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Abstract— Existing techniques for motion imitation often
suffer a certain level of latency due to their computational
overhead or a large set of correspondence samples to search.
To achieve real-time imitation with small latency, we present a
framework in this paper to reconstruct motion on humanoids
based on sparsely sampled correspondence. The imitation
problem is formulated as finding the projection of a point
from the configuration space of a human’s poses into the
configuration space of a humanoid. An optimal projection is
defined as the one that minimizes a back-projected deviation
among a group of candidates, which can be determined in a
very efficient way. Benefited from this formulation, effective
projections can be obtained by using sparse correspondence.
Methods for generating these sparse correspondence samples
have also been introduced. Our method is evaluated by applying
the human’s motion captured by a RGB-D sensor to a humanoid
in real-time. Continuous motion can be realized and used in
the example application of tele-operation.

I. INTRODUCTION

Humanoid robots have been widely studied in the research
of robotics. With the recent development of motion capture
devices such as RGB-D camera (e.g., Kinect) and wear-
able sensor system (e.g., Xsens MVN), efforts have been
made to generate human-like motions for humanoid robots
with high degree-of-freedoms. However, directly applying
captured poses of human to humanoids is difficult because
of the difference in human’s and humanoid’s kinematics.
Therefore, a variety of kinematics based approaches for
humanoid imitation have been investigated, which can be
classified into two categories. Many of them perform an
offline optimization step to compute the corresponding con-
figurations that conform to the mechanical structures and
kinematics of humanoids from input human data [1]–[6].
It is obvious that the significant computational overhead in
those techniques prevents us from applying them to real-time
imitation. Methods in the other thread of research compute
online imitation following captured human motion [7]–[12].

In this paper, we consider about the problem of realiz-
ing real-time human-to-humanoid motion imitation. Unfor-
tunately, it is not an easy task due to:

• full sampling of human-to-humanoid correspondence
often leads to large data size;
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Fig. 1: An example of humanoid imitation realized by our
framework.

• high non-linearity of underlying mechanical rules re-
sults in significant computational cost;

• how to find the configuration of a humanoid according
to the input poses of human in real-time is not intuitive.

Artificial neural networks have been adopted to ease the
difficulties, with which a lot of efforts have been made
in simulation and for robots with small degree-of-freedoms
[13]–[21]. A recent work [17] by Stanton et al directly
introduced neural networks with particle swarm optimiza-
tion to find the mapping between human movements and
joint angle positions of humanoid. However, there is no
measurement presented in their work to evaluate the quality
of humanoid poses generated by the trained neural system.
On the other aspect, our method is also different from this
work in terms of the training data set. We use the sparse
correspondence instead of the densely recorded raw data,
which can help eliminate the redundancy in data set and
improve the training speed. Moreover, only requiring a sparse
set of correspondence samples leads to a lower barrier of
system implementation.

We propose a framework that allows efficient projection of
a pose from human’s space to the configuration space of hu-
manoid based on sparsely sampled correspondence extracted
from recorded raw data, which can be used to realize motion
imitation in real time (see Fig. 2). Experimental results show
that our framework can be successfully used in the motion
imitation of humanoid (see Fig.1 for an example of tele-
operation using a NAO humanoid).
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Fig. 2: An illustration of our framework for motion imitation using configuration projection.

II. FRAMEWORK OF CONFIGURATION PROJECTION

A. Problem Definition

A human pose can be uniquely represented as a point (ab-
breviated as C-point) h ∈ Rm in the configuration space
(abbreviated as C-space – H) of human’s motion and its
corresponding pose of humanoid can be denoted as a point
r ∈ Rn in the C-space of humanoid – R. We assume one-to-
one correspondence between the poses of human body and
humanoid, i.e. the mapping between human and humanoid’s
C-spaces is bijective. A pair of human’s and humanoid’s
configurations is denoted as (h, r) ∈ Rm+n. Given stored
correspondence pairs {(h, r)} as the known knowledge and
a new input pose h∗ ∈ Rm, the configuration projection
Ω(·) can be defined as finding a corresponding r∗ ∈ Rn that
satisfies two basic properties:
• Identity – for any sample pair (hi, ri) in the data-set,

it should have
Ω(hi) = ri.

• Similarity – for an input C-point of human h∗, if

max{min
i
‖hi − h∗‖} < δ

then it should have

‖Ω(h∗)− r̃(h∗)‖ < ε,

where δ and ε are two constant values, and r̃(h∗) is
a C-point of humanoid that can be obtained by more
accurate but computational intensive methods (e.g., in-
verse kinematics) as the ground truth.

All sample pairs should be repeated with the projection
Ω(·) according to the property of identity. The demand on
similarity indicates that if a new input is close to the known
samples, its projected result should not deviate too much
from its corresponding ground truth.

The main difficulty of finding the projection r∗ lies in the
lack of explicit functions to determine the mapping between
two C-spaces with different dimensions (i.e., degree-of-
freedoms). Given sparsely aligned pairs of poses as samples,
we try to solve this problem by proposing a strategy of
kernel-based projection to find a good approximation for r∗.

B. Data Pre-processing

The knowledge of correspondence {(h, r)} can be es-
tablished through experiments. Although aligning a pose of
human body with a corresponding pose of humanoid can be
taken manually, it is a task almost impossible if thousands of
such correspondence samples need to be specified. Therefore,
in our experiments, we first capture continuous motions
of human bodies by using a motion capture system. The
data-set obtained in this way often results in large size
and redundancy. To resolve this problem, we perform a
pre-processing step to extract marker poses from the raw
data-set recorded from human’s motion. Specifically, mean
shift clustering [22] is employed to generate the marker set
denoted as H. For each sample ĥ ∈ H, its corresponding
pose r̂ in the configuration space of humanoid can be
either specified manually (when the number of samples in
H is small) or generated automatically by a sophisticated
method (e.g., the inverse kinematics methods). The pairs of
correspondence, {(ĥi, r̂i)}i=1,··· ,N , extracted in this way is
treated as landmarks to be used in our framework.

C. ELM Based Kernels

As the configuration pairs of marker data-set are discrete in
space, we define a kernel κ(·) on each marker configuration
ĥi and r̂i as a local spatial descriptor using the technique of
Extreme Learning Machine (ELM) [23]. ELM method has
been widely used in regression and classification problems
as a single hidden layer feed-forward network (SLFN) with
its advantageous properties of fast training speed, tuning-free
neurons and easiness in implementation (ref. [24]). Basically,
the training formula of ELM can be expressed as Hb = T,
where H is the hidden layer output matrix of SLFN, b is
the output weight vector to be computed, and T is the target
feature vector.

Given a new input x, the prediction function of ELM is
f(x) = Q(x)b, where the Q(x) is the hidden layer feature
mapping of x. It has been pointed out in [23] that the training
errors will be eliminated if the number of hidden nodes is
not less than the number of training samples, indicating the
trained ELM can be used as a fitting function that interpolates



Fig. 3: An illustration of finding an optimal point that
minimizes a back-projected deviation (with L =M = 4).

all training samples

Q(ĥi)b = r̂i, (i = 1, · · · , N).

In this case, the output weight vector is computed as

b = HT (HHT )−1T,

where HT (HHT )−1 is the Moore-Penrose generalized in-
verse of H. Regularized ELM is proposed in [25] to improve
its numerical stability, leading to the following training
formula with λ (a very small value in practice) as the
regularization factor

b = HT (λ+HHT )−1T.

With the help of ELM, a kernel κhi (·) ∈ Rn for a human’s
landmark point ĥi can be built with its nearest neighbors.
Specifically, we find k spatial nearest neighbors of ĥi in
the set of human’s landmarks as {ĥj}j∈N (ĥi)

, where N (·)
denotes the set of nearest neighbors. Then, the ELM kernel of
κhi (·) is trained using {(ĥj , r̂j)}j∈N (ĥi)

, which is regarded
as an approximate local descriptor of the nearby mapping of
ĥi: H 7→ R. When inputting a new human pose h∗ ∈ Rm,
a local estimation of mapping with reference to this kernel
can be represented as

κhi (h
∗) = Q(h∗)b.

This function is called a forward kernel. Similarly, for each
C-point rmi of a humanoid, an ELM based kernel κri (·) ∈
Rm can be constructed in the same way for the inverse
mapping: R 7→ H. κri (·) is called a backward kernel. These
two types of kernel functions will be used in our framework
for realizing the projection.

D. Projection

For an input pose h∗ ∈ Rm, the point determined by the
ELM kernel function, κhi (h

∗), is not guaranteed to satisfy the
requirement of bijective mapping (i.e., κri (κ

h
i (h
∗)) 6= h∗).

To improve the bijection of mapping, the projection of a
human’s C-point is formulated as determining an optimal
point from all candidates generated from different forward
kernels.

First of all, L nearest neighbors of h∗ are retrieved in H
as {ĥj} (j = 1, · · · , L). From the forward kernel associated
with each of these L points in H, a candidate point in
R can be determined by rcj = κhj (h

∗). For each rcj , we
search for its M nearest neighbors in R as N (rcj) = {r̂j,k}
(k = 1, · · · ,M ). In other words, there are M backward
kernels associated with rcj , which are {κrj,k}. In each cluster
of backward kernels, we determine a set of weights wj,k that
leads to a point formed as the convex combination of {r̂j,k}

r̃cj =
∑
k

wj,kr
c
j,k.

An optimal point r̃cj minimizes the deviation of back-
projection with regard to the cluster of kernels {κrj,k(·)}k
is defined as

min
wj,k

{‖κrj,k(
∑
k

wj,kr
c
j,k)− h∗‖}k,

s.t.

M∑
k=1

wj,k = 1, wj,k ≥ 0.

(1)

The final projected point r∗ is then defined as

r∗ =
∑
k

wl,kr
c
l,k (2)

according to the cluster of N (rcl ) that gives the minimal
back-projected deviation, which is a solution of

min
j

{
min
wj,k

{‖κrj,k(
∑
k

wj,kr
c
j,k)− h∗‖}k

}
,

s.t.

M∑
k=1

wj,k = 1, wj,k ≥ 0.

(3)

The computation for solving above optimization problem can
be slow in many cases. Therefore, we propose a sub-optimal
objective function as a relaxation of Eq.(3) to be used in real-
time applications (e.g., the tele-operation shown in Fig.1).
The problem is relaxed to

min
j

{
min
k
{‖κrj,k(rcj)− h∗‖}k

}
, (4)

the solution of which can be acquired very efficiently by
checking each candidate rcj with regard to all its M reference
backward kernels. Figure 3 gives an illustration for the
evaluation of back-projected deviation.

Motion Smoothing: A dynamic motion is processed as
a sequence of continuous poses in our system, where the
projected poses in the configuration space of humanoid are
generated separately. To avoid the generation of jerky mo-
tion, we use a method modified from the double exponential
smoothing [26] to post-process the projected poses. Given
a projected pose rt at time frame t, the update rules of a
smoothed pose st are defined as

st = αyt + (1− α)(st−1 + bt−1), 0 ≤ α ≤ 1

bt = γ(st − st−1) + (1− γ)bt−1, 0 ≤ γ ≤ 1

st = st−1, if ‖st − st−1‖ < η

(5)



Fig. 4: Feature vectors of human and humanoid: (a) the
human skeleton from a Kinect sensor, (b) the corresponding
pose descriptor of a human body consists of 19 unit vectors,
and (c) the pose descriptor for a NAO humanoid formed by
all DOFs on its joints (source: http//:www.ez-robot.com).

α, γ and η are parameters to control the effectiveness of
smoothing, where α = 0.75, γ = 0.3 and η = 0.15 are used
to give satisfactory results in our practice.

Remark: It must be clarified the Identity property introduced
in Section II-A is relaxed to Ω(hi) ≈ ri in practice due to
the following reasons:
• Regularized ELM method is employed to construct the

kernels, which changes the corresponding energy func-
tion where a regularization term is added to improve its
numerical stability.

• Double exponential smoothing is applied for smoothing
a motion, which introduces minor adjustments on the
output values.

III. REAL-TIME PROJECTION ON NAO

Our framework is testified on real-time motion imitation
of a NAO humanoid robot with a Kinect RGB-D camera as
the device to capture the motion of human.

A. Human-to-humanoid Motion Imitation

The human skeleton provided by a Kinect sensor is a
set of line segments based on predefined key joints as
shown in Fig.4(a). We define an abstraction consisting of
19 unit vectors for a pose as illustrated in Fig.4(b), which is
independent different body dimensions. It should be pointed
out that it is unnecessary to always use the full set of unit
vectors unless full body motion must be sensed. The NAO
humanoid robot has 26 degree-of-freedoms, including the
roll, pitch, and yaw of all its joints (see Fig.4(c)). Posing
a NAO humanoid can be executed by specifying the values
of all its degree-of-freedoms.

To collect the data-set of human’s motion, a user is
asked to do arbitrary motion in front of a Kinect camera.
Meanwhile, we have implemented a straightforward inverse
kinematics (IK) based scheme for upper-body motion. The
roll, pitch, and yaw of every joint can be computed directly
by the unit vectors of a human’s skeleton model. After using
mean shift to extract the landmarks of motion from the raw
set, their corresponding landmark poses in the C-space of
humanoid can be generated by this IK. Besides, we also
define eight basic poses (see Fig.5) which play a critical role

Fig. 5: Basic poses serve as benchmarks for similarity
evaluation.

when evaluating the similarity between the projected poses
of humanoid and the poses of human.

Using the landmark poses defined in this way, human-
to-humanoid motion imitation has been implemented by a
single-core C++ program. All the tests below are taken on
a personal computer with Intel Core i7-3770 3.4 GHz and 8
GB RAM memory.

B. Experimental Results

We evaluate our method mainly from three perspectives,
including the computational efficiency of projection, the
quality of reconstructed motion, and the influence by the
size of landmark set.

Efficiency of Projection: From Section II-D, we know that
the complexity for computing projection depends on the
size of neighbors (i.e., L and M ). The cost of computation
increases with larger L and M as more candidates and more
reference kernels will be involved. In all our experiments,
we use L = M = 10 and the average time for making
a configuration projection is 0.00273ms. When increasing
to L = M = 50, the average time cost is still only
0.0201ms. In summary, the overhead of our method for
motion imitation is very light – i.e., it fits well for different
real-time applications.

Quality of Reconstruction: Two metrics are used in our
experiments to estimate the quality of a projected configu-
ration r∗ ∈ Rn referring to its corresponding ground truth
value rgt – the maximum absolute deviation in degree as

Mmax =
180◦

π
‖r∗ − rgt‖∞,

and the average absolute deviation in degree as

Mavg =
1

n

(
180◦

π
‖r∗ − rgt‖1

)
.

The evaluation is taken with a set holding 1, 644 configura-
tion pairs as landmarks. All those eight poses shown in Fig.5
are tested, and the results are shown in Fig.6. The results
of comparison (in terms of Mmax and Mavg) indicates that
the poses generated by our method share good similarity
with the ground truths. Besides of static poses, we also



Fig. 6: Eight basic poses are reconstructed by our method (left of each pair) and compared with the ground truth (right of
each pair). The similarity metrics, Mmax and Mavg , of each pair are also reported. The evaluation is taken on a projection
defined by using 1, 644 landmark pairs.

Fig. 7: Statistics in eight motions for the change of two metrics: Mmax (blue) and Mavg (red). The evaluation is also taken
on a projection with 1, 644 landmark pairs.

evaluate the quality of reconstructed motion in the C-space
of humanoid as a sequence of poses. We define eight basic
motion sequences, each of which starts from the rest pose and
ends at one of the basic poses. The complete human motions
are recorded for the reconstruction using our projection in
the C-space of humanoid. The projected poses are compared
with the poses generated by IK, serving as the ground truths.
The values of Mmax and Mavg in these eight motions are
shown in Fig.7. It is easy to find that the errors are bounded
to less than 10◦ in all motions.

Size of Landmarks: As presented in Section II-B, the
correspondence samples used to formulate projection in our
framework is extracted from the captured motions. In our
implementation, it is generated by a user moving in front of
a Kinect sensor for 5 minutes. Then, three sets with different
number of landmarks (1, 644, 961, and 86 respectively)
are extracted. The corresponding pairs of poses are then
constructed with the help of IK. The 8-th pose in Fig.5
– POSE 8 and the motion from the rest pose to POSE 8
are constructed from the projections defined on the sets
with different number of landmarks. From the statistics and

Fig. 8: To reconstruct motion using landmark sets having
different number of corresponding samples, statistics indicate
that more landmark pairs lead to better results.

comparisons shown in Fig.8, it is easy to conclude that our
projection based formulation converges when the number of
landmarks increases. In other words, more landmarks result
in a more accurate projection. However, it should also be



noted that the projection from the smaller set may still be
useful in some applications with low requirement on quality
but having more restrictions on speed and memory usage.

C. Application of tele-operation
We have tested the motion imitation realized by our

method in an application of tele-operation using a NAO
humanoid. As illustrated in Fig.1 and the supplementary
video of this paper, a user can remotely control the motion
of a NAO robot to grasp an object and put it into a box. The
scene that can be seen from the camera of NAO is displayed
on a screen placed in front of the user as the visual feedback.
The imitation realized by our system has good accuracy. As
a result, the tele-operation can be performed very smoothly.

IV. CONCLUSION & FUTURE WORK

In this paper, we have proposed a framework to realize
motion imitation. Different from conventional methods, our
method is based on a novel formulation of projection be-
tween two configuration spaces with different dimensions.
Given a new input pose of human, its projection in the
space of humanoid is defined as finding the optimal C-point
that minimizes a back-projection deviation referring to the
built kernels. We have validated our idea by reconstructing
humanoid motion on a NAO robot. The experimental results
are encouraging and motions of good quality can be recon-
structed efficiently.

There are several potential improvements can be made
to our method. First, an intuitive improvement is to extend
the current setup to full-body motion reconstruction by
incorporating the constraint of whole-body balance. Second,
the ELM based kernels currently used in our framework
do not have a explicit bound for prediction with a new
input. Finding kernel functions that can provide a bound
on prediction could be another future work. Lastly, we
are interested in exploring more applications beyond tele-
operation.
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