is natural to con-
sider that design tasks that frequently appear together tend to have
stronger connections. Based on this idea, the co-occurrence fre-
quency of design tasks is used as the criterion for measuring their
interaction strengths.

For each document, the DBN topic model generates its topic
distribution PðHjVÞ from its word-frequency vector by applying
Eq. (2) in a bottom-to-up manner. By mapping latent topics into
design tasks, each PðhjjVÞ estimates the possibility or frequency
that the jth task is recorded in a document. Next, the interaction
strength between pairs of design tasks is estimated as

ISðhijhjÞ ¼
Xd¼N

d¼1

PðhijVdÞPðhjjVdÞ
 !�

N (6)

where N is the size of the document set, and PðhijVdÞPðhjjVdÞ
computes the co-occurrence frequency of the ith and jth design
tasks in the dth document.

4 Case Study

4.1 Experimental Dataset. The case study was conducted on
a traffic wave project that aimed to design an Ants transportation
(AT) system for tackling the traffic wave problem in the highway
system. The project was hosted by a university. The participants
primarily consist of six undergraduate students and three profes-
sors from three engineering disciplines. Throughout the design
process, participants exchanged their opinions and discussed their
works via emailing each other in broadcast, one-to-one or one-to-
more manners. They were required to always send a copy of any
email correspondence to a specific common address. Finally, a set
of 569 emails is collected from March 2011 to February 2013 rep-
resenting a design process from conceptualization to prototyping.
All the emails are initially saved in a MS Outlook file and con-
verted to a single XML file.

4.2 Data Preprocessing. The experiments were implemented
in Java with the assistance of Apache OpenNLP1, which is an
open source library for processing natural language texts. After
manually deleting irrelevant emails, the data were preprocessed
by removing meaningless stop-words, performing stemming, and
eliminating words that occurred less than two times throughout the

Fig. 3 Training process of DBN topic model: (a) pretraining
process, in which a stack of RBMs are learned layer by layer
and (b) fine-tuning process, where an extra layer of label infor-
mation is added to fine tune the entire network

Fig. 4 Illustration of mapping design tasks from hidden topic
features. The thick lines indicate words with strongest connec-
tions to the jth topic.

1https://opennlp.apache.org/cgi-bin/download.cgi
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entire email collection, with the help of Apache OpenNPL. The
final vocabulary size is 1968. Words in both email subjects and
bodies composed the eventual input data fD1;…;Di;…;DNg for
pretraining the topic model. Words in email subjects composed the
label information fY1;…;Yi;…;YNg for fine-tuning the topic
model.

4.3 Experimental Setup and Evaluation. The performance
of the proposed approach is evaluated from two aspects: the effec-
tiveness of full-text document retrieval and the ability for discov-
ering hidden characteristics of the actual design process.

The full-text document retrieval experiment aims to evaluate
the influence of the topic model structure on the document
retrieval effectiveness. Each email in the training set was used as
a query to search those ones with biggest similarity to itself. The
content-based similarity of two emails was calculated using the
Euclidean distance between their latent topic representations
PðHjVÞ. Using the email subject as the evaluation criterion, the
document retrieval precision is computed as follows:

PrecisionðiÞ ¼ Ntotal
correctðiÞ

�
NtotalðiÞ (7)

where Ntotal is the number of emails that have the same subject
with the ith email, and Ntotal

correct is the number of correctly retrieved
emails in the top Ntotal ranked relevant emails.

With the help of domain expert knowledge, the ability for
design task discovery and task interaction assessment was eval-
uated by the degree of alignment between automatic findings and
participant feedback.

4.4 Results and Discussion

4.4.1 Document Retrieval Evaluation. Figure 5 compares the
performances of different DBN models in full-text document
retrieval when different numbers of hidden units and hidden layers
are selected. Each topic model was trained under the same param-
eter settings: 2000 iterations for pretraining process, 1000 itera-
tions for fine-tuning process, 0.2 for weight learning rate, and 0.05
for biases learning rate.

By using different numbers of hidden topic units, the average
retrieval precision of one-hidden-layer DBN model is shown in
Fig. 5(a). As seen from the symbol curve in Fig. 5(a), the average
retrieval precision increases dramatically when the numbers of

hidden units are relatively small, but it becomes stable after the
number is greater than 50. Based on the well-known experience
that more hidden units tend to need more training data and more
training time, a moderate number of hidden units is suggested to
remain effective in training topic models. For example, the num-
ber of hidden units was set to be 50 in the next experiment.

In Fig. 5(b), five DBN models with different numbers of hidden
layers are compared. As observed from Fig. 5(b), compared to the
one-hidden-layer model (1630-50), DBNs with two-hidden layers
(1630-150-50 and 1630-200-50) improve the precision score from
0.6187 to 0.6438 and 0.6712, respectively. However, different
phenomena are found in the two three-hidden-layers DBNs. Accu-
racies drop to 0.6084 and 0.6147 when a larger number of hidden
layers is specified. This conflicting result indicates that the effec-
tiveness of full-text document retrieval is not proportional to the
number of hidden topic layers. The insufficient training might be
one major reason that the two three-hidden-layers DBNs perform
worst. Generally, DBN models of more hidden layers contain
more parameters. To guarantee a better result, sufficient training
data are required to learn these parameters. Therefore, a moderate
number of hidden layers are suggested.

Figure 6 compares one-hidden-layer DBN models with the
LDA [20], which is one of the most popular topic models. For
fairness, we ran the LDA for 2000 iterations as well, setting the
same number of hidden topics as the DBNs. The comparison
result in Fig. 6 confirms that DBN outperforms LDA in learning
documents’ latent topic representation.

4.4.2 Learned Design Tasks. This step aims to inspect that,
given a set of design documents, whether the DBN topic model is
able to identify meaningful latent topics that uncover design tasks
recorded in these documents. Based on the experiment result in
Fig. 5, the DBN model of structure 1630-200-50 is selected. For
each learned latent topic, also known as the hidden unit in the sec-
ond hidden layer (the layer of 50 hidden units), we visualized the
top 5 words with strongest connections to it and named the corre-
sponding design tasks based on these words. The feedback from
project participant reveals that some of the 50 latent topics are
truly related to the actual design tasks while some are not.

Due to the space limitation, Table 1 lists six topics that are
most relevant to design tasks, which were carried out during this
traffic wave project. In the following parts, we will refer design
tasks to these topics. For each design task, only words of top-5
strongest connections are listed. According to Table 1, most words

Fig. 5 Document retrieval effectiveness of DBNs: (a) comparison of DBNs of one hidden layer
but different hidden units and (b) comparison of DBNs of the same hidden units in the top
layer but different numbers of hidden layers. The DBN structure is indicated in the format of
XX-XX, e.g., 1630-50 means a DBN model with one visible layer of size 1630, and one hidden
layer of size 50.
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associated with each design task are quite intuitive in the sense of
conveying a semantic meaning that reflect what were actually done
during the design process. Take the six design tasks as an example,
namely XXX project proposal, concept paper submission, ASME
conference paper, IRB application, traffic data collection, and simu-
lation software. According to the feedback from one core partici-
pant, the traffic wave project is only a part of the XXX project,
which consists of several subprojects. At the beginning, each sub-
project was required to submit a project proposal. Next, a detailed
concept paper about their ideas and plans was completed with the
efforts of all the participants of the traffic wave project after several
modification iterations, which is reflected by task 2. In the middle
stage, an unexpected task was conduced to obtain some supporting
documents from a significantly relevant department, which took
quite a long time to finish the IRB application. After developing the
core techniques that are not shown in Table 1, real-life traffic data
were fetched from the traffic department and utilized to evaluate
the developed Ants transportation system on several simulation
platforms, one of which is named as Paramics. Finally, this project
was ended with writing and publishing an ASME paper that sum-
marized the main work and achievement of this project.

In order to track the regions of the timeline when students were
truly working on the different tasks, Fig. 7 plots the temporal fre-
quency of the six task-relevant topics in Table 1 with a window
size of 15 days. Again, the timeline of each task in Table 1 aligns
well with the above feedback. It can be seen that students first
conducted on the project proposal issue (task 1) and achieved a
concept paper (task 2) during the first month after the project
started out. By the second month, students proceeded to obtain the
IRB support (task 4) before they could advance to the technical
part, which took them about 4 months. The traffic data collection
(task 5) and simulation software purchase (task 6) were started out
almost simultaneously after about 10 months. However, students
spent much longer time in finding out what types of data they
could get from the traffic department and processing these data.

Above observations demonstrate the ability for uncovering design
tasks and their temporal dynamics from collected documents. The
findings were evaluated by the project participant. Their feedback

Table 1 Illustration of selected design tasks learned by DBN topic model. Each topic is represented by five words with strongest
connection to it. The probability column displays the weights connecting words and topics. For privacy reasons, XXX is used in
place of the names of organizations and persons.

Words Probability Words Probability Words Probability

Task 1 (XXX project proposal) Task 2 (concept paper submission) Task 3 (ASME conference paper)

XXX 0.591 Concept 0.598 Revise 0.706
Meeting 0.291 Submission 0.556 ASME 0.315
Proposal 0.245 Revise 0.276 Dates 0.268
Project 0.230 Paper 0.267 Congress 0.259
Importance 0.022 Conference 0.223 Ants 0.190

The words Probability Words Probability Words Probability

Task 4 (IRB application) Task 5 (traffic data collection) Task 6 (simulation software)

Application 2.496 Traffic 0.514 PARAMICS 0.527
IRB 2.696 AYE 0.499 Simulation 0.293
Review 2.235 Data 0.492 Key 0.256
XXX 0.597 Project 0.482 Software 0.193
Form 0.566 Program 0.433 Wei 0.137

Fig. 6 Document retrieval effectiveness of one-hidden-layer
DBNs and LDAs with the same number of hidden topics

Fig. 7 Temporal frequency of task-relevant topics in Table 1
with a window size of 15 days
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revealed strong positive comments to the results, which uncovered
the actual design process from concept generation, methodology and
key techniques development, experiment data collection, to experi-
ment validation via simulation.

4.4.3 Learned Design Task Interactions. After identifying
design tasks, this step advances to answer the question that how
design tasks had interacted with each other in practice. For each
email, we generated its design task distribution by feeding the
trained DBN model with its word-frequency vector, then computed
design tasks’ co-occurrence frequency based on Eq. (6).

Figure 8 illustrates the interaction strength between above six
tasks, where nodes indicate tasks, the size of nodes reflect the over-
all interaction between one task and all others, and the thickness of
edges are related to the strength connecting tasks. From Fig. 8, one
notable observation is that task 1 (XXX project proposal in Table
1) might have interacted with all others strongly and equally. This
finding is not difficult to explain. Because all the initial design ideas
were generated in this task, it is natural that all the remaining tasks
had connections with it more or less. Edges connecting task 4 (IRB
application) show an exactly inverse interaction pattern, namely,
task 4 only has strong connections to two tasks, tasks 1 and 2, with
a strength of 0.188 and 0.120, respectively. This observation is con-
sistent with the feedback that task 4 is not a part of the design pro-
ject itself, but required to get support from relevant departments
based on the results of tasks 1 and 2. The strongest interaction, val-
ued at 0.237, is found between tasks 5 and 6. This is validated by
the relevant emails that the two tasks were carried out concurrently,
and both were related to validating the finally developed Ants trans-
portation system. Taken together, the above findings align well
with the feedback of the project participant, which proves the abil-
ity of our approach for task structure discovery and analysis.

5 Discussion

The purpose of this study is to extract useful design information
and knowledge from textual data to help in developing an under-
standing of historical operations. Two significant aspects have
been considered: design tasks which are mapped from frequent
topics in design documents, and task interaction strengths which
are estimated according to the co-occurrence frequency of corre-
sponding topics. The experiment results demonstrate a good align-
ment between the automatic design information and expert
evaluation. This proves that our approach can not only provide
assistance for design engineers in obtaining deep insight into the

behavior of actual design processes but also save both time and
labor required by the traditional human analysis.

Despite the above insightful contributions, some limitations still
remain. First, even though the learned topics could reveal some
design tasks in real world, the words composing a topic are difficult
for interpretation, especially for novices. Take task 1 in Table 1 as
an example. Based on words, i.e., “meeting,” “proposal,” “project,”
and “importance,” participants of this project can easily recollect
corresponding tasks, but it might be difficult for novices to connect
them to a real-world task. This is caused by the learning mechanism
of topic models, which discover abstract “topics” only based on the
statistics of words, overlooking their occurrence order. Second,
although the co-occurrence frequency of topics can reveal the task
interaction to some extent, it is not sufficient to explain how design
tasks interacted. One most significant reason is that the complex
interaction between tasks is jointly determined by multiple process
variables. Consequently, identifying these process-related variables
in design document is critical for estimating tasks’ interaction
strength more comprehensively and correctly. Both limitations
drive us to extract and analyze design information with a more fine-
grained granularity in our future work.

6 Conclusions

Digital design documents provide potentially useful sources of
valuable experience that would assist decision-making in future
projects. In this paper, we proposed a DBN topic modeling
approach to discover design tasks and estimate their interaction
strengths from textual design data. The case study was conducted
on a set of emails collected from a real-life design project. Further,
the experimental results show that our approach produces identical
results with the feedback from project participants, which proves
the metrics of our approach in helping engineers to get deep insight
into a historical project. Discussions on relevant concerns also high-
light some future research possibilities, e.g., fine-grained task dis-
covery and comprehensive interaction assessment, using more
advanced learning techniques in text mining, natural language proc-
essing, machine learning, and statistics.

Nomenclature

ai ¼ bias of visible unit vi

bj ¼ bias of hidden unit hj

Di ¼ word-frequency representation of the ith document
H ¼ vector of hidden units
hi ¼ ith hidden unit
M ¼ vocabulary size
N ¼ number of design document

Ntotal ¼ number of emails that have the same subject with the
ith email

Ntotal
correct ¼ number of correctly retrieved emails in the top Ntotal

ranked relevant emails
P(hj|Vd) ¼ possibility that the jth design task is recorded in the

dth document
vi ¼ occurrence frequency of the ith word in a document

wji ¼ interaction weight between visible unit (word) vi and
hidden unit hj

yi ¼ “1” indicates the occurrence of the jth word in a docu-
ment’s label information

Yi ¼ word-occurrence representation of the ith document’s
label information
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