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ABSTRACT 
 

Surface blending is frequently met in mechanical engineering. Creating a smooth transition surface of 
2C   

continuity between time-dependent parametric surfaces that change their positions and shapes with time 

is an important and unsolved topic in surface blending. In order to address this issue, this paper develops a 

new approach to unify both time-dependent and time-independent surface blending with 
2C  continuity. 

It proposes a new surface blending mathematical model consisting of a vector-valued sixth-order partial 

differential equation and blending boundary constraints, and investigates a simple and efficient 

approximate analytical solution of the mathematical model. A number of examples are presented to 

demonstrate the effectiveness and applications. The proposed approach has the advantages of: (1) 

unifying time-independent and time-dependent surface blending, (2) always maintaining 
2C  continuity at 

trimlines when parametric surfaces change their positions and shapes with time, (3) providing effective 

shape control handles to achieve the expected shapes of blending surfaces but still exactly satisfy the given 
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blending boundary constraints, and (4) quickly generating  
2C  continuous blending surfaces from the 

approximate analytical solution with easiness, good accuracy, and high efficiency. 

 

Keywords: Surface blending, time-dependent and time-independent parametric surfaces, 
2C  continuity, 

sixth-order partial differential equations, approximate analytical solutions 

 

 

1    INTRODUCTION 
 

Surface blending has many applications in mechanical engineering. It is widely 

applied in computer-aided design, and used to emulate manufacturing procedures, 

alleviate stress concentrations, or avoid flow disturbances.  

Surface blending can be divided into different types. The main types of blends 

met in practice can be categorized as: surfaces governed by strong functional 

constraints, esthetic blends, fairings, and rounds and fillets [1]. 

Surface blending is to generate a smooth transition between intersecting 

surfaces or a smooth connection between disjoint surfaces. The surfaces to be blended 

are called primary surfaces. The surface which forms a smooth transition or connection 

between primary surfaces is called a blending surface. The interface curves between a 

blending surface and primary surfaces are called trimlines [2]. 

Implicit [3] and parametric [4] surfaces are two types of surface representations 

commonly used in modeling systems. Parametric surfaces such as NURBS surfaces are 

especially applicable to computer-aided design. This paper investigates blending 

between parametric surfaces.  
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Tangent and curvature continuities are most frequently applied in mechanical 

engineering. For example, discontinuous curvature causes problems in NC milling and 

leads to break points of reflection lines [5] which are widely used in automotive industry 

[6]. A cam with second-order discontinuity creates abrupt changes in acceleration, and 

the design of streamlined surfaces of aircraft, ship, and submarine requires curvature 

continuity to avoid flow separation and turbulence [7]. Although 2G  continuous 

surfaces can meet curvature continuity requirement, higher-order continuity such as 

continuous slope-of-curvature can suppress both laminar and turbulent separation and 

lead to higher aerodynamic efficiency [8]. It is also stated that higher-order 

(> 2C continuous) surfaces are often required for certain numerical simulations and to 

meet visual, aesthetic, and functional requirements [8]. Due to the importance of 2C  

continuities, this paper will investigate this issue. 

Depending on whether primary surfaces change their positions and shapes with 

time, surface blending can be divided into time-independent and time-dependent. A 

comprehensive literature survey on blending time-independent parametric surfaces has 

been made in [2]. Although various blending methods have been developed, all these 

methods can only deal with time-independent primary surfaces which do not change 

their positions and shapes over time. However, in many situations, primary surfaces are 

constantly in motion and change shapes. It has been pointed out that the blending 

surface joining the wing of an aircraft to the fuselage must meet stringent aerodynamic 

requirements [1]. The blending surfaces connecting the torso and limbs of a running 

person must be always smooth and seamless. In spite of the importance of time-
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dependent surface blending, it has not attracted a lot of research attention except for 

[9] which investigated time-dependent 1C  continuous surface blending. This paper will 

develop a new method to extend time-dependent 1C  continuity to time-dependent 2C  

continuity. 

Another important problem is how to achieve satisfactory shapes of blending 

surfaces but still maintain exact satisfaction of blending boundary constraints. Kiciak 

[10] introduced a function which is the integral of the square of length of the mean 

curvature gradient with respect to the surface measure and minimized the functional to 

achieve a satisfactory shape of a blending surface. The numerical minimization 

algorithm involves heavy computations. Unlike the minimization algorithm, the 

approach proposed in this paper directly adjusts the values of shape control parameters 

to achieve a satisfactory shape of blending surfaces easily and quickly. 

To summarize, the main contributions of this paper are: (1) a new approach to 

generate time-dependent blending surfaces and unify both time-dependent and time-

independent surface blending with 2C  continuity, (2) a new 2C  continuous and time-

dependent surface blending mathematical model and its simple and efficient 

approximate analytical solution, and (3) powerful shape control handles to achieve a 

satisfactory shape of blending surfaces. 

The rest of this paper is organized as follows. The related work is briefly 

reviewed in Section 2. The mathematical model of time-dependent surface blending 

with 2C  continuity is formulated in Section 3. A simple and efficient approximate 

analytical solution of the mathematical model is developed in Section 4. The accuracy, 
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efficiency, and effects of second partial derivatives and shape control parameters of the 

proposed approximate analytical solution are investigated in Section 5. The applications 

of the proposed approach in time-dependent and time-independent surface blending 

are demonstrated in Section 6, and the conclusion and future work are discussed in 

Section 7. 

 
2    RELATED WORK 

 

Various time-independent methods have been proposed to blend parametric 

surfaces. Among them, rolling ball methods, which can be divided into constant radius 

[11] and variable radius [12] ones, are most widely used for rounding edges and corners 

of mechanical parts [13]. In addition, the potential method [14-16] was also proposed.  

The shapes of the blending surfaces created by rolling-ball methods are circular. 

Noncircular blending surfaces can be generated with some other methods such as filling 

n-sided regions [17], polyhedral vertex blending with setbacks using rational S-patches 

[18], branching blends between two natural quadrics with Pythagorean normal surfaces 

[19], and partial differential equation (PDE)-based methods [20]. 

PDE-based methods are most powerful in creating different noncircular shapes 

of blending surfaces. They formulate surface blending as a mathematical boundary-

value problem, and adjust shape control parameters embedded in the PDE to 

effectively generate different shapes of blending surfaces while still keeping exact 

satisfaction of blending boundary constraints. 
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The earliest work about PDE-based surface blending was described in [20]. How 

to solve partial differential equations effectively and efficiently is a most important 

issue. Numerical, accurate, and approximate analytical methods can be used to solve 

partial differential equations. Various numerical methods such as the finite difference 

method [21] and the finite element method [22] are most powerful. In spite of their 

powerful capacity, they have the following limitations. First, they generate blending 

surfaces with discrete boundary representations which are unsuitable for the 

requirement of good continuity. Second, they involve many design variables and a lot of 

calculations which cause high requirements for computing devices and slow response. 

Third, specific knowledge and skills of the numerical methods are required to carry out 

the numerical calculations.  

In contrast, accurate and approximate analytical methods can overcome these 

limitations with less powerful capacity. Accurate methods obtain the closed form 

solution of partial differential equations, but only apply to some simple and special 

cases [23]. Approximate analytical methods [24] are more powerful than accurate 

methods and more efficient but more difficult to obtain than numerical methods. In this 

paper, we have adopted approximate analytical methods to develop a new surface 

blending approach.  

Up to now, most PDE-based methods and all other surface blending approaches 

only investigate time-independent surface blending. The work described in [9] initiated 

the research on surface blending of time-dependent parametric surfaces. It proposed a 

vector-valued fourth-order partial differential equation involving a time variable and the 
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constraints of positional and tangential (first partial derivative) continuities and its 

approximate analytical solution to generate time-dependent surface blending of 1C  

continuity. The method is not applicable to time-independent surface blending since the 

solution of the partial differential equation always involves the time variable. In 

addition, 2C  continuous surface blending has not been investigated.  

In order to tackle the above problems and generalize the technique introduced 

in [9], this paper drops the time variable, proposes sixth-order partial differential 

equations, introduces the second partial derivative continuity into blending boundary 

constraints to address 2C  continuity, and develops the first approximate analytical 

solution of the sixth-order partial differential equations to unify both time-independent 

and time-dependent 2C  continuous surface blending. It has the advantages of easiness, 

good accuracy, and high efficiency. 

 

3    MATHEMATICAL MODEL OF SURFACE BLENDING WITH 2C  CONTINUITY 
 
 

The mathematical model of PDE-based surface blending consists of partial 

differential equations for x , y  and z  components and blending boundary constraints. 

When two primary parametric surfaces are to be connected together with 2C  

continuity, the blending surface must satisfy the constraints of the position functions 

and the first and second partial derivatives of the two primary parametric surfaces at 

the trimlines. If the two primary parametric surfaces change their shape with the time, 

the position functions and the first and second partial derivatives of the primary 

parametric surfaces at the trimlines are the functions of time variable t . Therefore, the 
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two primary parametric surfaces can be written as ),,(1 tvuS  and ),,(2 tvuS  where u  

and v  are the parametric variables and t  is a time variable, and the position function 

and the first and second partial derivatives for the first primary parametric surface 

),,(1 tvuS  at the trimline 0uu   can be written as ),(1 tvC , ),(2 tvC  and ),(3 tvC , and 

those for the second primary parametric surface ),,(2 tvuS  at the trimline 1uu   can be 

written as ),(4 tvC , ),(5 tvC  and ),(6 tvC  where 0u  and 1u  are two specified values 

between 0 and 1. 

 Assuming the mathematical equation of the blending surface is ),,( tvuS , its 

position function, and the first and second partial derivatives at the trimlines 0u  and 

1u  must be the same as those of the primary parametric surfaces at the trimlines. 

Therefore, the boundary constraints of the blending surface between the two primary 

parametric surfaces can be written as 

)2,1,0(

),(),,(      1

),(),,(      0

4

1











n

tvutvuu

tvutvuu

n

nn

n

nn

CS

CS

                                    (1) 

where ),,(),,(   00 tvuutvu SS  , ),,( tvuS  has three components ),,( tvuSx , 

),,( tvuS y , and ),,( tvuS z , and ),( tviC  )6,,2,1( i  also have three components 

),( tvCxi , ),( tvCyi , and ),( tvCzi . 

 Equation (1) is a general form of blending boundary constraints. Here we give an 

example to demonstrate how to determine its concrete form. This example is to 

smoothly connect two primary parametric surfaces together. The parametric 

representation for the first primary surface is    
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2

21                 2cos                2sin uhhzvbueyvauex tt                         (2) 

and the parametric representation for the second primary surface is   

3

3                   2cos                 2sin uhzvdueyvcuex tt                            (3) 

where a , b , c , d , 1h ,  2h  and 3h  are the geometric parameters to be specified, and  

10  u .   

 Setting the geometric parameters in Eq. (2) and (3) to be: 6.3a ,  5.5b ,  

0.6c ,  0.3d ,  0.21 h ,  0.62 h ,  and 0.203 h , the first primary surface between 

4.0u  and 75.0u  and the second primary surface between 55.0u  and 65.0u  at 

the time instants 0t , 0.2, 0.4, 0.6, 0.8, and 1.0 are depicted in Fig. 1 where the top 

and bottom primary surfaces are obtained from Eq. (2) and Eq. (3), respectively.    

 If we take the trimline to be 0uu   in Eq. (2) for the top primary surface and 

1uu   in Eq. (3) for the bottom primary surface, we obtain the boundary curves 

 Ttt uhhvebuveautv 2

021001 2cos2sin),(   C  and  vecutv t 2sin),( 14

C   

Tt uhvedu 3

131 2cos  . With Eqs. (2) and (3), we can derive the first partial derivatives 

ux  , uy  , and uz  , and the second partial derivatives 22 ux  , 22 uy  , and 

22 uz  . Setting 0uu   for the partial derivatives from Eq. (2), we obtain 

 Ttt uhvbevaetv 022 22cos2sin),(   C  and  T
htv 23 200),( C . Setting 

1uu   for the partial derivatives from Eq. (3), we obtain  vcetv t 2sin),(5

C  

Tt uhvde 2

1332cos   and  Tuhtv 136 600),( C . Substituting ),( tviC  )6,,2,1( i  

into (1), boundary constraints (1) become  



Journal of Computing and Information Science in Engineering 

 

10 

 

132

2

2

2

2

2

2

13

3

1311

22

2

2

2

2

2

02

2

02100

6                           0                      0              

3             2cos        2sin              

             2cos        2sin       1

2                           0                      0              

2          2cos       2sin              

           2cos         2sin      0

uh
u

S

u

S

u

S

uh
u

S
vde

u

S
vce

u

S

uhSveduSvecuSu

h
u

S

u

S

u

S

uh
u

S
vbe

u

S
vae

u

S

uhhSvebuSveauSu

zyx

ztytx

z

t

y

t

x

zyx

ztytx

z

t

y

t

x






































































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




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              (4) 

For 2C  continuous surface blending introduced in [9], the first and second partial 

derivatives of blending surfaces with respect to a time variable t are involved in a 

vector-valued partial differential equation. In spite of the advantage in considering the 

effects of acceleration and velocity, it will cause the following problem. When primary 

surfaces are time-independent and do not change their positions and shapes, the 

blending surface should also be time-independent and does not change its position and 

shape. However, since the first and second partial derivatives of blending surfaces with 

respect to the time variable t  are involved in the vector-valued partial differential 

equation, its closed form solution involves the time variable t  and the blending surface 

defined by the closed form solution will change its shape with time. This is contradictory 

to the real situation and makes the surface blending technique in [9] unsuitable for 

time-independent surface blending. In order to generalize the technique introduced in 

[9] and unify both time-dependent and time-independent surface blending, this paper 

will remove the two terms involving the first and second partial derivatives with respect 
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to the time variable t . Such a treatment also simplifies the mathematical operation and 

raises the computational efficiency. 

For PDE-based surface blending, boundary constraints determine the order of 

partial differential equations necessary to achieve the required continuity. If 2C  

continuity is required, the blending and primary surfaces share two position functions, 

two first partial derivatives, and two second partial derivatives at the trimlines 0u  

and 1u  as shown in Eq. (1). The closed form solution of a vector-valued sixth-order 

partial differential equation contains 6 unknown constants. They can be used to satisfy 

the 6 constraints given in blending boundary constraints (1). Therefore, we choose the 

following sixth-order partial differential equations 

),,(

0),,()(
6

6

42

6

24

6

6

6

zyx

tvuS
vvuvuu

























                             (5) 

subjected to the blending boundary constraints (1) for 2C  continuous surface blending. 

In the equation,  ,  ,  , and   are called shape control parameters since they have a 

big influence on the shapes of blending surfaces.  

 Putting Eq. (5) and Eq. (1) together, we obtain the mathematical model of 2C  

continuous blending of time-dependent parametric surfaces. Its approximate analytical 

solution will be developed below. 

For time-independent primary surfaces, the time variable t  in the partial 

differential equations (5) and the blending boundary constraints (1) drops, and the 
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corresponding mathematical model consisting of equations (5) and (1) becomes time-

independent which can be used to deal with time-independent surface blending. 

 

4    APPROXIMATE ANALYTICAL SOLUTION OF MATHEMATICAL MODEL 

 

 It is difficult to directly solve the sixth-order partial differential equations (5) 

subjected to the blending boundary constraints (1). In order to simplify the solution, we 

examine the boundary functions ),2,1 ;(  ),(  ix,y,ztvf i   given in the blending 

boundary constraints (1) and classify the boundary functions into three groups 

)6,,2,1 ;,2,1,,(

),(
~~),(

~~

),(ˆˆ),(ˆˆ         ),(),(

,

,,

 









nlkj

tvfatvCC

tvfatvCCtvfatvCC

l

l

nlnn

k

k

nknnj

j

njnn





              (6) 

 The first group of functions ),2,1 ;(  ),(  jx,y,ztvf j   has the following 

differential properties 

),2,1 ;(           0
),(

2

2





jx,y,z

v

tvf j


                                  (7) 

 The second group of functions ),(ˆ tvf k  ),2,1 ;(  kx,y,z  has the following 

differential properties 

)3,2,1;,2,1 ;(        ),(ˆ),(ˆ

2

2





mkx,y,ztvf

v

tvf
k

m

km

k

m

 

                     (8) 

 The third group of functions ),(
~

tvf l  ),2,1 ;(  lx,y,z  has no any of the 

differential properties (7) and (8). 
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 After decomposing the functions in the blending boundary constraints (1) into 

the above three groups of boundary functions, the blending boundary constraints (1) 

become  

),,(

~ˆ),,(               

~ˆ),,(                  
~ˆ),,(        1

~ˆ),,(               

~ˆ),,(                    
~ˆ),,(       0

666

22

555444
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222111
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CCCutvuS

CCCutvuSCCCtvuSu

CCCutvuS

CCCutvuSCCCtvuSu
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


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



        (9) 

 If we decompose the mathematical functions ),,( tvuS ),,( zyx  of the 

blending surface into the corresponding three parts: ),,( tvuSS   , ),,(ˆˆ tvuSS    and 

),,(
~~

tvuSS   , and substitute  SSStvuS
~ˆ),,(   into Eq. (5), we reach 

  0),,(
~

),,(ˆ),,()(
6

6

42

6

24

6

6

6




















tvuStvuStvuS

vvuvuu
          (10)

 

 On the trimlines 0u  and 1u , ),,( tvuS , ),,(ˆ tvuS  and ),,(
~

tvuS correspond 

to ),( tvC n , ),(ˆ tvC n  and ),(
~

tvC n , respectively. Solving Eq. (5) subjected to (1) can be 

transformed into solving each of the terms in the square bracket of Eq. (10) subjected to 

the blending boundary constraints consisting of the corresponding terms in Eq. (9).  

As derived in Appendix A, the unknown functions ),,( tvuS  are found to be: 

)1,2,j ;(              ),()(),,( ,

6

1




x,y,ztvfaugtvuS j

j

nj

n

n                   (11) 

where )(ugn  )6,,2,1( n  are determined by Eq. (A8), and nja ,  and ),( tvf j  are 

determined by the first one of Eq. (6).  
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As derived in Appendix B, the unknown functions ),,(ˆ tvuS  are obtained as 

   
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       (12) 

where the determination of the unknown constants 0q , 1q , 2q , and )6,,2,1(  ˆ
, nb nk  is 

described in Appendix B, and ),(ˆ tvf k  are determined by the second one of Eq. (6) 

Unlike the unknown functions ),,( tvuS and ),,(ˆ tvuS whose exact closed form 

solutions are obtainable, the exact closed form solutions (CFS) for the unknown 

functions ),,(
~

tvuS  do not exist. In Appendix C, we derive their approximate analytical 

solutions below 

 

),2,1 ;(

),(
~

sin)(~)(~),,(
~

1

,

6

1

,



 
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lx,y,z

tvfumufmcugatvuS lm

l

M

m

ml

n

nnl



                (13) 

where )(ugn  is determined by Eq. (A8), nla ,
~
  and ),(

~
tvf l  are determined by the third 

one of Eq. (6), mlc ,
~
  are determined by Eq. (C12), and M  indicates the total number of 

the sine terms. The bigger the value of M, the more accurate of the approximate 

analytical solution. 

Putting the obtained ),,( tvuS , ),,(ˆ tvuS , and ),,(
~

tvuS  together, we obtain 

the mathematical expression of blending surfaces. They will be used to investigate the 

accuracy, efficiency, and effects of the second partial derivatives and shape control 
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parameters in Section 5.  The applications of the proposed approach in time-dependent 

and time-independent surface blending will be demonstrated in Section 6. 

 

5    RESULTS AND DISCUSSION 

 

In this section, we implement the proposed approach, compare it with the exact 

closed form solution to demonstrate its good accuracy and high efficiency and with the 

time-dependent 1C  continuous surface blending in [9] to investigate the differences 

between 1C  and 2C  continuities, discuss the influence of second partial derivatives on 

the continuity at timelines, and investigate shape control of 2C  continuous surface 

blending.  

The obtained mathematical expressions (11), (12) and (13) of blending surfaces 

were implemented with C++ and OpenGL. All the examples were run on a same desktop 

with 3.5 GHz CPU.  

 

5.1    Accuracy and Efficiency 

 

First, we demonstrate good accuracy and high efficiency of the proposed 

approach by comparing it with the accurate closed form solution through creating a 

time-dependent blending surface between two separate elliptic cylinders represented 

with time-dependent primary surfaces. The primary surfaces for this example are 
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defined in Eqs. (2) and (3), and the blending boundary constraints are described in Eq. 

(4).  

 The functions in the blending boundary constraints (4) can be divided into two 

types, i. e., ),,( tvuS  and ),,(ˆ tvuS . In order to investigate the accuracy and efficiency, 

we use both the exact closed form solutions (12) and the approximate analytical 

solutions (13) to obtain the unknown functions ),,(ˆ tvuS . Using the same geometric 

parameters 6.3a ,  5.5b ,  0.6c ,  0.3d ,  0.21 h ,  0.62 h ,  and 0.203 h , 

taking the trimlines to be at 4.00 u  and 55.01 u , and setting the shape control 

parameters to 1  , the time variable  to 1.0t , and M  in Eq. (13) to 10, 

15, and 20, the blending surfaces )1.0,,( tvuMS  obtained from the approximate 

analytical solution are depicted in Fig. 2 where M  indicates the total terms used in Eq. 

(13). 

 Using the same geometric and shape control parameters, the blending surface 

)1.0,,( tvuSCFS  obtained from the exact closed form solution (12) is also shown in Fig. 

2 where CFS indicates the closed form solution.  

 The first image of the second row of the figure shows the profile curves of the 

blending surface obtained from 10M , 15, and 20 of the proposed approach and the 

exact closed form solution, and the profile curves are magnified in the second and third 

images of the second row with the two innermost profile curves from 10M . The 

second row of Fig. 2 shows no visible difference between profile curves from 15M  

and 20M  of the proposed approach and the closed form solution.    
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Next, we quantify the errors between the approximate analytical solution and 

the exact closed form solution. If ip  and iq  are used to indicate the thi  point on the 

blending surfaces respectively obtained from the developed approximate analytical 

solution and the exact closed form solution, i. e., )1.0,,(  tvup iiMi S  and 

)1.0,,(  tvuSq iiCFSi , the Euclidean distance between the thi  point on the two 

blending surfaces is ),( ii qpd  [25] . The errors between the proposed approximate 

analytical solution and the exact closed form solution are calculated with the following 

equations 
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              (14) 

In the equation, 1E , 2E , 3E , and 4E  indicate absolute maximum error, absolute 

average error, relative maximum error, and relative average error, respectively, I  is the 

total number of all the points on a blending surface, and D  is the maximum distance 

between two points of the blending surface with the same parametric values u  but 

different parametric values v . The errors obtained from Eq. (14) are given in Table 1. 

The computational time (CPU) used to determine all the unknown constants and 

generate the blending surfaces with 10M , 15 and 20 and four different quad meshes 

is also given in the same table where T1, T2, T3 and T4 stand for the computational time 

for the quad meshes with 5151 , 101101 , 151151 , and 201201  vertices, 

respectively.  
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The data in Table 1 demonstrate good accuracy and high computational 

efficiency of the proposed approximate analytical solution. When M  increases from 10 

to 20, the relative average error ( 4E ) of the proposed approach decreases from 

31063.4   to 61080.2  . With the increase of the total vertices, the computational 

time for both approximate analytical solution and exact closed form solution rises. 

When 10M , the approximate analytical solution is more efficient than the exact 

closed form solution for all the four meshes. When 20M , the computational time of 

the approximate analytical solution becomes larger than the exact closed form solution 

but still at the same order.  

Unlike the exact closed form solution which is applicable to simple blending 

boundary constraints involving constants, sine and cosine functions, and exponential 

functions only, the developed approximate analytical solution is applicable to various 

complicated blending boundary constraints.  

With the developed approach and setting the time variable 0t , 0.2, 0.4, 0.6, 

0.8 and 1, the blending surfaces at these time instants are obtained and depicted in Fig. 

3 where the first row is from the front view and the second row is from the side view.  

The images shown in Fig. 3 indicate that at different time instants, the proposed 

approach always creates 2C  continuous blending surfaces to smoothly connect time-

dependent primary surfaces together.  

 

5.2    Comparison with Time-Dependent 1C  Continuous Surface Blending 

 



Journal of Computing and Information Science in Engineering 

 

19 

 

In this subsection, we compare the 2C  continuous surface blending developed in 

this paper with the 1C  continuous surface blending introduced in [9] through a blending 

example. It creates a smooth transition between two time-dependent cylinders.  

The parametric equations for the first cylinder are  

2

21       2cos       2sin uhhzvaeyvaex tt             (15) 

The parametric equations for the second cylinder are 

3

3       2cos       2sin uhzvbeyvbex tt               (16) 

In the above equations (15) and (16), the geometric parameters are taken to be 

0.1a , 8.0b , 0.21 h , 0.32 h , and 0.53 h . The trimlines are at 2.00 u  and 

3.01 u

 

where 0u

 

and 1u

 

stand for the isoparametric lines of the first and second 

cylinders, respectively.  

The position functions and the first partial derivatives at the timelines required 

by the blending boundary constraints described in [9] can be derived from Eqs. (15) and 

(16). All the shape control parameters are set to 1, the total terms are 10k . The 1C  

continuous blending surface at the time instant t = 0 created by the approach proposed 

in [9] is depicted in Fig. 4(a), and the computational time (CPU) is 145 milliseconds. 

With the approach proposed in this paper, the second partial derivatives at the 

trimlines are derived from Eqs. (15) and (16), and added to the blending boundary 

constraints. All the shape control parameters are also set to 1, the total terms are 

10M , and all the geometric parameters are kept unchanged. The 2C  continuous 
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blending surface at the time instant 0t  created by the approach proposed in this 

paper is shown in Fig. 4(b), and the computational time (CPU) is 178 milliseconds. 

Since the two approaches uses different partial differential equations (fourth-

order vs sixth-order) and different blending boundary constraints (without and with the 

second partial derivatives), the shapes of the blending surfaces generated with the two 

different approaches are different and we cannot compare their shapes. Therefore, we 

compare the computational efficiency and how the second partial derivatives affect 

curvature continuity. 

Although the approach proposed in this paper uses sixth-order partial 

differential equations and more blending boundary constraints, i. e., the second partial 

derivatives, the computational time for the two approaches is at the same order. 

Without the constraint of the second partial derivatives, the curvature continuity at the 

trimlines cannot be maintained as shown in Fig. 4(a). After applying the constraint of the 

second partial derivatives, good curvature continuity at the trimlines is achieved as 

shown in Fig. 4(b). 

 

5.3    Effects of Second Partial Derivatives 

 

Unlike the 1C  continuous surface blending presented in [9] which only maintains 

the continuities of the position functions and first partial derivatives at trimlines, the 2C  

continuous surface blending developed in this paper introduces second partial 

derivatives at trimlines to achieve higher continuity. In this subsection, we will 



Journal of Computing and Information Science in Engineering 

 

21 

 

demonstrate how second partial derivatives at trimlines affect the continuity between 

the blending surface and primary surfaces. 

Still setting the time variable 0t  and using the same position functions, and 

the first and second partial derivatives of x  and y  components for both the blending 

surface and primary surfaces at timelines as those determined by Eqs. (15) and (16), 

three different cases of the second partial derivatives of the z  component are 

considered. For all the three cases, the z component of the primary surfaces and the 

blending surface always has the same position functions and first derivatives at the 

trimlines. For the first case, the blending surface and primary surfaces have the same 

second partial derivatives 22h  at the trimline 0u  and 136 uh  at the trimline 1u , 

and the obtained blending surface is shown in Fig. 5(a). For the second case, the 

blending surface increases its second partial derivative to 210h  at the trimline 0u  

and 1318 uh  at the trimline 1u , and the obtained blending surface is indicated in Fig. 

5(b). For the third case, the blending surface further raises its second partial derivative 

to 220h  at the trimline 0u  and 1336 uh  at the trimline 1u , and the generated 

blending surface is depicted in Fig. 5(c). In the figure, the images in the bottom row 

show different shapes of the blending surface only. They are used to demonstrate how 

the second partial derivatives affect the continuity at the trimlines. 

It can be seen from the images that when the blending surface and primary 

surfaces have the same second partial derivatives at the trimlines, good continuity 

between the blending surface and the primary surfaces is obtained as shown in Fig. 5(a). 

When the second partial derivatives of the blending surface and primary surfaces at 
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trimlines are different, poor continuity from the blending surface to primary surfaces 

occurs as indicted in Fig. 5(b). If the difference of the second partial derivatives between 

the blending surface and primary surfaces is bigger, the continuity between the 

blending surface and primary surfaces becomes worse as shown in Fig. 5(c). 

 

5.4    Shape Control of Blending Surfaces 

 

One of the main advantages of the proposed approach is it provides effective 

shape control to obtain different shapes of blending surfaces. In this subsection, we 

investigate how to use different shape control parameters to create different shapes of 

blending surfaces.  

 In order to generate different shapes of primary and blending surfaces, the 

geometric parameters in the primary surfaces (2) and (3) and the blending boundary 

constraints (4) are changed to: 6.2a ,  5.4b ,  0.5c ,  0.21  hd ,  0.32 h ,  and 

0.53 h , and the trimlines are changed to 5.00 u  for the top surface and 4.01 u  for 

the bottom surface. If we do not want to use the shape control parameters to 

manipulate blending surfaces, we can simply set all the shape control parameters to 1, i. 

e., 1  . The obtained blending surfaces at the time instants 2.0t , 0.4 

and 0.6 are shown in Fig. 6. 

If we want to use the shape control parameters to create different shapes of 

blending surfaces and select the required ones from them, we can set shape control 
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parameters to different values. In what follows, we will investigate the effects of the 

shape parameters  ,  ,  , and   on the blending surface. 

 

5.4.1    Effects of Shape Control Parameter   

 

 Firstly, we investigate how to use the shape control parameter   to achieve 

different shapes of the blending surface. To this aim, we keep the shape control 

parameters 1   unchanged, and set the time variable 0t  and the shape 

control parameter   to different values shown in Fig. 7. With the developed 

approximate analytical solution, different shapes of the blending surface are obtained 

and depicted in the same figure where the last image shows the profile curves of 

different shapes of the a same blending surface. 

 Examining the shapes of the blending surface in Fig. 7, we can conclude: 1) when 

the shape control parameter   changes from -10 to -2.6, the concave blending surface 

becomes straight and bigger, 2) with further changes from -2.6 to -2, the middle part of 

the blending surface becomes more and more convex.  

 

5.4.2    Effects of Shape Control Parameter   

 

 Secondly, we keep the shape control parameters 1  , and set   to 

different values shown in Fig. 8. The obtained shapes of the blending surface and their 

profile curves are shown in the same figure.  
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 The blending surfaces in Fig. 8 indicate that when the shape control parameter   

changes from -11.0 to -7.0, the middle part of the blending surface first becomes 

straight, then becomes more concave and smaller. With  further  changes  from -7.0   to 

-4.5, the middle part of the blending surface is changed into a shape like the frustum of 

a cone first, and finally becomes most concave at 5.4 .   

 

5.4.3    Effects of Shape Control Parameter   

 

 Thirdly, we keep the shape control parameters 1   unchanged, and set 

the shape control parameter   to different values shown in Fig. 9. The obtained shapes 

of the blending surface and their profile curves are also given in the same figure.   

 From Fig. 9, we found that the middle part of the blending surface is most 

concave at 5.0  among the   values between -0.5 and 7.0. When   changes  from  

-0.5 to 7.0, the blending surface becomes less concave until it becomes a cylinder-like 

shape at 0.7 .   

 

5.4.4    Effects of Shape Control Parameter   

 

Finally, we examine how the shape control parameter    affects the shape of the 

blending surface. We keep the shape control parameters 1  , and set the 

shape control parameter   to different values shown in Fig. 10. The generated shapes 

of the blending surface and their profile curves are also depicted in the same figure. 
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 The blending surfaces shown in Fig. 10 indicate that when the shape control 

parameter   changes from -1.5 to -0.7, the straight middle part of the blending surface 

first becomes convex, and then changes back to the frustum of a cone but with a bigger 

cross-section size. When the shape control parameter   changes from -0.7 to 3.0, the 

blending surface becomes more and more concave and reaches most concave at 

0.3 .   

The above discussions indicate that all the four shape control parameters have a 

great influence on the shape of the blending surface. They can be developed into useful 

user handles to effectively control the shape of the blending surface. 

 

6    APPLICATIONS 

 

In this section, we first use the developed approximate analytical solution to 

create two time-dependent blending surfaces of C2 continuity. Then, we employ the 

developed approximate analytical solution to create some time-independent blending 

surfaces frequently met in engineering applications. 

 

6.1    Time-Dependent Surface Blending 

 

First, we investigate surface blending between linearly varying primary surfaces. 

Then, we create a blending surface between non-linearly varying primary surfaces. 
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6.1.1    Surface Blending between Linearly Varying Primary Surfaces 

 

For the first application example, two primary surfaces change their shapes 

linearly. The first primary surface varies from an open surface to a closed one, and the 

second primary surface changes from a plane to a cone shaped frustum.  

The parametric equations of the first primary surfaces are constructed as 

 
 
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 The parametric equations for the second primary surface are constructed as 
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                     (18)

 
The geometric parameters in the above Eqs. (17) and (18) are taken to be: 

1.0121  baa , 1.052653  hhbaa , 3.044  ba , 5.12 b , 2.13 b , 8.05 b , 

6.16 b , 5.07 b , 7.08 b , 75.00 h , 7.11 h , and 5.043  hh . The trimlines are 

taken to be at the isoparametric lines 010  uu

 

where 0u

 

and 1u

 

stand for the 

isoparametric lines of the first and second primary surfaces, respectively.    

From the parametric equations of the two primary surfaces, we can obtain the 

position functions, and the first and second partial derivatives of the first surface at 

00 u  and the second surface at  01 u . They are taken to be the boundary constraints 

of the blending surface at its isoparametric lines 0u

 

and 1u , respectively. With the 
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developed approach, the 2C  continuous blending surface is generated whose shapes at 

the time 5/it   ( 5,,2,1,0 i ) are depicted in Fig. 11.  

This example indicates that although the two primary surfaces continuously 

change their shapes, the proposed approach creates a blending surface which connects 

the varying shapes together with 2C  continuity. 

 

6.1.2    Surface Blending between Nonlinearly Varying Primary Surfaces 

 

For the second application example, two primary surfaces change their shapes 

following a nonlinear sine variation. The first primary surface initially has some wrinkles, 

and finally becomes the frustum of a smooth inclined circular cone. The second primary 

surface changes from a cone-shaped elliptic cylinder to an inclined plane.  

The parametric equations of the first primary surfaces are constructed as 

]cos)()[2/sin())](2/sin(1[(
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The parametric equations for the second primary surface are constructed as 
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cos)cos())(2/sin(cos))](2/sin(1[(
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           (20) 

The geometric parameters in the above Eqs. (19) and (20) are taken to be: 

64.0a , 6.02  kb , 3.00 h , 5.11 h , 0.152  hh , 0.223  rh , 5.04 h , 5.16 h ,  

0.27 h , 0.28 h , 0.12k , 11 k , 5.23 k , 8.04 k , 5.05 k , 8.0r , 9.00 r , 
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05.01 r , and 180/20  . For both primary surfaces, the trimlines are at 010  uu . 

Using the proposed method, different shapes of the blending surface at the time 

instants 5/it   ( 5,,2,1,0 i ) are depicted in Fig. 12. 

This example also demonstrates the capacity of our proposed approach in 

connecting two time-dependent primary surfaces together with 2C  continuity. 

 

6.2    Time-Independent Surface Blending 

 

The proposed approach is also effective in time-independent surface blending. In 

this subsection, we will present some examples to demonstrate this and its engineering 

applications.  

Blending surfaces which blend NURBS surfaces, intersecting planes, intersecting 

cylinders, and a cylinder to a plane are most common in mechanical engineering. In 

what follows, we will investigate how to use the developed approach to tackle these 

surface blending problems.  

 

6.2.1   Surface Blending between NURBS Surfaces 

 

A NURBS surface  Tzyx vuSvuSvuSvu ),(),(),(),( S  is a bivariate vector-

valued piecewise rational function of the form 

),()()(),(
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where 
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 In the equation, p  and q  are the degrees in the u  and v  directions, 

respectively,  Tzijyijxijij PPPP  are the control points, and ijw  are the weights.  

 When two NURBS surfaces ),(1 vuS  and ),(2 vuS  are to be smoothly blended 

together by a blending surface ),( vuS  at 0u  of ),(1 vuS  and 1u  of ),(2 vuS , we first 

obtain ),0()( 11 vuv  SC  and ),1()( 24 vuv  SC . Then we derive the first and second 

partial derivatives of the two NURBS surfaces, and obtain uvuv  ),0()( 12 SC , 

2

1

2

3 ),0()( uvuv  SC , uvuv  ),1()( 25 SC , and 2

2

2

6 ),1()( uvuv  SC .  

 Substituting the obtained )(viC  ( 6,,2,1 i ) into Eqs. (C9) and (C10), and 

solving Eq. (C12), we obtain all the unknown constants and the mathematical expression 

(13) of the blending surface. 

 In order to tackle various NURBS surface blending problems, we considered a 

general case where 16 control points and 8 knots were used to generate the first cubic 

NURBS surface ),(1 vuS  highlighted in grey in Fig. 13, and 25 control points and 10 knots 

were used to generate the second quartic NURBS surface ),(2 vuS  highlighted in light 
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blue. The obtained blending surface ),( vuS  was shown in blue in the same figure where 

the two images were obtained from two different viewpoints of a same blending 

surface.  

 The images in Fig. 13 show smooth transition from the blending surface to the 

two NURBS surfaces. It demonstrates the effectiveness of the proposed approach in 

blending NURBS surfaces with 2C  continuity. 

 

6.2.2   Surface Blending between Intersecting Planes 

 

Generating a smooth transition surface between two intersecting planes 

frequently appears in engineering design or manufacturing process to reduce stress 

concentration at the joint between the two planes. For this surface blending problem, 

the boundary constraints can be formulated as: 
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(24)  

 Setting the parameters in Eq. (24) to: 9.00 h , 4.01 h , 1.12 h , 

01.033  sh , 10 s , 5.01 s , 2.12 s  and 2p , we obtain the blending surface 
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demonstrated in Fig. 14(a) for 10  and Fig. 14(b) for 0  where Figs. 14(c) and 

14(d) show a very small local part of the blending surfaces depicted in  Figs. 14(a) and 

14(b). It can be seen that the second derivative in Eq. (24) determined by 0 creates 

a smoother blending surface than that determined by 10 .  

 The proposed approach is advantageous over constant and variable radius 

rolling-ball blends since it can achieve different levels of smoothness at trimlines and 

different shapes of blending surfaces. In contrast, constant and variable radius rolling-

ball blends cannot change both the smoothness and shape of the blending surface once 

the trimlines are specified.  

 

6.2.3 Surface Blending between Intersecting Cylinders 

 

Creating a smooth transition between intersecting cylinders is also very common 

in engineering design and manufacturing. When blending two intersecting cylinders 

with 2C  continuity, the boundary constraints can be written as 
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where 
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and 

vlsrvfvskrvf 22

1

2

1
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10 cos)()(           cos)()(                          (27) 

 Setting the shape parameters to 1   and geometric parameters to 

7.0s , 3.01 l , 2.1r , and 5.01 k , we obtain the blending surface depicted in Fig. 

15(a) and Fig. 15(b) where )(3 vfuz   and )(4

22 vfuz  . 

How the first and second partial derivatives affect the smoothness and the shape 

of the blending surface can be obtained by scaling them. Setting )(01.0 3 vfuz   and 

keeping )(4

22 vfuz   unchanged, we obtain the blending surface depicted in Fig. 

15(c). If we fix )(3 vfuz   but set )(10 4

22 vfuz  , the blending surface shown in 

Fig. 15(d) is generated. These images demonstrate the effectiveness of the first and 

second partial derivatives in changing the smoothness and the shape of blending 

surfaces. 

 

6.2.4 Surface Blending between a Cylinder and a Plane 

 

The final example is to create a time-independent 2C  continuous blending 

surface smoothly connecting a cylinder to a plane. It is widely applied in mechanical 

components and parts such as a transmission yoke - drive shaft shown in Fig. 16(a) 
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where the blending between the cylinders and planes in the highlighted region is 

required. 

Due to limitations of space, the blending boundary constraints are not given 

here. The obtained blending surface is shown in (b) and (c) of Fig. 16 where (b) is 

rendered with a same colour and (c) is rendered with three different colours. 

 

7    CONCLUSIONS AND FUTURE WORK 

 

In this paper, we have developed a new surface blending method to create a 2C  

continuous blending surface. The proposed mathematical model can tackle both time-

dependent and time-independent parametric surfaces, and the developed approximate 

analytical solution is simple and easy to use. 

We investigated the accuracy, efficiency, effects of the second derivatives, the 

comparison with the time-dependent 1C  continuous surface blending given in [9], and 

how different shape control parameters affect the shape of time-dependent blending 

surfaces. It was found: 1) the proposed approach has good accuracy and high efficiency, 

2) the second partial derivatives play an important role in achieving good continuity, 3) 

all the shape control parameters have a strong impact on the shape of the blending 

surface, and can be developed into effective shape control handles to achieve the 

required shapes of blending surfaces. We have also presented some examples of time-

dependent and time-independent surface blending to demonstrate engineering 

applications of the proposed approach. 
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One of the main advantages of the proposed approach is the shape control 

parameters can be optimized to: 1) minimize stress concentrations in engineering 

applications, and 2) create user’s specified shapes for aesthetic or other requirements. 

Stress concentrations are related to the curvature of blending surfaces between primary 

surfaces such as two intersecting planes to be smoothly connected. Small curvature 

causes low stress concentrations. Therefore, minimizing stress concentrations is to find 

optimal shape control parameters which minimize the curvature of blending surfaces. In 

order to create user’s specified shapes, one or more profile curves will be first drawn by 

users. The difference between the user’s drawn profile curves and the corresponding 

ones of blending surfaces is minimized to obtain optimal shape control parameters and 

create the user’s specified shapes of blending surfaces. We will investigate these 

important topics in the future. 
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APPENDIX A:  DETERMINATION OF ),,( tvuSS    

 

 For the first group of boundary functions ),2,1(  ),( itvf j , the corresponding 

mathematical expressions of the blending surface can be taken to be 

)1,2,j ;(              ),()(),,(  x,y,ztvfuHtvuS j
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j                    (A1) 

 The partial differential equations (10) corresponding to the mathematical 

expressions ),,( tvuS are 
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 The blending boundary constraints (9) corresponding to the mathematical 

expressions ),,( tvuS are 
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 Substituting Eq. (A1) into (A2) and considering the differential properties (7) and 

the boundary constraints (A3), we obtain 
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subjected to the following boundary constraints 
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 The solution to the sixth-order ordinary differential equation (A4) can be taken 

to be 

 ),2,1;,,(         )(
5

0

, 


jzyxubuH
n

n

njj                                  (A6) 

where )6,,2,1( , nb nj  are unknown constants. 

Equations (A6) have exactly satisfied the sixth-order ordinary differential 

equation (A4). Substituting Eq. (A6) into the boundary constraints (A5), all the unknown 
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constants njb ,  are determined. Introducing the determined unknown constants njb ,  

into (A6), and then substituting (A6) into (A1), we obtain 
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APPENDIX B:  DETERMINATION OF ),,(ˆ tvuS  

 

For the second group of functions ),2,1(  ),(ˆ ktvf k , the corresponding 

mathematical expressions of the blending surface can be taken to be 
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 The partial differential equations (10) corresponding to the mathematical 

expressions ),,(ˆ tvuS are 
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The blending boundary constraints (9) corresponding to the mathematical 

expressions ),,(ˆ tvuS are 
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 Substituting Eq. (B1) into (B2) and considering the differential properties (8) and 

the boundary constraints (B3), we obtain 
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subjected to the following boundary constraints 

),2,1;,,(

ˆ)(ˆ      ˆ)(ˆ     ˆ)(ˆ        1

ˆ)(ˆ      ˆ)(ˆ      ˆ)(ˆ       0

6,

22

5,4,

3,

22

2,1,







kzyx

auuHauuHauHu

auuHauuHauHu

kkkkkk

kkkkkk







  

          (B5) 

 The closed form solution of the sixth-order ordinary differential equation (B4) 

subjected to the boundary constraints (B5) is obtainable. Due to the different 

combinations of  ,  ,  ,  , and k , the closed form solution has many different 

forms. For the shape control parameters 1  , and 24 k , the closed 

form solution has the form of  
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where 0q , 1q  and 2q  are determined by substituting Eq. (B6) into the sixth-order partial 

differential equation (B2), and )6,,2,1(  ˆ
, nb nk  are determined by substituting Eq. 

(B6) into the boundary constraints (B5).  

 

APPENDIX C:  DETERMINATION OF ),,(
~

tvuS  

 

 For the third group of functions ),(
~

tvf l , the corresponding mathematical 

expressions of the blending surface can be taken to be 
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The blending boundary constraints (9) corresponding to the mathematical 

expressions ),,(
~

tvuS are 
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 Substituting Eq. (C1) into the partial differential equation (C2), and considering 

the boundary constraints (C3), we obtain 



Journal of Computing and Information Science in Engineering 

 

41 

 

),2,1(

0
),(

~

)(
~

),(
~

)(
~

),(
~

)(
~

),(
~)(

~

6

6

4

4

2

2

2

2

4

4

6

6







l

dv

tvfd
uH

dv

tvfd

du

uHd

dv

tvfd

du

uHd
tvf

du

uHd

l

l

llll

l

l















               (C4) 

subjected to the following boundary constraints 
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 Since the boundary functions ),2,1(  ),(
~

ltvf l  are known, Eq. (C4) is a sixth-

order ordinary differential equation for each of ,2,1l . In order to solve Eq. (C4) 

subjected to the corresponding boundary constraints (C5), we first construct a trial 

function )(
~

uH l  and make it meet the boundary constraints (C5) exactly. Then, we 

introduce the trial function into Eq. (C1) to obtain ),,(
~

tvuS , substitute ),,(
~

tvuS  into 

Eq. (C4), and minimize the error of Eq. (C4) to obtain the required solution.  

 Since Eq. (C5) involves six boundary constraints, the trial function )(
~

uH l  can be 

taken to be a polynomial function of degree 5 plus a sine series, i. e.,  
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where nlb ,

~
  and mlc ,

~
  are unknown constants to de determined by the boundary 

constraints (C5) and the sixth-order ordinary differential equations (C4). 

 Substituting Eq. (C6) into the boundary constraints (C5), solving for nlb ,

~
 , and 

inserting the obtained nlb ,

~
  back into Eq. (C6), the following function is obtained 
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where )(ugn  )6,,2,1( n  is determined by Eq. (A8), and )()1()()( 52 uguguf m

m   

),,2,1( Mm  . 

 Substituting Eq. (C7) into Eq. (C1), then introducing Eq. (C1) into Eq. (C4), and 

formulating the squared error of Eq. (C4) below 

   ,2,1;,,            ),(~),(

2

1

,, 
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and 
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where k

l

kk

l duugdug )()()(  , k

l

kk

l dvtvfdtvf ),(
~

),(
~ )(

  , r

m

rr

m duufduf )()()(  , and 

)()()0( ufuf mm  ,    ;,2,1( l ;6,4,2k  ;1,2, Mm   )0,2,4r . 

 The above error lE  is a vector-valued continuous function. In order to quantify 

the error function, we uniformly allocate )1()1(  JI  sample points in the solution 

region  10 ,10  vu  which gives Iu 1 ,   Jv 1 , Iiuiui  , and 

Jjvjvi  . The squared error sum of the error function lE  at these sample points 

can be formulated as 
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 With the least squared method, we calculate 

   0~
,  mll cE   ;,2,1( l ),,4,3,2,1 Mm   which changes Eq. (C11) into the 

following equation 
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 There are M  linear algebra equations in (C12) which can be used to determine 

the M  unknown constants  ),,4,3,2,1(   ~
, Mmc ml  .  

 Repeating the solution process for ,2,1l , all the unknown constants 

),,2,1 ;,2,1(   ~
, Mmlc ml    are obtained. Substituting them back into Eq. (C7), and 

introducing Eq. (C7) into Eq. (C1), the mathematical expressions are obtained as 
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Figure Captions List 
 

Fig. 1 Primary surfaces in cyan and brown at 0t , 0.2, 0.4, 0.6, 0.8, and 1 

Fig. 2 Blending surfaces generated by three different M values and the closed 

form solution (CFS) 

Fig. 3 Blending surfaces at different time instants 

Fig. 4 Comparison between 1C  and 2C  continuous surface blending 

approaches 

Fig. 5 Effects of second partial derivatives 

Fig. 6 Blending surfaces with 1  
 at different time instants 

Fig. 7 Effect of the shape control parameter   on the blending surface with 

1   and  0t  

Fig. 8 Effect of the shape control parameter   on the blending surface with 

1   and  0t  

Fig. 9 Effect of the shape control parameter   on the blending surface with 

1   and  0t  

Fig. 10 Effect of the shape control parameter   on the blending surface with 

1   and  0t  

Fig. 11 Surface blending between linearly varying primary surfaces 

Fig. 12 Surface blending between non-linearly varying primary surfaces 

Fig. 13 Blending between a cubic NURBS surface and a quartic NURBS 
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surface 

Fig. 14 Surface blending between intersecting planes with inclined trimlines 

Fig. 15 Surface blending between intersecting cylinders 

Fig. 16 Surface blending between a cylinder and a plane for a transmission 

yoke - drive shaft 

 

 

 

 

 

    0t            2.0t         4.0t        6.0t           8.0t        1t  

Fig. 1 Primary surfaces in cyan and brown at 0t , 0.2, 0.4, 0.6, 0.8, and 1 
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                         10M                  15M                  20M                     CFS 

 

Fig. 2 Blending surfaces generated by three different M values and the closed 

form solution (CFS) 
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Fig. 3 Blending surfaces at different time instants 
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(a)                       (b) 
 

Fig. 4  Comparison between 1C  and 2C  continuous surface blending approaches  
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          (a)                        (b)                      (c)  

Fig. 5  Effects of second partial derivatives 
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               2.0t    4.0t         6.0t  

Fig. 6 Blending surfaces with 1   at different time instants 
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                0.10             -4.0       -3.0 

 

                       -2.6                                             -2.4                                           -2.3 

 

         -2.2        -2.0             Profile curves 

Fig. 7 Effect of the shape control parameter   on the blending surface with 

1   and  0t  
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    0.11            -9.0        -7.0 

 

      -6.0        -4.5            Profile curves 

Fig. 8  Effect of the shape control parameter   on the blending surface with 

1   and  0t  
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     5.0         0.0    1.0 

 

            2.0        3.0      5.0 

 

           6.0        7.0         Profile curves 

Fig. 9 Effect of the shape control parameter   on the blending surface with 

1   and  0t  
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          0.0             0.5              1.0 

 

           2.0         3.0              Profile curves 

Fig. 10  Effect of the shape control parameter   on the blending surface with 

1   and  0t  
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Fig. 11  Surface blending between linearly varying primary surfaces 
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Fig. 12  Surface blending between non-linearly varying primary surfaces 
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Fig. 13  Blending between a cubic NURBS surface and a quartic NURBS surface 
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       (a) 10       (b) 0  

 

 (c)   10     (d)    0  

Fig. 14 Surface blending between intersecting planes with inclined trimlines 
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                      (a): )( ),( 43 vfvf                                            (b): )( ),( 43 vfvf  

 

                          (c): )( ),(01.0 43 vfvf                                    (d): )(10 ),( 43 vfvf   

Fig. 15  Surface blending between intersecting cylinders 
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                  (a) 

 

                                   (b)               (c) 

Fig. 16 Surface blending between a cylinder and a plane for a transmission yoke - drive 

shaft 
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Table Caption List 

Table 1 Accuracy and of the proposed approach efficiency 

 
 
 
 
 
 
 

Table 1    Accuracy and efficiency of the proposed approach 

M  10 15 20 CFS 

1E  21035.4   31017.3   51022.2   0 

2E  21082.1   31031.1   51010.1   0 

3E  21011.1   41006.8   61064.5   0 

4E  31063.4   41034.3   61080.2   0 

T(ms) ( 5151 ) 35 60 98 47 

T(ms) ( 101101 ) 69 112 197 109 

T(ms) ( 151151 ) 118 184 288 187  

T(ms) ( 201201 ) 183 269 394 339 
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