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Physics-constrained machine learning is emerging as an im-
portant topic in the field of machine learning for physics.
One of the most significant advantages of incorporating
physics constraints into machine learning methods is that the
resulting model requires significantly less data to train. By
incorporating physical rules into the machine learning for-
mulation itself, the predictions are expected to be physically
plausible. Gaussian process (GP) is perhaps one of the most
common methods in machine learning for small datasets. In
this paper, we investigate the possibility of constraining a
GP formulation with monotonicity on three different mate-
rial datasets, where one experimental and two computational
datasets are used. The monotonic GP is compared against the
regular GP, where significant reduction in the posterior vari-
ance is observed. The monotonic GP is strictly monotonic in
the interpolation regime, but in the extrapolation regime, the
monotonic effect starts fading away as one goes beyond the
training dataset. Imposing monotonicity on the GP comes
at a small accuracy cost, compared to the regular GP. The
monotonic GP is perhaps most useful in applications where
data is scarce and noisy, and monotonicity is supported by
strong physical evidence.

1 Introduction
Physics-constrained machine learning is an important

toolbox in the machine learning era, with many possible ap-
plications, including those in biology, materials science, as-
trophysics, and finance. Breakthroughs in deep learning have
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been recognized as some of the most revolutionary contribu-
tions to science, but its Achilles heel is the size of the dataset
required to train huge deep learning architectures.

However, this requirement cannot always be satisfied,
especially in fields involving experimentation, where data
can be resource-intensive, in terms of both time and labor.
In this context, physics-constrained machine learning arises
as an alternative solution, with equivalent or better accuracy,
while requiring significantly less data to train. By incorporat-
ing some fundamental physics rules into the machine learn-
ing framework, the behavior of the machine learning pre-
dictions could be more physically plausible. One common
constraint is the monotonicity, where the predictions are ex-
pected to behave monotonically with respect to one or several
input variables.

Materials science is a field where theory has over-
whelmed in the last several decades and centuries. The
process-structure-property relationship is perhaps one of the
most well-studied topics, in terms of theoretical analysis.
Existing well before the computer era, material scientists
tended to agree that mathematics and physics are the right
tools to bridge the gap between inputs and quantities of inter-
est. With the emergence of computers, supercomputers, and
subsequently deep learning, the main tool has changed sig-
nificantly, starting with the Materials Genome Initiative [1].
However, brute-force applications of deep learning has suf-
fered from the lack of data in materials science, where
physics-constrained machine learning seems to be a more
promising candidate. Furthermore, materials science theory
suggests that there are many simple physical rules that one
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can take advantage of when constructing a machine learning
framework, for example, the Hall-Petch relationship [2]. It
should be noted that many of these rules or simple equations
are involve monotonicity. If these rules are successfully ex-
ploited, then a physics-constrained machine learning could
be achieved with much less data, while retaining the accu-
racy performance.

The Gaussian process (GP) stands out among other ma-
chine learning approaches and has been one of the most
popular methods for small datasets across multiple disci-
plines. In particular, it is well known that GPs are often
used as underlying surrogate models for Bayesian optimiza-
tion, which is an efficient active machine learning method
and very popular among materials scientists. For exam-
ple, Tallman et al. [3, 4] used a GP as a surrogate model
to bridge microstructure crystallography and homogenized
materials properties, where crystal plasticity finite element
models are used to construct the database, and Yabansu et
al. [5] applied GPs to capture the evolution of microstructure
statistics. Tran and Wildey [6, 7] also used a GP as a sur-
rogate model for structure-property relationship and solved
a stochastic inverse problem using the acceptance-rejection
sampling method. More examples can be found in [8, 9].

One of the main advantages of using a GP is its flexibil-
ity and, therefore, its ability to adopt extensions. Fernández-
Godino et al. [10] proposed a novel approach to constrain
symmetry on GPs. Linear operator constraints can be en-
forced through a novel covariance function, as demonstrated
by Jidling et al. [11]. Agrell [12] presented an approach to
constrain GPs such that a set of linear transformations of the
process are bounded. Furthermore, Lange-Hegermann [13]
constrained multi-output GP priors to the solution set of a
system of linear differential equations subjected to boundary
conditions. A comprehensive survey study of constrained
GPs, including, but not limited to, bound constraints, non-
negativity, monotonicity, linear partial differential operator
constraints, and boundary conditions of a partial differential
equation can be found in Swiler, et al. [14].

The present work focuses on bound-type constraints.
Riihimäki and Vehtari [15] proposed enforcing monotonic-
ity to constrain GPs using binary classification, where the
derivative is classified as either monotonically increasing
or decreasing with respect to a set of specific input vari-
ables. Golchi et al. [16] extended this approach in a deter-
ministic computer experiments setting and sampled from the
exact joint posterior distribution rather than an approxima-
tion. More recently, Ustyuzhaninov et al. [17] presented a
monotonicity constraint in a Bayesian non-parametric set-
ting based on numerical solutions of stochastic differential
equations, and Pensoneault et al. [18] presented a novel ap-
proach to construct a non-negative GP. Tan [19] proposed
a B-spline model that linearly constrains the model coeffi-
cients to achieve monotonicity, which converges to the pro-
jection of the GP in L2. Chen et al. [20] proposed an optimal
recovery method that is equivalent to maximum a posterior
estimation for a GP constrained by a partial differential equa-
tion.

In this paper, we adopt the monotonic GP formula-

tion from Riihimäki and Vehtari [15] and apply it to three
different datasets, both in interpolation and extrapolation
regimes, to survey the advantages and disadvantages be-
tween the regular GP and the monotonic GP. We focus on
experimental and computational materials science applica-
tions where monotonicity is physically expected. Materials
science, specifically experimental materials science, is well-
known for data scarcity due to its resource-intensive experi-
ments. An overview of Gaussian Processes and the incorpo-
ration of monotonic constraints therein are discussed in Sec-
tion 2. Three examples of how classical and monotonic GPs
compare in performance are given in Sections 4, 5, and 6. An
overall discussion and conclusion are given in Section 7.

2 Overview of Gaussian Processes
2.1 Nomenclature

The symbols used in this paper are as follows:

X = {x(i)}N
i=1: training dataset of size N, X ∈ RN×D

x = [x1, . . . ,xD]: training input of D dimensionality
Xm: derivative inducing points, Xm ∈ Rm×D

y: noisy observation y(x) = f(x)+ ε, ε∼N (0,σ2)
f: noiseless output f(x)
f′: first derivative of f
x∗: testing input
f ∗: testing output
N: number of data points
M: number of inducing data points for derivatives
D: input dimensionality
i, j: dummy data point index
d, g, h: dummy dimensionality index

2.2 Classical Gaussian processes
A thorough mathematical explanation and derivation

of Gaussian processes can be found in the canonical text
by Rasmussen and Williams [21], but we provide a brief
overview here.

Let us assume that we can model the true process, y,
with a zero-mean GP,

f|X∼N (0,Kf,f), (1)

where the entries in the covariance matrix Kf,f are defined
by a covariance function. Although there are many covari-
ance functions to choose from, in this paper, we focus on the
squared exponential covariance function

Cov
[

f (i), f ( j)
]
=K(x(i),x( j))=η

2 exp

[
−1

2

D

∑
d=1

ρ
−2
d (x(i)d − x( j)

d )2

]
,

(2)
where η and ρ = {ρ1, . . . ,ρD} are hyper-parameters, repre-
senting the signal variance and length-scale (also known as
correlation length) parameters, respectively. The observa-
tions y are then given by

y|f∼N (f,σ2I), (3)



where σ
2 is the intrinsic noise variance.

At a desired input prediction location, x∗, the posterior
prediction distribution, also called the testing distribution, is
a Gaussian distribution, where the posterior mean and poste-
rior variance are, respectively,

E [ f ∗|x∗,y,X,θ] = K∗,f[Kf,f +σ
2I]−1y (4)

and

V [ f ∗|x∗,y,X,θ] = K∗,∗−K∗,f[Kf,f +σ
2I]−1Kf,∗. (5)

Here, the hyper-parameters are collected into θ = {η,ρ,σ}.
The GP is trained by solving for the hyper-parameters θ

that maximize the log-marginal likelihood

log p(y|X,θ) = −1
2

y>[Kf,f +σ
2I]−1y

−1
2

log |Kf,f +σ
2I|− N

2
log(2π)

(6)

In Equation 6, the first term, so-called the “data fit” term,
quantifies how well the model fits the data described in
the Mahalanobis distance. The second term, called the
“complexity” term, quantifies the model complexity where
smoother covariance matrix with smaller determinant is en-
couraged [21]. The last term indicates that the likelihood of
data tends to decrease with larger data sets [22].

It is noteworthy that the derivative operator is a linear
operator; therefore,

E

[
∂ f (i)

∂x(i)d

]
=

∂E
[

f (i)
]

∂x(i)d

, (7)

Cov

[
∂ f (i)

∂x(i)d

, f ( j)

]
=

∂

∂x(i)d

Cov
[

f (i), f ( j)
]
, (8)

and

Cov

[
∂ f (i)

∂x(i)d

,
∂ f ( j)

∂x( j)
g

]
=

∂2

∂x(i)d ∂x( j)
g

Cov
[

f (i), f ( j)
]
. (9)

For the squared exponential kernel described in Equation 2,
Equations 8 and 9 become

Cov

[
∂ f (i)

∂x(i)g

, f ( j)

]
= −η

2 exp

(
−1

2

D

∑
d=1

ρ
−2
d (x(i)d − x( j)

d )2

)
ρ
−2
g

(
(x(i)g − x( j)

g )
)
,

(10)

and

Cov

[
∂ f (i)

∂x(i)d

,
∂ f ( j)

∂x( j)
h

]
= η

2 exp

(
−1

2

D

∑
d=1

ρ
−2
d (x(i)d − x( j)

d )2

)
ρ
−2
g

(
δgh−ρ

−2
h (x(i)g − x( j)

g )(x(i)h − x( j)
h )
)
,

(11)
respectively, where δgh = 1 if g = h and 0 otherwise.

For an arbitrary testing point x∗, the derivatives with re-
spect to the dimension of the posterior mean and posterior
variance are, respectively,

E
[

∂ f ∗

∂x∗d

]
=

∂K∗,f
∂x∗d

[Kf,f +σ
2I]−1y, (12)

and

V
[

∂ f ∗

∂x∗d

]
=

∂2K∗,∗
∂x∗d∂x∗d

−
∂K∗,f
∂x∗d

[Kf,f +σ
2I]−1 ∂Kf,∗

∂x∗d
. (13)

2.3 Monotonic Gaussian processes
In this work, we adopt the monotonic GP formulation

from Riihimäki and Vehtari [15], which has been imple-
mented in the GPstuff toolbox [23, 24]. To constrain the
classical GP to be monotonic, Riihimäki and Vehtari pro-
posed a block covariance matrix structure similar to that of
many multi-fidelity approaches, e.g. [25, 26, 27], and ap-
proximated the posterior using expectation propagation [28],
which is arguably more efficient than Laplace’s method. For
the sake of completeness, we assume a zero-mean GP and
briefly summarize the formulation. Readers are referred to
the original work of Riihimäki and Vehtari [15] for further
details. Roughly speaking, the crux of the approach is to
augment the covariance matrix K using a block structure, as
is done in multi-fidelity and gradient-enhanced GP. Now, the
difference is that the augmented block encodes the binary
classification of whether the GP is supposed to be monoton-
ically increasing or decreasing at some locations. Naturally,
the formulation of GP lends itself into binary classification
problem with the linear logistic regression or the probit re-
gression, taken from the cumulative density function of a

standard normal distribution Φ(z) =
∫ t

−∞

N (t|0,1)dt.

Monotonicity is imposed at M inducing locations Xm ∈
RM×D. At the location x(i) ∈ Xm, the derivative of f is non-
negative with respect to the input dimension di. The key idea
is to assume a probit likelihood at the location x(i) as

p

m(i)
di

∣∣∣∣∣∂ f (i)

∂x(i)di

= Φ

∂ f (i)

∂x(i)di

1
ν

 , (14)

where

Φ(z) =
1
2

[
1+ erf

(
z√
2

)]
=

∫ z

−∞

N (t|0,1)dt (15)



is the cumulative distribution function of the standard normal
distribution. Conceptually, imposing the probit likelihood is
intrinsically similar to classification using GP (cf. Section
3.6 [21] and Kuss et al. [29] for binary classification {-1,+1}
using GP). Put simply, Equation 14 models the probability of
“penalized” monotonicity with the parameter ν, in the same
way one would in binary classification [29], where ν = 10−6

is recommended.
Assume that at Xm, the function f is known to be mono-

tonic. The joint prior for f and its derivatives f′ is given by

p(f, f′|X,Xm) = N
(
fjoint|0,Kjoint

)
, (16)

where

fjoint =

[
f
f′
]
, Kjoint =

[
Kf,f Kf,f′

Kf′,f Kf′,f′

]
. (17)

Using the Bayes rule, the joint posterior is

p(f, f′|y,m) =
1
Z

p(f, f′|X,Xm)p(y|f)p(m|f′), (18)

where

p(m|f′) =
M

∏
i=1

Φ

∂ f (i)

∂x(i)di

1
ν

 . (19)

Since the posterior is analytically intractable, local likeli-
hood approximations are given by the expectation propaga-
tion (EP) algorithm, allowing the approximation of the pos-
terior distribution in Equation 18

p(f, f′|y,m) ≈ q(f, f′|y,m)

=
1

ZEP
p(f, f′|X,Xm)p(y|f)

M

∏
i=1

ti(Z̃i, µ̃i, σ̃
2
i ),

(20)
where ti(Z̃i, µ̃i, σ̃

2
i ) = Z̃iN ( f ′i |µ̃i, σ̃

2
i ) are local likelihood ap-

proximations with site parameters Z̃i, µ̃i, σ̃ from the EP algo-
rithm.

The approximate posterior is analytically tractable as a
product of Gaussian distributions and can be simplified to

q(f, f′|y,m) = N (fjoint|µ,Σ), (21)

where

µ = ΣΣ̃
−1
jointµ̃joint, Σ = [K−1

joint + Σ̃
−1
joint]

−1, (22)

and

µ̃joint =

[
y
µ̃

]
, Σ̃joint =

[
σ

2I 0
0 Σ̃

]
, (23)

where µ̃ is the vector of site means µ̃i, and Σ̃ = Diag[σ̃2
i ]

M
i=1.

The approximation for the logarithm of the marginal likeli-
hood is computed as

logZEP = −1
2

log |Kjoint + Σ̃joint|

−1
2

µ̃>joint[Kjoint + Σ̃joint]
−1µ̃joint

+
M

∑
i=1

(µ−i− µ̃i)
2

2(σ2
−i + σ̃2

i )

+
M

∑
i=1

logΦ

 µ−i

ν

√
1+σ2

−i/ν2


+

1
2

M

∑
i=1

log(σ2
−i + σ̃

2
i ),

(24)

where µ−i and σ
2
−i are the parameters of the cavity distribu-

tion in EP. By introducing M monotonic inducing point, the
cost complexity for optimizing the log-marginal likelihood
increases from O

(
N3) to O

(
(N +M)3). The posterior mean

and posterior variance of the testing distribution are, respec-
tively, given by

E [ f ∗|x∗,y,X,m,Xm] = K∗,joint[Kjoint + Σ̃joint]
−1µ̃joint (25)

and

V [ f ∗|x∗,y,X,m,Xm] =K∗,∗−K∗,joint[Kjoint+Σ̃joint]
−1K∗,joint.

(26)

3 Numerical examples
3.1 Example 1: Noisy logistic regression

In this example, we consider the 1d monotonic function

y =
1

1+ e−x + ε, (27)

where ε ∼ N (0,0.12) on [-3,3] with 10 samples, as shown
in Figure 1. Figure 1 shows the comparison between the reg-
ular (dashed red) and monotonic GP (solid blue), where the
training dataset is plotted as black dots, and testing dataset
is plotted as magenta squares. The noise ε is substantial
enough to corrupt the monotonicity of the underlying func-
tion. Despite the fact that the noise is homoscedastic, i.e.
the variance of the noise is constant throughout the bounded
domain, the regular GP has not been able to capture the func-
tion correctly. On the other hand, the monotonic GP enforces
the monotonicity while ignoring the noise, which results in a
better approximation of the true function, which is also plot-
ted as magenta squares as testing dataset.

3.2 Example 2: Heteroscedastic Hall-Petch relationship
Following Counts et al. [30], we adopt the Hall-Petch

relationship in polycrystalline materials from Fernandes and



Fig. 1: Comparison between the regular and monotonic
GPs in the homoscedastic noisy logistic regression example.
Training and testing data points are shown as black dots and
magenta squares, respectively. By enforcing the monotonic-
ity, the monotonic GP has a better approximation compared
to the regular GP.

Fig. 2: Comparison between the regular and monotonic GPs
in the heteroscedastic settings. The noise ε(d) increases as
d increases. It is observed that the regular GP is strongly
influence.

Vieira [31] with a heteroscedastic noise proportional to d,

σY = 16.47+0.0000288
1

(10−6 ·d)1.3 + ε(d). (28)

where ε(d)∼N (0,2.2 ·1010 ·d3), to model the finite-size ef-
fect of the representative volume element [6]. d is considered
on the [15µ m, 350µ m]. For a fixed-size representative vol-
ume element, when d is large, the number of grain reduces,
and therefore, the noise of σY increases. The same argument
applies when d is small. Now, the variance of the Monte
Carlo estimator roughly decays at the rate of N−1 where N is
the number of grains or samples; in this hypothetical exam-
ple, to examine the behavior of the monotonic GP, we sim-
ply model the volume of the grain as proportional to d3 and
therefore, the noise term with zero-mean and O(d3) variance
is considered. Obviously, the variance of the noise term in-
creases as d increases, which is consistent to what we have
observed in the literature [6].

Figure 2 shows the comparison between the regular and
monotonic GP with 20 training data points, plotted as black
dots. The regular GP overfits the training dataset, which re-
sults in an oscillatory behavior toward the large d region,
which is unphysical. The monotonic GP, on the other hand,
correctly identifies the trend and monotonically decreases as
d increases, which results in a better approximation com-
pared to the regular GP.

4 Case study: Fatigue life prediction under multiaxial
loading

4.1 Dataset
We adopt a subset from Karolczuk and Słoński [32, 33],

where the training and testing datasets are listed in Table 1.
The training dataset is taken to be 12 data points with high
σa, whereas 13 data points with low σ are used as the test-
ing dataset. We are interested in investigating the extrapola-
tion capability of GPs beyond their training regime as well
as their robustness against noise, which is fairly common in
experimental materials science, particularly in fatigue, where
stochasticity plays a non-trivial role. Much of the stochastic-
ity can be traced back to the physics of fracture and fatigue,
where void nucleation, void growth, and void coalescence all
play important roles in the origin, development, and failure
of a material. Due to this underlying stochasticity, some-
times the data shows a substantially noisy behavior despite a
clear physical monotonic trend. That is, the higher the stress
amplitude is, the lower the fatigue life is. This behavior is
typically modeled by the SN equation as

logNexp = A−B logσa, (29)

where A and B are material-dependent coefficients, σa is the
stress amplitude, and Nf is the experimental fatigue life. Ex-
perimental materials science is resource-intensive [34]; thus,
practically speaking, fatigue experimental data is scarce and



Training Testing

σa [MPa] Nexp σa [MPa] Nexp

674 2908 427 77730

558 8115 400 113900

556 10035 411 117275

507 17012 403 144264

483 19955 390 192920

505 20595 391 198992

498 23780 379 243816

490 25913 366 376815

484 28045 369 396987

474 51430 345 406800

469 52000 342 1252208

475 66200 335 1444998

335 1528487

Table 1: Training and testing fatigue datasets for S355N
steel, adopted from Karolczuk and Słoński [32].

may not be strictly monotonic, as shown in Karolczuk and
Słoński [32]. In the present work, the input of the GPs is σa,
and the output of the GPs is logNexp.

4.2 Results
We implement and compare two GP variants: the regu-

lar GP and a monotonically-constrained GP. Both are trained
using a squared exponential kernel and the hyper-parameters
are optimized using the L-BFGS method [35] with a max-
imum of 6000 iterations. Figure 3 compares the accuracy
between the two GPs against the testing dataset. The root-
mean-square errors for the regular GP and the monotonic GP
are 183.3026 and 2.0441, respectively. While the regular GP
tends to underestimate the experimental data, the monotonic
GP provides more accurate predictions. As shown in Fig-
ure 4, outside the training domain, the regular GP is unable
to capture the general trend and behaves wildly, even when
interpolating the data points. On the contrary, the monotonic
GP is able to capture the monotonic trend and extrapolate to a
significant distance outside the training interval. It is impor-
tant to note that the monotonic GP is only strictly monotonic
within the training domain and may fail to maintain mono-
tonicity far beyond the training regime. Indeed, in Figure 4,
we see that the monotonic GP fails to maintain monotonicity
when σa . 350 MPa. Figure 4 also shows a non-monotonic
behavior for the regular GP.

It is also observed that the posterior variance of the
monotonic GP is significantly less than the posterior vari-
ance of the classic GP, using the same training dataset. This
holds true for both interpolation and extrapolation cases. The

Fig. 3: Accuracy comparison of testing dataset predictions
between the regular and monotonic GPs in S355N fatigue
dataset, where the monotonic GP outperforms the regular GP.

Fig. 4: Comparison between the regular and monotonic GPs
in S355N fatigue dataset. µ± 1σ confidence intervals are
highlighted. It is observed that the monotonicity starts to
disappear as the extrapolation range goes further to σa ≤
375MPa.



main reason is that the monotonic GP uses an extra “pseudo”
training dataset by imposing M inducing location in the input
domain, as described in Section 2.3, and a training dataset
with more data points reduces the posterior variance.

5 Case study: Potts Kinetic Monte Carlo for grain
growth

5.1 Model description
The details of the Potts kinetic Monte Carlo (KMC) sim-

ulation for grain growth and its implementation in SPPARKS
is described in [36, 37], and is summarized here for the sake
of completeness. In the grain growth simulation, the Potts
model [38] is used to simulate curvature-driven grain growth.
Grain microstructures are represented by an integer value
stored at each pixel. During a timestep (referred to here as
a Monte Carlo or MC step), pixels in the simulation are vis-
ited and probabilistically change their grain membership to
a neighboring grain based on the Metropolis algorithm. The
probability P of successful change in grain site orientation is
calculated as

P =

exp
(
−∆E
kBTs

)
, if ∆E > 0,

1, if ∆E ≤ 0,
(30)

where E is the total grain boundary energy calculated by
summing all the neighbor interaction energies, ∆E can be
regarded as the activation energy, kB is the Boltzmann con-
stant, and Ts is the simulation temperature. In the basic Potts
model, the interaction energy between two pixels belonging
to the same grain is zero, and E is incremented by one for
each dissimilar neighbor. From Equation 30, changes that
decrease system energy are preferred, and the total system
energy is monotonically decreased through grain coarsen-
ing. It is worthy to note that the Ts simulation temperature
is not the real system temperature: kBTs is an energy that
defines the thermal fluctuation, i.e. noise, presented in the
kMC simulation [36]. Increasing the value of kBTs results in
microstructures with increasing grain boundary roughness.

5.2 Results
Using SPPARKS as the forward

model, we build a dataset with kBTs ∈
{0.15,0.25,0.35,0.45,0.55,0.65,0.75,0.85} at multi-
ple snapshots in time t ∈ { 0.000, 56.879, 106.899, 152.482,
206.331, 251.886, 306.530, 353.403, 406.482, 450.629,
502.591, 554.926, 603.345, 653.470, 706.620, 756.473,
800.112, 855.231, 901.232, 950.060, 1005.970, 1054.070,
1102.890, 1155.320, 1200.360, 1251.300, 1302.020,
1353.410, 1400.000} Monte Carlo steps. In this case study,
the average grain size, measured in pixel2, is used as the
quantity of interest. Similar to Tran et al. [39], we apply a
filter of 50 pixel2 to eliminate small grains before computing
the average grain size. The training and testing datasets are
divided as follows: if kBTs ≤ 0.75 or if t < 1000, the data
point belongs to the training dataset; otherwise, it belongs to

(a) SPPARKS at 50 MC step. (b) SPPARKS at 100 MC step.

(c) SPPARKS at 200 MC step. (d) SPPARKS at 350 MC step.

Fig. 5: Grain growth simulation via kinetic Monte Carlo (SP-
PARKS).

the testing dataset. Under this condition, a training dataset
of 140 data points and a testing dataset of 92 data points are
obtained. The inputs of the GP are (kBTs, t), and the output
of the GP is the average grain size.

It is noted that the data is naturally monotonic, as grains
grow in time, which is shown in Figure 5. At the bound-
ary for the training and testing datasets, at t = 950.060
Monte Carlo step, for kBTs = 0.65, the average grain size
is 1203.6605 pixel2, whereas at t = 1005.970 Monte Carlo
step, for kBTs = 0.65, the average grain size is 1279.0099
pixel2. This is clearly shown in Figure 7, where the testing
predictions are mostly more than 1250 pixel2.

Figure 6 compares the regular GP and the monotonic
GP in terms of extrapolating beyond the training regime
for kBTs = 0.65, showing a consistent behavior between the
monotonic GP and the regular GP. The posterior means be-
tween the regular GP and the classical GP are almost exactly
the same. However, the posterior variance is significantly
reduced in the monotonic GP, which could be explained by
M extra inducing points for monotonicity classification, as
described in Section 2.3.

Figure 7 compares the regular GP and the monotonic
GP in terms of accuracy with the error bar of µ± 1.645σ,
showing that the regular GP (R2 = 0.9730) is slightly better
than the monotonic GP (R2 = 0.9661). It can be explained
that imposing monotonicity to the GP formulation comes at
a small cost for accuracy.



Fig. 6: Comparison between regular GP and monotonic GP
in extrapolating QoI in the SPPARKS grain growth simu-
lation for kBTs = 0.65. Shaded regions correspond to 90%
confidence intervals µ±1.645σ.

Fig. 7: Comparison of testing dataset predictions between
the regular and monotonic GPs in kinetic Monte Carlo SP-
PARKS grain growth simulation. The output is the average
grain size, whereas the input is Monte Carlo step t. An error
bar of µ± 1.645σ, which corresponds to a 90% confidence
interval is shown. The dashed line y = x is presented as a
reference.

6 Case study: Strain-rate-dependent stress-strain with
crystal plasticity finite element

6.1 Model description
We adopt and extend the dataset from one of our previ-

ous studies [6], generated from Fe-22Mn-0.6C TWIP steel
with the dislocation-density-based constitutive model. The
material parameters are as described in Steinmetz et al. [40]
and summarized in Section 6.2.3 and Tables 8 and 9 in [41].
The constitutive model was validated experimentally by
Wong et al [42], and for the sake of completeness, we briefly
summarize the constitutive model here. The TWIP/TRIP
steel constitutive model is parameterized in terms of dislo-
cation density, ρ, the dipole dislocation density, ρdi, the twin
volume fraction, ftw, and the ε-martensite volume fraction,
ftr. A model for the plastic velocity gradient with contribu-
tion of mechanical twinning and phase transformation was
developed in Kalidindi [43] and is given by

Lp = (1− f tot
tw − f tot

tr )
( Ns

∑
α=1

γ̇
αsα

s ⊗nα
s

+
Ntw

∑
β=1

γ̇stw⊗nβ

tw +
Ntr

∑
χ=1

γ̇
χstr⊗nβ

tr
)
,

(31)

where χ = 1, . . . ,Ntr is the ε-martensite with volume fraction
ftr on Ntr transformation systems, sα

s and nα
s are unit vectors

along the shear direction and shear plane normal of Ns slip
systems α, sα

tw and nα
tw are those of Ntw twinning systems β,

and sα
tw and nα

tr are those of Ntr transformation systems χ. The
Orowan equation models the shear rate on the slip system α

as

γ̇
α = ρebsν0 exp

[
− Q

kBT

{
1−
(

τα

eff
τsol

)p}q]
, (32)

where bs is the length of the slip Burgers vector, ν0 is a ref-
erence velocity, Qs is the activation energy for slip, kB is the
Boltzmann constant, T is the temperature, τeff is the effec-
tive resolved shear stress, τsol is the solid solution strength,
and 0 < ρs ≤ 1 and 1 ≤ qs ≤ 2 are fitting parameters con-
trolling the glide resistance profile. Blum and Eisenlohr [44]
model the evolution of dislocation densities, particularly the
generation of unipolar dislocation density and formation of
dislocation dipoles, respectively, as

ρ̇ =
|γ̇|
bs

Γs−
2d̂bs

ρ
|γ̇|, (33)

ρ̇di =
2(d̂− qd)

bs
ρ|γ̇|− 2 qd

bs
ρdi|γ̇|−ρdi

4νcl

d̂− qd
, (34)

where the glide distance below which two dislocations form
a stable dipole is

d̂ =
3Gbs

16π|τ|
, (35)



qd = Dabs is the distance below which two dislocations anni-
hilate, and the dislocation climb velocity is

νcl =
GD0Vcl

π(1−ν)kBT
1

d̂ + qd
exp
(
− Qcl

kBT

)
. (36)

Here, D0 is the pre-factor of self-diffusion coefficient, Vcl
is the activation volume for climb, and Qcl is the activation
energy for climb. Strain hardening is described in terms of
a dislocation mean free path, where the mean free path is
denoted by Γ. The mean free path for slip is modeled as

1
Γs

=
1
D
+

1
λs

+
1

λtw
+

1
λtr

(37)

where D is the average grain size and

1
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1
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(39)
Here, is is a fitting parameter, ttw is the average twin thick-
ness, and ttr is the average ε-martensite thickness. The mean
free path for twinning and for transformation are computed,
respectively, as

1

Γ
β

tw

=
1

itw

(
1
D
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1
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1
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with iw and itr being fitting parameters. The nucleation rates
for twins and ε-martensite are Ṅ = Ṅ0PncsP, where the proba-
bility P that a nucleus bows out to form a twin or ε-martensite
is

ptw = exp
[
−
(

τ̂tw

τ

)ptw]
, ptr = exp

[
−
(

τ̂tr

τ

)ptr]
, (42)

ptw and ptr are fitting parameters. For more details, readers
are referred to Roters et al. [41] (cf. Section 6.2.3) and Wong
et al [42].

Figure 8 shows the equiaxed microstructure used in this
case study, which has been generated using DREAM.3D [45]
under random crystallographic textures. DAMASK [46,
41] is used as a crystal plasticity finite element, where
PETSc [47, 48] is used as the underlying spectral solver.

(a) The microstructure sta-
tistical volume element with
equiaxed grains investigated
in this case study.

(b) A snapshot of von Mises
stress for D = 10−6m, ε̇ =
10−4 s−1 before homogeniza-
tion.

Fig. 8: A crystal plasticity finite element example by
DAMASK.

6.2 Results
In this study, we focus on the effect of strain-rate on

the stress-strain curve with various average grain sizes. The
effect of strain-rate has been experimentally validated in
Benzing et al [49], and some numerical studies using crystal
plasticity finite element model have been done as well, such
as those found in Singh et al [50]. The inputs of the GP are
the average grain size, the strain-rate, the strain, i.e. (D, ε̇,ε),
and the output of the GP is the stress σ. We vary indepen-
dently the average grain size D ∈ {1.0 ·10−6,2.5 ·10−6,5.0 ·
10−6,1.0 · 10−5,2.5 · 10−5} m, as well as the strain-rate
ε̇ ∈ {10−5,10−4,10−3,10−2,10−1,100,101,102,103,104}
s−1. Numerically unstable results are removed in the
post-process. Some examples of homogenized stress-strain
responses are shown in Figure 9 for visualization purpose.

The training and testing datasets are divided as follows:
if the average grain size D is less than 5 · 10−6m or if the
strain-rate ε̇ = 101 s−1, the data point belongs to the training
dataset; otherwise, it belongs to the testing dataset. Under
this splitting condition, a training dataset of 340 data points
and a testing dataset of 120 data points are obtained.

Figure 10 shows the accuracy comparison between the
regular GP and the classical GP. The R2 coefficient for the
regular GP is 0.9895, whereas the R2 coefficient for the
monotonic GP is slightly lower, 0.9860. Both GPs do very
well, but the monotonic GP is slightly worse. The regular GP
predictions are also more consistent in the large stress regime
σ.

7 Discussion and Conclusion
In this paper, we compare the monotonic GP against the

regular GP for various materials datasets, namely fatigue,
grain growth, and homogenized stress-strain behaviors. The
fatigue dataset is the only experimental dataset with noise,
whereas the other two datasets, i.e. grain growth and ho-
mogenized stress-strain, are computationally generated by
SPPARKS and DAMASK, respectively. We test out their
predictive capabilities in both interpolation and extrapola-
tion, but are mainly concerned with extrapolation.



Fig. 9: Homogenized stress-strain response with different (D, ε̇,ε) for a fixed microstructure shown in Figure 8. σ is mono-
tonically increasing when either D decreases, or ε̇ increases, or ε increases (within the specified ε domain).

For the fatigue example featured in Section 4, the ex-
perimental data does not adhere strictly to theoretical deriva-
tions. This is where the monotonic GP outperforms the reg-
ular GP significantly. In the other two examples, which fea-
tured datasets generated by computational models, both GPs
perform very closely with each other, even though the regu-
lar GP performs slightly better than the monotonic GP. This
can be explained by imposing the monotonicity on the reg-
ular GP comes a small cost for accuracy and numerical per-
formance. It is also noted that the monotonic behavior in the
monotonic GP is only guaranteed within the training domain.
Beyond the training regime, the monotonicity effect imposed
by introducing M inducing points fades away: the further the
monotonic GP goes beyond the training regime, the more
likely it is the GP will violate the monotonicity constraints.
Last but not least, the posterior variances of the monotonic
GP are significantly smaller than the posterior variances of
the regular GP, while the posterior means are roughly the
same.

Constructing an accurate and physically faithful surro-
gate model is important for uncertainty quantification [51].
Computationally efficient surrogate models are commonly
used, for example, in sampling [3, 4] or to solve a stochas-
tic inverse problem in structure-property relationship [6, 7].
Monotonicity is common in materials science, such as the fa-

mous Hall-Petch relationship [2], i.e. σy = σ0 + k
1√
D

. Ex-

ploiting such physical constraints and insights may improve
the efficiency of machine learning in the future.

The objective of this work is to examine the performance

of the monotonic GP compared to the regular GP in different
settings, with an emphasis on materials science. Our con-
clusion is that the monotonic GP is best suited for sparse and
noisy settings, which is fairly common in experimental mate-
rials science, where the data acquisition process is expensive
(and intensive in terms of both time and labor perspectives)
and the data is often corrupted by the noise induced by the
finite-size effect of microstructures.

It is worthy to note that the monotonic GP indeed per-
forms slightly worse in the second and third case studies.
In these case studies, both the training and testing datasets
are already monotonic. With the use of linear basis func-
tion for the global trend, the regular GP correctly picks up
the monotonic behavior, and therefore, is able to make ac-
curate prediction. While the monotonic GP shares the same
settings with the regular GP, there are some approximations
involved in constructing the joint covariance matrix. In ide-
ally monotonic cases such as the second and third examples,
the covariance matrix should asymptotically reduce to the di-
agonal block matrix as ν→ 0

Kjoint =

[
Kf,f Kf,f′

Kf′,f Kf′,f′

]
−−→
ν→0

[
If,f 0
0 If′,f′

]
, (43)

which points to how the step function is approximated. In
practice, a small numerical degradation is expected as ν can-
not be smaller than machine epsilon. In the monotonic GP
approach adopted in this paper, the step function is approxi-
mated by a probit function described in Equation 14. It might
be possible to increase the performance of the monotonic GP



Fig. 10: Comparison of testing dataset predictions between
the regular and monotonic GPs in crystal plasticity finite el-
ement DAMASK. The output is the homogenized stress σ,
whereas the inputs are average grain size, strain-rate, and
strain, respectively, (D, ε̇,ε).

by even further reducing the ν parameter. This may lead to
an improvement in performance for the monotonic GP with
monotonic datasets, but might also lead to other numerical
conditioning problems with respect to the inverse of the joint
covariance matrix Kjoint. We conclude that for datasets that
are already monotonic, applying a monotonic GP formula-
tion may be unnecessary and may lead to a slight degrada-
tion in performance. For datasets that are sparse and noisy,
imposing monotonicity when it is appropriate may result in
a substantial improvement in performance.
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