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Abstract

Robotic bin picking requires using a perception system to estimate the pose of the parts in the bin. 

The selected singulation plan should be robust with respect to perception uncertainties. If the 

estimated posture is significantly different from the actual posture, then the singulation plan may 

fail during execution. In such cases, the singulation process will need to be repeated. We are 

interested in selecting singulation plans that minimize the expected task completion time. In order 

to estimate the expected task completion time for a proposed singulation plan, we need to estimate 

the probability of success and the plan execution time. Robotic bin picking needs to be done in 

real-time. Therefore, candidate singulation plans need to be generated and evaluated in real-time. 

This paper presents an approach for utilizing computationally efficient simulations for generating 

singulation plans. Results from physical experiments match well with predictions obtained from 

simulations.1
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1 Introduction

The use of robots for bin picking applications has been effective to singulate a wide variety 

of parts when the estimate of the part posture in the bin is accurate or the part is of simple 

geometry and is not entangled with neighboring parts. Singulation is defined as the 

concatenation of five stages, including approach, grasp, extract, transport, and drop-off. 

Singulation planning consists of first synthesizing candidate plans and then using an 

evaluation method to score each candidate plan and select the best one for execution. A 

computationally efficient evaluation method is a crucial requirement in this context since all 

the candidate plans need to be evaluated in near real-time so that the robot’s idle time during 

planning can be minimized. This paper is focused on the evaluation aspect of singulation 

planning.

Fig. 1 illustrates an example of a singulation plan. If the part posture is known accurately, 

then the singulation plan will succeed if the robot constraints are not violated. If the 

estimated part posture is uncertain (as illustrated in Fig. 2), the singulation planner might fail 

to extract the part from the bin. Fig. 3 illustrates possible outcomes of a singulation plan 

under perception uncertainty. The frame denoted by x, y, and z  indicates the grasp point 

computed based on the posture estimate obtained from the perception system and the frame 

denoted by xp, yp, and zp indicates the actual grasp point on the part. The gripper frame is 

denoted by xg, yg, and zg. The outcome of a singulation plan under perception uncertainty 

can be one of the following:

1. Successful grasp. Some uncertainties get updated during the execution of the 

singulation plan. Fig. 3(a) illustrates a case in which the uncertainty in rotation 

about zg is reduced when the grippers are closed. Some uncertainties might 

propagate to further stages of the singulation task. Fig. 3(b) illustrates a case in 

which the uncertainty in rotation about yg and translation in zg is propagated 

after a successful grasp.

2. Failure due to collision. Fig. 3(c) illustrates uncertainty in the yg direction 

leading to collision with the gripper.

3. Failure due to grasp miss. - Fig. 3(d) illustrates high uncertainty in translation 

along the xg direction leading to a grasp miss.

In case of Fig. 3(a) and Fig. 3(b), the time for completing the task would be equal to the time 

required to execute the singulation plan once; that is, Te. There can be some side effects 

caused when the exact location of the part is not known within the gripper. For instance, the 

robot has to account for high tolerances for waypoints in the singulation plan so that the part 

held within the gripper does not collide with the bin during extraction. In addition, these 

propagated uncertainties might lead to a drop-off with bouncing effects on the part and the 

part settling outside acceptable tolerance limits. This causes uncertainty to propagate to the 

tasks following bin picking. In case of Fig. 3(c) and Fig. 3(d), the robot has to execute the 

singulation plan again.

Since the outcome of the singulation plan is probabilistic in the presence of perception 

uncertainty, p and Te can be considered as the main factors during the evaluation of the 
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expected task completion time. The singulation plan being different for every grasp strategy 

defined for a part introduces the need to estimate expected task completion time online after 

each plan has been generated. Te for a singulation plan can be computed on-line, using the 

joint angle differences at consecutive waypoints and joint velocity. Monte Carlo simulations 

can be used for on-line estimation of success probability. After all the candidate plans are 

evaluated, the singulation plan with the least expected task completion time will be selected 

for execution. This paper is an extended version of our previously published conference 

paper [1] and presents an approach for utilizing computationally efficient simulations for 

generating singulation plans.

2 Related Work

Pose uncertainty is a well-addressed problem in bin picking applications. Many previous 

attempts on a systems approach to bin picking mainly focused on the perception problem 

[2–8], decoupled from motion planning of the robot. Akizuki et al. [9] used a simulator to 

compute the observability factor of a 3D vector pair from multiple viewpoints to estimate the 

pose of the part. In reality, the pose estimate from the perception system is not accurate. 

There is always an uncertainty associated with the estimate. The work done by Fuchs et al. 

[10] assumed significant uncertainty in object pose estimate and the object was grasped only 

when the reliability of the pose hypothesis was below a certain threshold. Otherwise, a 

different camera was used to have a different viewpoint. Harada et al. [11] applied 

probabilistic properties to the pick-and-place motion planner of an object. They planned a 

pick-and-place motion with a set of regions in combination with the probabilistic properties. 

Liu et al. [12] presented a directional, chamfer-matching-based, object localization and pose 

estimation in the presence of heavy clutter in the bin. Papazov et al. [13] evaluated 

recognition hypothesis quality by defining an acceptance function, comprising a visibility 

term and a penalty term. Another work by Pronobis and Caputo [14] used a support vector 

machine approach to quantify the level of confidence in performing a visual, place-

recognition task.

Many attempts have been made to define grasp strategies offline and evaluate them online 

using collision checks. A review of analytical approaches to grasp synthesis can be seen in 

[15]. A survey on data-driven grasp synthesis can be found in [16]. Dupuis et al. [17] 

presented a two-finger grasp generation method and target selection for bin picking of 

randomized parts. They generated a dense set of grasp points and evaluated them using 

factors like the sensitivity of grasp point with a small variation in grasp point and based on 

the feasibility and stableness of neighboring grasps. Ellekilde et al. [18] used learning 

methods to improve success probability of grasps for bin picking. They chose a set of grasps 

offline and applied the learning process for a day or two in an industrial environment to 

improve success probability. Kendall et al. [19] used a Bayesian convolutional neural 

network to estimate relocalization uncertainty and regress the pose obtained from the 

camera. Zheng et al. [20] presented a force closure analysis approach to handle uncertainties 

in friction and contact position. Berenson et al. [21] used Task Space Regions (TSRs) and 

modified them to handle pose uncertainty.
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Chang et al. [22] developed a framework for representing possible strategies of interactive 

singulation of items from a pile of cluttered objects. They used a perception module to 

evaluate the outcome of pushing actions. In our previous work [23, 24], any failure in the 

automatic pose estimation was handled with the help of human assistance. The human 

operator used an interface to estimate the pose of the part and sent it back to the robot. 

Simple sensorless fine positioning moves were used after the part was dropped off to correct 

uncertainties present in the fi-nal part location. The extraction planning presented in [25] 

used the relationship between object geometries and executed simple extraction motions to 

resolve occlusions. In [26], a data-driven approach was used to evaluate singulation plans 

based on perception uncertainty, grasp quality, approach quality, and extraction quality. The 

singulation plan with minimum probability of failure was chosen for execution.

3 Problem Formulation

Consider a bin with known dimensions containing an instance of the part chosen for 

singulation. Define a finite set of grasp strategies G = [G1,G2…Gn] for the chosen part. Let 

the estimate of the six-dimensional (6D) pose of the part be represented as P = 

{x,y,z,α,β,γ}. Let represent the uncertainty in P, where 𝕌t represents uncertainty in position 

estimate and 𝕌orepresents uncertainty in orientation estimate.

Given P and 𝕌, the task is to build a singulation plan S for every strategy in G, evaluate its 

expected task completion time by estimating p and Te, and execute the best plan based on 

this evaluation. Expected task completion time, 𝔼(Tc), can be computed as

𝔼(Tc) = pTe + (1 − p)(2pTe) + (1 − p)2(3pTe) + ⋯, (1)

where pTe estimates the time required for plans that succeed in the first attempt, (1 − p)

(2pTe) estimates the time required for plans that succeed in the second attempt, and so on. 

For an arithmetico−geometric sequence, the sum to infinite terms is given by

lim
n ∞

Sn = a
1 − r + dr

(1 − r)2 . (2)

Substituting a = pTe; r = (1 − p); d = pTe, we get

𝔼(Tc) =
pTe

1 − (1 − p) +
pTe(1 − p)

(1 − (1 − p))2 ,

𝔼(Tc) =
Te
p .

(3)

To select the singulation plan 𝕊best corresponding to the grasp strategy with minimum 𝔼(Tc), 

we use the following approach.
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1. Obtain the point cloud of the scene, the pose of the part to be singulated, and the 

drop-off location.

2. For every available grasp strategy, compute the grasp points, grasp orientation, 

and the approach vector based on the pose of the part. Compute the drop-off 

offset and the drop-off orientation for the corresponding drop-off strategies (see 

Section 4 for details).

3. Generate singulation plan for every grasp strategy and check if the generated 

plans are feasible (see Section 5 for details).

4. Invoke Monte Carlo simulator to estimate p and estimate Te (see Section 6 for 

details). Compute 𝔼(Tc) of every singulation plan using Eqn. 3.

5. Choose the singulation plan which has the minimum 𝔼(Tc).

4 Representing Singulation Plans

4.1 Grasp Strategies

Grasp strategy is the strategy with which the gripper approaches the part and grasps it. Grasp 

strategy directs the singulation planner to orient the gripper to a specific point on the part 

during approach and grasp phases. In this paper, we have considered seven grasp strategies 

for the chosen part (Fig. 4 -Row 1) to be able to approach and grasp the part in seven 

different ways. Each grasp strategy can be parameterized by the following four components:

1. Grasp offset (Gx,Gy,Gz) specifies the translational offset between the part origin 

and the grasp point expressed in the part frame.

2. Grasp orientation (Gα,Gβ ,Gγ) specifies the orientation of the grippers with 

respect to the part frame during grasp.

3. Approach vector Gv specifies the direction in which the grippers must approach 

the part for grasp.

4. Tolerance Gt specifies the tolerance in the xg and zg direction for a grasp to be 

successful (Fig. 3(a) and Fig. 3(b)). Every grasp strategy has different tolerance 

value; that is, they handle different levels of uncertainty based on the grasp offset 

and orientation. The closing action of the gripper corrects small uncertainties in 

the yg direction. If uncertainty in the yg direction is large, it either leads to 

collision between the part and the gripper (Fig. 3(c)) or a grasp miss (Fig. 3(d)). 

These cases are explained in section 6.1.

Table 1 lists parameters for seven grasp strategies considered for the chosen part. Grasp 

orientation terms follow ZYX Euler angle ordering. Grasp parameters for strategy 1 are 

shown pictorially in Fig. 5. These parameters correspond to row 1 in Table 1. The planner 

generates waypoints such that the gripper frame exactly coincides with the grasp point, 

computed relative to the estimated part posture.
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4.2 Drop-off Strategies

After the part has been extracted from the bin and transported to the drop-off location, the 

planner has to plan the moves to drop the part gently. The strategy to place the part on a flat 

surface depends on the position and orientation of the grasped part within the grippers. So, 

each grasp strategy has a unique drop-off strategy as illustrated in Fig. 4 - Row 2. Drop-off 

strategy can be parameterized by the following two components:

1. Drop-off offset (Dx,Dy,Dz) specifies the offset between the gripper frame and the 

drop-off point (specified by the user). This compensates for the offset that was 

used during the grasping operation.

2. Drop-off orientation (Dα,Dβ ,Dγ) specifies the gripper orientation just before 

the drop-off such that the dropping action introduces minimal uncertainties in the 

final part position. For some grasp strategies (like strategies 3, 4, and 5), the 

gripper might not be able to place the part gently because of kinematic 

constraints of the arm. In such cases, the arm will orient as closely as possible to 

the drop-off frame.

Table 1 lists the parameters for seven drop-off strategies corresponding to the seven grasp 

strategies. Drop-off orientation terms follow ZYX Euler angle ordering.

4.3 Pose Uncertainty Updates During Plan Execution

Assuming that the singulation task is performed using a parallel-jaw gripper and the part is 

being gripped on a flat surface, for every successful case, it is certain that the closing action 

of the gripper jaws updates some of the uncertainties in the part pose. For instance, Fig. 6(a) 

illustrates that the gripping action updates uncertainty in translation along the yg direction. 

In a similar way, the uncertainty in the rotation about xg is updated as illustrated in Fig. 6(b). 

In Fig. 6(c), upon gripper closure, the uncertainty in the rotation about zg is updated. These 

cases may occur in unison or individually based on the uncertainty in the posture estimate. 

Gentle drop-off at the endpoint also updates some uncertainties. Fig. 6(d) illustrates this 

scenario in which the vertical constraints posed by the flat surface at drop-off update the 

pose uncertainty in translation along zg and the rotation about yg. The only uncertainty that 

is not updated during the execution is translation along xg. This uncertainty can be corrected 

with fine positioning moves [27].

Let us consider that the part is being grasped according to strategy 1. For a successful plan, 

the uncertainty in xp,αp, and βp is updated when the part is grasped within the parallel jaw 

grippers. For a gentle drop-off, the uncertainty in zp and γp is updated by the constraints 

introduced by the horizontal drop-off surface. Upon performing fine positioning moves, 

uncertainty in yp is updated. Table 2 summarizes the effect of these actions on the 

uncertainty of the part pose.

5 Generating Singulation Plans

The singulation planner is responsible for generating way-points for approach, grasp, 

extract, transport, and drop-off of a chosen part from the bin, checking the feasibility of 

these way-points, invoking the evaluation module for the feasible singulation plans, and 
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choosing a singulation plan for execution based on this evaluation. In Algorithm 1, a 

singulation plan S is generated for each grasp strategy. The point cloud of the scene 

consisting of the part to be singulated is referred to as ScenePointCloud. If the waypoints in 

𝕊 are infeasible, then the singulation plan is discarded. If all the waypoints are feasible, the 

singulation planner estimates its expected task completion time (Section 6). The singulation 

plan with minimum expected task completion time (𝕊best) is executed.

The following two conditions need to be validated to ensure feasibility of waypoints in the 

singulation plan:

Algorithm 1

SingulationPlanner

1:
Input: Part pose P, pose uncertainty 𝕌, set of grasp strategies G = [G1,G2,…Gn], ScenePointCloud

2: 𝕊best←{θ}

3: for ∀ Gi ∈ G do

4:
 Generate 𝕊 ≙ Gi.

5:
 if (FeasiblePlan( 𝕊) = 1) then

6:
   𝔼(Tc) ← EvaluatePlan( 𝕊,P, 𝕌,ScenePointCloud)

7:
  if 𝔼(Tc) is lowest then 𝕊best ← 𝕊

8:  end if

9: end for

10:
Execute ( 𝕊best)

Condition 1a- Inverse kinematics

Each waypoint in the generated singulation plan is specified as position and orientation of 

the gripper frame with respect to the robot base frame B. The generated waypoints have to 

be validated if the robot can actually move to these points. A feasible singulation plan is one 

which has an inverse kinematic solution at every waypoint. If the inverse kinematic solution 

does not exist at any waypoint, then the singulation plan is termed infeasible.

Condition 1b- Checking for collision with the bin

The collision detection module checks for any possible collision of the robot arm with the 

bin during the execution of the singulation plan. For checking the validity of condition 1b, 

the following representation is used:

Robot arm - The computer-aided design (CAD) model of the robot arm is 

approximated with a set of rectangular bounding boxes.

Bin - The CAD model of the bin is represented as a point cloud. This point cloud is 

referred to as BinPointCloud in the paper.
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The motion of the arm during approach and extraction is simulated by computing the swept 

volume of the approximated bounding box of the arm along the approach vector. If any point 

in the BinPointCloud lies within this swept volume, then the singulation plan is discarded 

because of possible collisions. Algorithm 2 validates condition 1a and condition 1b for a 

given singulation plan.

6 Evaluating Singulation Plans

Algorithm 2

FeasiblePlan( 𝕊)

1: Input: BinPointCloud

2: 𝕁 ← Inverse kinematic solution for waypoints in 𝕊.

3:   ▷ Condition 1a

4: Compute swept volume of the robot arm along Gv.

5: ℂ ← Check for collision between computed swept volume and BinPointCloud   ▷ Condition 1b

6:
if {∃ 𝕁 ∀ waypoints in 𝕊 & ℂ = {θ}} then

7:  return 1  ▷ Plan is feasible

8: else

9:  return 0 ▷ Plan is infeasible

10: end if

The Monte Carlo simulator estimates success probability of a singulation plan by simulating 

the gripper motion during the approach, the grasp, and the extract phases and checking for 

any occurrences of collision. The parallel jaw grippers are approximated with a set of two 

bounding boxes as shown in Fig. 7. The computation of the swept volume of the 

approximated bounding box of the gripper during approach, grasp, and the extract phases is 

shown in Fig. 8. During the extract phase, the CAD model becomes an integral part of the 

gripper indicating that the part has been gripped. Hence the bounding box of the gripper will 

include the part as well.

The algorithm takes the singulation plan, the estimate of the part pose, the uncertainty in the 

pose estimate, and the point cloud of the scene as input. A Gaussian noise is added to the 

pose of the part, to represent that the reality might differ from the camera pose estimate. The 

simulator checks for failure conditions (explained in condition 2a and condition 2b) and if 

both conditions are negative, the singulation plan is considered a pass. The simulator outputs 

the ratio of the number of trials being marked successful over the total number of trials as 

success probability of the singulation plan.

6.1 Estimating Probability of Success for a Singulation Plan

A singulation plan is termed successful if the gripper is able to grasp the part without 

colliding with the part or the neighboring parts. Each simulation trial should introduce 

uncertainty in the part pose and check if the grippers collide with any part in the bin. If the 

uncertainty is too high, the evaluator must check the condition for a grasp miss and evaluate 

success probability for a singulation plan accordingly.
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Algorithm 3

EvaluatePlan ( 𝕊, P, 𝕌,ScenePointCloud)

1: Initialize s = 0 ▷ Number of trials being successful

2: Initialize N     ▷ Total number of trials

3: Te ← 0

4: for every trial in Monte Carlo simulation do

5:
 Pnew ← P ∼ 𝒩 (0, 𝕌2).

  ▷ Adding Gaussian noise to P

6:  Check condition 2a  ▷ Condition for collision check

7:  Check condition 2b    ▷ Condition for grasp miss

8:  if condition 2a & 2b is negative then

9:   s ← s + 1

10: end for

11: p ← s/N

12: Estimate Te using Eqn. 4 and Eqn. 5

13: 𝔼(Tc) ← Te/p

14:
return 𝔼(Tc)

Condition 2a- Failure due to collision with the part or neighboring parts—This 

condition checks for any occurrence of collision between the gripper and the parts in the bin. 

For checking the validity of condition 2a, the following representation is used:

Robot grippers: Parallel jaw grippers are approximated with a set of two rectangular 

bounding boxes.

Neighbor parts: Represented as a point cloud by subtracting the point cloud belonging to 

the part chosen for singulation from the point cloud of the scene.

CAD model of the part: The CAD model of the part is represented as a point cloud. In 

simulations, the point cloud of the CAD model is rendered at the estimated pose of the part. 

The combined point cloud of the neighboring parts and the CAD model of the part to be 

singulated constitute the ScenePointCloud.

The swept volume of the gripper computed for approach, grasp, and extraction phases is 

aligned along the axes of the robot base frame and the ScenePointCloud is transformed to 

match the relative orientation. This simplifies the collision detection to just checking if any 

point in the ScenePointCloud lies within the x, y, and z limits of the swept volume. If the 

number of points in the swept volume is non-zero, then the grasp strategy is discarded 

because of a possible collision.

Condition 2b- Failure due to grasp miss—The grasp point and the tolerance region 

are represented using a bounding box as shown in Fig. 9. For a successful plan, the tolerance 

bounding box and the swept volume of the grippers should not touch or intersect during 
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approach. During grasp, the tolerance bounding box touches the swept volume of the gripper 

motion. Fig. 9 -Row 1 illustrates examples of successful singulation plans even under 

uncertainty. In all these cases the bounding boxes touch with the swept volume during grasp. 

For failure cases due to collision, these two regions would intersect each other during 

approach indicating that the grippers would collide with the part if the plan was executed. In 

the case where the uncertainty is too high and the estimated pose is way too off from the 

actual part location, the plan fails due to grasp miss. For these cases, the tolerance bounding 

box and the bounding box of the grippers do not touch each other during approach or grasp. 

Fig. 9 - Row 2 illustrates examples where the singulation plan fails because of grasp miss.

6.2 Estimating Execution Time for a Singulation Plan

The execution time of a singulation plan is the time required by the robot to move from the 

first waypoint to the last waypoint in the singulation plan. The time required for executing a 

singulation plan is dependent on the joint velocity of the robot arm and the joint angle 

differences between the waypoints. When all of the joint angles are commanded 

simultaneously at the same joint velocity, the execution time depends only on the joint which 

has the maximum difference among the others. If the waypoints in the singulation plan and 

the joint velocity of the robot arm are known, the time required for execution can be 

estimated before executing the singulation plan. Execution time is the ratio of the sum of the 

maximum difference in joint angles to the joint velocity. If 𝕁 represents the joint angles 

obtained from the inverse kinematic solver at a particular waypoint and 𝕁prev represents the 

joint angles at the previous waypoint, then Δ𝕁is the maximum of the difference between 𝕁
and 𝕁prev. Equation 4 and Eqn. 5 mathematically represent the estimation of time for 

execution of a singulation plan.

Δ𝕁 = max [𝕁 𝕁prev], (4)

Te =
∑

w ∈ 𝕊
Δ𝕁

joint Velocity . (5)

Using Te and p, Algorithm 3 computes 𝔼(Tc)for a singulation plan. Let us consider a case as 

shown in Fig. 10. Table 3 shows the output of singulation planner. Each line indicates the 

evaluation result for a grasp strategy. Since the singulation plan corresponding to strategy 6 

has lowest expected time for completion, it is chosen for execution (row marked by ‘*’ in 

Table 3).

7 Experimental Results

The estimated success probability from the simulator was validated with physical 

experiments. The experimental setup included a Baxter Research Robot with an Asus Xtion 
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Pro 3D camera mounted on the left arm and a parallel jaw gripper mounted on the right arm 

as shown in Fig. 11. The joint resolution of the robot arm was set to achieve best possible 

precision. The joint velocity of all seven joints in the robot arm was set to 0.35 radians/

second.

Thirty trials were conducted for each grasp strategy. The part was placed in the bin and the 

boundary of the part was marked such that the part could be placed in the same position and 

orientation for later parts of the experiment. The point cloud of the scene was captured and a 

user interface designed in MAT-LAB was used to estimate the pose of the part by manually 

docking the CAD model of the part in the point cloud [23]. The points belonging to the part 

were deleted from the point cloud and the point cloud of the CAD model was rendered at the 

pose of the part. Pose uncertainty was simulated by adding Gaussian noise of σ = 5 mm for 

𝕌t and 5 degrees for 𝕌o to the estimated pose of the CAD point cloud. The feasibility of 

every singulation plan was checked for condition 1a and 1b. For every feasible plan, the 

simulation checked if the gripper was able to extract the part by validating condition 2a and 

2b. Fig. 12 illustrates collision check during the approach phase of the singulation plan. At 

the end, the simulator outputs success probability of the singulation plan. For the physical 

trials, the part was placed in the marked region and the same noise was added as that of the 

simulation trials. The robot was commanded to pick the part using the noisy pose and the 

number of successful grasps were counted. The comparison of the probability of success 

estimated by the simulator and the physical trials is shown in Fig. 13. The plot shows that 

the online simulator gives a good estimate of success probability for every grasp strategy.

Next, experiments to validate the estimated execution time of the singulation plan were 

conducted. Thirty trials were conducted for each grasp strategy and the average error 

between estimated execution time and actual execution time were computed. For every trial, 

joint angles were computed at every waypoint using Baxter’s inbuilt Inverse Kinematics 

solver to estimate the execution time of the singulation plan as explained in section 6.2. The 

robot was commanded to move through these way-points (with zero settling time at 

intermediate waypoints) and the time taken by the robot to completely execute the 

singulation plan was calculated. Errors obtained by these two cases were averaged over 

thirty trials for every grasp strategy. The error between estimated execution time and actual 

time taken is shown in Fig. 14. The vertical bar represents mean and the error bar represents 

standard deviation. The plot shows that the mean error in the method used for estimation of 

execution time is within 14 ms.

Experiments were also conducted to use the estimate of success probability to select an 

appropriate gripper width during the execution of the singulation plan. For each grasp 

strategy, a cluttered scene was considered (shown in Table 4 Row 1). The success probability 

was estimated for a singulation plan with various gripper widths. Experiments showed an 

initial increase in success probability with the increase in gripper width. The values showed 

a steep dip due to collisions with the neighboring parts as the gripper width was increased 

beyond a certain value. The outcome of the experiment for seven grasp strategies is shown in 

Table 4.
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Experiments were also conducted to observe the variation of success probability with the 

variation in the uncertainty of the pose estimate. 𝕌t and 𝕌o were varied separately and 

success probability was estimated in each case. A point cloud was captured with a single 

part in the scene and grasp strategy 1 with gripper width as 6 cm was chosen during the 

experiment. The experimental results are shown in Table. 5. It can be seen that the success 

probability decreases as the uncertainty level increases.

8 Conclusions

This paper presented a simulation-based approach to evaluate singulation plans. This 

approach can be used to select a grasp strategy and associated motion plan based on the 

estimated expected time of completion. Each plan is evaluated with a Monte Carlo 

simulation that runs in real time to estimate the expected time for completion. The proposed 

method uses simplified collision detection to speed up computation. Comparison of 

estimated success probability with physical trials showed that the two numbers were very 

close. The maximum mean error between the estimated execution time and actual execution 

time was very small. The method can also be used to select optimum gripper width such that 

success probability is maximum for the chosen grasp strategy. The method can also be used 

to check the performance of any system for a given perception uncertainty.

We assumed the pose uncertainty to follow a Gaussian distribution with a sigma level of 5 

mm and 5 degrees in translation and orientation, respectively. Empirical experiments 

demonstrate that this choice of the uncertainty distribution resulted in a close agreement 

between the success probability estimated by the simulator and the physical trials. More 

experiments need to be conducted in the future to obtain a better characterization of pose 

uncertainty. The future work in this area also includes extending the approach to handle 

other types of grippers and using active perception to reduce uncertainty. We can use the 

work presented in [28–30] to replicate the collision detection model.
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FIGURE 1. 
Example of a singulation plan
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FIGURE 2. 
Illustration of perception uncertainty in the part location - Estimated posture might differ 

from the actual part posture.
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FIGURE 3. 
Possible outcomes of a singulation plan: [a] Successful grasp; certain uncertainties like 

rotation about zg being updated during grasp. [b] Successful grasp; certain uncertainties like 

rotation about yg and translation along zg will propagate through the successive stages. [c] 

Failure due to collision with the part upon lowering the gripper due to uncertainty in 

translation along yg. [d] Failure due to grasp miss as the uncertainty in translation along xg is 

high.
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FIGURE 4. 
Illustration of seven grasp strategies for the chosen part (row 1) and corresponding seven 

drop-off strategies (row 2).
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FIGURE 5. 
Illustration of grasp parameters for strategy 1.
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FIGURE 6. 
Illustration of uncertainty update during plan execution. [a] Uncertainty in translation along 

yg being updated during grasping action; [b] Uncertainty in rotation about xg being updated 

during grasp. [c] Uncertainty in rotation about zg being updated during grasp. [d] 

Uncertainty in rotation about yg and translation about zg being updated during drop-off on a 

flat surface.
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FIGURE 7. 
Parallel jaw grippers of the robot and the bounding box approximation of the grippers for 

collision check.
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FIGURE 8. 
Swept volume of the approximated gripper bounding box during [a] Approach, [b] Grasp, 

and [c] Extract phase. The black cuboids indicate the approximated bounding box of the 

gripper and the red cuboids indicate the swept volume of the approximated bounding box 

during the execution. The yellow-red dot indicates the grasp point on the part from the side 

view and the green dot indicates the grasp point on the gripper from the side view.
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FIGURE 9. 
Illustration of successful grasp under uncertainty (row 1) and failure due to grasp miss (row 

2). The yellow-red dot indicates the ideal grasp point on the part. The yellow bounding box 

indicates the tolerance region for every grasp strategy. In row 1, the bounding box of the 

grasp tolerance touches the bounding box of the grippers during grasp. In row 2 the 

bounding box of the grasp tolerance does not touch the bounding box of the grippers during 

grasp.
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FIGURE 10. 
Illustration of grasp strategies that are feasible for an estimated part pose. Grasp strategy 6 is 

chosen for execution as it has minimum expected completion time (Table 3).
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FIGURE 11. 
Experimental setup with Baxter Research Robot equipped with an Asus Xtion Pro camera 

mounted on the left arm and a parallel jaw gripper on the right arm.
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FIGURE 12. 
Experimental data: Collision check between gripper and part during approach.
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FIGURE 13. 
Comparison of success probability estimated by the simulator and physical trials.
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FIGURE 14. 
Error between estimated execution time and actual time for execution.

Kumbla et al. Page 28

J Comput Inf Sci Eng. Author manuscript; available in PMC 2019 June 01.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Kumbla et al. Page 29

TA
B

L
E

 1

Pa
ra

m
et

er
s 

fo
r 

gr
as

p 
an

d 
dr

op
-o

ff
 f

or
 s

ev
en

 s
tr

at
eg

ie
s

St
ra

te
gy

G
x,

G
y,

G
z

(c
m

)
G

α,
G

β,
G

γ
(d

eg
re

es
)

G
v

G
t

(c
m

)
D

x,
D

y,
D

z
(c

m
)

D
α,

D
β,

D
γ

(d
eg

re
es

)

1
2.

5,
2.

5,
3.

5
−

90
, 9

0,
 0

0,
1,

0
±

1.
75

2.
5,

2.
5,

3.
5

−
90

,9
0,

0

2
2.

5,
2.

5,
9.

0
−

90
, 9

0,
 0

0,
1,

0
±

1.
00

2.
5,

2.
5,

9.
0

−
90

,9
0,

0

3
2.

5,
1.

5,
9.

0
90

, 0
,−

90
1,

0,
0

±
0.

50
2.

5,
1.

5,
9.

0
−

45
,0

,9
0

4
2.

5,
1.

5,
9.

0
−

90
,1

80
, 0

0,
0,

1
±

1.
00

2.
5,

1.
5,

9.
0

90
,0

,1
80

5
2.

5,
1.

5,
9.

0
−

90
, 0

,−
90

−
1,

0,
0

±
1.

00
2.

5,
1.

5,
9.

0
45

,0
,9

0

6
2.

5,
2.

5,
3.

5
−

90
,1

35
, 0

0,
0.

70
7,

0.
70

7
±

1.
75

2.
5,

2.
5,

3.
5

−
90

,9
0,

0

7
2.

5,
2.

5,
3.

5
−

90
, 4

5,
 0

0,
0.

70
7,

−
0.

70
7

±
1.

75
2.

5,
2.

5,
3.

5
−

90
,9

0,
0

J Comput Inf Sci Eng. Author manuscript; available in PMC 2019 June 01.



N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Kumbla et al. Page 30

TA
B

L
E

 2

A
ct

io
n 

an
d 

co
rr

es
po

nd
in

g 
un

ce
rt

ai
nt

y 
up

da
te

A
ct

io
n

U
nc

er
ta

in
ty

 u
pd

at
e

T
ra

ns
la

ti
on

R
ot

at
io

n

x p
y p

z p
α

p
β p

γ p

G
ra

sp
✓

✓
✓

D
ro

p-
of

f
✓

✓

Fi
ne

-p
os

iti
on

in
g

✓
✓

✓

J Comput Inf Sci Eng. Author manuscript; available in PMC 2019 June 01.



N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Kumbla et al. Page 31

TABLE 3

Output of singulation planner for the case shown in Fig. 10.

Strategy Evaluation outcome 𝔼(Tc)

1 p = 0.85,Te = 9.3 s 10.9411 s

2 p = 0.75,Te = 9.1 s 12.1333 s

3 Condition 1a invalid -

4 Condition 1a invalid -

5 Condition 1b invalid -

6 p = 0.95,Te = 9.25 s 9.7368 s∗

7 Condition 1b invalid -

J Comput Inf Sci Eng. Author manuscript; available in PMC 2019 June 01.



N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Kumbla et al. Page 32

TA
B

L
E

 4

V
ar

ia
tio

n 
of

 s
uc

ce
ss

 p
ro

ba
bi

lit
y 

fo
r 

ea
ch

 g
ra

sp
 s

tr
at

eg
y 

w
ith

 g
ri

pp
er

 w
id

th
. T

he
 s

ce
ne

 c
on

si
de

re
d 

fo
r 

ea
ch

 g
ra

sp
 s

tr
at

eg
y 

is
 s

ho
w

n 
in

 r
ow

 1
. T

he
 p

ar
t o

f 

in
te

re
st

 is
 m

ar
ke

d 
w

ith
 a

 r
ed

 d
ot

.

G
ra

sp
 S

tr
at

eg
y

1
2

3
4

5
6

7
G

ri
pp

er
 W

id
th

 (
cm

)

3
0.

4
0.

3
0.

2
0.

03
3

0.
26

6
0.

4
0.

4

4
0.

83
3

0.
66

6
0.

5
0.

5
0.

46
6

0.
83

3
0.

83
3

5
0.

93
3

0.
8

0.
26

6
0.

73
3

0.
23

3
0.

83
3

0.
93

3

6
0.

96
6

0.
86

6
0.

06
6

0.
9

0.
1

0.
93

3
0.

93
3

7
1

0
0

0.
96

6
0

1
1

8
1

0
0

0
0

0
1

9
0

0
0

0
0

0
0

10
0

0
0

0
0

0
0

J Comput Inf Sci Eng. Author manuscript; available in PMC 2019 June 01.



N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Kumbla et al. Page 33

TA
B

L
E

 5

V
ar

ia
tio

n 
of

 s
uc

ce
ss

 p
ro

ba
bi

lit
y 

w
ith

 u
nc

er
ta

in
ty

 le
ve

ls
 f

or
 g

ra
sp

 s
tr

at
eg

y 
1.

𝕌 o
 (

de
g)

5
8

10
12

15

𝕌 
t(m

m
)

5
0.

96
67

0.
96

67
0.

9
0.

83
33

0.
8

8
0.

96
67

0.
9

0.
83

33
0.

8
0.

73
33

10
0.

86
67

0.
8

0.
73

33
0.

66
67

0.
63

33

12
0.

83
33

0.
73

33
0.

7
0.

63
33

0.
56

67

15
0.

73
33

0.
63

33
0.

63
33

0.
6

0.
53

33

J Comput Inf Sci Eng. Author manuscript; available in PMC 2019 June 01.


	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Representing Singulation Plans
	4.1 Grasp Strategies
	4.2 Drop-off Strategies
	4.3 Pose Uncertainty Updates During Plan Execution

	5 Generating Singulation Plans
	Table T1
	Condition 1a- Inverse kinematics
	Condition 1b- Checking for collision with the bin

	6 Evaluating Singulation Plans
	Algorithm 2
	6.1 Estimating Probability of Success for a Singulation Plan

	Algorithm 3
	6.2 Estimating Execution Time for a Singulation Plan

	7 Experimental Results
	8 Conclusions
	References
	FIGURE 1
	FIGURE 2
	FIGURE 3
	FIGURE 4
	FIGURE 5
	FIGURE 6
	FIGURE 7
	FIGURE 8
	FIGURE 9
	FIGURE 10
	FIGURE 11
	FIGURE 12
	FIGURE 13
	FIGURE 14
	TABLE 1
	TABLE 2
	TABLE 3
	TABLE 4
	TABLE 5

