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Abstract
Tone mapping refers to the conversion of luminance values recorded by a digital camera or other
acquisition device, to the luminance levels available from an output device, such as a monitor or a
printer. Tone mapping can improve the appearance of rendered images. Although there are a variety
of algorithms available, there is little information about the image tone characteristics that produce
pleasing images. We devised an experiment where preferences for images with different tone
characteristics were measured. The results indicate that there is a systematic relation between image
tone characteristics and perceptual image quality for images containing faces. For these images, a
mean face luminance level of 46–49 CIELAB L* units and a luminance standard deviation (taken
over the whole image) of 18 CIELAB L* units produced the best renderings. This information is
relevant for the design of tone-mapping algorithms, particularly as many images taken by digital
camera users include faces.

1 Introduction
Consumers of digital cameras and related products desire high-quality images. Consumer
preference for images, however, is not easy to predict. Even if it were technically feasible,
creating a perfect reproduction of the light that arrived at the camera would not guarantee the
most preferred rendering of the original scene. For example most professional portraiture
employs a large degree of image enhancement, and the results are almost always preferred to
a veridical rendering. This may occur because most consumers judge the attractiveness of an
image without direct reference to the original scene, so that their judgments are based on
memory, either of the specific scene or of generic scenes. There is evidence that memory for
colored objects can be unreliable.1-3

Digital images may be modified through the application of image processing algorithms, but
what modifications make images look better is not well understood. One approach to this
problem is to study directly the effect of image processing on image preference. We recently
examined the perceptual performance of demosaicing algorithms in this manner.4 Previous
work has also studied the relation between image colorfulness and human observer quality/
naturalness ratings.5-7 Here we apply similar experimental methods to study the relation
between image tone characteristics and perceptual image quality.

Tone mapping refers to the conversion of input luminance values, as captured by an acquisition
device (e.g., a digital camera), to luminance values for display on an output device (e.g., a
computer monitor). Luminance values in a natural image can range over about five orders of
magnitude.8 This compares to a much smaller range of about two orders of magnitude available
with a computer monitor under typical viewing conditions. Even for the usual situation where
the image acquisition device quantizes the number of luminance levels to match the number
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of levels available on the output device, tone mapping can still improve the appearance of an
image. The relation between input and output luminance values produced by a tone-mapping
algorithm is called a tone-mapping curve.

Tone mapping changes the tone characteristics of the image. By tone characteristics we mean
the distribution of the luminance values of the image's pixels, without regard to how the pixels
are arranged spatially. In general, tone characteristics can either be assessed globally (Over the
entire image), or locally (Over some smaller region of interest). Within an image region (either
global or local), tone characteristics are completely described by the luminance histogram of
the region. This specifies the number of image pixels within the region that have each possible
output luminance value. In this paper, we will consider both global and local tone
characteristics.

Previous work on tone mapping has focused on comparisons of the performance of different
tone-mapping methods. Much of this work was conducted in the context of film-based
photography, where practical considerations limited attention to global tone-mapping methods
in which a single tone-mapping curve was applied to the entire image (see review by
Nelson9). Bartleson and Breneman10 suggested that a good tone-mapping curve established
a 1:1 relation between relative perceived brightness values in the scene and the rendered image,
where relative brightnesses were computed using a modified power function derived from
research on brightness scaling.11 Their curve corresponded closely to curves that received high
ratings in a psychophysical study performed by Clark.12 Further work by Hunt and co-
workers13,14 suggested that the Bartleson and Breneman principle10 should be modified
depending on the viewing conditions (in particular the surround of the image) and suggested
that although a linear relation between scene and image relative brightnesses was appropriate
for reflection prints, a power-law relation between relative brightnesses was more appropriate
for transparencies. The widely used zone system for photographic tone mapping (reviewed in
Reinhard et al.15) relies on perceptual judgments of how regions in the original scene appeared
to the photographer.

In film photography, it is not practical to automatically adjust the tone-mapping curve between
images at separate locations within an image, since the shape of these curves is governed by
physical characteristics of the emulsions and film-development process. With the advent of
digital imaging, a wider range of tone-mapping algorithms become of practical interest. On
the other hand, in many digital cameras image quantization precedes the application of a tone-
mapping algorithm, a feature that increases the challenges for successful tone mapping. Thus
there has been renewed interest in developing tone-mapping algorithms (see, e.g., Refs. 8 and
16-18). Evaluation of these methods has again emphasized comparing the output of competing
algorithms. A recent study by Drago et al.,19 for example, applied seven tone-mapping
techniques to four digital images and their performance was rank ordered based on observer
preferences.

Algorithms that apply a fixed tone-mapping curve to any image have the feature that the tone
characteristics of the images produced by the algorithm can vary widely, since these
characteristics depend strongly on the input. Digital imaging presents the opportunity to
develop algorithms using a different principle. Rather than defining the relationship between
input and output luminances, one can specify target output tone characteristics and apply an
image-dependent transformation that yields a good approximation of these characteristics. One
early digital tone-mapping algorithm, histogram equalization, is based on this idea: the
algorithm maps the luminance values in the input image to produce a desired luminance
histogram in the output image. Although it seems unlikely that the optimal output histogram
is completely independent of image content, the principle of specifying target output image
tone characteristics has been incorporated into recent tone-mapping algorithms intended to
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improve upon histogram equalization. In these algorithms, the output histogram varies with an
analysis of image content.8,16

The work we present here is intended to further explore the idea that effective tone mapping
can be achieved through specification of desired output image tone characteristics. Rather than
focusing on the development and evaluation of tone-mapping algorithms, we chose to address
the underlying issue of whether we could identify output tone characteristics that produce
perceptually attractive images, and whether such characteristics depend on image content. To
this end, we report the results of two image preference studies and analyze how image
preference is related to image tone characteristics.

The work presented here employs images captured with standard digital cameras and is directed
at improving the quality of images produced from such cameras. We do not explicitly consider
the case where the dynamic range of the capture and display devices varies greatly (see Refs.
8, 17, 18, and 20).

As most amateur digital photographs include people, our studies employ an image set that
consisted mainly of images of people. We also wanted to include images of people from
different ethnic backgrounds, since many earlier tone-mapping studies used images of
Caucasians only (e.g. Refs. 12, 21, and 22).

2 Experiment 1
2.1 Overview

Experiment 1 was exploratory, with the goal of identifying systematic relationships between
tone variables and image quality. We applied four different tone-mapping methods to each of
25 experimental images and measured the perceptual quality of the different renderings of each
image. These algorithms produced output images with a range of tone characteristics. Image
preference was measured using a pairwise comparison procedure. On each trial, observers
indicated which of two presented images was the most attractive.

The pairwise comparison procedure is intuitive for observers and yields reliable data.4 Note,
however, that observers only make judgments about different renderings of the same input
image. Thus some analysis is required to aggregate a data set large enough to explore the
question of how an image's tone characteristics relate to its perceptual quality. To this end, the
preference choice data were analyzed using a regression procedure23 to yield metric
differences in image quality between image pairs. The procedure yields difference ratings that
are commensurate across input images. We then asked whether differences in specific image
tone variables were predictive of the difference ratings. Here the term tone variable refers to
a summary measure, such as mean luminance, that may be computed from the output luminance
histogram.

We used 25 digitally acquired images and rendered each on a CRT computer monitor using
four different tone-mapping methods. The four methods produced results that were
perceptually different for most of the images, thus providing variation in image tone
characteristics whose effect we could study.

2.2 Methods: Image Acquisition
Twenty-five images were used in Experiment 1. Twenty-one were captured in Santa Barbara,
California and four were taken in Palo Alto, California. All of the images were captured under
daylight, at different times of the day, throughout May 1999. The illuminant was measured
immediately following the acquisition of each image by placing a white reflectance standard
in the scene and measuring the reflected light using a Photo Research PR-650
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spectraradiometer. Of the 25 images, 17 were portraits of people, 5 were landscapes, and 3
were of objects.

The 21 Santa Barbara images were taken with a Kodak DCS-200 camera and the 4 Palo Alto
images with a Kodak DCS-420 camera. Both cameras have a resolution of 1524×1012 with
RGB sensors arranged in a Bayer mosaic.24 The DCS-200 captures the input light intensity
using 8-bit linear quantization, whereas the DCS-420 captures with 12-bit precision. The 12-
bit values captured by the DCS-420 are converted to 8-bit values on-camera via a nonlinear
transformation. The relative RGB spectral sensitivities and response properties of both cameras
were characterized as described elsewhere.25 This characterization left one free parameter
describing the overall sensitivity of the camera undetermined, as this parameter varies with
acquisition exposure duration and f-stop. The images were cropped to a maximum size of 575
(w) by 800 (h) pixels to ensure that two renderings of each image could be displayed
simultaneously on the computer screen used in our experiment.

2.3 Image Processing
2.3.1 Dark level subtraction—For the DCS-200, a dark level was subtracted from the raw
quantized pixel values before further processing. The dark level was estimated from an image
acquired with the lens cap on and computing the spatial average of the resulting image. The
average for the red, green, and blue sensors were all 13.5 on the camera's 8-bit (0–255) output
scale and this is the value that was subtracted. To estimate the dynamic range of the images,
we compared the minimum and maximum pixel values for the green sensor. These typically
occupied the entire allowable output range (approximately 13–255 before dark subtraction).
Given that some pixels had values near zero after dark subtraction, it is not possible to express
the dynamic range of these images as a meaningful ratio.

For the DCS-420, it was possible to linearize the output values using a look-up table provided
as part of each raw image file. This was done prior to further processing. After linearization,
the estimated dark level for the DCS-420 was close to zero and no explicit dark level subtraction
was performed. The dynamic range of these images could be estimated by taking the ratio of
the maximum to minimum linearized output value for the green sensor. These ratios varied
from 17 to 140 across the DCS-420 images used in this experiment.

2.3.2 Demosaicing—Because the two cameras employed a mosaiced design, with each raw
pixel corresponding to only one of the three sensor types, it was necessary to apply a
demosiacing algorithm to convert the raw mosaiced image to a full color RGB image. We used
a Bayesian demosaicing algorithm developed by Brainard and colleague26-28 and summarized
in a recent paper4 where we evaluated the perceptual quality of demosaicing algorithms. (The
performance of the Bayesian algorithm is controlled by a number of parameters. For the
application here, the correlation between nearest-neighbor pixels was assumed to be 0.90,
whereas the correlation between the responses of different sensor classes at the same image
location was estimated from a bilinear interpolation of the mosaiced image. Finally, the
algorithm assumed that there was additive normally distributed pixel noise with a standard
deviation for each sensor class equal to 4% of the spatial average of responses for that class.
The estimates at each location were obtained by applying the algorithm to a 5×5 image region
surrounding that pixel.) The demosaicing results for our images were in general quite good,
with very few noticeable artifacts.

2.3.3 Color balancing—We by-passed the on-board color balancing of the cameras and
used our measurements of the scene illuminants to color balance the images. Given the camera's
RGB sensor relative spectral sensitivities and the measured illuminant, we were able to estimate
the relative surface spectral reflectance of the object at each scene location. This was done
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using a Bayesian estimation procedure that will be described in a future report. Briefly, we
constructed a normally distributed multivariate prior distribution for object surface reflectances
by analyzing the Vrehl et al.29 data set of measured surface reflectance functions. The analysis
followed closely the method introduced by Brainard and Freeman30 in their work on
computational color constancy. Given the prior, estimating reflectances from the sensor
responses is a straightforward application of Bayes rule. Using the estimated surface
reflectance functions, we could then synthesize an image that consisted of the CIE XYZ
tristimulus coordinates that would have been obtained had the surface been viewed under
standard CIE daylight D65, up to an overall scale factor. This scale factor varied from image
to image depending on the scene illuminant, acquisition exposure, and acquisition f-stop.
Uncertainty about the scale factor is equivalent to uncertainty about the overall intensity of the
scene illuminant and is thus handled transparently by the tone-mapping algorithms that we
applied to render the images, which are designed to apply to images captured over a wide range
of overall scene luminances. Note that image L* properties reported in this paper refer to L*
values for the experimental images displayed on the experimental monitor, not to L* properties
of regions of the original scene.

To check the accuracy of the color balancing process, an image of a Macbeth color checker
was taken using the Kodak DCS-420 digital camera. Raw RGB values (before demosaicing)
were extracted for each of the 24 color checker patches. The Bayes color correction was used
to estimate the XYZ values of the patches under CIE D65 illumination. These estimates were
compared with target values computed from measured spectral reflectances of the color checker
patches and the known spectral relative spectral power distribution of CIE daylight D65. Here
the free overall scale factor was determined so that the two middle gray color checker patches
(patch Nos. 21 and 22) matched in average luminance between the color balanced and target
values. The average CIELAB ΔE 94 difference between the estimated values and directly
determined target values (average taken over the 24 patches) was 3.6 units, indicating that the
algorithm worked well.

2.3.4 Tone mapping—Four tone-mapping algorithms (Clipping, Histogram Equalization,
Larsons Method, and Holms Method) were applied to the color balanced XYZ images. These
are described below. Each method transformed the luminance of each image pixel while
holding the chromaticity of each pixel constant. The relation between a particular measurement
of input and output luminance is referred to as the algorithms tone-mapping curve. In general,
the tone-mapping curve produced by an algorithm depends on image content. Each of the
algorithms used was global, in the sense that the same tone-mapping curve was applied to every
pixel in the image.

It should be emphasized that our main goal was to use a variety of tone-mapping algorithms
that would produce different tone-mapping characteristics. The performance of each algorithm
was not of primary concern. All four methods led to acceptable (as judged by the authors)
renderings for all of the images. In Fig. 1 we show an example of the histograms, tone-mapping
curves, and output images produced by the four algorithms.

(1) Clipping: For the clipping method, the tone-mapping curve relating image luminance to
display luminance was a straight line through the origin. Image luminances that were mapped
to display luminances greater than the maximum available on the output device were clipped
to the maximum. The slope of the tone-mapping curve was determined so that maximum
display luminance was equal to five times the mean luminance of the tone-mapped image. This
clipping method provides a simple baseline that works reasonably well.

(2) Histogram equalization: A widely used method that re-assigns luminance values to achieve
a particular target luminance histogram (e.g., uniform or Gaussian) in the tone-mapped image.
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31 This method efficiently uses the dynamic range of the display device, but can generate
images that have exaggerated contrast and thus a harsh appearance. In our implementation, the
target histogram was a Gaussian centered at the middle of the output range.

(3) Larson method: A more sophisticated version of histogram equalization. The idea is to
limit the magnitude of luminance mapping, so that luminance differences within the image that
were not visible before tone mapping are not made visible by it. Images tone mapped with the
Larson method generally have a more natural appearance than when using the traditional
histogram equalization method.

(4) Holms method (Ref. 16): Part of a color reproduction pipeline created at Hewlett-Packard
Labs for use in digital cameras. We used only the tone-mapping segment of the pipeline for
consistency with the other methods. In Holms method, the input image is first classified as one
of several different types (e.g., high key or low key) using a set of image statistics. A tone-
mapping curve is then generated according to the image type and image statistics, and this
curve is applied to the whole image. This method incorporates preference guidelines that came
from the inventors extensive experience in photographic imaging.

2.3.5 Rendering for display—The images were presented on a CRT monitor. Conversion
between the tone-mapped XYZ values and monitor settings was achieved using the general
model of monitor performance and calibration procedures described by Brainard.32 The
calibration was performed using the PR-650 spectraradiometer. Spectral measurements were
made at 4 nm increments between 380 and 780 nm but interpolated with a cubic spline to the
CIE recommended wavelength sampling of 5 nm increments between 380 and 780 nm. CIE
XYZ coordinates were computed with respect to the CIE 1931 color matching functions.

2.3.6 Room and display setup—The experimental room was set up according to the
International Organization for Standardization Recommendations for Viewing Conditions for
Graphic Technology and Photography.33 The walls were made of a medium gray material and
the table on which the monitor was placed was covered with black cloth. The room was lit by
two fluorescent ceiling lights (3500 K) controlled by a dimmer switch set at a dim level. The
illumination measured at the observer position was 41 lux. The experiment was controlled by
MATLAB software based on the Psychophysics Toolbox.34,35 The images were displayed
on a Hewlett Packard P1100 21 in. monitor (1280×1024 pixels) driven by a Hewlett Packard
Kayak XU computer.

2.3.7 Procedure—On each trial of the experiment, observers were shown pairs of the same
scene rendered via different tone-mapping methods and were asked to choose the image that
they found to be the most attractive. To further explain this instruction, observers were asked
to choose the image they would select to put into their own photo album. The observers were
also asked to look around the images before making a decision rather than focus on just one
aspect.

The experiment started after a 2 min adaptation period. Three seconds after each pair of images
was presented, two selection boxes appeared under the images. This 3 s delay was to encourage
the observers to carefully consider their decision. There was no upper limit on response time.
The observers indicated their preference by using a mouse to move a cursor to the selection
box under the preferred image and clicking. The observer could subsequently change his/her
mind by clicking on the alternative box. When the observer was satisfied with his/her selection,
he/she clicked on an enter button to move to the next trial.

The images were viewed from a distance of 60 cm. The images ranged in width from 17 to 19
cm (subtending visual angles 16.1° to 18.0°) and ranged in height from 13 to 25 cm (subtending
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visual angles from 12.4° to 23.5°). Images were shown in pairs on the monitor, one on the left
and one on the right. Each image had a border of width 1 cm which was rendered as the brightest
simulated D65 illuminant the monitor could produce (78 cd/m2). The remaining area of the
monitor emitted simulated D65 illuminant but at a luminance level of about 20% of the border
region (measured at 14.9 cd/m2).

Using four rendering methods gives six pairwise presentation combinations per image. For the
25 experimental images, this produces a stimulus set of 150 image pairs.

2.3.8 Observers—Twenty observers participated in the experiment (12 males and 8 females)
with an average age of 31 (range 19–62). The experiment took place at Hewlett Packard Labs
in Palo Alto and the observers were recruited by posting flyers around the building complex.
The observers were a mixture of Hewlett Packard employees and outside friends and family.
Only color normal observers participated. Color vision was tested using the Ishihara color
plates.36

2.3.9 Data analysis—The aim of our analysis was to summarize image tone characteristics
using simple tone variables, and to determine whether these variables predicted image
preference. We hoped to identify systematic relationships between preference ratings and tone
variables. Thus our data analysis has two important components: the procedure used to
transform the pairwise image judgments to image preference ratings and the procedures used
to extract variables that capture image tone-mapping characteristics.

2.4 Image Ratings
The raw data consisted of pairwise rankings between the four different renderings of each
image. For each image, we used a regression based scaling method23 to convert the pairwise
rankings to preference ratings for each of the four versions. Denote these ratings as πj

i where
the superscript i denotes the image (1≤i≤25) and the subscript j denotes the rendering version
(1≤j≤4, algorithms as numbered above). Within image, these ratings for the four different
versions of an image are directly comparable. Since no preference judgments were made across
images, however, the ratings across images are not necessarily commensurate.

Although we cannot make comparisons of preference ratings across images, we can make such
comparisons of differences in preference ratings. Under assumptions that we found reasonable,
23 the four ratings generated for each image lie on an interval scale. The unit of this scale
corresponds to one standard deviation of Gaussian perceptual noise that observers are assumed
to experience when making preference judgments, and the unit is thus common to the ratings
generated for all 25 images. What differs across images is the origin of the scale, which is
assigned arbitrarily by the regression method. To remove the effect of origin, we can compute
difference ratings between the jth and kth renderings, πjk

i = πj
i − πk

i(1 ≤ j, k ≤ 4). Because the
rating scale constructed for each image has a common unit, the difference ratings are
commensurate across images. Thus we can explore whether there are image tone characteristics
whose differences predict difference ratings.

From the four renderings for each image, we can take six pairwise differences. Only three of
these are independent, however, in the sense that given any three pairwise differences the other
three may be reconstructed. To avoid this redundancy, we used only the difference ratings
π12
i , π23

i , and π34
i (1 ≤ i ≤ 25) in the analysis.
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2.5 Image Tone Characteristics
To describe image tone characteristics, we used the L* coordinate of the CIELAB uniform
color space.37 This measure of luminance is normalized to a white point, and the normalized
values are transformed so that equal differences in L* represent approximately equal
differences in the perception of brightness. The maximum monitor output (all three phosphors
set at the maximum) was used as the white point for converting image luminance to L*. We
considered two summary measures of the L* histogram: the mean L* value and the standard
deviation of the L* values. For each image i, we denote the mean L* of the jth rendering value
by μj

i and the standard deviation of the L* values by σj
i. These are both global tone variables,

computed from the entire image. Note that μj
i is in essence a measure of the overall luminance

of the image, whereas σj
i is in essence a measure of image contrast.

A preliminary analysis indicated that to the extent image quality ratings depended on the tone
characteristics μj

i and σj
i, this dependence was not monotonic. This observation makes intuitive

sense. Consider the mean L* value μj
i. An image with a μj

i value equal to zero will be entirely

black and not provide a satisfactory rendering. Similarly, an image with a very large μj
i value

will be entirely white. Clearly a rendering with a μj
i value between the two extremes is

indicated. Similar arguments apply to σj
i.

To account for a possible nonmonotonicity of the relation between image quality and the tone
characteristics μj

i and σj
i, we considered transforms of these variables:

μ
~
j
i
= ∣ μj

i − μ0 ∣ ,

σ
~
j
i
= ∣ σj

i − σ0 ∣ .

(1)

Here the parameter μ0 represents the optimal value for μj
i, that is the value that leads to the

highest image quality across all images and renderings, and thus deviations of μj
i from μ0

should correlate with reduced image quality. Similarly, the parameter σ0 is the optimal value
for σj

i.

2.6 Analysis
As noted previously, our data set does not provide us with direct access to image quality, but
rather to quality difference ratings πjk

i  between pairs of images. To ask whether image tone
characteristics predict image quality, we investigated whether differences between the tone

variables μ
~
j
i
 and σ

~
j
i
 predict the difference ratings πjk

i . Specifically, we defined the tone

variables differences μ
~
jk
i

= μ
~
j
i
− μ
~
k
i

 and σ
~
jk
i

= σ
~
j
i
− σ
~
k
i

 and examined the linear dependence
of πjk

i  on each of these differences. Since each transformed variable depends on its
corresponding optimal value, numerical parameter search over the optimal value was used to

maximize the predictive value (R2) of μ
~
jk
i

 and σ
~
jk
i

.
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2.7 Face Images
In follow-up questioning conducted at the end of the experiment, many observers commented
that for images containing people, the appearance of faces was an important factor in their
decision making. For images containing faces (17 of 25) we examined the face regions in more
detail and defined face subimages so the tone characteristics of these regions could be extracted.
The subimages were defined by hand: an example of how a face subimage was defined is shown
in Fig. 2. (One image had two faces; only the foreground face was used for this analysis.) The
faces were of various ethnicities (8 Caucasian, 4 African-American, 3 Asian, 1 Hispanic, and
1 Polynesian).

For the images containing faces, we repeated our analysis of difference ratings when the tone
characteristics depended only on the pixels in the face subimage. We denote these difference

ratings by μ
~
face_jk
i

 and σ
~
face_jk
i

. Note that these are local tone variables, in that they depend
only on a subregion of the entire image.

3 Results

Figure 3 shows the difference ratings πjk
i  plotted against tone characteristic differences μ

~
jk
i

(top panel) and σ
~
jk
i

 (bottom panel) for our entire data set. From the figure, we can see that any

systematic dependence of difference ratings on μ
~
jk
i

 is weak at best, but that there is a clear

dependence of the difference ratings on σ
~
jk
i

. Note that the negative slope of the dependence
shown in the bottom panel of Fig. 3 makes sense: if a rendering j is preferred to image k (positive
difference rating πjk

i ), then the deviation of image j's L* standard deviation from its optimal

value is smaller than the corresponding deviation for image k (negative σ
~
jk
i

). These conclusions
are confirmed by statistical tests on the significance of the linear relation between the πjk

i  and

each independent variable. The R2 value for μ
~
jk
i

 is small (0.07) but significant (p<0.05),

whereas σ
~
jk
i

 explains a substantial fraction of the variance (R2=0.31, p<0.001). The optimal
value found for μ0 was 46.6, whereas that found for σ0 was 17.8.

The predictive value of μ
~
jk
i

 and σ
~
jk
i

 is greater for images containing faces than for nonface

images. The four panels of Fig. 4 show the difference ratings plotted against the μ
~
jk
i

 (top

panels) and σ
~
jk
i

 (bottom panels) for the face (left panels) and nonface (right panels) images

separately. The linear predictive value of μ
~
jk
i

 and σ
~
jk
i

 is significant only for the face images,
and again only the global L* standard deviation accounts for a substantial proportion of

variance. (Face images, μ
~
jk
i

: R2=0.09, p<0.05; face images, σ
~
jk
i

: R2=0.58, p<0.001; nonface

images, R2=0.04, μ
~
jk
i

: p=0.34; nonface images, σ
~
jk
i

: R2=0.00, p=0.83.)

We focused on the face images for further analysis and considered whether the local tone

variable differences μ
~
face_jk
i

 and σ
~
face_jk
i

 extracted from the face region provided additional
predictive value. Figure 5 plots the difference ratings for the face images against these two
additional variables. Both local tone characteristics are predictive of the difference ratings

(μ
~
face_jk
i

: R2=0.59, p<0.001; σ
~
face_jk
i

: R2=0.29, p<0.001).
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The analysis previously presented shows that both our global and local (face region) tone
characteristics were predictive of image quality: differences in each variable separately are
significantly correlated with the difference ratings. We used multiple regression to ask how
well all four variables could jointly predict image quality. The overall R2 when the difference

ratings were regressed on μ
~
jk
i

, σ
~
jk
i

, μ
~
face_jk
i

, and σ
~
face_jk
i

 was 75%. Stepwise regression
showed that almost all of the explanatory power was carried by two of the four variables:

σ
~
jk
i

 and μ
~
face_jk
i

. These two variables alone provided an R2 of 0.72. Figure 6 shows the

measured difference ratings for the face images plotted against the predictions based on σ
~
jk
i

and μ
~
face_jk
i

. If the two variables were perfect predictors of image quality, the data would fall
along the diagonal line.

Recall that the data analysis involves finding the optimal values for the tone variables σ
~
jk
i

 and

μ
~
face_jk
i

. Figure 7 shows a plot of how the R2 measure for the face images varies with the
optimal values σ0 and μface_0. The optimal value σ0 was 17.8, whereas that for μface_0 was
48.7.

To test if the optimal values varied across ethnicities, we divided the images into two groups
(8 Caucasian images and 9 non-Caucasian images) and then re-ran the analysis. The results for
the two groups were very similar for face mean and standard deviation L* values (μface_0 values
were, Caucasian images: 48.6, non-Caucasian images: 48.8, and σface_0 values were, Caucasian
images: 19.2, non-Caucasian images: 18.4) but differed somewhat for global L* standard
deviation (σ0 values were, Caucasian images: 15.4, non-Caucasian images: 20.7). Although
the performance of each of the four algorithms was not of primary concern in this paper, a
summary of the preferences is shown in Table 1 for completeness. Note that Holm's method
performed particularly well overall.

The data from Experiment 1 support the following conclusions: (i) We were unable to find a
tone variable that predicted perceptual image quality for nonface images. (ii) For face images,
a number of tone variables were significantly correlated with the difference ratings. Two
variables accounted for the majority of the variance in the data that we could explain. These

were the difference in L* standard deviations across the entire image (σ~ jk
i ) and the mean L*

value difference for the face subimage (μ~ face_jk
i ). (iii) The data allowed identification of

optimal values for each of these variables.

4 Experiment 2
The results from Experiment 1 suggest that for images containing a face, the standard deviation
of image luminance values and the mean luminance level of the face itself do a good job of
predicting predictive image quality. In Experiment 2, we explored the effect of face mean
luminance in more detail. We used a diverse set of face images that included people with a
wide range of skin tones and images with multiple faces.

4.1 Methods
The methods were the same as for Experiment 1 except for the following.

4.1.1 Image acquisition—Images were acquired using the Kodak DCS-420 digital camera.
Fifteen images were selected, all of which were portraits taken under daylight. Face subregions
were again identified by hand. Ten contained only one subject (5 Caucasian, 3 African-
American, 2 Asian) and five contained multiple subjects (1 of Caucasians only, 2 with African
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Americans only, and 3 with a mixture of ethnicities). For the images containing multiple faces,
the identified face subregions included all faces. The dynamic range of the images, computed
as described for Experiment 1, varied between 37 and 245.

4.1.2 Image processing—We wanted to generate rendered images with different face
luminance levels with minimal changes to the L* standard deviation. This was done by applying
a smooth global tone-mapping curve to the images, with the curve parameters chosen so that
the output images had the desired face region mean L* and L* standard deviation tone
characteristics. Face subimages were selected by hand and 5 versions of each image were
created with different mean face L* target values (42, 48, 52, 56, and 62) and with the L*
standard deviation value held fixed at approximately 18.8. Five different renderings per image
produced ten possible pairwise presentations for each of the fifteen images. Difference ratings
π12
i , π23

i , π34
i , π45

i  and corresponding differences in tone variables were used in the analysis.

4.1.3 Observers—Nineteen color normal observers participated in the experiment (12 males
and 7 females) with an average age of 35 (range 23–62). Eight of the observers had previously
participated in Experiment 1.

4.2 Results
The data were analyzed in the same fashion as were the data for Experiment 1 with respect to

the predictive power of the μ
~
face_jk
i

 variable. The top panel of Fig. 8 shows a scatter plot of
the difference ratings against mean face-region L* value differences. For images with multiple
faces, the mean face L* value was used. The regression results showed that this tone
characteristic difference was significantly correlated with the difference ratings (p<0.001) and
that percent variance explained was R2=0.49. This replicates and extends the results of
Experiment 1 with respect to this tone characteristic.

After the experiment, observers were given a chance to provide comments and feedback. In
Experiment 2, a number of observers noted that some renderings of three of the images
contained visible artifacts in the facial regions, and that these artifacts had a strong negative
influence on their preference for those images. Post-hoc examination of the images confirmed
the observer reports. We believe the artifacts arose because the tone-mapping procedure
amplified the noise in some of the darker image regions. Because our interest was in tone
characteristics, not artifacts, it seemed of interest to repeat the analysis with the three
problematic images excluded. This led to an increase in the percent of variance accounted for
by the face L* mean difference variable, with R2=0.66 rather than 0.49. The bottom panel of
Fig. 8 shows the relation between difference ratings and this variable after the exclusion.

As part of the analysis, numerical search was again used to find value μface_0 that optimized
R2. This value was 49.2 when the full data set was analyzed and 46.5 with the three images
excluded, both very close to the value of 48.7 found in the first experiment. The dependence
of the R2 value on the optimal parameter is shown in Fig. 9 for the two cases.

We examined if the optimal μface_0 value varied across ethnicities. The images were divided
into two groups (4 images of Caucasians, 6 images of non-Caucasians). Five of the images
were not included (2 had multiple faces of different ethnicities and three has visible artifacts
in the face region as discussed above). We re-ran the analysis and the results for the two groups
were very similar (μface_0 values were, Caucasian images: 46.3, non-Caucasian images: 45.7).

Delahunt et al. Page 11

J Electron Imaging. Author manuscript; available in PMC 2007 January 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



5 Discussion
5.1 Summary

The paper presents experiments that explore whether a number of simple image tone
characteristics are predictive of perceptual image quality. For the nonface images we studied,
we were unable to identify any such variables. For images consisting primarily of faces,
however, the results suggest that the best image quality results when the face L* luminance is
in the range 46–49, and the standard deviation of the image L* luminances is approximately
18. This conclusion was suggested by the results of Experiment 1, and the conclusion
concerning the optimal level of face L* was confirmed directly in Experiment 2.

The images used in our experiments contained faces with a wide variety of skin tones. Analysis
of Caucasian and non-Caucasian subgroups suggest that the conclusions concerning optimal
face L* level may generalize to a wide array of face images. We do note, however, that our
image sample was relatively small and that follow-up work might profitably probe the
generality of our results. For example, we do not know how sensitive the data are to the noise
properties of the camera sensors. The analysis of the Experiment 1 data by ethnicity also
suggests that the optimal global L* standard deviation for the rendered image may depend on
ethnicity, although again the generality of this result is not clear.

5.2 Other Image Statistics
In addition to the image tone characteristics on which we previously reported in detail, we also
examined other possible predictors of image quality. These included chromatic variables and
a histogram difference measure. The histogram difference measure increased with the
difference between the luminance histogram of the input and output of the tone-mapping
algorithms. The chromatic variables did not provide predictive power. This is perhaps not
surprising given that the images were all color balanced to a common illuminant and that the
tone-mapping algorithms did not affect pixel chromaticities. The histogram difference measure
was correlated with image quality for the face images. A stepwise regression analysis, however,
showed that adding the histogram difference measure to the face L* and image L* standard
deviation did not explain substantial additional variance.

Holm16,38 has suggested that classifying images based on histogram properties and then
applying different tone mapping depending on the classification can be effective. To explore
this, we computed Holm's key value statistic from our input image histograms and divided the
scenes into two sets, low key and high key, based on this statistic. Low-key scenes have
luminance histograms that are skewed toward dark values, whereas high-key scenes have
luminance histograms that are skewed toward light values. In Experiment 1, we found that the
relation between global L* value and image quality was strong for the low-key scenes and not
significant for the high-key scenes, whereas the relation between global L* standard deviation
and image quality was significant for both low- and high-key scenes. There was a difference
in optimal global L* standard deviation between the two sets, but this difference was not stable
with respect to small perturbations of the criterion key value used to divide the data set. In
Experiment 2, the dependence on face L* values was significant for both low- and high-key
scenes with the optimal value varying between 52 (low-key) and 47 (high-key). Further
experiments focused on the stability of scene key as a modulator of optimal tone characteristics,
as well as on other potential higher-order histogram statistics (e.g., degree of bimodality),
would be of interest.

5.3 Relation to Other Work
The work here emphasizes comparisons are among images displayed on a common output
device, so that the dynamic range of the comparison set is constant. This is a reasonable choice
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for the goal of improving the appearance of images acquired with current digital cameras,
whose image capture range is approximately matched to current display technology. In
contrast, a number of papers have examined tone-mapping across large changes in dynamic
range between input and output.8,15,17,18,20,39 The experimental methods and analysis
presented here are general and could be used to evaluate the efficacy of these methods for high-
dynamic range imagery.

A second feature of our work is our focus on the tone characteristics of the displayed images,
rather than on the functional form of the tone-mapping curve. The results presented here suggest
that there is considerable utility in examining tone characteristics. Other recent experimental
work19,20 has focused on the efficacy of tone-mapping operators per se. These two approaches
may be viewed as complementary. Also of note is the diverse set of psychophysical techniques
that have been employed across studies.19,20,39 Here we have focused on image preference,
which is conceptually quite different from perceptual fidelity.

5.4 Using the Results
Although our positive results only apply to images that contain faces, such images probably
form a large proportion of those acquired by the average camera user—many consumers take
pictures of their friends and families. Thus our results have the potential for leading to useful
practical algorithms.

Since our work shows how preference for images containing faces depends on tone variables,
tone-mapping methods might profitably include algorithms to identify images that contain
faces and to apply appropriate mapping parameters to these images. (Face recognition software
has advanced greatly in recent years. See recent review by Pentland and Choudhury40). Indeed,
the present work led directly to the development of a novel proprietary tone-mapping algorithm
at Agilent Laboratories.42 The idea that empirical image preference studies can enable
development of effective image processing algorithms was also supported by our earlier study.
4 We believe further studies hold the promise of providing additional algorithmic insights.
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Fig. 1.
Tone mapping. The top panel in the figure shows the global L* luminance histogram of the
original image. The four panels in the first full row show the histograms after application of
the four tone-mapping algorithms. The four panels in the middle row show the tone-mapping
curves used by the four algorithms for the image shown. The bottom panels show the output
images for each of the four algorithms.
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Fig. 2.
Face subimages were created by cropping the faces out of the images as illustrated.
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Fig. 3.
Prediction of difference ratings from global tone characteristics. The figure plots the difference

ratings obtained for all images in Experiment 1 against u
~
jk
i

 (top panel) and σ
~
jk
i

 (bottom panel).
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Fig. 4.
Prediction of difference ratings from global tone characteristics, face images (left panels) and
nonface images (right panels) shown separately. The difference ratings obtained for all images

in Experiment 1 against u
~
jk
i

 (top panels) and σ
~
jk
i

 (bottom panels) are plotted.
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Fig. 5.
Prediction of difference ratings from face-region tone characteristics, face images only. The

difference ratings obtained for the face images in Experiment 1 against u
~
face_jk
i

 (top panel)

and σ
~
face_jk
i

 (bottom panel) are plotted.
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Fig. 6.
Measured difference ratings plotted against difference ratings predicted as the best linear

combination of s (σ
~
jk
i

 and u
~
face_jk
i

 for the face images of Experiment 1. If the predictions
were perfect, the points would fall on the diagonal line. The error bars show ±1 standard error
of measurement for the difference ratings, computed using a resampling method (Ref. 41). The
raw preference data were resampled 50 times. For each resampling, difference ratings were
computed and the standard deviation of the resulting difference ratings was taken as the
standard error.
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Fig. 7.
Optimal values σ0 and uface_0 for the face images used in Experiment 1. Each panel plots the

percent variance explained by a single tone characteristic (top panel: σ
~
jk
i

; bottom panel:

u
~
face_jk
i

) as a function of the corresponding optimal value (top panel: σ0 ; bottom panel:
uface_0).
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Fig. 8.
Prediction of difference ratings from face-region tone characteristics, for Experiment 2. The

difference ratings against u
~
face_jk
i

 are plotted. The top panel shows the full data set and the
bottom panels shows the data when three images with artifacts were excluded.

Delahunt et al. Page 24

J Electron Imaging. Author manuscript; available in PMC 2007 January 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 9.
Optimal value uface_0 for Experiment 2. The plot shows the percent variance explained by

u
~
face_jk
i

 as a function of the optimal value uface_0. Thin line: full data set. Thick line: data set
when three images with artifacts were excluded.
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Table 1
The overall percentage of times the output of each tone-mapping method was chosen as the preferred image in
Experiment 1. Results for each algorithm were obtained by taking all of the pairwise comparisons involving the
output of each algorithm and computing the percentage of times the output of that algorithm was chosen as
preferred. Data were aggregated across all images and observers.

Images Clipping (%) Histogram (%) Larson (%) Holm (%)

All 26.4 19.0 19.0 35.7
Face 30.0 15.7 16.2 38.2
Nonface 18.8 25.9 24.9 30.4
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