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Abstract. In this article, several practical algorithms are proposed
to support content-based video analysis, modeling, representation,
summarization, indexing, and access. First, a multilevel video data-
base model is given. One advantage of this model is that it provides
a reasonable approach to bridging the gap between low-level rep-
resentative features and high-level semantic concepts from a hu-
man point of view. Second, several model-based video analysis
techniques are proposed. In order to detect the video shots, we
present a novel technique, which can adapt the threshold for scene
cut detection to the activities of variant videos or even different video
shots. A seeded region aggregation and temporal tracking technique
is proposed for generating the semantic video objects. The semantic
video scenes can then be generated from these extracted video
access units (e.g., shots and objects) according to some domain
knowledge. Third, in order to categorize video contents into a set of
semantic clusters, an integrated video classification technique is de-
veloped to support more efficient multilevel video representation,
summarization, indexing, and access techniques. © 2001 SPIE and
IS&T. [DOI: 10.1117/1.1406944]

*The short version of this work was first presented at SPIE Electronic Imaging:

1 Introduction

Digital video now plays an important role in entertainment,
education, and other multimedia applications. It has be-
come increasingly important to develop mechanisms that
process, filter, search, and organize the digital video infor-
mation so that useful knowledge can be derived from the
exploding mass of information that is now accessable.
Since it is difficult to index and categorize video data au-
tomatically compared with similar operations on text,
search engines for video data are still rare. Content-based
video database modeling, representation, summarization,
indexing, retrieving, navigating, and browsing have
emerged as challenging and important areas in computer
vision and database management.

All the existing video database systems first partition
videos into a set of access units such as shots, objects or
regions'~’ and then follow the paradigm of representing
video via a set of feature attributes, such as color, texture,
shape, and layo(t® Those features are properly indexed,
according to some indexing structure, and are then used for
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video retrieval. Retrieval is performed by matching the fea- works, video contents should be scalable over a wide
ture attributes of the query object with those of videos in range of bandwidth requirements to provide fast
the database that arearestto the query object in high- video retrieving and browsing over networks. How-

dimensional spaces. The query-based video database access ever, the current network techniques cannot provide
approaches typically require that users provide an example efficient quality of servic QoS guarantees.

video or sketch, and a database is then searched for videos ) ,
which are relevant to the query. Some other approaches to . Based on the above observations, a novel multilevel
video database management have focused on supportin&'deo modeling and indexing approach, called MultiView,
hierarchical browsing of video contents. In order to support 'S Proposed to support hierarchical video retrieving and
hierarchical video browsing, the video contents are first Prowsing. This article is organized as follows. In Sec. 2 we
classified into a set of clusters on the basis of the similarity diScuss related work on content-based video database sys-
of their representative visual featurds*2However, the up  ©€MS: In Sec. 3 we propose a multilevel video model to

and coming networked content-based video database sysUPPOrt hierarchical video representation, summarization,
tem still suffers from the following problems Indexing, retrieving, and browsing. Automatic content-
' based video analysis techniques used in MultiView are in-

1. Video analysis problem:Video shots or even video troduced in Sec. 4. A novel integrated video classification
objects, which are directly related to video structures algorithm is proposed in Sec. 5. In Sec. 6 we present a
and contents, are used as the basic units to access tn@ultilevel video indexing and accessing structures. We give
video sources. A fundamental task of video analysis OUr conclusions in Sec. 7.
is to extract such video units from the videos to fa-
pilitate the user’s acces{e.g., re'trieving and broyvs— 2 Related Work
ing). Only after such video units become available

can content-based retrieving, browsing, and rT](,jmipu_Content-based video database has emerged as an important

lation of video data be facilitated. Automatic seman- and challenging area of research and a number of useful

S SR . systems have been proposed in the past few years. Here in
tic .V|deo an.aly3|33_|lsﬁ still hard in current computer Sec. 2, a brief overview of these existing content-based
vision techniques:

] ) ~video database systems is given. Detailed performance

2. Indexing problem: After the video content analysis analysis of these systems can be found in Ref. 25.
procedure is performed, video contents in the data-  QBIC, developed at the IBM Almaden Research Center,
bases are represented as independent data points i3 an open framework and developing technology, which
high-dimensional feature space, and a similarity- can be used for both static and dynamic image retrieval.
based query is equivalent ton@arest neighbo(NN) QBIC allows users to graphically pose and refine queries
search. High-dimensional indexing structures that based on multiple visual features such as color, shape and
have been investigated in recent years seem to be aexture. QBIC also supports video querying through shots

promising solution to this probled{=*® Unfortu-  or key frames.

nately, the efficiency of these existing high- Virage, developed by Virage Iné.,can adjust the
dimensional indexing structures deteriorates rapidly weighting associated with different visual features. Virage
as the number of dimensions increa¥e©n the includes visual features such as color, texture, color layout,

other hand, the visual features, which are selected forand structure. Virage can also classify images according to
describing video contents, are almost high dimen- visual features or domain specification.
sional. Blobworld?® developed at the University of California,

terms of the given features, thus naive users are in-O0jects. The Blobworld system includes color, shape, spa-

terested in browsing or querying the databases at afidl, and texture features. _
semantic level. However, the low-level visual fea- Photoboolk developed at the Massachusetts Institute of

tures, which can be automatically extracted from the Teéchnology Media Laboratory, supports a set of interactive
videos, do not correspond in a direct or convenient t00IS for browsing and searching images. Photobook uses
way to the underlying semantic structure of video COlOF. shape, texture, and face features. The more recent
contentl-24 version of Photobook also includes image annotation and
retrieval Io&?pz.4

X - . VideoQ; developed at Columbia University, supports
V|d_eo database systerfs, howevgr, is the lack of \;igeq querying bypexamples, visual sketche)g, ar?é) key-
suitable access control mechanisms. The develop,qrgs, This system includes color, texture, motion trajec-
ment of _such mechanisms is increasingly relev_ant be'tory, shape, and size. VideoQ can support several query
cause video data today are used for very different yy jes: single-object query and multiple-object query. The
objectives. User-adaptive video database access Congame group at Columbia has also developed several other
trol is thus .becommg one of the important proplems, video search engines such as VisualSEEK and
because different network users may have different\yepSEEK?2?:28

permissions for accessing different videos or even the Netra-V/ developed at the University of California,

same video with possibly different quality levels. Santa Barbara, first segments the videos into a set of re-
5. QoS problem: Given the heterogeneous and dy- gions, and these regions are then tracked among frames.
namic (i.e., varying performangenatures of net- The system uses color, texture, shape, affine motion vec-

4. Access control problem:A shortcoming of existing
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Fig. 1 Multilevel video model of MultiView: (a) main components of the video database model for a
shot-based accessing approach; (b) main components of the video database model for an object-
based accessing approach.

tors, and spatial location information to search and retrievemodel must include the elements that represent inherent
similar re%ions from the database. structures of a large collection of videos and the semantics
MARS,” developed at the University of Illinois, that represent the video contents. In order to support more
Urbana—Champaign, differs from other systems in terms ofefficient video representation and indexing in MultiView, a
both the research scope and the techniques used. The maimultilevel video model is introduced by classifying video
focus of MARS is not on finding a single “best” feature contents into a set of hierarchical manageable units, such as
representation, but, rather, on how to organize various vi-clusters, subclusters, subregions, scenes, shots or objects,
sual features into a meaningful retrieval architecture which frames or video object plané¥OP9, and regions. More-
can dynamically adapt to different applications and differ- over, the semantics at the database level are obtained by an
ent users. integrated video classification procedure, so that high-level
Name-It? developed at Carnegie Mellon University, as- concept-based querying, browsing, and navigating can be
sociates name and faces in news videos. To do this, thesupported.
system detects faces from a news video, locates names in Basic video access units, such as shots and key objects,
the sound track, and then associates each face with thgre first obtained and represented by a set of visual, meta,
correct name. and semantic features. The related video shots and video

PicHunter; developed at the NEC Research Center, ppjects are further classified into meaningful video scenes
represents a simple instance of a general Bayesian frameaccording to some domain knowledge.g., a scene
work for using relevance feedback to direct a search. It alsomodeb.13‘16 The video scenes, which convey the video

attempts to maximize the information obtained from a user .gntents in a database. are then categorized into a set of

at each iteration of the search. @ wh semantic clusters, and each semantic cluster may consist of
Browsing-based video database syst€ms, which 5 get of subclusters. The subclusters can further be parti-
classify video contents into different classes according t05nad into a set of subregions to support more efficient

their low-level visual features, are also widely studied, and 1 gimensjonal video indexing. Each subregion consists
several practical systems have been proposed. Videq,t jimited number of similar video contente.g., video
browsing is useful for identifying relevant video content scenes so that linear scanning can be used to generate the

from a human point of VIEW. e indexing pointers of the video contents in the same subre-
One common shortcoming of these existing image and

video database systems is that only a small number of thesd"°":

: : . . The cluster layer may consist of a set of semantic clus-
systems addresses the embedded high-dimensional vide - o . .
indexing structures. Video indexing is fast becoming a chal- ﬁ’ars, shown in Fig. 1, which s used to describe the physical

lenging and important area when truly large video data Setsstructures and semantics of video contents in a database. In

come into view® Therefore, the cutting-edge research on order to obtain this cluster layer, we have developed an

integrating the computer vision with the database manage-:ntegr.""teld dv'dﬁ? clﬁss]ﬁclanton ttechmql,(lje. The s,tubclust?_r
ment deserves attention. ayer includes the physical structures and compact semantic

contents of the clusters. The subcluster layer can be ob-
) i tained by discovering the interesting relationships and char-
3 Multilevel Video Model acteristics that exist implicitly in the cluster. We will see
Efficient content-based retrieving and browsing of video that including a subcluster layer can provide a more effi-
require well-defined database models and structures. Unlikecient video indexing structure. The scene layer, which is
traditional database models, a suitable video databasevery useful for high-level video database browsing, de-
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Fig. 2 Block diagram of the semantic video analysis scheme in MultiView.

scribes the semantic video contents. The video shot or ob-basic video access unifs.g., shots and objegts-igure 2
ject layer describes the video representation, summarizashows a block diagram of the automatic video content
tion, indexing, and access units. The frame or VOP layer analysis scheme developed in MultiView.

represents visualization of the video content. The region

layer de_scribe_s the.spatial components of a visual contenyy 1 \jigeo Scene Detection

and their relationships. i } ] ]

Each video layer is represented by a set of meta, visuaI,V'deo shots, which are dlr_ectly_related to video structures
and semantic features. In the cluster layer, each componer@nd contents, are the basic units used for accessing video
is characterized by the cluster centroid, radius, feature di-Sources. An automatic shot detection technique has been
mensions, subcluster number, dimensional weighting coef-Proposed for adaptive video coding appl|cat|8ﬁ$)oyv-
ficients, and its node identifier. The cluster centroid and €Ver. in this article we focus on video shot detection on
radius are represented by a set of visual features. In thecompressed MPEG videos. _
subcluster layer, each component is also characterized by Since there are three frame typds P, and B in a
the subcluster centroid, radius, feature dimensions, subreMPEG bit stream, we first propose a technique to detect the
gion or object number, dimensional weighting coefficients, SCENe cuts occurring on | frames, and the shot boundaries
and its leaf node identifier. The subcluster centroid and ra-Obtained on the | frames are then refined by detecting the
dius are again represented by a set of visual features. ThéCene cuts occurring on P and B frames. For | frames,
scene layer is represented by a set of visual features, metRlock-based DCT is used directly as
features, and semantic features. In the shot or object layer,

each component is represented by an indexing identifier, CuC, L

meta features, semantic features, and a set of visual feal (U?)= 4 XZO yzo 1(x,y)

tures. In the frame or VOP layer, each component is repre-

sented by meta features, semantic features, and a set of (2x+1)yum y+1lvw

visual features which can be obtained from the image re- X COS—— g COS—— =, (1)

gions.

Since all of the video database representation layers argyhere
characterized by a set of related visual, meta, and semantic
features, a framework for bridging the gap between the 1
low-level features and the high-level concepts can be pro- —, for u,u=0,
vided by using an integrated video clustering technique.Cy,C,=9 v2 2
This multilevel representation and summarization scheme 1 otherwise
can also provide a scalable method for retrieving and view- ' '

ing video contents in a database. One finds that the dc imadeonsisting only of the dc co-

) , efficient u=v=0) for each blockis a spatially reduced

4 Content-Based Video Analysis version of an | frame. For a MPEG video bit stream, a
There are two approaches to accessing video source in dasequence of dc images can be constructed by decoding only
tabases:shot basedand object based(or even region the dc coefficients of | frames, since dc images retain most
based. The objective of video analysis is to obtain these of the essential global information of image components.
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Yeo and Liu have proposed a novel technique for detect- M
ing scene cuts on the basis of dc images of a MPEG bit,u,nz—E HD(i,i+1),
streant? in which the scene cut detection threshold is de- M= (5)
termined by analyzing the difference between the highest 1 M o
and second highest histogram difference in the sliding win- UnZMz [HD(i,i+1) =yl
dow. In this article, an automatic dc-based technique is pro- =1

posed which adapts the threshold for scene cut detection t . _ . .
the activities of various videos. The color histogram differ- Ol'he absolute variancer; , between théth frame in thenth

ences(HD) among successive | frames of a MPEG bit vidgo shot and its average histogram differejge can be
stream can be calculated on the basis of their dc images ag€fined as

M o =|HD(i,i+1) = |2, 6)
HD(j.j—1)= 2, [Hj-1(k)—H;(k)]%, 3 g . .

(-1 k§=:0[ -1~ H, (k)] @ The activity of each frame in a dissolve transition shot pro-
duces a U-shaped curve of the absolute variance. In the
whereH;(k) denotes the dc-based color histogram of the case of fade _in and fade out, the absolute curve shoyv_s a
jth 1 frame,H;_;(k) indicates the dc-based color histogram monotonous increase or decrease. The gradual transitions

of the (j—1)th | frame, and is one of theM potential color ~ €a@n be detected when an appropriate number of subsequent
components. frames exhibit values of HD(i — 1) that are greater than

The temporal relationshipsamong successive | frames the determined thresholf;, together with the occurrence

in a MPEG bit stream are then classified into two opposite of g yalue ofs!, greater tha,,. T, can be determined by
classes according to their color histogram differences and " 7
an optimal threshold’ . T,=T.—& @

o ’ 7

— 5:C1,U,n+C20'n,
HD(j,j—1)>T,, scenecut,
HD(j, ] _1)$i, norL_scene cut. (4) Where_ the cpeffici(_entscl and c, are determined by

experiment Since dissolve and fade processes have a long

_ duration(this property is very different from that of scene

The optimal threshold'. can be determined automatically cut), shot length can also be included as a critical parameter
by using the fast searching technique given in Ref. 34. Thefor gradual transition detection. The experimental results
video frames(including the I, P, and B framgdetween  for scene cut detection from two compressed MPEG medi-
two successive scene cuts are taken as one video shotal videos are given in Figs. 3 and 4. The average perfor-
Since the MPEG bit stream is generated by a fixed periodicmances of our scene cut detection technique for various
frame types, the scene cuts may not always occur on the kideo types are given in Tables 1 and 2. The semantic video
frames; these scene cuts may also occur on the P framescenes can be further generated from these extracted video
and B frames. Therefore, these detected shot boundarieshots according to some domain knowledge® More-
should be refined by detecting scene cuts occurring on the Ryver, the meta data, which are represented by the keywords
and B frames. These scene cuts are detected according tef text annotation, can also be used for generating a seman-
the following criteria. tic video scene.

1. If a scene cut occurs before a P frame, the most mac#4.2  Video Object Extraction
roblocks in the P frame should be encoded as | blocks The previous shot-based video representation and access
because the assumption of motion-compensation pretechnique does not capture the underlying semantic struc-
diction coding is lost. If such a P frame is detected, ture of video sources. Extracting the semantic structure of
the corresponding shot boundafthe scene cut ob-  video sources is very important for providing more effec-
tained by using | frameeshould be reset to the corre- tive video retrieval and browsing, because people watch
sponding P frame. videos based on semantic contents, not on physical shots or
2. If a scene cut occurs befora B frame, the most key frames. Due to their inherent content dependence,
macroblocks in the B frames should be encoded as Ivideo objects are especially suitable for representing se-
blocks or backward-predicted blocks because themantic video contents.
temporal correspondence between the B frame and its Automatic moving object extraction also plays a funda-
forward reference frame is lost. If du@ B frame is ~ mental role in computer vision, pattern recognition, and
detected, the shot boundary should be reset to theobject-oriented video coding. Many approaches to auto-
corresponding B frame. matic moving object extraction have been proposed in the
past’®~3° However, the outputs of these feature-based
Gradual transitions such as cross dissolves, fade ins, andideo segmentation techniques are only the homogeneous
fade outs allow two shots to be connected in a smooth way.regions according to the selected visual features. It is still
Gradual transitions, which are attractive for detecting high- hard for current computer vision techniques to extract the
level semantic events, can be determined by analyzing thesemantic objects from a human point of view, but semantic
variance of the histogram differences. The average andobject generation for content-based video indexing is be-
variance of the histogram difference for th#h video shot ~ coming possible because the videos can be indexed by
with M frames can be calculated as some se-
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Fig. 3 Scene cut detection results and the corresponding color histogram difference: (a) the first |
frame; (b) spatial segmentation result on block resolution; (c) temporal change regions on block reso-
lution; (d) color histogram difference with the determined threshold; (e) part of the detected scene cut
frames.
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Fig. 4 Scene cut detection results and the corresponding color histogram difference: (a) the first |
frame; (b) spatial segmentation result on block resolution; (c) temporal change regions on block reso-
lution; (d) color histogram difference with determined threshold; (e) part of the detected scene cut
frames.
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Table 1 Average performance of our adaptive scene cut detection
technique for news sequences.

Table 2 Average performance of our adaptive scene cut detection
technique for medical image sequences.

Test videos newsl.mpg news2.mpg news3.mpg Test videos medl.mpg med2.mpg
frame numbers 5177 6288 7024 Frame numbers 33200 15420
Break shots 86 98 129 Break shots 116 57
Gradual shots 6 11 7 Gradual shots 21 48
Missed shots 4 7 15 Missed shots 6 9
False alarms 5 6 13 False alarms 5 11

this end, we use aontour-based temporal tracking
procedure® The procedure uses two semantic fea-
tures, motion and contour, to establish object corre-
spondence across frames. Tkie Hausdorff distance
technique is used to guarantee the temporal object
tracking proceduré?

mantic objects of interest, such as human beings, cars, or
airplanes. This interest-based video indexing approach is
reasonable because users do not focus on all the objects
presented in the vided$.This reduces the difficulties of
automatic semantic object generation for video indexing.
Based on the above observationseaded region aggre-
gationand temporal tracking technique is proposed for gen-

erating semantic objects. The steps in this process are as A Set of results for four video sequences that are well
follows. known in the video coding community, namely, “Akiyo,

“Carphone,” “Salesman,” and “News,” are given in Figs.

1. Ahybrid image segmentation technique integrates the5, 6, and 7. Since the seeds for different semantic objects
results of an edge detection procedure and aare identified, the proposed seeded semantic video object
similarity-based region growing procedure. extraction technique is very attractive for multiple object

2. Several independent functions are designed such th xt(action. The semantic video objects, W.hiCh are o_btained
every function provides one type of semantic object. PY integrating human—computer interaction to define the

Each function uses thebject seecand region con- semantic objects with an automatic temporal tracking pro-
straint graph(e.g., a perceptual modebf its corre- cedure, are shown in Fig. 8. A set of visual features can also

sponding semantic objett. be selected to represent the video contents in the database.

3. If an object seed ?s detectedseeded region_ agdre- 5 |ntegrated Video Classification
gation procedure is used to merge the adjacent re- i .
gions of the object seed as the semantic olf&The There are three conventional approaches for accessing the
perceptual model of a semantic object can guide theVideo contents in database.
way the adjacent regions of object seeds should be
put together.

4. If the above automatic object extraction procedure
fails to obtain the semantic object from a human
point of view, human interaction defines the semantic
objects in the initial framé*

5. Once the semantic objects have been extracted, they
are tracked across frames, i.e., along the time axis. To

1. Query by examplés widely used in existing video
database systems. The example-based approach is
necessary in a situation where users cannot clearly
describe what they want by using only text. In order
to provide query by example, all the videos in the
databases are indexed through a set of high-
dimensional visual features according to some index-
ing structures. Retrieval is then performed by match-

%
Ber
>

g

G

Fig. 5 (a) Original image of “Carphone;” (b) the color edges; (c) the intensity edges; (d) the detected
face and its rectangular region; (e) the extracted objects with region edges; (f) the original image of
“Salesman;” (g) the color edges; (h) the intensity edges; (i) the detected face and its rectangular
region; (j) the extracted object with region edges.
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Fan et al.

P (@ 0 (s) ®

Fig. 6 (a) Original image of “Akiyo;” (b) the color edges; (c) the intensity edges; (d) the chrominance
edges; (e) the region boundaries; (f) the human face and its rectangular region; (g) the connective
edges of the object seed; (h) the extracted semantic object; (i) the original image; (j) the color edges;
(k) the intensity edges; (I) the chrominance edges; (m) the region boundaries; (n) the connective edges
of the object seed; (0) the extracted semantic object; (p) the object region obtained by using size ratio
constraint (frame 10); (q) the object region obtained by using size ratio constraint (frame 15); (r) the
object region obtained by using size ratio constraint (frame 120); (s) the object region (with the face
seed) obtained by using size ratio constraint (frame 290); (t) the object region (with the face seed)
obtained by using size ratio constraint (frame 298).

easy for current computer vision techniques to bridge
the gap between the low-level visual features and
high-level concepts from a human point of view.

2. Query by keywordss also used in some video data-
base systems based on text annotation. There are
three approaches that can provide text annotation of
video contentsi(a) obtain keywords from the text
captions in videos through OCR techniqde$® (b)

ing the feature attributes of the query object with
those of videos in databas&s**However, the query-
by-example approach suffers from at least two prob-
lems. The first one is that not all database users have
video examples at hand. Even if the video database
system interface can provide some video templates,
there is still a gap between the various requirements
of different users and the limited templates provided
by the database interface. The second one is that na-

ive users may prefer to query the video database at a
semantic level through keywords. However, it is not

U}

use free text annotation by humans with domain-
specific knowledge to provide a semantic interpreta-

(o}

Fig. 7 Object extraction results from “News.” First frame: (a) original image; (b) color edges; (c)
luminance edges; (d) chrominance edges; (e) human face of object 1; (f) human face of object 2; (g)
object 1; (h) object 2; 10th frame: (i) original image; (j) region boundaries; (k) tracked object 1; (I)
tracked object 2; 260th frame: (m) original image; (n) tracked object 1; (o) tracked object 2.
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Fig. 8 Results of semantic object definition and temporal tracking.

tion of the video contentsr) perform speech recog- weightedfeature-based similarity distance-(O,0;) and
nition and natural language understanding procedureshe semantic similarity distanceOs,0;,).

on the audio channél:*® This query-by-keywords

approach also presents at least two problems. The n

first is that different people may have a different un- dF(Os,Ot)ZE i i d::(051ot)a (8)
derstanding of the same video content, and it is not =18

easy for a naive video database user to figure out the

exact keywords to use for the query. The second is mo

that it cannot provide query by example because it ds(OS,Ot)=i21 dg(Os,0y), 9)

would be difficult for a naive user to translate the

contents of the video examples at hand into key- ) ) ] . o o

words. A practical video database system should sup-Where a; is the ith dimensional weighting coefficient,

port both query by example and query by keywords, di:(Os,0,) is the feature-based similarity distance accord-

thus a mapping from high-level semantic conceptsing to the ith dimensional representative feature,

(e.g., those represented by keywords of text annota-4i,(O,,0,) is the semantic distance according to it

tion) to low-level visual features should be available. keyword of the content interpretation s the total number
3. Random browsings widely accepted by the naive of dimensions of visual features, andis the total number

video database users. Naive users are interested imf keywords used for content interpretation.

browsing the video database at the semantic level,

rather than having to use visual features or keywords non _ ) ) )

to describe their requests. In order to support randomdi(Og,0,)= >, >, bj(fs;—fi) (Fsk—fii), (10

browsing, the video contents should be classified into =1 k=1 oo

a set of semantic clusters from a human point of

view. Since the low-level visual features do not cor- 0, if O =04,

respond in a direct way to the semantic concepts, ads(Os,Or) = 1 otherwise (13)
good solution to bridge the gap between them is ' '

needed.

WherefiSj is theith dimensional visual feature of theh

One way to resolve the semantic gap comes fromvideo sample, and amx n matrix W;=[b; ] defines agen-
sources outside the video that integrate other sources oeralized ellipsoid distance
information about the videos in the database. In MultiView,  The aim of MultiView is to provide maximum support in
the video contents in the database are jointly represented byridging the semantic gap between low-level visual fea-
a set of visual features and keywords of the text annotation.tures and high-level human concepts given by text annota-
There are two different similarity measures for comparing tion, thus an integrated video content classification tech-
two video contents with semantic labedsand t:>?! the nigue is used. We first assume that the video contents in the
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Fig. 9 Knowledge-based tree structure for hierarchical video classification and categorization.

[basketbal [ SOCC@T] -- tennis

database can be classified into a set of semantic clusters lar according to both the keywords of text annotation
through a knowledge-based hierarchical partition proce- and low-level visual features, should be put into dif-
dure, shown in Fig. 9. The semantic video classification can ferent semantic clusters.

first be obtained by clustering video contents according to ) . ) ]

the keywords of their text annotation, and these video con-The good matching and good mismatching video contents
tents can then be indexed and accessed through the keyare taken as positive examples. The wrong and bad match-
words of the text annotation. On the other hand, the videoing Vvideo contents are taken as negative examples. The
contents can also be categorized into a set of the sam@ositive and negative examples, which are taken as the in-
semantic clusters according to the similarity of their visual put of a learning-based optimization processor, are used to
features. Since the video similarity on low-level visual fea- Select the suitable dimensional weighting coefficients, so

tures does not correspond directly to the similarity on high- that the weighted feature-based similarity can correspond
level Concepts from a human point of view, the results ob- dlrectly to Its Concept—based S|m|Iar|ty. Since the semantic

tained by these two different video classification Similarities among these labeled video contents are given,
approaches must be integrated to support more efficienﬂ:he system then learns from these video content examples
video database access. There are four possible ways to inand selects the suitable dimensional weighting coefficients,
tegrate the results obtained by these two different videoshown in Fig. 10.

classification approaches.

1. Good matching video contentshich are similar ac- 6 Multilevel Video Indexing and Access
cording to both the keywords of text annotation and The objective of MultiView is to provide a reasonable so-
low-level visual features, should be put into the same lution to the problems related to the up and coming net-
semantic cluster. This means that the semantic simi-worked video database systems. Three kinds of video data-
larity of these video contents corresponds directly to base accessing approaches can be supported by MultiView:
their weighted feature-based similarity. query by example, query by keyword, and random brows-

2. Bad matching video contentahich are similar ac-  Ing. Many tree structu7r§159 have been proposed for indexing
cording to the keywords of their text annotation but high-dimensional dat&,~** however, it is widely accepted
dissimilar according to their low-level visual fea- thatl the efficiency of these existing high-dimensional in-
tures, should be put into the same semantic cluster.dex'”_g structures deteriorates rapidly as the n'u[nber of di-
However, their dimensional weighting coefficients Mensions increases. Therefore, more efficient high-
should be renormalized, so that their weighted
feature-based similarity corresponds in a direct way
to their semantic similarity from a human point of
view. Since different visual features may play differ-
ent degrees of importance in making the final deci-
sion on the semantic similarity from a human point of
view, a learning-based optimization technique can be
used to choose the suitable dimensional weighting
coefficients.

3. Wrong matching video contentshich are similar ac-
cording to their low-level visual features but dissimi-
lar from a human point of view, should be put into
different semantic clusters. A learning-based optimi-
zation procedure is performed for reweighting the
importance of their different dimensional visual fea-
tures, so that these dissimlar video contents from a Video Contents in Storage Disks

human point of view can have large weighted ) ) ) )
Fig. 10 Relationships among the video contents in the database

feature-based distances. wet e v .
) ) ) . L and classification of the data points in feature space and in concept
4. Good mismatching video contentghich are dissimi-  space.
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Fig. 11 Multilevel video indexing structure and the distributed storage disks in MultiView.

dimensional video indexing technique should be proposedeach subregion for mapping all its data points to the asso-
before video search engines can be provided. ciated disk pages where the videos reside, as shown in Fig.

The existing tree structure divides the high-dimensional 12.
space into a number of subregions, and each subregion con- The root hash table keeps information about all the se-
tains a subset of objects that can be stored in a small nummantic clusters, and each root node may consist of a set of
ber of disk blocks. From this point of view, the multilevel leaf nodes to access its subclusters. Recall that the repre-
video modeling and partitioning techniques in MultiView sentative features associated with each root node are the
have also provided a multilevel video representation andcentroid, radius, meta features, semantic features, dimen-
indexing structure. We now study how semantic video clus- sional weighting coefficients, number of leaf nodes, and
tering and multilevel video representation techniques canrepresentative icons. Each leaf node is also represented by a
be effectively combined to support more efficient high- set of parameters. Hash tables for the clusters, subclusters,
dimensional video indexing. and subregions are devised where the keys are the repre-

Based on the proposed multilevel video model, the video sentative features that characterize their centroids and ra-
contents in a database are first classified into a set of sediis, and the entries are the pointers to the lower-level com-
mantic clusters by using the integrated video clustering ponents of the hierarchy.
technigue introduced in Sec. 5. In order to support more
efficient query processing, each semantic cluster is then
partitioned into a set of subclusters by discovering the in-
teresting relationships and implicit characteristics. Each :
subcluster may consist of a set of subregions, so that lineal duery processing
scanning can be used for generating the indexing pointers i
of the high-dimensional video contents in the same subre-
gion. This hierarchical partitioning of a semantic cluster
will end when the number of multidimensional video con-
tents in each subregion is less than a predefined thresholc
log N<D;, whereN is the total number of multidimensional
video contents in the subregion, abd is the number of
dimensions of the representative features for the corre-
sponding subregion.

The indexing structure consists of a set of separate indi-
ces for the clusters and each cluster is connected to a sing|feusumn
root node as shown in Fig. 11. The indexing structure in-
cludes a set of hash tables for different layers of a video
database: a root hash table for keeping track of information
about all the clusters in database, a leaf hash table for eacl
cluster for preserving information about all its subclusters,
a second-leaf hash table for each subcluster for keeping
information about all its subregions, and a hash table for Fig. 12 Multilevel video query processing in MultiView.
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The hash table for each subregion is built by mapping all decision as to which one they really want by brows-
of its videos to the associated disk pages, and an indexing ing the content summaries of these ranked query re-
pointer is assigned for each video. Each subregion contains sults.

a subset of videos that can be stored in a small number of _ o
disk blocks, logN<D;. Hash tables for the objects in a  The time for thewhere-am-IstepTs, that is, finding the
subregion can be devised where the keys are their represerinost relevant subregion hierarchically, is bounded by (
tative features and the entries are pointers to the disk pages-| +K) - Ts,, whereT is the time needed to calculate the
where the videos reside. weighted feature-based similarity distance between the
To improve input/outputl/O) efficiency, all the seman-  query object and the centroid of a cluster, subcluster, or
tic clusters are stored in a set of independent disks, showrsubregion.n indicates the total number of clusters in the
in Fig. 11. To answer a query, only the semantic clustersdatabasel denotes the total number of subclusters in the
that are relevant to the query object are retrieved. The tra-relevant cluster, and is the total number of subregions in
ditional high-dimensional indexing trees, suchRagee, X the relevant subcluster. The time for thearest-neighbor-
tree, and SR tree, can also be used for indexing these highsearchingstepT,, that is, finding the nearest neighbor of
dimensional video contents in the same subregion. How-the query object in the relevant subregion, is bounded by
ever, it is widely accepted that¥;>logN, then no nearest  S. T, where S is the total number of objects in the rel-

neighbor algorithm can be significantly faster than a linear g\ 4t subregion. The time for thanking stepT, , that is
search. Therefore, a linear scanning technique is used tQ,nking the objects in the relevant subregion, is bounded by
obtain the pointers for these video contents in the SameO(SIogS) whereS is the total number of objects in the

H 9
subregiorf . ... relevant subregion. Therefore, the total search time of this
In order to answer a query by example, the similarity ,,ijjevel query procedure is bounded by
search is performed in three steps, as shown in Fig. 12.

1. It performs awhere-am-Isearch to find out which T=Ts+tTc+ T, =(n+I1+k+S)-Ts +0O(SlogS). (14
subregion the given query object resides in. To do
this, the search engine first tries to find the cluster  pue to the semantic gap, visualization of the query results
that is relevant to the query objeCt Their weighted  in video retrieval is of great importance for the user to
feature-based similarity distanad-(O,x;) is also make a final decision. Since clusters are indexed indepen-

calculated as dently, users can also start their query by first browsing the
- biq _ clusters to find the one relevant to their query, and then

dF(O,Ci)=dF(O,7<rc)=Z—dJF(OK,-), (12 send their query to this relevant cluster. THhiswsing-
=14 ' based-quenprocedure can provide more semantic results

whered{:(o,?c'j) is the similarity distance between based on the user’s concept because only the users know
the query objectO and the centroid of cluste€; exactly what they want. Moreover, this browsing-based
according to theirjth dimensional features. The duery technique can speed up query by example.
query processor returns the clus@y, which has the Our semantic clustering technique and multilevel video
smallest weighted feature-based ’similarity distance representation, summarization, and indexing structures are

with the query obieco or where the associated simi- V&Y suitable for fast browsing. Moreover, a semantic
query o manual text title and a set of icon images are associated

Ialtity distanced(O,C) is no more than the radius it each cluster, and these semantic titles or icon images

¢ of Cy. can then be categorized into the form of a table to provide

. an overview of the video contents in the databases. This

dF(O’Ck)__ min {dg(O,Ci} 13 categorization of video contents into semantic clusters can

ie[1,2,...q] . Sy

be seen as one solution for bridging the gap between low-

If such a clustelC, exists, the query processor finds level visual features and high-level semantic concepts, and

the associated subcluster in the clusBgrwhich is it can be helpful both in organizing video databases and in
most relevant to the query obje€t, and then finds  Obtaining automatic annotation of video contents.

the most relevant subregion by invoking a similar ~ Three kinds of browsing can be provided: browsing the
searching procedure. whole video database, browsing the selected semantic clus-

ter, and browsing the selected video sequence. Browsing
the whole video database is supported by arranging the
available semantic titles into a cluster-based tree. The visu-
: . . . ) ; alization of these semantic clustdrsot node$ contains a
dlmen3|_onal Imear_ scanning techmque IS used for semantic text title and a set of icon imageemantic visual
genera_tlng the pollnters for the objects in _thg Sar.netemplates, seeds of cluster
subregion, the weighted feature-based similarity dis-  gyo\ysing the selected semantic cluster is supported by
tances between the query objézand all the objects o itioning the video contents in the same cluster into a set
in the selected subregion are calculated. The searchy g pciysters, and the icon video content for each subclus-
engine then returns a set of ranked objects which areg; js also visualized. Browsing the selected semantic clus-
relevant to the query object. ter, which is supported by arranging the available semantic
3. It visualizes the icon images of the ranked query re- icon video contents into a tree, is the same as the procedure
sults. The users are then in a final position to make aof browsing the whole database. Browsing a single video

2. It then performs aearest-neighbosearch in the rel-
evant subregion to locate the neighboring regions
where the similar objects may reside. Since a multi-

906 / Journal of Electronic Imaging / October 2001 / Vol. 10(4)
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sequence is, in some respects, a more complicated problen®2.

The shot-based abstraction of video content, which is con-,4
structed by a set of key frames or key VOPs, is used to
provide fast browsing of a single video sequence.

Our multilevel video modeling structure can also guar-

antee more efficient video content description schemess,

High-level MPEG-7 description schemes can be developed

based on our multilevel video representation and indexing2®-

structureg’50-52

27.

7 Conclusion

An integrated content-based video retrieving and browsing2s.

approach, called MultiView, was presented. MultiView fo-
cuses on multilevel video modeling and representation to
guarantee high-dimensional video indexing. The multilevel
video indexing structure used in MultiView cannot only
speed up query by example but can also provide more ef-
fective browsing. Moreover, high-level MPEG-7 video de-

scription schemes can be supported by our multilevel video31:
32.

representation and indexing structures.
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