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SURFACE LINE INTEGRAL CONVOLUTION-BASED VORTEX DETECTION USING COMPUTER VISION

Hazem Ashor Amran Abolholl1, Tom-Robin Teschner1,∗, Irene Moulitsas1

1Cranfield University, College Rd, Cranfield, Wharley End, Bedford MK43 0AL

ABSTRACT

Vortex cores in fluid mechanics are easy to visualise, yet diffi-

cult to detect numerically. Precise knowledge of these allows fluid

dynamics researchers to study complex flow structures and allow

for a better understanding of the turbulence transition process

and the development and evolution of flow instabilities, to name

but a few relevant areas. Various approaches such as the Q, delta,

and swirling strength criterion have been proposed to visualise

vortical flows and these approaches can be used to detect vor-

tex core locations. Using these methods can result in spuriously

detected vortex cores and which can be balanced by a cut-off

filter, making these methods lack robustness. To overcome this

shortcoming, we propose a new approach using convolutional

neural networks to detect flow structures directly from stream-

line plots, using the line integral convolution method. We show

that our computer vision-based approach is able to reduce the

number of false positives and negatives while removing the need

for a cut-off. We validate our approach using the Taylor-Green

vortex problem to generate input images for our network. We

show that with an increasing number of images used for training,

we are able to monotonically reduce the number of false positives

and negatives. We then apply our trained network to a different

flow problem where vortices are still reliably detected. Thus, our

study presents a robust approach that allows for reliable vortex

detection which is applicable to a wide range of flow scenarios.

Keywords: computer-vision, vortex detection, line integral

convolution, computational fluid dynamics, turbulent flows

2010 𝑀𝑆𝐶 : 68T45, 76D17, 76F65, 76M27

1. INTRODUCTION

Vortex core detection is a challenging subject in ŕuid me-

chanics research and how to detect these reliably remains an open

question to date. Knowing the exact location of vortex cores is

useful during automated mesh reőnement in computational ŕuid

dynamics simulations but provides equally valuable insights, for

example, to engineers trying to optimise aerodynamic devices to

channel turbulent vortices around objects to reduce drag. Identi-

fying single vortices may be done using simple velocity gradient-

∗Corresponding author: tom.teschner@cranőeld.ac.uk
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based approaches, however, complex engineering applications

see the merging and mixing of vortices where these simplistic

approaches may fail. Knowing the precise location of vortices

has far-reaching practical beneőts, yet our numerical tools are

still not able to predict these vortices reliably and they produce

spurious detected vortex cores, negating their usefulness.

Vortices are usually identiőed based on the velocity-gradient ten-

sor [1] and there is a range of different criteria available, among

which the Q criterion [2], Lambda 2 criterion [3], the delta cri-

terion [4], and the swirling strength criterion [5] are the most

used ones and referred to here as local detection methods. While

these criteria are cheap to compute, they lack robustness as they

easily detect spurious vortices known as false positives (no vortex

exists but is identiőed) and false negatives (a vortex exists but is

not identiőed). To limit the number of false positives and nega-

tives, the user can prescribe a threshold below which vortices are

őltered. This threshold value is, however, ŕow-dependent and

therefore requires re-calibration for each ŕow problem.

In order to overcome this problem, we present a vortex detection

method based on Computer vision. Here, we focus our atten-

tion on őnding bounding boxes that enclose vortex regions rather

than exact vortex core locations. While this may seem limited at

őrst, we may not need to know the exact vortex cores in order to

perform local mesh reőnement (which reőnes a volume and not

a single line) or track a vortex by itself (or rather its bounding

box). Rather, we focus our attention here on providing a more

reliable, more accurate, and more robust way of predicting vortex

regions which can then be used in engineering design processes

with higher conődence. Our approach can be applied to any 3D

data set of vortical ŕows; as long as 2D planes through a 3D ŕow

volume can be constructed through which vortices are passing

through and as long as these vortices can be visualised through

surface streamline plots as discussed in Section 3.3, our proposed

framework will be able to identify these vortices. The advantage

here is that vortices do not have to be aligned with the generated

2D planes and can pass through these at an angle, providing a

more generalised approach to detect vortices.

The recently introduced You Only Look Once (YOLO) [6] com-

puter vision approach differentiates itself from similar feature de-

tection methods by applying a single neural network to the whole

image instead of making predictions on many regions within an

1

li2106
Text Box
Journal of Computing and Information Science in Engineering, Volume 23, Issue 5, October 2023, Article number 051002, Paper number  JCISE-22-1222DOI:10.1115/1.4056660

li2106
Text Box
Published by The American Society of Mechanical Engineers. This is the Author Accepted Manuscript issued with:Creative Commons Attribution License (CC BY).  The final published version is available online at DOI:10.1115/1.4056660.Please refer to any applicable publisher terms of use.



image. Moreover, it has a good balance between accuracy and

speed [7, 8]. Therefore, it has been applied broadly to various

applications such as the detection of humans [9], gesture recogni-

tion [7], and detection of objects through aerial observations [10].

The algorithm has been continuously improved [11] and we use

here version 3 of the algorithm.

The remaining structure of this article is as follows: Section 2

reviews the literature on vortex core detection and computer vi-

sion. Section 3 introduces the methodology and tools used in

the present study. Section 4 provides an overview of the numer-

ical test case that is solved using computational ŕuid dynamics

and used to produce input for our computer vision framework.

Section 5 analyses how our computer vision approach compares

against local vortex detection methods, and we provide a sum-

mary of the main points in Section 6.

2. LITERATURE REVIEW

The progress in transistor technology has established com-

putational ŕuid dynamics as a tool to investigate turbulence ŕows

down to the smallest scales of motion [12]. As was alluded to in

the introduction, vortices are encountered in a range of engineer-

ing and scientiőc problems where they play an important role,

such as aircraft navigation during nose-up or roll of a jet [13],

medical [14, 15], as well as industrial applications [16]. Var-

ious deőnitions for a vortex can be found in the literature [17].

Lugt [18] states that ła vortex is the rotating motion of a multitude

of material particles around a common centrež. This deőnition

is difficult if not impossible, to implement into an algorithm [1].

Robinson [19] provided another deőnition and says that ła vortex

exists when instantaneous streamlines mapped onto a plane nor-

mal to the vortex core exhibit a roughly circular or spiral pattern

when viewed from a reference frame moving with the centre of

the vortexž. This deőnition is self-referential, as we would need

prior knowledge of the location, the orientation, and the motion

of the vortex core in order to identify it.

Notwithstanding the lack of a formal deőnition, using available

methods to identify vortices has been extensively investigated in

recent years. There are two common types to detect vortices,

based on local and global detection algorithms [20ś22]. Local

methods [2ś4] are based on the decomposition of the local ve-

locity gradient tensor. They provide rapid results and are easy to

implement. However, these methods need to carefully select suit-

able parameters to get robust results, which increases the time to

identify vortex cores. Global vortex identiőcation methods gen-

erally utilize streamlines to identify vortex regions. The winding

angle [20], instantaneous vorticity deviation [21], and elliptic

objective Eulerian coherent structures method [22] are examples

of global methods. In terms of robustness, global methods use

neighbouring cells to identify vortical ŕows and thus tend to be

more accurate than local methods, which comes at an expense

of increased computational time for global methods [23]. Fur-

thermore, global methods require user input which makes them

unsuitable for automatic vortex core detection tasks. Therefore,

both local and global methods have both drawbacks and cannot

obtain fully robust and reliable detection results.

The recent advances made in the őeld of machine learning have

seen a multitude of applications for physics and simulation-based

problems. Li et al. [24] proposed to use a super-resolution genera-

tive adversarial network (SRGAN) to reconstruct ŕuid phase frac-

tions in turbulent, multiphase ŕows. Ayli et al. [25] used machine

learning for active ŕow control applied to the ŕow around a circu-

lar cylinder. Warey et al. [26] used conditional invertible neural

networks (cINNs) to optimise shapes. They applied it to 2D air-

foil generation as a classical optimisation problem. Furthermore,

Nabian and Meidani [27] proposed a more generic framework

for general physical systems that utilises machine learning to aid

in engineering design and analysis tasks. We follow a similar

approach, by adopting a machine learning approach to identify

vortices in simulation data. In order to address the existing prob-

lems within traditional vortex identiőcation methods, recently

Computer Vision was utilized to detect vortical structures in the

ŕow őeld to obtain robust and reliable results. Many of the

techniques developed in Computer Vision can be used to extract,

track, and identify features [28, 29]. Visualisation aims to under-

stand, analyse and identify physical phenomena or mathematical

models. Therefore, the criteria for tracking features in a scientiőc

area are different than for most computer vision applications. In

a scientiőc simulation, evolving features may split, merge, or dis-

appear [30]. Computer vision technology has been tested using

deep neural networks to solve problems of reconstruction of ve-

locity and pressure őelds of a turbulent ŕow with high resolution

and to identify the characteristic ŕow features [31]. In the past

decade, deep neural network (DNN)-based machine learning has

shown great success in natural language processing and computer

vision [32ś35] and has recently been shown to be able to identify

vortical ŕows. Lguensat et al. [36] utilized a DNN to identify

ocean eddies from sea surface height maps. They considered the

entire visualization images of the ŕow őeld as inputs to detect

the ocean eddies. Franz et al. [37] used a convolutional neural

network (CNN) to detect and track ocean eddies and provided

the labelled training data by local vortex identiőcation that need

suitable parameters to get robust results. Similarly, Ströfer et

al. [38] developed a CNN for identifying the horseshoe vortices

in a 3D ŕow over a wing-body junction. Deng et al. [39] pre-

sented a vortex identiőcation method based on a CNN. They used

the global instantaneous vorticity deviation method of Haller et

al. [21] and a local method to obtain the labels of each point in

the ŕow őeld for training. The local vortex detection methods

are used to identify vortices and train the network which can

be automated in this way. However, local methods are prone to

provide spurious vortices and thus the network may be trained

based on false positives and negatives. Expanding on the work

of Deng et al., we propose an alternative way to use CNN to

track and identify vortical structures. We replace local detection

methods for labelling by manually tagging vortices on streamline

plots. While this requires a substantial manual upfront cost, this

needs to be done only once and with sufficient vortices labelled

for different ŕow situations, a trained network can be applied for

various ŕow scenarios. By adopting this approach, we are able

to eliminate false positives and negatives and thus increase the

overall robustness and accuracy of CNNs for vortex identiőcation

tasks. This approach is detailed in the next section.
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3. METHODOLOGY

In the following section, we introduce and provide a brief de-

scription of the underlying methods we make use of in this study.

We introduce the Navier-Stokes equations in the form it is solved

for our turbulent ŕow, provide a description of local vortex de-

tection algorithms as well as propose our computer vision-based

approach to detect vortices based on the line integral convolution

method.

3.1 Governing equations for incompressible computational

fluid dynamics

The motion of ŕuids is entirely described by the Navier-

Stokes equations. It is a set of conservation laws, namely con-

servation of mass, momentum, and energy and provides in total

a set of őve equations and six unknown quantities (density, pres-

sure, energy (temperature), and three velocity components in the

x-, y- and z-direction). For a compressible ŕuid (that is, with

a variable density), we can close the Navier-Stokes equations

through a suitable state equation such as the ideal gas law. For

an incompressible ŕuid, such as we are considering in this study,

the density is constant, and no such relation exists. In this case,

various pressure-velocity coupling schemes have been proposed

that work in a predictor-corrector fashion and iteratively őnd the

solution to a given problem, of which the SIMPLE scheme of

Patankar [40] is one of the most widely used one. The conserva-

tion of momentum is given by

𝜌
𝜕𝑈

𝜕𝑡
+ 𝜌∇ · (𝑈𝑈) = −∇𝑝 + 2𝜇∇2𝑆 − ∇𝜏, (1)

where U is the velocity vector (𝑢𝑧 ,𝑢𝑦 ,𝑢𝑧), 𝜌 the density, 𝑡 the

time, 𝑝 is pressure, 𝜇 is dynamic viscosity and 𝑆 and 𝜏 being the

rate-of-strain and stress tensor, respectively. The rate-of-strain

tensor can be deőned in tensor notation as

𝑆𝑖 𝑗 =
1

2

(︃
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖

)︃
, (2)

and the stress tensor as

𝜏𝑖 𝑗 −
1

3
𝜏𝑘𝑘𝛿𝑖 𝑗 = −2𝑣𝑆𝐺𝑆𝑆, (3)

The conservation of mass, in turn, is given as

∇ ·𝑈 = 0. (4)

In the equations above, we have spatially őltered the Navier-

Stokes equations where small-scale turbulence features that are

smaller than a őlter width Δ have to be modelled through a

subgrid-scale model. The őltering operation produces a stress

tensor 𝜏 that is commonly modelled with the relation provided in

Eq.(3), where we can ignore the contribution of 𝜏𝑘𝑘 . We replace

the turbulent stresses through the strain-of-rate tensor 𝑆 which is

scaled by the turbulent subgrid-scale viscosity and which in turn

accounts for the őltered smallest turbulent eddies. As we are now

only resolving the largest turbulent ŕow structure and modelling

the smallest scale, this approach is referred to as large-eddy simu-

lations or LES in short. Using LES to resolve turbulence and thus

vortical ŕows, we have to introduce a subgrid-scale model [41]

to calculate the turbulent viscosity to close the set of momen-

tum equations, i.e. Eq.(1). In this study, we make use of the

Smagorinsky-Lilly [42] model which is given by

𝑣𝑆𝐺𝑆 = 𝐶𝑆Δ
2
√

2𝑆𝑆, (5)

where𝐶𝑆 is an empirical constant and tuned for a range of canon-

ical turbulent ŕows and Δ the őlter width below which turbu-

lent eddies are őltered (typical related to the local mesh size).

The advantage of LES is that we can generate turbulent vortical

structures quickly while only removing the smallest length scales

which can be easily modelled. The alternative is to model the

full turbulent ŕow őeld which still requires signiőcant computa-

tional resources. In this case, we do not őlter the Navier-Stokes

equations but instead ensure that our computational grid can cap-

ture all turbulent length scales (in which case the stress tensor

𝜏 does not need to be modelled and can be computed directly

from the resolved velocity őeld). This approach is referred to

as direct numerical simulations or DNS in short. Since we are

only interested in detecting macroscopic vortical structures, LES

provides excellent accuracy and sufficient information about tur-

bulent ŕows, which is suitable to capture vortices for training our

CNN. Therefore, LES has been used in this study to generate data

quickly.

3.2 Local vortex identification methods

The detection methods rely on the velocity gradient tensor,

∇𝑈, that can be written as

𝐷𝑖 𝑗 =
𝜕𝑢𝑖

𝜕𝑥𝑗
, (6)

where 𝑖 = 1, 2, 3 for 𝑥𝑖 and 𝑢𝑖 correspond to x, y, z and u, v, w,

respectively. The velocity gradient tensor 𝐷𝑖 𝑗 can be decomposed

into a symmetric and anti-symmetric tensor as 𝐷𝑖 𝑗 = 𝑆𝑖 𝑗 + Ω𝑖 𝑗

with

𝑆𝑖 𝑗 =
1

2

(︁
𝐷𝑖 𝑗 + 𝐷𝑗𝑖

)︁
, (7)

Ωij =
1

2

(︁
𝐷𝑖 𝑗 − 𝐷𝑗𝑖

)︁
, (8)

and where 𝑆𝑖 𝑗 is the symmetric part of the velocity gradient tensor

which is commonly known as the rate-of-strain tensor and Ω is

the anti-symmetric component representing the rate of rotation

tensor. The characteristic equation for 𝐷 is given as [43]

𝜎3 + 𝑃𝜎2 +𝑄𝜎 + 𝑅 = 0, (9)

where P, Q, and R are the őrst, second, and third invariants of the

velocity gradient tensor. Using the decomposition into symmetric

and anti-symmetric tensors, these invariants can be expressed as

𝑃 = − tr(∇𝑈) = 0, (10)

𝑄 =
1

2

(︂
tr(∇𝑈)2 − tr

(︂
∇𝑈2

)︂)︂
=

1

2

(︂
∥Ω∥2 − ∥𝑆∥2

)︂
, (11)

𝑅 = − det(∇𝑈). (12)

Here we have | |𝑆∥ = [tr (𝑆𝑆𝑡 )]
1
2 , and | |Ω∥ = [tr (ΩΩ𝑡 )]

1
2 . The

𝑄, delta, and swirling strength criteria are the most common local
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detection methods based on the velocity gradient tensor 𝐷𝑖 𝑗 . The

Q criterion (Hunt et al. [2]) identiőes vortices as ŕow regions

with the positive second invariant of ∇𝑈, i.e. 𝑄 > 0. The delta

criterion is using the critical point theory of Chong et al. [4]

and deőnes a vortex core for regions where 𝐷𝑖 𝑗 has complex

eigenvalues. These are identiőed using the discriminant of the

characteristic equation, which is given by

Δ =

(︃
1

2
𝑅

)︃2

+
(︃
1

3
𝑄

)︃3

> 𝜖, (13)

In a strict mathematical sense, 𝜖 is set to zero which can

result in falsely detected vortices. To reduce these false positives,

we can prescribe a value of 𝜖 > 0 which increases the accuracy

of the model but reduces the robustness of this method, as 𝜖 is

a parameter speciőc to each vortex. Setting 𝜖 too low results in

vortices that are detected in areas where no vortices exist (false

positive). A value of 𝜖 too high results in vortices that are not

detected even though they exist in physical space (false negative).

The Swirling strength criterion of Zhou et al. [5] is similarly

deőned to the delta criterion as the region where 𝐷𝑖 𝑗 has complex

eigenvalues. Unlike the delta criterion, however, Zhou et al. [5]

used the velocity gradient decomposition as follows

𝐷𝑖 𝑗 =
[︁
𝑣𝑟 𝑣𝑐𝑟 𝑣𝑐𝑖

]︁𝑇
⎡⎢⎢⎢⎢⎣

𝜆𝑟 0 0

0 𝜆𝑐𝑟 𝜆𝑐𝑖
0 −𝜆𝑐𝑖 𝜆𝑐𝑟

⎤⎥⎥⎥⎥⎦

[︁
𝑣𝑟 𝑣𝑐𝑟 𝑣𝑐𝑖

]︁𝑇
.

(14)

Here, 𝜆𝑟 is deőned as the real eigenvalue which is related to

the real eigenvector 𝑣𝑟 and we have the conjugate pair of com-

plex eigenvalues 𝜆𝑐𝑟 ± 𝑖𝜆𝑐𝑖 which is related to the corresponding

eigenvectors 𝑣𝑐𝑟 ± 𝑖𝑣𝑐𝑖 . The local swirling strength of a vortex is

deőned through 𝜆𝑐𝑖 and for values greater than zero, a vortex is

identiőed. This deőnition, however, produces similar falsely de-

tected vortices, and thus a more conservative approach would be

to deőne 𝜆𝑐𝑖 > 𝜖 . Using this approach, we need to őne-tune the

threshold parameter 𝜖 which is again a vortex speciőc parameter.

Due to the singular nature of the threshold parameter, we are not

able to avoid the detection of false positives and negatives, as

vortices may be cut-off below the threshold or spurious vortices

are allowed to be detected above the threshold.

The above described vortex detection methods were implemented

by Lindner et al. [43] into their Vortex Fitting toolbox. We use

this toolbox to detect vortices by őne-tuning the threshold param-

eter 𝜖 for each case individually. As we will show, the results

are highly dependent on 𝜖 and despite searching for the optimum

threshold value, false positives and negatives still exist. In order

to overcome this shortcoming, we introduce a computer vision

approach based on streamline-based vortex detection to reduce

false positives and negatives.

3.3 Streamline detection using the line integral convolution

algorithm

As the input to our computer vision framework, we generate

streamline plots on predeőned planes within our computational

domain where we extract the velocity vector and compute from it

the local streamlines for each pixel using the line integral convo-

lution (LIC) algorithm, as proposed by Cabral and Leedom [44].

This technique starts by covering a surface with a random gray-

scale value at the resolution at which streamline plots are to be

generated. It then computes the following integral

𝐶 (𝒓) =
∫ 𝐿/2

−𝐿/2
𝑘 (𝑠)𝑁 (𝜎(𝑠))d𝑠, (15)

where 𝐶 (𝑟) represents the colour value at location 𝑟 , 𝑠 being the

arc length along the streamline, 𝑘 (𝑠) is an appropriately chosen

kernel function to limit colouring to local space and 𝑁 (𝜎(𝑠))
containing the gray-scale image. We integrate along the stream-

line d𝑠 for a distance 𝐿. We apply this for each pixel in the domain

which produces LIC plots as shown in Figure 6. Compared to tra-

ditional streamline plots, LIC streamline plots provide the advan-

tage of covering the entire image whereas traditional streamline

plots require a starting location through which streamlines have

to pass, which does not guarantee full coverage of the domain.

Furthermore, in 3D, streamlines may leave a 2D plane on which

visualisation is sought, making it a difficult task to generate sur-

face streamline plots and extract vortex cores automatically. We

generate these LIC streamline plots using ParaView and these

are then further pre-processed using the Torchvision module Ð

which is part of the PyTorch Python package Ð by applying ro-

tation, cropping, and horizontal or vertical ŕipping to the images

to make the training more robust. To construct the training and

validation data set, the planes were randomly chosen at −𝜋/2, 0,

or 𝜋/2 in the 𝑥, 𝑦, or 𝑧 direction. For our supervised learning

approach, we manually label vortex regions for 100 images where

we identiőed a total of 1646 vortices. While this step represents

a time-consuming step, it has to be done only once. We later

show that this approach can then be transferred to different ŕuid

problems for which no training has taken place and vortices can

still be detected reliably.

3.4 Computer vision-based vortex detection with YOLO

Computer vision is a sub-őeld of artiőcial intelligence that

is able to extract meaningful information from digital images and

videos. In our case, we use it to extract vortices from streamline

plots. In this work, we used YOLO version 3 [11] for enhancing

the vortex core detection accuracy and reducing false positives

and false negatives. YOLO passes the entire image into a Neural

Network. This Neural Network divides the image into cells and

provides probabilities for every cell. Then YOLO predicts the

number of Bounding Boxes within the image and chooses the

best ones based on the probabilities. The backbone network of

YOLO v3 is called Darknet-53, which has 53 CNNs layers, to

extract feature images from the input. The basic components of

YOLO’s architecture are shown in Figure 1 and consist of resid-

ual blocks, skip connections and up-sampling layers, where each

convolutional layer is followed by a batch normalisation layer and

Leaky ReLU activation function. YOLO uses three different res-

olutions, which are responsible for detecting objects of different

scales, and at three separate places in the Network. Therefore,

the original architecture of YOLO adds 53 additional layers and

yields 106 layers for detection tasks. These separate places for

detection are layers 82, 94, and 106. The size of the image input

is divided by the network into 32, 16, and 8 [45] and referred to as

the network’s stride. Therefore, the input image to the Network
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FIGURE 1: YOLOV3 ARCHITECTURE WITH INPUT IMAGE SIZE 416×416 AND 3 TYPES OF SCALES (13×13, 26×26, AND 52×52) AS OUT-

PUT; DARKNET-CONV2D-BN-LEAKY ("DBL" FOR SHORT) IS THE MAIN COMPONENT OF YOLOV3 WHICH CONTAINS ONE CONVOLUTION

LAYER, ONE BATCH NORMALIZATION LAYER, AND ONE LEAKY RELU LAYER.; RESIDUAL-LIKE UNIT ("RESUNIT" FOR SHORT) IS TWO

"DBL" STRUCTURES FOLLOWING ONE "ADD" LAYER; SEVERAL "RESUNIT" WITH ONE ZERO-PADDING LAYER AND "DBL" STRUCTURE

FORWARD GENERATES A RESIDUAL-LIKE BLOCK, "RESBLOCK" FOR SHORT, WHICH IS THE MODULE ELEMENT OF DARKNET-53. FIG-

URE ADAPTED FROM WANG ET AL. [45]

FIGURE 2: DIFFERENT LABELLING STRATEGIES: ON THE LEFT-HAND SIDE, WE USE NON-OVERLAPPING BOUNDING BOXES AND ON THE

RIGHT-HAND SIDE WE ALLOW LABELLED BOUNDING BOXES TO OVERLAP, CAPTURING MORE OF THE VORTICES’ STRUCTURES.

must be divisible by 32 without leaving a remainder, in our case

the size of the input image is 416 pixels. Stride 32 will produce

an output size of 13 by 13. Similarly, stride 16 will produce an

output of size 26 by 26 and stride 8 of 52 by 52. Therefore, strides

8, 16, and 32 are responsible for detecting small, medium, and

large features in our images, respectively. In contrast, the previ-

ous versions (YOLOv1,YOLOv2) had difficulty detecting small

objects since the images were divided into equal-sized grid cells

with each grid cell detecting object if the central point of the ob-

ject fell into that cell. YOLOv4 and subsequent versions generate
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the same three different outputs of feature maps as YOLOv3 to

achieve multi-scale prediction. In terms of accuracy, YOLOv4

and above may achieve slightly better accuracy than YOLOv3,

especially in the MS COCO dataset, however, YOLOv3’s detec-

tion speed is faster than that of YOLOv4 and versions above [46].

For that reason, we have chosen to use YOLOv3 in this study to

detect vortex regions with good speed and high accuracy which

is suitable to detect small areas of vortices.

3.5 Vortex regions labelling

Labelling of vortices poses some difficulties and needs to be

considered carefully in order to avoid false positives and nega-

tives. As vortices are not well-deőned structures (where does a

vortex start and where does it end?), we have implemented two

different labelling strategies and compared their effect on the re-

sults. Both strategies are schematically shown in Figure 2. On

the left-hand side, we show an approach in which the bounding

boxes we use for labelling do not overlap. This ensures that each

bounding box only considers one vortex and the inŕuence from

a close neighbouring vortex does not bleed into this bounding

box. On the right-hand side, we do allow the labelled bounding

boxes to overlap and concentrate here on capturing as much of

the vortex as possible. This allows for neighbouring vortices to

affect vortex detection. The idea here is that neighbouring vor-

tices will have an effect on the shape and structure of the vortex

itself and using this approach may help in predicting vortices of

non-perfectly spherical shape better.

4. TEST CASE

We use the Taylor Green Vortex problem as a test case. The

Taylor-Green vortex ŕow is simulated using LES at a Reynolds

number of Re=1600 [47]. The large-scale turbulence is solved di-

rectly using the Navier-Stokes equations, and the small-scale tur-

bulence is modelled using the Smagorinsky-Lilly subgrid-scale

model. The geometry has been discretized by a uniform mesh of

resolution 643 with a time-step of Δ𝑡∗ ≈ 0.06, which corresponds

to a CFL value of 0.6. Here, we use the non-dimensional time 𝑡∗

which is expressed as 𝑡∗ = 𝑡𝑈0/𝐿. All six sides of the cube of

length 2𝜋𝐿 (with 𝐿 = 1) are set to periodic boundary conditions.

The initial conditions are set in such a way that an initial distribu-

tion of large, energy-containing vortices exists which then decays

through vortex stretching in three-dimensional space. The initial

conditions are given by

𝑢 = 𝑈0 sin
(︂ 𝑥
𝐿

)︂
cos

(︂ 𝑦
𝐿

)︂
cos

(︂ 𝑧
𝐿

)︂
, (16)

𝑣 = −𝑈0 cos
(︂ 𝑥
𝐿

)︂
sin

(︂ 𝑦
𝐿

)︂
cos

(︃
𝑍

𝐿

)︃
, (17)

𝑤 = 0, (18)

𝑝 = 𝑝0 +
𝜌0𝑈

2
0

10

(︃
cos

(︃
2𝑥

𝐿

)︃
+ cos

(︃
2𝑦

𝐿

)︃)︃ (︃
cos

(︃
2𝑧

𝐿

)︃
+ 2

)︃
. (19)

Here, we set 𝑈0 = 1𝑚 𝑠−1, 𝑝0 = 0 𝑃𝑎 and 𝜌0 = 1 𝑘𝑔 𝑚−3.

Setting the kinematic viscosity to 𝜈 = 1/1600𝑚2 𝑠−1 then

results in the desired Reynolds number of Re=1600. The

left-hand side of Figure 3 shows the vortex distribution at 𝑡∗ = 0

using the magnitude of the velocity vector. The right-hand

side shows the state of the velocity vector at 𝑡∗ = 20, after

vortex stretching has redistributed the containing energy in

space, with the energy contained at the smallest turbulent scales

being dissipated into heat. From Figure 3, we can see that a

range of vortices will develop from the initial conditions and

this will provide us with a reliable mechanism to generate

vortical ŕow patterns from which we can extract streamlines

on the symmetry planes of the x-, y- and z-direction which are

then used training data for our computer vision-based framework.

To validate our simulation setup, we run the Taylor-Green

vortex problem until 𝑡∗ = 20 and compare the computed overall

kinetic energy with that of Beck and Gassner [48] and DeBo-

nis [49]. The temporal evolution of kinetic energy, based on the

instantaneous velocity vector, is computed as

𝐸𝑘 =
1

𝜌0𝑉

∫

𝑉

𝜌
𝑈 ·𝑈

2
d𝑉. (20)

The temporal evolution of the kinetic energy dissipation rate is

computed as

Y = −d𝐸𝑘

d𝑡
, (21)

These two quantities are plotted and compared against refer-

ence data in Figure 4 and Figure 5, respectively. We compare our

data here against direct numerical simulation (DNS) results, as

well as LES results done on the same mesh size as our simulation.

From Figure 4, we can see that our results prematurely capture an

increase in dissipation rate compared to the DNS results. How-

ever, this trend is explained by the coarse resolution of the 643

grid cells in our simulation. Comparing our results against LES

data obtained on a similar grid shows that we match that data

much better. Looking at Figure 5, we capture the kinetic energy

temporal evolution well and there are only minute differences be-

tween the LES and DNS reference data. It should be stressed here

that our primary concern is to generate vortical structures quickly

while capturing the overall physical process of turbulence and its

decay. Our validation shows that this is the case here and that

we can proceed with these simulations to generate our streamline

plots for the vortex core detection task.

5. RESULTS AND DISCUSSIONS

A total of 335 time steps are required to advance the solution

from 𝑡∗ = 0 to 𝑡∗ = 20 at 𝐶𝐹𝐿 = 0.6. We store the velocity

vector on the symmetry planes in the x-, y- and z-direction at

each time-step. In the current investigation, we extract a total

of 100 images from the symmetry plane norm to the x, y, and z-

direction as training dataset and label vortices on these 100 images

based which are visualised through the line integral convolution

method. We then select two additional images from the symmetry

plane, which are not part of the training data set, and use that for

testing the accuracy of our vortex detection framework based on

computer vision. The two images are shown in Figure 6, where

test image 1, on the left-hand side, contains 16 vortices, and test

image 2, on the right-hand side, contains 24 vortices. We observe

that the test images contain mostly symmetrical vortex structures

along the main axes.
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FIGURE 3: CONTOUR VELOCITY PLOT. THE LEFT-HAND SIDE AT THE BEGINNING INITIAL STATE AND THE RIGHT-HAND SIDE AT THE END

TIME STEP.

FIGURE 4: KINETIC ENERGY DISSIPATION RATE. THE REFER-

ENCE LARGE EDDY SIMULATION (LES) AND DIRECT NUMERICAL

SIMULATION (DNS) WAS TAKEN FROM [48], THE CURRENT SIMU-

LATION RESULTS SHOWN IN THE DASHED BLUE LINE WERE OB-

TAINED USING LES ON A 643 GRID AT A REYNOLDS NUMBER OF

RE=1600.

First, we will use these two test images to detect vortices

using the Vortex őtting toolbox of Lindner et al. [43] and show

results for that in the next section. Then, we apply the same

test images to our trained computer vision-based framework and

show how the number of images used for training inŕuences the

accuracy.

5.1 Local vortex detection methods

Figure 7 and Figure 8 show the results of the two test im-

ages after detecting vortices using the Vortex őtting toolbox [43].

We use the Q, delta, and swirling strength criterion here and

vary the numerical discretisation schemes used to approximate

the derivatives within the velocity gradient tensor. Here, we

use second-order, fourth-order, and a least square gradient re-

construction approach. Furthermore, we őne-tune the threshold

value to match the number of expected vortices for both cases,

here 16 for test image 1 (Figure 7) and 24 vortices for test image

2 (Figure 8). This is only possible for the delta and swirling

strength criterion, whereas the Q criterion does not allow for a

threshold to be őne-tuned.

Here, the yellow dots in the images indicate clockwise rotat-

FIGURE 5: TEMPORAL EVOLUTION OF THE TURBULENT KINETIC

ENERGY. THE REFERENCE LARGE EDDY SIMULATION (LES) AND

DIRECT NUMERICAL SIMULATION (DNS) WAS TAKEN FROM [49],

THE CURRENT SIMULATION RESULTS SHOWN IN THE DASHED

BLUE LINE WERE OBTAINED USING LES ON A 643 GRID AT A

REYNOLDS NUMBER OF RE=1600.

ing vortices, the green dots indicate counter-clockwise rotating

vortices and the red dots show the actual location of vortex cores,

which were manually extracted from Figure 6.

Both Figures show a similar behaviour in terms of performance

for the three different detection algorithms. First of all, there

is little coherence between the different methods and, to some

extent, there is also a lack of coherence between the different

gradient reconstruction schemes for the same method. What is

interesting to note is that despite providing an almost symmetrical

ŕow őeld to the vortex detection algorithms, this symmetry is not

reŕected in the predicted vortices. Some detection algorithms

tend to a more symmetrical vortex core prediction but overall a

non-symmetrical prediction pattern is established. This shows

the sensitivity of the different methods to the threshold parame-

ter 𝜖 (for the delta and swirling strength criterion) as őne-tuning

this may remove some of the mirrored vortices due to a slight

difference in vortex strength. Furthermore, we can observe that

all these detection methods provide, at best, an approximation

of actual vortex core regions. It can be noted from a qualitative

point of view, that the delta criterion seems to predict regions of

high vortical ŕow correctly, despite not being able to predict the
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(a)T est image 1 wi th 16 vor ti ces . (b)T est image 2 wi th 24 vor ti ces .

FIGURE 6: TEST IMAGES SHOWING VORTICAL STRUCTURES OBTAINED WITH THE LINE INTEGRAL CONVOLUTION-BASED STREAMLINE

ALGORITHM.

TABLE 1: NUMBER OF PREDICTED VORTICES FOR THE Q, DELTA, AND SWIRLING STRENGTH CRITERION USING A SECOND-ORDER

GRADIENT RECONSTRUCTION SCHEME, AS WELL AS THEIR FALSE POSITIVES AND NEGATIVES AND THE THRESHOLD VALUE REQUIRED

TO MATCH THE NUMBER OF PREDICTED VORTICES TO THE NUMBER OF EXPECTED VORTICES (EV)

Second-order

Threshold value Detected vortices False positives False negatives

Test

image
Q delta swirl Q delta swirl Q delta swirl Q delta swirl EV

1 n/a 1.2e-09 0.9 12 16 16 4 8 4 8 7 4 16

2 n/a 4.3e-08 1.37 19 24 24 4 3 3 9 4 4 24

TABLE 2: NUMBER OF PREDICTED VORTICES FOR THE Q, DELTA, AND SWIRLING STRENGTH CRITERION USING A FOURTH-ORDER

GRADIENT RECONSTRUCTION SCHEME, AS WELL AS THEIR FALSE POSITIVES AND NEGATIVES AND THE THRESHOLD VALUE REQUIRED

TO MATCH THE NUMBER OF PREDICTED VORTICES TO THE NUMBER OF EXPECTED VORTICES (EV)

Fourth-order

Threshold value Detected vortices False positives False negatives

Test

image
Q delta swirl Q delta swirl Q delta swirl Q delta swirl EV

1 n/a 2.0e-10 0.0 11 16 15 2 2 3 7 2 4 16

2 n/a 2.4e-08 0.0 8 24 12 0 1 1 16 1 13 24

TABLE 3: NUMBER OF PREDICTED VORTICES FOR THE Q, DELTA, AND SWIRLING STRENGTH CRITERION USING A LEAST-SQUARE GRA-

DIENT RECONSTRUCTION SCHEME, AS WELL AS THEIR FALSE POSITIVES AND NEGATIVES AND THE THRESHOLD VALUE ϵ REQUIRED

TO MATCH THE NUMBER OF PREDICTED VORTICES TO THE NUMBER OF EXPECTED VORTICES (EV)

Least square

Threshold value Detected vortices False positives False negatives

Test

image
Q delta swirl Q delta swirl Q delta swirl Q delta swirl EV

1 n/a 1.4e-08 3.2 15 16 16 3 3 6 4 1 4 16

2 n/a 1.9e-07 0.0 6 24 9 0 4 0 18 2 15 24
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second-order, Q criterion second-order, delta criterion second-order, swirling strength

Fourth-order, Q criterion Fourth-order, delta criterion Fourth-order, swirling strength

least square, Q criterion least square, delta criterion least square, swirling strength

FIGURE 7: DETECTED VORTICES (SHOWN ON YELLOW AND GREEN) USING THE Q, DELTA, AND SWIRLING STRENGTH CRITERION WITH

SECOND-ORDER, FOURTH-ORDER, AND LEAST SQUARE GRADIENT RECONSTRUCTION SCHEMES FOR THE FIRST TEST IMAGE (16 VOR-

TICES). THE ACTUAL VORTEX CORE REGIONS ARE SHOWN BY THE RED CIRCLES.

exact location of vortex cores. This is especially noticeable for

the second test image. Both the Q and swirling strength criterion

are picking up on the rotational ŕow at the centre; we may have

vortical ŕow here but within the plane we are observing the ŕow,

the centre part of the streamlines cannot be classiőed as a vortex.

Overall, we can say that we get a good initial prediction of areas

where vortices are located but tracking down their precise loca-

tion proves difficult. Without manually detecting where vortices

are located, it is also difficult to judge if the reported results are

physical or contain false positives and negatives.

Turning to Table 1ś3, these summarise how the different meth-

ods compare in terms of predicting false positives and negatives

for the three different gradient reconstruction schemes. Here,

we count vortices as being correctly predicted if they are in the

vicinity of an actual vortex core. These three tables provide in

numbers what has been discussed above but further show that

a large number of false positives and negatives exist for all de-

tection algorithms and reconstruction schemes and, apart from

the Q criterion, we can see that arriving at these values requires

őne-tuning of the threshold parameter which does not follow any

identiőable pattern.

In order to quantify the spread of the vortex core detection of

these local detection methods, we compute the root mean square

error of all predicted vortices to the closest actual vortex that is
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second-order, Q criterion second-order, delta criterion second-order, swirling strength

Fourth-order, Q criterion Fourth-order, delta criterion Fourth-order, swirling strength

least square, Q criterion least square, delta criterion least square, swirling strength

FIGURE 8: DETECTED VORTICES (SHOWN ON YELLOW AND GREEN) USING THE Q, DELTA, AND SWIRLING STRENGTH CRITERION WITH

SECOND-ORDER, FOURTH-ORDER AND LEAST SQUARE GRADIENT RECONSTRUCTION SCHEMES FOR THE SECOND TEST IMAGE (24

VORTICES). THE ACTUAL VORTEX CORE REGIONS ARE SHOWN BY THE RED CIRCLES.

present in the domain using

𝑅𝑀𝑆𝐸 =

⌜⃓⎷
1

𝑛

𝑛−1∑︂

𝑖=0

(𝑥𝑖 −ˆ︁𝑥𝑖)2
, (22)

Where 𝑛 is the total number of predicted vortices, 𝑥𝑖 the

predicted vortex core andˆ︁𝑥𝑖 being the vortex that is present in the

domain and closest to 𝑥𝑖 . Here, 𝑥𝑖 represents the yellow and green

dots in Figure 7 and Figure 8, while ˆ︁𝑥𝑖 is represented by the red

dots. The results are shown in Table 4. Interestingly, this Table

shows that the smallest and highest errors are obtained using

the delta criterion using the second- and fourth-order gradient

reconstruction scheme for test images 1 and 2, respectively. This

is conőrmed by taking the variance of all the results for each

method where we have a variance of 5.5𝑒−3, 7.9𝑒−4, and 6.4𝑒−4

for the delta, Q, and swirling strength criterion, respectively.

While the delta criterion does indeed provide an overall good

prediction of the vortex core regions for test image 2, its prediction

for the őrst test image is rather scattered. We can see that the

swirling strength does not provide overall the lowest errors, but it

is the most consistent method which has the lowest variance. The

Q criterion performs similarly to the swirling strength in terms

of overall errors and achieves this without the need to őne-tune

the threshold parameter. Therefore, the Q criterion may be seen

as a good compromise which may explain its popularity in the

computational ŕuid dynamics community to visualise vortices,

however, it still produces false positives and negatives.
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TABLE 4: ROOT MEAN SQUARE ERRORS FOR THE PREDICTED VORTEX CORES TO THE ACTUAL VORTEX CORE REGIONS.

Root Mean Square Error values

Delta Criterion Q Criterion swirling strength Criterion

Test

image

Second

Order

Fourth

Order

Least

Square

Second

Order

Fourth

Order

Least

Square

Second

Order

Fourth

Order

Least

Square

1 0.275 0.1112 0.1347 0.1457 0.1603 0.158 0.1503 0.1603 0.1589

2 0.1419 0.0535 0.1115 0.1384 0.1046 0.0930 0.1389 0.1092 0.1022

TABLE 5: MAXIMUM DIFFERENCE BETWEEN THE PREDICTED VORTEX CORES AND THE ACTUAL VORTEX CORE REGIONS.

Maximum Difference values

Delta Criterion Q Criterion swirling strength Criterion

Test

image

Second

Order

Fourth

Order

Least

Square

Second

Order

Fourth

Order

Least

Square

Second

Order

Fourth

Order

Least

Square

1 1.129 0.919 1.089 1.080 0.989 1.025 1.080 1.080 1.025

2 1.190 1.016 1.161 1.190 1.0126 0.958 1.190 1.045 0.958

S = 1 Test Image 1 S = 6 Test Image 1 S = 12 Test Image 1

S = 1 Test Image 2 S = 6 Test Image 2 S = 12 Test Image 2

FIGURE 9: THE OUTPUT RESULT OF S=1 (1 IMAGE), S=6 (40 IMAGES) AND S=12 (100 IMAGES). THE RED BOX IS THE PREDICTED BOUNDING

BOX BASED ON BOUNDING BOXES THAT ARE ALLOWED TO OVERLAP DURING LABELLING, SEE SECTION 3.5.

For each criterion, the maximum distance between the actual

vortex cores and the predicted location is shown in Table 5 with

the second-order, fourth-order, and least square gradient schemes.

The maximum difference between all predicted vortices and the

actual vortices in the domain is calculated as follows:

𝑀𝑎𝑥𝐷𝑖 𝑓 𝑓 = 𝑀𝑎𝑥

(︃√︂
Δ𝑥𝑖2 + Δ𝑦𝑖2

)︃
𝑖 = 1, 2, ..., 𝑛, (23)

Δ𝑥𝑖 represents the difference between the predicted and actual of

a vortex core in x direction, while Δ𝑦𝑖 represents the difference

between the predicted and actual of a vortex core in the y direc-

tion. Based on Table 5, the Q criterion with the second-order

scheme has the highest maximum distance value for test image

one, as well as the highest RMSE value on the table 4. In test

image 2, the highest maximum distance value is obtained with

the second-order scheme of Q, delta, and swirling strength cri-
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S = 1 Test Image 1 S = 6 Test Image 1 S = 12 Test Image 1

S = 1 Test Image 2 S = 6 Test Image 2 S = 12 Test Image 2

FIGURE 10: THE OUTPUT RESULT OF S=1 (1 IMAGE), S=6 (40 IMAGES) AND S=12 (100 IMAGES). THE RED BOX IS THE PREDICTED BOUND-

ING BOX BASED ON BOUNDING BOXES THAT ARE NOT ALLOWED TO OVERLAP DURING LABELLING, SEE SECTION 3.5.

terion. Table 4 also shows they have the highest RMSE value.

The spread between the data is low, suggesting that all methods

provide a similar difference in terms of maximum difference to

the actual vortex cores. Next, we show that using computer vision

can remove the need to specify this free parameter while reducing

the false positives and negatives entirely.

5.2 Detecting vortices through computer vision

As we noted in the introduction, we focus here on predicting

vortex regions (i.e. bounding boxes of vortices) and not the vortex

cores themselves. This distinction is important as the test case that

we employ is unsteady. For unsteady ŕows, the vortex core may

not be inferred from streamline such as LIC surface streamline

plots but rather path-lines must be studied. However, while the

centre of rotation may be different, the vortex region remains

approximately the same. Thus, by focusing on the bounding

box of the vortex, we do not limit ourselves to studying only

steady-state ŕows. This has the advantage that we can use simple

geometries such as the Taylor-Green vortex problem which can

produce vortices easily and in a wide range of sizes and shapes.

In order to show how we are able to reduce false positives and

negatives using computer vision, we train our YOLO-based CNN

in a sequence of 12 steps, each sequence containing an increasing

number of images used for labelling of vortices which are then

used for training. The őrst sequence contains a single image for

training which is then increased to 5, 10, 20, 30, 40, 50, 60, 70,

80, 90, and 100 images. The number of vortices that are manually

labelled in each sequence are 18, 106, 202, 394, 562, 722, 926,

1086, 1246, 1326, 1486 and 1646, respectively. Using both test

images, Figures 9 and őgures 10 depict the evolution of training

with overlapping and without overlapping bounding box labelling

techniques, respectively, for sequence 1 (1 image), sequence 6 (40

images), and sequence 12 (100 images). The detected vortices

are identiőed through a corresponding red bounding box. Our

results indicate that whichever labelling method is used has no

effect. Hence, we will discuss the overlapping bounding boxes

as shown in őgure 9 in the rest of this section since the bounding

box labelling captures the entire vortex region, and the labelling

way doesn’t inŕuence the results. Focusing on sequence 1 for

the őrst test image (top left) in őgure 9 , we can see that a total

of 11 vortices are predicted. 4 out of these 11 vortices are false

positives and should be removed while there are 9 false negatives,

i.e. vortices that are present but not detected. Moving to the right,

i.e. increasing the number of images used in the sequence, we

can see that we detect increasingly more vortices for sequences

6 and 12 and that we reduce the number of false positives and

negatives entirely with a sufficiently large training set. Similar

observations can be made as well for the second test image.

Table 6 and Table 7 provide tabulated data about the reduction

in false positives and negatives for each sequence of images. We

can see that for test image 1 in Table 6 that it takes 60 images for

training to reliably detected all physical vortices without detecting
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any spurious vortices. For test image 2 in Table 7, we can see

that it takes the full training set of 100 images to reduce all

false positives and detect all physically present vortices correctly.

This trend is shown also in Figure 11, where we plot the false

negatives against the number of images used for training. We can

see a monotonic decrease. We train our CNN on a single Nvidia

V100 GPU and provide training times for both tables. Since both

test images rely on the same 100 images that we use for training,

we perform this step only once and hence have the same training

times in both tables, here provided only for completeness. Table 6

and Table 7 also provide the mean Average Precision (mAP) and

we train our model for each sequence until we reach a value of

0.9 except for the last sequence, where we increase the value to

0.96 to capture all vortices. Figure 12 shows that a few epochs

are required initially to pick up any vortices after which we can

observe a steady increase in the mAP value.

To obtain the mAP we need to calculate the Precision (measures

the accuracy of the predictions) and Recall (measures how well

all the true positives are found), which are deőned as

Precision =
True positives

( True positives + False positives ) , (24)

and

Recall =
True positives

( True positives + False negatives ) . (25)

We count true positives as those identiőed vortices (red

bounding boxes) that share an intersection over union (IoU) with

the ground truth bounding box (the bounding box that is man-

ually created to label vortices) which is above an IoU threshold

value of 0.5 in our case. False positives and negatives take the

same deőnition as in Table 6 and Table 7. We obtain Precision

and Recall using IoU values for a given IoU threshold. Then we

calculate the average of the area under the precision and recall

curve.

FIGURE 11: (THE BLACK SOLID AND BLUE DISH) FALSE NEGA-

TIVES CURVES FOR TEST IMAGE 1 AND TEST IMAGE 2 RESPEC-

TIVELY IN THE NUMBER OF IMAGES.

The error between the target value and the predicted value is

calculated by the loss function, using the concept of error back-

propagation in the neural network and altering the weight of each

layer in the network to achieve the training of the model. During

training, we calculate the loss function by summing the locali-

sation loss (errors between the predicted bounding box and the

truth bounding box), the classiőcation loss, and the conődence,

as deőned in [6, 50]. Figure 13 shows a monotonic decreasing

loss function and we can say that after about 300 epochs, that our

CNN is well őtted.

FIGURE 12: MEAN AVERAGE PRECISION CURVE IN THE TIME OF

TRAINING EPOCHS

5.3 Application to turbulent boundary layer flows

Thus far, we have concentrated on homogeneously decaying

turbulence in a box in Section 5.1 and Section 5.2. However, real

ŕuid-dynamics applications feature a range of complex ŕow struc-

tures, in which hair-pin vortices, dean vortices, Gortler-Taylor

vortices, jets, and streaks can occur (to name but a few). There-

fore, the purpose of this section is to explore how our developed

framework performs in cases with such structures. We investigate

a case in which a turbulent boundary layer is developed over a

ŕat plate that does feature, for example, streaks and hairpin vor-

tices. Here, we use the LES data of Szöke et al. [51], where the

turbulence within a channel with streamwise rods was simulated

to investigate their role to attenuate pressure ŕuctuations near the

wall. As the turbulent boundary layer is forming along the wall,

we expect a ŕow structure to develop which our Taylor-Green

Vortex setup did not contain. Thus, our trained framework has

not seen any such structures during training. However, their vor-

tical appearance may be similar enough so that vortices will be

detected, regardless of their underlying shape. This investigation

is performed to provide evidence of the universal nature of this

framework.

FIGURE 13: LOSS VALUES CURVE IN THE TIME OF TRAINING

EPOCHS.
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TABLE 6: NUMBER OF DETECTED AND EXPECTED VORTICES FOR THE FIRST TEST IMAGE, AS WELL AS FALSE POSITIVES AND NEGA-

TIVES WITH AN INCREASING NUMBER OF IMAGES USED FOR TRAINING. THE COMPUTATIONAL TIME TAKEN FOR TRAINING IS PROVIDED

ALONG WITH THE MEAN AVERAGE PRECISION (MAP)

S
Number

of images

Number of

vortices

labelled

Expected

vortices

(EV)

Vortices

detected

False

positives

False

negatives

Time of

training
mAP

1 1 18 16 11 4 9 01:18:45 0.96

2 5 106 16 11 3 8 02:34:42 0.91

3 10 202 16 12 2 6 04:07:39 0.93

4 20 394 16 13 1 4 08:18:26 0.91

5 30 562 16 14 1 3 08:50:05 0.90

6 40 722 16 14 0 2 11:16:21 0.91

7 50 926 16 15 1 2 11:41:32 0.91

8 60 1086 16 16 0 0 12:05:55 0.90

9 70 1246 16 16 0 0 13:13:54 0.91

10 80 1326 16 16 0 0 13:50:58 0.92

11 90 1486 16 16 0 0 14:20:29 0.91

12 100 1646 16 16 0 0 22:00:38 0.96

TABLE 7: NUMBER OF DETECTED AND EXPECTED VORTICES FOR THE SECOND TEST IMAGE, AS WELL AS FALSE POSITIVES AND

NEGATIVES WITH AN INCREASING NUMBER OF IMAGES USED FOR TRAINING. THE COMPUTATIONAL TIME TAKEN FOR TRAINING IS

PROVIDED ALONG WITH THE MEAN AVERAGE PRECISION (MAP)

S
Number

of images

Number of

vortices

labelled

Expected

vortices

(EV)

Vortices

detected

False

positives

False

negatives

Time of

training
mAP

1 1 18 24 12 4 16 01:18:45 0.96

2 5 106 24 14 3 13 02:34:42 0.91

3 10 202 24 17 3 10 04:07:39 0.93

4 20 394 24 17 2 9 08:18:26 0.91

5 30 562 24 18 1 7 08:50:05 0.90

6 40 722 24 22 1 3 11:16:21 0.91

7 50 926 24 22 1 3 11:41:32 0.91

8 60 1086 24 21 0 3 12:05:55 0.90

9 70 1246 24 22 0 2 13:13:54 0.91

10 80 1326 24 23 1 2 13:50:58 0.92

11 90 1486 24 24 2 2 14:20:29 0.91

12 100 1646 24 24 0 0 22:00:38 0.96

FIGURE 14: DETECTED VORTEX CORE REGIONS USING OUR

COMPUTER VISION APPROACH FOR THE TURBULENT BOUND-

ARY LAYER CASE TAKEN FROM SZÖKE ET AL. [51]

Figure 14 shows the streamlines taken from the numerical

data in [51]. This is looking straight onto the rods, where the bot-

tom part is assigned a wall boundary condition (and hence this is

where fundamentally different vortical structures are expected).

Both the left and right sides are assigned periodic boundary con-

ditions and the top is a slip wall. We use here our trained CNN and

we can see that the vortices are still detected with good accuracy.

We can spot at least one false negative below the right rod and at

least one false positive in the bottom left corner, however, overall

we are able to predict the correct vortex region and using addi-

tional images from turbulent boundary layer ŕows, it is likely that

we will be able to remove false positives and negatives entirely.

In addition, using different types of ŕow which produce different

types of vortices will reduce the risk of over-őtting. In our case,

the Taylor-Green Vortex problem produces a wide range of vor-

tices but additional training would beneőt the overall robustness

14



second-order, Q criterion, ϵ = 0.449 second-order, delta criterion, ϵ = 0.0372 second-order, swirling strength, ϵ = 5.98

Fourth-order, Q criterion, ϵ = 5.74 Fourth-order, delta criterion, ϵ = 0.1469 Fourth-order, swirling strength, ϵ = 6.06

least square, Q criterion, ϵ = 0.701 least square, delta criterion, ϵ = 0.207 least square, swirling strength, ϵ = 5.54

FIGURE 15: DETECTED VORTEX CORES USING THE Q, DELTA AND SWIRLING STRENGTH CRITERION WITH DIFFERENT GRADIENT

RECONSTRUCTION SCHEMES FOR THE TURBULENT BOUNDARY LAYER CASE TAKEN FROM SZÖKE ET AL. [51]

for a different type of ŕows here.

For completeness, we also employ the Q, delta, and swirling

strength criterion which is shown in Figure 15. Similar to obser-

vations made before, we can see that the results are scattered with

false positives and negatives and that we have to őne-tune the

threshold parameter. There is little coherence between the dif-

ferent methods and the computer vision-based approach provides

better predictions, despite a lack of training for this particular

case. Thus, these results suggest that our developed computer

vision framework has a universal nature and can be applied to

ŕow cases for which it has not been trained for. However, provid-

ing additional training would allow to detect even more features

for attached, turbulent boundary layer ŕows and identify some

vortices which are currently not detected.

6. CONCLUSIONS
We have presented a new computer vision-based approach

to detect vortex cores in ŕuid dynamic applications through

line integral convolution-based streamline plots. We used these

streamline plots to train a convolutional neural network based

on the YOLO algorithm. To test our new algorithm, we have

performed large-eddy simulations of the Taylor-Green vortex

problem at a Reynolds number of 1600 and extracted surface

plots at the symmetry plane of the domain. We compute the

bounding boxes of the vortex core regions and show that we are

able to remove the false positives and negatives entirely for the

Taylor-Green problem, regardless of the labelling procedure. We

have also applied the trained network to a test case for which it

has not been trained and found that most vortices are correctly

detected, with only a few false positives and negatives. These

15



may be further removed through retraining using additional input

images. We have also employed classical local vortex detection

algorithms based on the Q, delta, and swirling strength criteria.

We have shown that these methods are able to approximate the

region of vortex cores. There are a number of false positives and

negatives that are generated and the őne-tuning of a threshold

parameter is required to keep the number of detected vortices

bounded. Thus, local vortex detection algorithms require a

priori knowledge of the ŕow őeld to set up the correct threshold

parameter but even then produce spuriously detected vortex

cores. We show that using our computer vision-based algorithm

that we are able to remove these entirely.

While we are able to remove false positives and negatives,

our computer vision approach only provides bounding boxes of

vortex regions. To extract the precise vortex core, one could

extend our approach through a hybrid computer-vision and deep

neural network approach or a modiőed local vortex core detection

algorithm that only searches in detected vortex core regions. We

leave these to future work activities.
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