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Abstract. A new image segmentation algorithm that uses the simu-
lation of a charged fluid is developed. Conceptually, a charged fluid
consists of charged elements, each of which exerts a repelling elec-
tric force on the others. The charged fluid behaves like a liquid such
that it flows through and around different obstacles. The boundary of
the segmented object is determined by the image gradient, which is
modeled as potential wells that stop the propagating front. The
simulation is evolved in two steps that are governed by Poisson’s
equation. The first step distributes the elements of the charged fluid
along the propagating interface until an electrostatic equilibrium is
achieved. The second step advances the propagating front of the
charged fluid such that it deforms into a new shape in response to
the equilibrium electric potential and the image potential. The pro-
cedure is repeated until the propagating front resides on the bound-
ary of objects being segmented. The electric potential of the simu-
lated system is rapidly calculated using the finite-size particle (FSP)
method implemented via the fast Fourier transform (FFT) algorithm.
Experimental results using phantom images, photographic pictures,
and medical images demonstrate the utility of this new algorithm in a
wide variety of image processing applications. © 2006 SPIE and
IS&T. �DOI: 10.1117/1.2199555�

1 Introduction
Image segmentation is a process of partitioning images into
several regions of interest such that each region has similar
gray-level, color, and texture characteristics1,2 A wide vari-
ety of image segmentation methods have been proposed,
but few techniques achieve satisfactory results in a broad
range of applications. Segmentation methods for mono-
chrome images can be classified into several categories in-
cluding pixel-based, edge-based, region-based, matching
approaches and deformable models.1–4 Deformable models
involve the formulation of a propagating interface, which is
a closed curve in two dimensions or a closed surface in
three dimensions, that is moving under a speed function
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determined by local, global, and independent properties.5

Given the initial position of a propagating interface and the
corresponding speed function, deformable models track the
evolution of the interface during the segmentation process.
Existing deformable models can be mathematically divided
into two broad classes: parametric and geometric.

Parametric deformable models, originating from the ac-
tive contour model �also known as snakes� introduced by
Kass et al.,6 explicitly represent the interface as parameter-
ized contours in a Lagrangian framework. Active contour
models use an energy-minimizing spline that is guided by
internal and external energies in such a way that the spline
is deformed by geometric shape forces and influenced by
image forces. By optimizing the weights used in the inter-
nal energy and choosing the proper image forces �e.g., lines
or edges�, one can use active contour models to evolve the
curve toward the boundary of objects being segmented.
Subsequently, Cohen7 extended the original snake such that
the curve behaves like a balloon and obtained more stable
results.

With the introduction of the level set numerical algo-
rithm developed by Osher and Sethian,8 geometric deform-
able models enable automatic topological changes without
using special tracking procedures.9 The principle underly-
ing level set methods is to adopt a Eulerian approach to
implicitly model the propagating interface using a level set
function �, whose zero-level set always corresponds to the
position of the interface.5 The evolution of this propagating
interface is governed by a partial differential equation in
one higher dimension. The level set function can be con-
structed with high accuracy in space and time. The position
of the zero-level set is evolved using a speed function that
consists of a constant term and a curvature deformation in
its normal direction.8 Image stopping terms, such as re-
gional and gradient forces, are incorporated into this speed
function for segmentation purposes.
Parametric and geometric deformable models are both
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Chang and Valentino: Image segmentation using a charged fluid method
curvature-dependent moving contours. Theoretically, geo-
metric deformable models offer several important advan-
tages over parametric deformable models. First, the intrin-
sic geometric properties of the interface, such as the unit
normal vector and curvature, can be easily and accurately
computed from the level set function.5,10 Second, the topo-
logical merging and breaking of the propagating front is
handled naturally in level set based methods.10 Third, level
set based deformable models can easily capture sharp cor-
ners and cusps.11 Fourth, the resulting contours in level set
based methods do not automatically contain
self-intersections.10 Finally, it is straightforward to imple-
ment level set based deformable models in higher
dimensions.5,11 However, geometric deformable models
based on the level set techniques are inherently more com-
putationally expensive than parametric deformable models.

A drawback of many deformable models is the initial
placement of the contour. Parametric deformable models
require the initial contour to be placed somewhere near the
target.6 Similarly, many level set based deformable meth-
ods must symmetrically initialize the contour somewhere
around the center with respect to the boundary of interest.11

For example, Fig. 1 demonstrates the evolution of a classi-
cal level set based deformable model that uses edge-based
stopping terms in segmenting an object with sharp corners
and cusps. The contour was initialized close to the upper
part of the object and it crossed over the boundary because
the stopping factor is small but nonzero.

One way to make the Osher-Sethian level set approach
more robust and flexible for practical segmentation appli-
cations is to solve the problem directly, as many researchers
have attempted.11 For example, Malladi and Sethian12

added an attractive force to attract the interface toward the
object boundary. This extra term denotes the projection of
an attractive force vector on the interface normal. Caselles
et al.9 developed a particular active contour model called
geodesic active contours, which establishes a connection
between energy and curve evolution via the level set frame-
work. Siddiqi et al.13 modified the speed function with an
extra term based on the gradient flow derived from a
weighted area energy functional. This approach introduces
another term into the partial differential equation to balance
the speed functions such that the propagating interface can
more flexibly evolve toward the desired position. Recently,
Gout et al.14 proposed a segmentation approach that com-
bines the idea of the geodesic active contour and interpola-
tion of points in the Osher-Sethian level set framework to
find a boundary contour from a finite set of given points.
Guyader et al.15 used the Osher-Sethian level set to evolve

Fig. 1 Difficulty of using a level set based deformable model with
edge-based stopping terms in segmenting an object with sharp cor-
ners and cusps: �a� the initial contour and �b� to �d� the evolution of
the contour that crossed over the boundary.
an explicit function, while minimizing the energy.
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Moreover, some of the proposed methods adopt a hybrid
system in the form of mathematical and statistical models
embedded in the deformable model to guide the segmenta-
tion process. For example, Chan and Vese16 and Tsai et al.17

independently proposed similar hybrid deformable models
based on level set methods and Mumford-Shah segmenta-
tion techniques.18 The active contour without edges16 can
detect objects whose boundaries are not necessarily defined
by the gradient of images, as in the classical active contour
models, and provides robust contour initialization. Subse-
quently, Vese and Chan19 extended this model by proposing
a multiphase level set framework to segment images with
more than two regions. However, if the object has a wide
intensity distribution that is similar to the background, this
approach cannot correctly capture the target object and
some part of the background is incorrectly captured, as
shown in Fig. 2.

Another common problem in level set based methods
originates from the time interval setting for the numerical
computation of time-dependent partial differential equa-
tions. An experimental time interval is required such that
the position of the propagating interface is advanced in
such a way that the evolution of the front can be optimized
while capturing the boundary of interest. Precise segmenta-
tion can be obtained using a relatively smaller time interval,
but the speed of evolution is relatively slow. A large time
interval setting can accelerate the advancement, but the de-
formable contour can miss object boundaries leading to
poor results.

An alternative approach for evolving deformable models
is to use particle systems. Reeves20 introduced the idea of
using the simulation of a physical system of particles to
model objects such as fire, clouds, and water. In this model,
particles move under the influence of external forces and
constraints without interacting with each other. Numerical
simulation techniques using particles are described in detail
by Hockney and Eastwood.21 More recent particle systems
use a simulation of molecular dynamics governed by the
Lennard-Jones function to add links between the particles
to guide the evolution of a deformable model.22,23 In these
elastic particle systems, intensive numerical computation is
required to obtain particle attributes such as position, ve-
locity, force, torque, and orientation.

Recently, Jalba et al.24 proposed a new physics-based,
electrodynamics model that uses charged particles. Using
their charged-particle model �CPM�, positive free particles
are attracted by fixed negative charges that correspond to

Fig. 2 Difficulty of using the active contour without edges in seg-
menting an object with a wide intensity distribution that is similar to
the background: �a� the initial contour, �b� to �c� the evolution of the
contour, and �d� the darker part of the object is excluded and the
brighter part of the background is included as the segmentation
results.
each pixel of the edge map of an input image. Each free
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particle with equal charge moves under the influence of
three forces: an internal Coulombic force that is due to the
interaction between the particles, an external Lorentz force
that is due to the electric field generated by the fixed
charges, and a damping force that drives the system to a
stable equilibrium state. Among the advantages of this
powerful approach are flexible contour initialization and
the ability to segment multiple objects in an image. How-
ever, an empirical selection of a number of parameters is
required for the CPM to converge. A curve �or surface� is
reconstructed from the unorganized particles, which might
result in gaps in the recovered contour �or surface�.

In this paper, we introduce a new physics-based deform-
able model, the charged fluid method �CFM�, by proposing
a two-stage evolution framework for image segmentation.
The first step distributes the elements of the charged fluid
along the propagating interface until an electrostatic equi-
librium is achieved. During this procedure, the charge of
the fluid elements is interpolated into the neighboring dis-
crete points such that the fluid elements are constrained to
move on the lattice. In our approach, the electric force is
numerically calculated using the finite-size particle �FSP�
method implemented via the fast Fourier transform �FFT�
algorithm. After this procedure, the electric force is ap-
proximately normal to the propagating contour and can be
used to guide curve evolution. The second step advances
the propagating front of the charged fluid such that it de-
forms into a new shape in response to the equilibrium elec-
tric force and the image force, which is computed using the
smoothed image gradient. The purpose of this procedure is
to enable the charged fluid to detect object boundaries that
change the shape of the propagating curve. The two-stage
evolution is repeated until the propagating front resides on
the boundary of objects being segmented. The CFM can
provide subpixel precision for the area and length of the
segmented region. It requires a contour initialization step to
start the algorithm, but we will show that it is less critical
than in many existing deformable models. This approach
has only one effective parameter, and does not require cur-
vature computation and time interval setting. Last, the CFM
automatically handles topological changes at the interface
and evolves from an initial contour to the boundary of in-
terest in a variety of images.

The paper is organized as follows. Section 2 introduces
the theory of electrostatic systems and describes the FSP
method for efficient electric potential computation imple-
mented via the FFT algorithm. Section 3 describes the evo-
lution procedures and the numerical techniques to imple-
ment the CFM algorithm. Section 4 demonstrates a variety
of potential applications and the validation of our approach
on phantom, photographic, and medical images. Finally, in
Sec. 5, we discuss the intrinsic properties and essential
characteristics of the CFM as well as the difficulties and
disadvantages of using the CFM to perform image segmen-
tation.

2 Electrostatic Systems
Systems of charged particles have been broadly studied in
the physics community for decades.25 Computer simulation
and modeling methods have been widely used to investi-
gate the behavior of such systems, and are well described in

Refs. 25 and 26. Here, we restrict the discussion by consid-
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ering one of the electrostatic models in two dimensions for
simplicity. In an electrostatic system, the force on a particle
i due to all other particles is given by Coulomb’s law:

Fi = qi�
j=1
i�j

N

Eij � qi�
j=1
i�j

N
qj�ri − r j�
�ri − r j�2

, �1�

where q is the charge of particle i, N is the total number of
particles, and Eij is the electric field from particle j at po-
sition r j to particle i at position ri. The ensemble number of
the arithmetic operations required to compute the electric
force is25 approximately of the order of 10�N2. It is im-
practical to compute the electric force on every particle
directly using Eq. �1� for a large number of particles.

Another important consideration of electrostatic models
is the collision between particles. The electric force in Eq.
�1� gets larger when two particles approach each other,
which increases the collision rate. One would like to reduce
these collisional effects to some extent such that the model
represents a small portion of real plasma electrons or
ions.25 Langdon and Birdsall27 believe a partial answer is to
smooth the interaction at short distances by modifying the
particle structure, because it is the long-range behavior of
the interaction that governs most plasma phenomena. The
new particles have a spread-out charge distribution and
move freely through one another; this is the basis of the
FSP method.25,27

2.1 FSPs

The objective of the FSP method is to reduce the collisional
effects between particles and avoid the singularities in the
use of point particles with Eq. �1�, while retaining the long-
distance behavior. The charge density of an FSP �or cloud�
whose center is at the origin is now changed to qS�r�,
where q is the charge, and S�r� is the shape factor used to
modify the structure of the particle. The shape factor is not
required to be isotropic or symmetric but it usually is.27 In
this paper, we assume that the shape factor is real and iso-
tropic as25,28

S�r� �
1

2�
exp�−

r2

2
� ,

where S�r� is the Gaussian shape factor in terms of distance
r and its integration over the entire space is normalized to
unity through the factor 1 /2�. The size of the particles is
usually set equal to the size of a grid spacing, and their
charge is interpolated into the adjacent four, five, or nine
grid points with different interpolation techniques.25

Rather than calculating the electric force using Cou-
lomb’s law in Eq. �1�, we can compute it in terms of the
electric field. The electric force Fi of a point charge qi at
position ri is related to the given electric field E at the
corresponding position:

Fi = qiE�ri� ,

where the electric field E can be computed in terms of a

scalar potential �:
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E�r� = − ���r� , �2�

and the electric potential can be computed from Poisson’s
equation

�2��r� = − 4���r� , �3�

where ��r� is the charge density. Once the charge density in
an electrostatic system is known, we can calculate the elec-
trostatic field by using Eqs. �2� and �3�. A computationally
efficient method to calculate the electric potential through
Poisson’s equation using the FFT algorithm is described in
the next section. We have adopted �x ,y� representing Car-
tesian coordinates in the spatial domain, �m ,n� representing
discrete coordinates in the spatial domain, and �u ,v� repre-
senting the corresponding discrete coordinates in the Fou-
rier domain throughout the paper.

2.2 Electric Potential Computation
Suppose that a system of charged particles having charge
Q�m ,n� on grid �m ,n� is initialized in a discrete spatial
domain, the charge density due to the charged particles can
be approximated as

��x,y� � �
m=1

Lm

�
n=1

Ln

Q�m,n�S	�r − r�m − n��
 , �4�

where Lm and Ln are the lengths along the m and n axes,
respectively. Now, taking the Fourier transform of Eq. �4�,
we can obtain the relationship between � and Q in the
Fourier domain. We then apply the same technique to Eq.
�3�, and the electric potential in the Fourier domain can be
expressed as a simple arithmetic function in terms of the
charge density. The electric potential,25,26,28 which is the
solution of Poisson’s equation, can then be obtained by
combining the transformed functions and inverting the po-
tential in the Fourier domain as

��x,y� = �
u=−�

�

�
v=−�

�

�
Q�u,v�

��u2/Lx
2 + v2/Ly

2�
exp�− 2�2� u2

Lx
2

+
v2

Ly
2��exp�2�iux

Lx
�exp�2�ivy

Ly
� , �5�

where the prime represents the fact that u=v=0 is excluded
from the sum, and Lx and Ly are the computation ranges in
the x and y directions, respectively. Here, we have assumed
that the system is doubly periodic such that the potential �
and its normal directive are periodic at the boundaries. In
Eq. �5�, Q�u ,v� is the discrete Fourier transform �DFT� of
the charge Q�m ,n�

Q�u,v� �
1

LmLn
�
m=0

Lm−1

�
n=0

Ln−1

Q�m,n�exp�− 2�ium

Lm
�

�exp�− 2�ivn

Ln
� . �6�

Obviously, solving Poisson’s equation directly using Eq.

�5� is impractical due to the infinite sum. If the potential in

Journal of Electronic Imaging 023011-
Eq. �5� is evaluated only on grid points and interpolated
between them, we can facilitate the computation and obtain
the discrete potential ��m ,n�:

��m,n� = �
u=0

Lm−1

�
v=0

Ln−1

�
Q�u,v�

��u2/Lm
2 + v2/Ln

2�
exp�− 2�2� u2

Lm
2

+
v2

Ln
2��exp�2�ium

Lm
�exp�2�ivn

Ln
� . �7�

The DFT pair in Eqs. �6� and �7� can then be rapidly com-
puted via the FFT algorithm provided that Lm=2s and Ln
=2t, where s and t are positive integers. In the following
section, we describe a new deformable model that makes
use of the numerical techniques of this electrostatic model
to perform the electric potential computation.

3 Charged Fluid Method
If a system of charged particles is initialized within a small
region, the particles will gradually move outward due to the
repelling electric forces between one another. Now, sup-
pose that a system of charged particles is initialized inside a
region of interest �ROI� in an image. The particles will keep
advancing outward until they encounter a balancing inward
force related to features in the image �e.g., the gradient�.
However, it is complicated to organize and guide the par-
ticles toward the boundary of interest such that the final
contour corresponding to the particle positions can accu-
rately and correctly represent the ROI.

Now, suppose that the charged particles �indicated by
the solid dots in Fig. 3� are confined inside an isolated
conductor that models the closed propagating interface as a
curve in two dimensions or a surface in three dimensions,
such that the particles can move only on the interface until
an electrostatic equilibrium is achieved. The particles accu-
mulate where there is a locally greater curvature in the
equilibrium state �see Table 1�, as shown in Fig. 3. To make

Fig. 3 Concept of a charged fluid. A charged fluid conceptually con-
sists of charged elements �the large circles�, each of which exerts a
repelling electric force on the others. The fluid elements, as if they
were consisted of different amounts of charged particles �the solid
dots�, are connected to one another by 8-connectivity when they
advance. The charged fluid, behaving like a liquid, can be influenced
by internal electric forces Fele of repulsion as well as external forces
Fext from the image data.
use of such a charged system for image segmentation, we
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Chang and Valentino: Image segmentation using a charged fluid method
propose a charged fluid system in such a way that each fluid
element �the large circles in Fig. 3� is treated as a cloud in
the FSP model and has its own charge as if it was calcu-
lated by interpolating the charges of the covered particles
�the solid dots in Fig. 3�. The electric forces �Fele in Fig. 3�
are perpendicular to the contour and their magnitudes are
proportional to the charges at the corresponding positions.
The charged fluid behaves like a liquid such that it flows
through and around obstacles as well as deforms in re-
sponse to external forces Fext �e.g., the image gradient�, as
illustrated in Fig. 3. Having described these basic concepts
of the charged fluid, we now describe the evolution proce-
dures and the numerical techniques used to implement the
algorithm.

3.1 Charge Interpolation
We begin by describing the behavior of a single fluid ele-
ment with charge q. Suppose that a fluid element i with
zero momentum is advanced a distance d along the direc-
tion of an electric force Fi whenever we advance it. Then,
based on Newton’s law of motion, the distance d is only a
function of the electric force Fi, the mass m, and the time
interval �t. In addition, the trivial ratio of q to m can be set
to 1.0 and the distance d can be expressed as

d =
Fi

2m
�t2 =

1

2
Ei�t2, �8�

where Ei is the electric field corresponding to Fi.
Now, assume that one arbitrary fluid element with

charge Q is advanced to position �dx ,dy� with respect to the

Table 1 The essential characteristics of charged conductors in elec-
trostatic equilibrium. Charged conductors that have reached electro-
static equilibrium, which means that there is no net flow of electric
charge or no electric current, share a variety of unusual
characteristics.29,30

Characteristics of Charged Conductors
in Equilibrium

1 The electric field anywhere inside a
conductor is zero in electrostatic
equilibrium.

2 Any net charge on an isolated
conductor resides entirely on its
surface.

3 The electric field just outside the
surface of an isolated conductor is
perpendicular to the surface and has a
magnitude of 	 /
0, where 	 is the local
surface charge density at that point.

4 On an irregularly shaped conductor,
the surface charge density 	 and
hence the electric field just outside is
greatest where the curvature is largest.

5 Every point on the surface of a
conductor in electrostatic equilibrium is
at the same potential �the surface is an
equipotential�.
origin, as illustrated in Fig. 4�a�. Since fluid elements are

Journal of Electronic Imaging 023011-
constrained on grids, one simple way to achieve this is to
linearly interpolate the charge Q into adjacent discrete
points. Considering the interpolation accuracy as well as
the computational cost, we use the SUDS technique, which
is the accelerated version31 of the DEM, to interpolate the
charge to the nearest grid point and its 4-neighbors while
achieving the conservation of charge, as shown in Fig. 4�b�.

3.2 Evolution
The evolution of the CFM consists of two different proce-
dures. The first procedure, charge distribution, enables the
CFM to flow along the propagating interface until a speci-
fied electrostatic equilibrium is achieved. The second pro-
cedure, front deformation, deforms the propagating front
into a new shape in response to the electric potential in
equilibrium and the image potential, which is related to the
image gradient. Those two procedures are repeated until the
propagating front resides on the boundary of objects being
segmented.

3.2.1 Charge distribution
One practical problem of using the electrostatic system de-
scribed in Sec. 2 to advance a group of charged particles is
that the electric potential in the system varies when the
positions of the particles change. When using multiple
charged fluids, the one having the stronger electric potential
dominates the behavior of the overall system. This can dra-
matically influence the contours of other charged fluids by,
for example, repelling the fluid elements in the weaker
charged fluids, which will prevent them from reaching the
desired object boundary. One way to solve this problem is
to normalize the electric potential for each charged fluid
through Poisson’s equation. Therefore, we define the nor-

malized electric potential �̂ele
j for the charged fluid j as

�̂ele
j =

�ele
j

�̄ j
�0,

where �0 is an arbitrary positive constant, and �̄ j is the
mean electric potential in the charged fluid j. The corre-

Fig. 4 Charge interpolation using the subtracted dipole scheme
�SUDS� technique, which is the accelerated version of the dipole
expansion method �DEM�: �a� the fluid element with charge Q is
advanced to position �dx ,dy� and �b� the fluid element in �a� is lin-
early interpolated to the nearest grid point and its 4-neighbors with
different charges, if any.
sponding normalized charge density is defined as

Apr–Jun 2006/Vol. 15(2)5
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�̂ j =
� j

�̄ j
�0. �9�

Therefore, the overall system is governed by the modified
Poisson’s equation:

�2�̂ele = �2�
j

�̂ele
j = − 4��

j

�̂ j = − 4��̂ , �10�

where �̂ele is the normalized electric potential, and �̂ is the
normalized charge density of the overall system at each
time step. During this procedure, the electric field Eele is
directly computed using the normalized electric potential:

Eele = − ��̂ele, �11�

where �̂ele in Eqs. �10� and �11� is computed using a com-
putationally efficient technique, as described in Sec. 2.
Once the discrete potential is obtained, the discrete electric
field on each fluid element is directly computed using the
central difference approximation of Eq. �11�.

To advance the fluid elements within the propagating
interface using the interpolation technique described in Sec.
3.1, we further restrict the motion of the fluid element hav-
ing the maximum electric field in the system such that it is
advanced by the half grid spacing h /2 in the electric field
direction, then the time interval for each fluid element can
be obtained from Eq. �8�:

�t2 =
h

Emax
=

h

��Em
2 + En

2�1/2�max

, �12�

where Emax is the magnitude of the maximum electric field
on the propagating interface of the system for each itera-
tion; and Em and En are the components of Emax on the m
and n axes, respectively. The advantage of this approach is
that there is no time interval setting for advancing fluid

i

Fig. 5 Charge distribution procedure. �a� At beginning of this proce-
dure, a uniform charge distribution is applied to the fluid elements
�the red solid dots�. They are only allowed to share charge on the
2-pixel-wide propagating interface that is obtained from the front
deformation procedure �Fig. 6 in Sec. 3.2.2�. Note that the empty
charge positions on the interface are represented by the blue hollow
circles. �b� The system reaches the equilibrium charge distribution
and the electric fields �the arrows� on the elements are approxi-
mately perpendicular to the contour. The 1-pixel-wide front �not
shown� is then obtained by using a standard contour tracing
method. Note that the CFM in this procedure is a pure electrostatic
system without the influence of external forces.
elements. Substituting Eq. �12� into Eq. �8�, the distances dx
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and dy
i for each fluid element i can be easily obtained:

dx
i =

Em
i

Emax

h

2
,

dy
i =

En
i

Emax

h

2
, �13�

where Em
i and En

i are the electric field components of ele-
ment i on the m and n axes, respectively. Equation �13�
implies that the distance by which each fluid element ad-
vances is related to the maximum electric field in the sys-
tem without the influence of the time interval setting. Once
the distances are obtained, we can use the SUDS technique
described in Sec. 3.1 to interpolate the charge to the five
discrete neighbors. Note that if any of the 4-neighbors is
not on the propagating interface, its charge is preserved to

Fig. 6 Front deformation procedure. �a� After the charge distribution
procedure, the fluid elements are on the 1-pixel-wide front by
8-connectivity. Note that the tiny inner charges in Fig. 5�b� are dis-
carded after the contour tracing procedure. The effective fields �the
arrows� are computed based on the electric field in equilibrium and
the gradient of the image potential. Some of the effective fields are
in very different directions compared to the electric fields at the cor-
responding positions in Fig. 5�b�. �b� The new 2-pixel-wide propa-
gating interface is obtained by locating the four adjacent grid points
according to the effective field directions in �a� based on Fig. 7 for all
elements. Note that, compared to Fig. 5�a�, the propagating inter-
face evolves into a different shape in response to the effective fields
in �a�.

Fig. 7 Locating the 2-pixel-wide binary interface on an individual
fluid element: �a� the effective field Eeff on a fluid element �the red
solid dot� and �b� the four adjacent grid points �the blue hollow
circles� of the element are generated according to the effective field
direction in �a� and denoted as a part of the 2-pixel-wide propagat-

ing interface.
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the old position, which is the center of the five neighboring
grids �see Fig. 4�.

Electrostatic equilibrium is defined as a state of zero net
flow of electric charge �see Table 1�. For the simulation to
converge, we define the condition of electrostatic equilib-
rium such that a small amount of charge flow is still per-
mitted. This is the case when the following inequality is
satisfied:

�Qtotal

Qtotal
� � , �14�

where Qtotal is the total charge of the overall system for
each iteration, �Qtotal is the net flowing charge in total, and
� determines the degree of electrostatic equilibrium. Note
that the system conserves charge throughout the charge dis-
tribution procedure, i.e., Qtotal is the same for each iteration
during this process.

In our approach, a uniform charge distribution over the
fluid elements is initially placed on the 2-pixel-wide propa-
gating interface that is obtained from the other procedure,
as illustrated in Fig. 5�a�. The fluid elements are repeatedly
advanced inside the propagating interface, which is treated
as the curve in two dimensions or the surface in three di-
mensions of an isolated conductor, until the overall system
converges to an equilibrium state that satisfies Eq. �14�.
One of the interesting properties of conductors in electro-
static equilibrium �see Table 1� is that the electric field is
perpendicular to the curve or surface as shown in Fig. 5�b�.
Note that the system reaches an electrostatic equilibrium
charge distribution, which is related to the equilibrium
quality � and to the geometry of the propagating interface.
Another important property of an isolated conductor in
equilibrium is that any net charge resides entirely on its
curve �in two dimensions� or surface �in three dimensions�.
For computer simulation, the challenge is to define the
curve or surface thickness such that the charged fluid can
reasonably approximate a real system. After the system
reaches the specified electrostatic equilibrium with Eq.
�14�, a more strict curve or surface corresponding to a
1-pixel-wide propagating front �contour� is defined such
that only fluid elements on that contour are preserved,
which is described in Sec. 3.3.

3.2.2 Front deformation
After the charge distribution procedure, the charged fluid is

Fig. 8 Generation of the 1-pixel-wide front by refining the
2-pixel-wide interface using a standard contour tracing algorithm: �a�
the location of the 2-pixel-wide interface on a binary array, �b� ap-
plying the contour tracing algorithm to refine the interface, and �c�
the location of the 1-pixel-wide front.
still an isolated system without the interaction with external
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forces. This procedure enables the CFM to interact with the
image data such that the 1-pixel-wide propagating front
deforms the shape in response to the gradient of an image.
We define the image gradient potential using the following
equation:

�img�m,n� = 

��G	�m,n� � I�m,n��

��G	 � I�max
�0, �15�

where 
 is a weighting factor �
�0� to adjust the image
gradient potential, � is the gradient operator, and G	�m ,n�
is a 2-D Gaussian function with standard deviation 	. In
Eq. �15�, � represents convolution, �·� is the modulus of the
smoothed image gradients, and � · �max is the maximum
modulus in the computation domain. The selection of val-
ues for 
 is discussed in Sec. 4.

The image potential �img in Eq. �15� is further incorpo-
rated into our electrostatic model by defining the effective
potential �eff

�eff�m,n� � �̂equ�m,n� + �img�m,n� ,

where �̂equ is the normalized electric potential in electro-

static equilibrium, which corresponds to �̂ele when equilib-
rium is achieved in the charge distribution procedure. To
deform the propagating front in response to the effective
potential, the corresponding effective field Eeff is defined

Fig. 9 Generation of the 1-pixel-wide front for two merged charged
fluid contours: �a� the location of the 2-pixel-wide interfaces on a
binary array, �b� applying the contour tracing algorithm to refine the
interface, and �c� the location of the 1-pixel-wide front.

Fig. 10 Subpixel precision computation: �a� the effective fields on
the fluid elements �the red solid dots� are approximately oriented
inward after the evolution is terminated and �b� the subpixel preci-
sion for the area and length of the ROI can be calculated by advanc-
ing the fluid elements a real number distance based on the effective

fields in �a� using Eq. �13�.
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Eeff = − ��eff = − ���̂equ + �img� , �16�

where the discrete effective fields can be numerically com-
puted using the central difference approximation. When the
gradient of the image potential is insignificant, i.e., in a
relatively homogeneous region, the front of the CFM de-
forms approximately in its normal direction. However,
when the gradient of the image potential is larger than that
of the electric potential, the directions of the effective fields
at those positions are changed dramatically, as shown in
Fig. 6�a�. The charged fluid relies on the salient image gra-
dient to change the direction of Eeff in Eq. �16� such that
the fluid elements are confined inside the ROI. The front
deformation is executed on each fluid element by locating
binary positions corresponding to the four adjacent grid
points based on the effective field direction, as illustrated in
Fig. 7. Therefore, we can generate the 2-pixel-wide binary
interface by applying this binary localization method to

Fig. 11 Front propagation using a single charge
of the charged fluid consists of four fluid eleme
tained by locating the four adjacent grid points a
Fig. 7 for all elements, and �c� a new propaga
contour tracing technique after achieving the sp

Fig. 12 Front propagation using two charged fluid contours in a free
2-D space �obtained from the computer simulation results�: �a� ini-
tialization of two charged fluids using square contours, which are
treated as independent systems when they are away without touch-
ing each other; �b� the geometry of both contours retains the same
�square� while they are evolving and approaching; �c� the two
charged fluids merged to one that continues to evolve; and �d� to �f�

the inverted charge density plots of �a� to �c�, respectively.
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each fluid element, as shown in Fig. 6�b�. Note that, after
this procedure, the propagating interface of the CFM
evolves into a different shape in response to the effective
field.

3.3 Front Construction
As described in Sec. 3.2, the 2-pixel-wide interface 	see
Fig. 5�b�
 is refined to the 1-pixel-wide front 	see Fig. 6�a�

for curve evolution. This is achieved by creating a binary
array that indicates the positions 	the circles in Fig. 8�a�
 of
the 2-pixel-wide interface. A standard contour tracing
algorithm32 starting from the maximum charge element on
the 2-pixel-wide interface is then used for refinement, as
shown in Fig. 8�b�. Note that the algorithm aims to trace
the outer positions of the interface. Finally, in Fig. 8�c�, the
location of the 1-pixel-wide front of the CFM is generated
such that the fluid elements are 8-connected. Figure 9 illus-
trates the generation of the 1-pixel-wide front for two
merged charged fluid contours. Note that the interfaces in
Fig. 9�a� are drawn with different colors only for better
visualization and understanding. After the contour tracing
procedure, the inner fluid elements are discarded and a new
1-pixel-wide front is generated that represents only one
charged fluid contour, as shown in Fig. 9�c�. Therefore, the
topological changes of fronts for multiple charged fluids are
handled in this procedure. Note that the CFM does not
allow for contour splitting due to the contour tracing tech-
niques being used.

contour in a free 2-D space: �a� the initial front
� the 2-pixel-wide propagating interface is ob-

ng to the electric field directions in �a� based on
ont �1 pixel wide� is obtained by the standard
electrostatic equilibrium.

Fig. 13 Example of the normalized image gradient map using a 3
�3 Gaussian filter: �a� the given image and �b� the normalized
d fluid
nts, �b
ccordi
ting fr
ecified
smoothed image gradient map.
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3.4 Subpixel Precision
Most existing deformable model methods provide subpixel
precision for the area and length of the ROI. The CFM can
also provide subpixel precision, however, the fluid elements
are constrained on grids during the evolution. After the evo-
lution is terminated and the object of interest is detected,
the effective fields of all fluid elements are approximately
oriented inward, as shown in Fig. 10�a�. However, the ef-
fective fields on the rest of the final 2-pixel-wide interface
	the circles in Fig. 10�a�
 are approximately oriented out-
ward. Therefore, the true boundary of the ROI is some-
where inside the final propagating interface; this is similar

Fig. 14 Experimental results in segmenting an object with sharp
corners and cusps using 
=−1.2 in a 256�256 phantom image.
Note that the object has a wide intensity distribution that is similar to
the background. �a� The initial contour was purposely placed close
to the upper part of the object. �b� to �c� The evolution of the contour.
�d� The segmentation results with �=94.8%. The processing time
was approximately 20 s.

Fig. 15 Experimental results using three simul
with high-intensity structural noise embedded in
images are of 30% black background with 20%
to �d�, �e� to �h�, and �i� to �l�, respectively. �a�, �
segment the object. Figures in the middle two co
fluid that flowed around the high-intensity structu
�h�, and �l� The CFM overcame the structural an
region of interest with conformity �=96.8, �=96.
all experiments was approximately 4 s, while


=−1.4 for �e�, and 
=−1.6 for �i�.
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to the localization of the zero-level set function. We can
locate the boundary with subpixel precision by advancing
the fluid element a real number distance, which is com-
puted by substituting the effective fields into Eq. �13�. Now,
the fluid elements in Fig. 10�b� are located on real number
points and the required precision of the specific application
can be obtained by using the appropriate interpolation
techniques33–35 to calculate the area and length of the ROI.

3.5 Initialization and Front Propagation
Segmentation methods can be classified into manual, semi-
automatic, and automatic schemes based on the level of
interaction with users. Initialization of segmentation algo-
rithms is one of the most important steps for a fully auto-
matic procedure. The initialization presented in this section
leads to a semiautomatic segmentation. Theoretically, any
kind of geometrical shape can be used for the initial con-
tour. In our approach, an initial square contour was interac-
tively placed inside an ROI by the end-user for its simple
construction. The front propagation of the CFM in a free
2-D space using single and multiple square contours is de-
scribed in the following.

3.5.1 Front propagation using a single charged fluid
contour

Figure 11�a� shows that there is one CFM initialized in a
free plane. The four fluid elements having equal charge

regularly shaped phantom images �128�128�
ject and Gaussian background noise. The three
ian noise, 50 with 15%, and 70 with 10% in �a�

�i� One initial contour was manually placed to
are the evolution of the corresponding charged

se and through the lower background noise. �d�,
ground noise, and successfully segmented the
�=98.9%, respectively. The processing time for

slightly different values of 
=−1.2 for �a�,
ated, ir
the ob
Gauss
e�, and
lumns
ral noi
d back
7, and

using
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determine the position of the initial propagating front. The
propagating interface �2 pixels wide� is then computed
based on the directions of the effective fields in the front
deformation procedure, as illustrated in Fig. 11�b�. During
the charge distribution procedure, the fluid elements are
only allowed to share charges at those positions. When the
specified electrostatic equilibrium condition is achieved,
the new propagating front �1 pixel wide� can be obtained
using the contour tracing technique described in Sec. 3.3.
Note that the charge distribution of the system is usually
not uniform 	see Fig. 11�c�
. This is due to the fact that the
electric field is greater where the curvature is larger for an
irregularly shaped conductor in electrostatic equilibrium
�see Table 1�.

3.5.2 Front propagation using multiple charged fluid
contours

One of the advantages of the charged fluid method is that
we can automatically handle the topological changes of
multiple propagating fronts, as described in Sec. 3.3. The
front propagation of multiple charged fluids is illustrated in
Fig. 12�a�, where two charged fluids are initialized in a free
plane 	Fig. 12�d� shows the corresponding charge density
.
The charged fluids are treated as independent systems when
they are not touching each other. Moreover, the square con-
tours retain the same geometry while they are evolving in a
free space, as shown in Fig. 12�b�, and the corresponding
charge density is shown in Fig. 12�e�. However, the fluid
elements from one charged fluid not only interact with
themselves but also with those from the other fluid when
they are close. The two propagating fronts continue to
evolve and are merged when they contact each other. Fig-
ure 12�c� shows the merged propagating front of the CFM
after further evolution, and the corresponding charge den-
sity is shown in Fig. 12�f�.

3.6 Segmentation Algorithm and Implementation
The pseudocode of the overall charged fluid algorithm is
given in Algorithm 1, which consists of two core algo-
rithms corresponding to the charge distribution procedure
and the front deformation procedure, respectively. The al-
gorithm is terminated when the number of the fluid ele-
ments on the 1-pixel-wide front �see Figs. 8 and 9� remains
equivalent for two consecutive steps, i.e., there is no defor-

Fig. 16 Segmenting a simulated vascular-shaped object in a 256
�256 image with 5% Gaussian background noise using multiple
charged fluids: �a� three charged fluid contours with 
=−1.2 manu-
ally placed inside the simulated structure; �b� the charged fluids then
advanced toward the boundary of the simulated structure and two of
them were merged while evolving; �c� the remaining two charged
fluids were further merged while advancing toward the boundary of
interest, and �d� the whole boundary of the ROI was segmented with
�=95.0% and the approximate processing time was 18 s.
mation in the charged fluid shape after one more iteration.
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The software was developed36 in Java using the UCLA
jViewBox for image I/O, display and manipulation.

Algorithm 1. Charged fluid

1. parameter setting of 
 in Eq. �15� and � in Eq. �14�
2. image potential computation using Eq. �15�
3. repeat(i)

�a� uniform charge distribution over fluid elements
�b� repeat (j)

Algorithm 2
�c� until(j) electrostatic equilibrium is achieved

based on Eq. �14�
�d� 1-pixel-wide front construction described in

Sec. 3.3
�e� Algorithm 3
�f� mean potential computation and charge nor-

malization using Eq. �9�.

4. until(i) no deformation in the charged fluid shape
5. subpixel precision calculation, if desired

Algorithm 2. Charge distribution procedure

1. forward FFT computation of the charge array based
on Eq. �6�

2. inverse FFT computation of the potential array based
on Eq. �7�

3. electric field computation using Eq. �11�
4. advance distance computation using Eq. �13�
5. charge interpolation using the SUDS based on Fig. 4

Algorithm 3. Front deformation procedure

1. effective field computation using Eq. �16�
2. 2-pixel-wide interface localization based on Fig. 7

The charge distribution procedure �Algorithm 2� domi-
nates the overall computational cost of the charged fluid
algorithm. Using an FFT-based FSP algorithm, we change
the computational complexity from approximately O�N2�,
with N equal to the number of particles, to O�M2 log M�,
where M is the length of the square that is used for the
electric potential computation provided Lm=Ln=M 	see
Eqs. �6� and �7�
. The iterations of Algorithm 2 in loop j of
Algorithm 1 are approximately 5 for �=5% and 10 for �
=1%. Similarly, the computational complexity of the CPM
method is dominated by the calculation of the Coulombic
force O�N log N�, with N equal to the number of particles.24

Since level set based deformable model methods have
added one extra dimension to the problem, its complexity is
O�n3� in three dimensions with n equal to the number of
grid points in the spatial direction.5 The narrow band effi-
cient implementation technique has reduced the computa-
tional complexity to O�kn2�, with k equal to the number of
cells in the narrow band.5 In the following section, we dis-
cuss the settings of the parameters in our approach: 
 and
�. Some trivial constants are given as follows: �0
=10,000 in Eq. �15� and h=1 in Eq. �13�.

4 Results
We applied the CFM algorithm to segment simulated phan-

tom images, photographic pictures as well as medical im-
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Chang and Valentino: Image segmentation using a charged fluid method
ages. In all experiments, we used 7% for the value of �,
which leads to only one remaining parameter 
 in many
applications. The value of 
 is related to the position of the
maximum gradient magnitude of an image 	see Eq. �15�
. It
is usually set close to unity �absolute value�, however, if the
maximum gradient position is not in the ROI, a larger value
of 
 is required. A normalized image gradient map can be
used to facilitate the procedure of finding an appropriate
value of 
 for the ROI as illustrated in Fig. 13. To quanti-
tatively evaluate our approach, we define an overall pixel-
based measure, conformity �, which includes measures of
undersegmentation and oversegmentation

� � �1 −
FP + FN

TP
� � 100 % ,

where FP represents false positives, FN represents false
negatives, and TP represents true positives of the segmen-
tation results. All measures were based upon manual seg-
mentation results for each experiment that was executed on
a Pentium M 1.6 GHz machine with a Windows XP oper-
ating system.

4.1 Experiments on Simulated Phantoms
We begin by demonstrating the ability of the CFM in seg-
menting sharp corners and cusps in a 256�256 phantom
image, as shown in Fig. 14. Note that the object and the
background have a similar intensity distribution, which is
difficult to handle for intensity-based segmentation ap-
proaches. Figure 14�a� shows the initial contour with

=−1.2 that is purposely placed close to the upper part of
the object. The object was segmented with conformity �
=94.8%, as shown in Fig. 14�d�, which cost approximately
20 s.

One of the major advantages of the CFM is that it can be
applied to segment irregularly shaped objects with some
high-intensity structural noise and lower background noise.
Examples are illustrated in Fig. 15 using 128�128 noisy
phantom images. An initial contour in Fig. 15�a� was manu-
ally placed to segment the irregularly shaped object with
different kinds of noise artifacts. Figures 15�b� and 15�c�
show the evolution of the charged fluid flowing through the
20% Gaussian background noise and around the high-
intensity structural noise. Although the front propagation

Fig. 17 Experimental results in capturing the flower in a digital pic-
ture �256�256�: �a� one initial contour with 
=−1.1 manually placed
inside the flower; �b� the fluid elements at the black inner region
boundary were trapped and became the inner part of the front, while
the contour was evolving outward due to the repulsive force be-
tween fluid elements; �c� the inner fluid elements were discarded
when the outer fluid elements were merged using the contour trac-
ing technique; and �d� the contour finally located at the boundary of
the flower with �=96.4% and the processing time was approxi-
mately 24 s.
was influenced by the structural and background noise, the
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CFM successfully segmented the boundary of the irregu-
larly shaped object, as shown in Fig. 15�d�. We also dem-
onstrate our deformable model working on two other im-
ages with the same geometry but less intensity contrast and
noise in Figs. 15�e�–15�h� and Figs. 15�i�–15�l�, respec-
tively. Slightly different values of 
 	−1.2 for Fig. 15�a�,
−1.4 for Fig. 15�e�, and −1.6 for Fig. 15�i�
 were used in
segmenting the three images due to the different intensity
contrast. The scores of the conformity � are 96.8% for Fig.
15�d�, 96.7% for Fig. 15�h�, and 98.9% for Fig. 15�l�, re-
spectively. The approximate processing time for all experi-
ments in Fig. 15 was 4 s.

Figure 16 illustrates the ability to capture deep concavi-
ties and cusps in a simulated vascular-shaped object, as
well as the merging behavior of multiple charged fluids.
Three charged fluid contours with 
=−1.2 were manually
placed inside the simulated vascular structure in a 256
�256 image with 5% Gaussian background noise, as
shown in Fig. 16�a�. We show in Fig. 16�b� that the charged
fluids were advanced toward the boundary of the simulated
structure and two of them were merged while evolving. The
remaining two charged fluids were further merged while
advancing toward the boundary of interest, as shown in Fig.
16�c�. Finally, in Fig. 16�d�, the whole boundary of the ROI
was segmented with �=95.0%, and the approximate pro-
cessing time was 18 s.

4.2 Experiments on Photographic Pictures of Real
Scenes

The segmentation of objects in photographic pictures was
also evaluated. Figure 17 illustrates the ability of the CFM
to segment the flower in a 256�256 digital picture. The
position of the initial contour is shown in Fig. 17�a�. Note
that the contour crossed some part of the black inner re-
gion. The fluid elements at the black region boundary were
trapped and became the inner part of the front while the
contour was evolving outward due to the repulsive force
between fluid elements, as shown in Fig. 17�b�. They were
discarded when the outer fluid elements were merged using
the contour tracing technique, as illustrated in Fig. 17�c�.
Finally, in Fig. 17�d�, the contour located at the boundary
of the flower was obtained. The approximate processing
time was 24 s. The values of 
 and � for this experiment
were −1.1 and 96.4%, respectively.

A charged fluid with 
=−1.8 was manually initialized in
a 128�128 photographic picture superimposed by a tex-

Fig. 18 Experimental results in capturing the clock in a digital pic-
ture �128�128� with texture background: �a� One initial contour with

=−1.8 manually placed inside the clock; �b� and �c� the CFM over-
came the inner structures and evolved toward the boundary of the
clock during the segmentation process; �d� finally, the clock was
segmented including the shadow with �=91.9% and the approxi-
mate processing time was 9 s.
ture background, as shown in Fig. 18�a�. The CFM contour
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then advanced toward the boundary of the clock, as shown
in Figs. 18�b� and 18�c�. Since the intensity of the clock
shadow and the clock itself were somewhat close, the final
segmentation results in Fig. 18�d� were slightly poor with
conformity �=91.9%. The processing time was approxi-
mately 9 s.

4.3 Experiments on Magnetic Resonance (MR)
Images

In the previous sections, we illustrated how the charged
fluid successfully handled various common noise artifacts.
Here, we demonstrate the use of the CFM in the segmen-
tation of medical images. Figure 19�a� shows an initial con-
tour �
=−1.0� that was manually placed inside the brain in
an MR image �256�256�. Figures 19�b� and 19�c� show
that the charged fluid flowed through the inner structures
and evolved toward the boundary of the brain. Figure 19�d�
shows the segmentation results with conformity �=97.1%
and the approximate processing time was 24 s. We also
investigated the effect of the weight 
 in Eq. �15� to the
segmentation results in an MR image. All experiments used
a charged fluid with the same initial contour and position
	see Fig. 20�a�
, but different 
 values to extract the tumor
with some blurred boundaries in an MR image �256
�256�. The CFM contours leaked from where there are
relatively weaker boundary gradients when using relatively
lower �absolute� values of 
. A typical leakage result using

=−3.0 is illustrated in Fig. 20�b�. The contour leakage
stopped when we increased the �absolute� value of 
 to
−4.5, which achieved a �=90.9% result, as shown in Fig.
20�c�. The segmentation results are approximately the same
until an extremely high �absolute� value of 
=−15.0 is

Fig. 19 Segmenting the brain in an MR image �256�256�: �a� one
charged fluid with 
=−1.0 manually placed inside the brain, �b� and
�c� the charged fluid flowed through the inner structures and evolved
toward the boundary of the brain, and �d� the segmentation results
with �=97.1% that took approximately 24 s.

Fig. 20 Influence of different values of 
 in Eq. �15� in the segmen-
tation of the tumor in an MR image �256�256� using the CFM: �a�
the initial contour of the CFM for all experiments, �b� an example of
the contour leaking from relatively weaker boundaries using

=−3.0, �c� an example ��=90.9% � of the CFM in segmenting the
tumor using 
=−4.5, and �d� the segmentation results using an ex-
tremely high �absolute� value of 
=−15.0. Note that the segmenta-
tion results are approximately the same using different values of 


ranging from −4.5 to −15.0.
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used to segment the tumor, as shown in Fig. 20�d�. Multiple
charged fluids can also be used to simultaneously segment
objects in images. For example, Fig. 21�a� shows two
charged fluids with 
=−27.0 that were initialized inside a
ventricle with blurred boundaries in an MR image �256
�256�. The charged fluids evolved toward the boundary of
the ventricle, as illustrated in Figs. 21�b� and 21�c�. Finally,
Fig. 21�d� shows the individual charged fluid merged at the
boundary of the ventricle with �c=86.4%. The entire pro-
cedure took approximately 2 s.

4.4 Experiments on Computed Tomography (CT)
Images

We also applied the CFM to segment large objects in CT
images �512�512�. For example, Fig. 22 shows the initial
contours �inner squares� as well as the corresponding re-
sults in the segmentation of the lungs in two different chest
CT images using the charged fluid technique. The values of

 are respectively −1.4 for Fig. 22�a� and −1.5 for Fig.
22�b�. The approximate processing times taken to segment
Fig. 22�a� with �=96.3% and Fig. 22�b� with �=97.7%
were 57 and 47 s, respectively. Two different charged fluid
contours with the same 
=−3.0 were applied to segment
the brain in multiple adjacent CT slices as illustrated in
Figs. 23�a� and 23�b�. While the conformity values are high
with �=97.0% for Fig. 23�a� and �=98.7% for Fig. 23�b�,
the processing time was expensive �approximately 2 min
26 s�. Finally, in Fig. 23�c�, we demonstrate a failed ex-
ample of using the CFM to segment an object with broken
boundary gradients in a CT image. We manually initialized

Fig. 21 Applying two simultaneous charged fluids to segment the
ventricle in an MR image �256�256�: �a� two charged fluids with

=−27.0 initialized in the ventricle, �b� to �c� the charged fluids
evolved and flowed toward the boundary of the ventricle, and �d� the
segmentation results with �c=86.4% that took approximately 2 s.

Fig. 22 Segmentation results of the lung in chest CT images �512
�512� with conformities �a� �=96.3% and �b� �=97.7%. The
charged fluids with 
=−1.4 and 
=−1.5 evolved from the inner
squares toward the boundary of the lung that took approximately

57 s for �a� and 47 s for �b�, respectively.

Apr–Jun 2006/Vol. 15(2)2



Chang and Valentino: Image segmentation using a charged fluid method
a charged fluid contour 	the inner square in Fig. 23�c�
 with

=−1.0 inside the brain. While most fluid elements were
confined at the boundary of the ROI, few of the fluid ele-
ments leaked through the broken boundaries and kept mov-
ing outward.

5 Discussion
We described a new, physics-based deformable model us-
ing a simulated charged fluid, and demonstrated the ability
and behavior of this algorithm in segmenting a variety of
photographic and medical images. The CFM is capable of
capturing objects with sharp corners and cusps that have
similar intensity distribution to the background, as shown
in Fig. 14 �see also Figs. 1 and 2�. Figures 15, 17, and 18
illustrate the ability of the algorithm to flow through and
around structural and background noise to successfully seg-
ment objects of interest. A characteristic of this approach is
that the fluid elements flow around inner obstacles because
there is no charge inside an isolated conductor in electro-
static equilibrium �see Table 1�.

We demonstrated the characteristics and performance of
the charged fluid method on a variety of images. For ex-
ample, Figs. 16 and 21 respectively illustrate the use of
multiple charged fluids to capture deep concavities and
cusps in a simulated vascular structure, and to extract the
ventricle in an MR image. Figure 19 illustrates the segmen-
tation of the brain in an MR image. The boundary gradients
of the inner structures are weaker and somewhat discon-
tinuous, so the charged fluid flowed around and through the
inner structures and successfully segmented the brain. Fi-
nally, Figs. 22 and 23 illustrate the segmentation of the lung
in chest CT images and the brain in adjacent CT images.

Many high-level methods use a variety of mathematical
techniques with or without prior knowledge to achieve the
goal of accurate and automatic segmentation. Recently,
McInerney and Terzopoulos37 proposed a new deformable
model called topology adaptive snakes �T-snakes� to im-
prove the topological inflexibility of standard snakes.6 They
introduced an affine cell image decomposition �ACID�
reparameterization mechanism to the conventional snake
model such that it is relatively insensitive to the initial
placement and notably improves automation. The topologi-
cal transformations of T-snakes were handled by introduc-

8

Fig. 23 Examples of segmenting the brain in CT images �512
�512�. The inner squares represent the initial contours. �a� and �b�
The segmentation results ��=97.0% for �a� and �=98.7% for �b��
using the CFM �
=−3.0� in extracting the brain in multiple adjacent
CT slices, which took approximately 2 min 26 s. �c� A failed example
of using the CFM �
=−1.0� in the segmentation of the brain in a CT
image. The contour leaked through the broken boundaries because
there are no significant image gradient forces to confine the fluid
elements at those positions.
ing the entropy condition from the level set framework.
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Although the algorithm performs well, the modifications
are complicated and the number of experimental param-
eters has been increased. On the other hand, using the CFM
algorithm is conceptually straightforward due to the evolu-
tion procedures described in Sec. 3.2. Moreover, there is no
time interval assignment and only one parameter 
 setting
in our approach. The setting of 
 is related to the maximum
image gradient position as well as the gradient distribution
of the ROI, as demonstrated in Sec. 4. We investigated the
influence of 
 in the segmentation results of an MR image,
which demonstrated similar conformity measures with a
flexible range of 
 from −4.5 to −15.0 �see Fig. 20�.

Most existing deformable model methods require the
contour to be located at floating positions throughout the
process such that intrinsic properties such as the curvature,
the normal direction, and the internal forces can be more
accurately calculated from the geometry of the contour.
Compared to those deformable models, the advancement of
the CFM is optimized in such a way that the actual posi-
tions of the contour are always on grids during the evolu-
tion. After the target is detected, the area and length of the
ROI can be readily computed with subpixel precision. The
spirit of our approach is to rapidly advance the contour
toward the boundary of the ROI �pixel by pixel� during the
evolution, and then refine the precision as desired; this can
reduce overall processing time. For example, the approxi-
mate processing times to obtain the results illustrated in
Figs. 15, 18, and 19 were, respectively, 4, 9, and 24 s on a
Pentium M 1.6 GHz machine with a Windows XP operat-
ing system. The intrinsic properties of the CFM and the
essential characteristics for image segmentation are sum-
marized in Tables 2 and 3. The disadvantages of this new
deformable model �as summarized in Table 4� as well as

Table 2 The intrinsic properties of the CFM.

Intrinsic Properties

1

In a free space, the propagating
front is advanced in the normal
direction corresponding to the
direction of the electric field.

2
There is only a repelling
interaction between fluid
elements.

3 The propagating front is always
on a grid during the evolution.

4 There is no time interval setting.

5 There is no curvature
computation.

6 The CFM uses the FSP model
implemented via the FFT
algorithm to facilitate the electric
potential computation through
Poisson’s equation.

7
An initial square contour in a
free 2-D space retains the same
geometry while it is evolving.
the implementation difficulties are discussed next.
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5.1 Disadvantages of the CFM
Objects with blurred boundaries or nonuniform boundary
intensities have areas of weaker gradients along their
boundaries. Since the CFM uses the image gradient tech-
nique as the image potential, it is possible for the CFM to
leak through the weaker gradients of objects being seg-
mented, as demonstrated in Fig. 20�b�. One way to avoid
leakage is to increase the weight �absolute value� of the
image potential. This will not only increase the magnitude
of the gradient, but also inevitably enhance the noise. This
can sometimes generate unwanted noise barriers that con-
fine fluid elements inside the ROI, leading to poor results
	e.g., Fig. 20�d�
. The contour can also leak through broken
image gradients, as shown in Fig. 23�c�.

Suri38 pointed out the weakness of methods that use
edge-based techniques in the stopping criteria. They are
noise sensitive and nonrobust when segmenting objects
with blurred boundaries. He proposed a region-based level
set method that improves edge-based approaches by intro-
ducing a fuzzy classifier.38 Other methods using Bayesian
classification have also been proposed to improve edge-
based deformable models.11 Another possible way to pre-
vent leakage in the CFM is to introduce an attractive force
among fluid elements such that the motion of the leaking
fluid elements can be confined or stopped. All of these are
interesting topics for future research.

The computation time of the CFM is problem-dependent
due to the selection of the electrostatic equilibrium condi-
tion, which we have set to a constant value of �=7%. In
our opinion, such a setting is adequate in most of the seg-
mentation tasks in terms of the computational cost and ac-

Table 3 The essential characteristics of the CFM for image
segmentation.

Essential Characteristics for Image
Segmentation

1 The CFM interacts with the image data
via the image gradient potential
manner.

2 The topological change of the
propagating front is automatically
handled by tracing a 1-pixel-wide front
on the 2-pixel-wide interface.

3 The charged fluid can flow through and
around inner structural and
background noise to segment the
boundary of irregularly shaped objects.

4 The CFM can capture sharp corners
and cusps.

5 The initial contour does not have to be
placed at the center of the object of
interest.

6 There is only one parameter 
 setting
in most of the segmentation tasks.

7 The area and length of the ROI can be
obtained with subpixel precision.
curacy. The average iteration number needed to complete

Journal of Electronic Imaging 023011-1
the charge distribution procedure �Algorithm 2� is approxi-
mately 7, which retards the overall computational cost of
our approach. Modified charge interpolation methods and
more efficient electrostatic models could be investigated to
improve the computational cost.

5.2 Implementation Difficulties
In developing the CFM, we addressed two key problems:
the simulation of a charged fluid using an electrostatic
model and the propagation of the interface in deformable
models. The challenge was to find an optimal simulation
with sufficient accuracy at the lowest computational cost.
We used the electrostatic plasma simulation techniques de-
scribed in Sec. 2 to develop the CFM embedded in a de-
formable model for front propagation. We established the
correlation of the intrinsic properties between the deform-
able model and the electrostatic system such that the ex-
plicit parameters �curvature and normal direction� in a de-
formable model are implicitly related to the electrostatic
equilibrium properties �see Table 1�. Unlike other charged
particle systems, we changed the property and structure of
charged particles in such a way that the charged fluid be-
haves like a liquid that flows through and around objects.
There is no velocity and acceleration computation using the
CFM algorithm. Moreover, because each fluid element with
variable charge is always advanced on grid points during
the evolution, the number of fluid elements is automatically
equal to the length of the contour �the number of pixels in
the contour� using the contour tracing technique without
extra heuristic rules to handle the particle number �see Sec.
3.3�.

An important characteristic of electrostatic systems in
equilibrium is that the electric field is stronger at locations
where the curvature of the conducting surface is larger �see
Table 1�. Moreover, the magnitude of the electric field at
the surface is proportional to the local charge density. A flat
location with zero curvature will have relatively weaker
charge, while a sharp point with a high degree of curvature
will have a relatively larger charge. Suppose that there are
two charges located on a flat surface, as shown in Fig.
24�a�. Since the electrostatic forces are inversely propor-
tional to the square of the distance, these two charges
would tend to adjust their positions in such a way that the
system energy is minimized. On a perfect sphere, the final
distance between each adjacent charge would be equal.

However, on an irregularly shaped object, charges would
tend to accumulate at positions of greater curvature. Con-
sider the two charges on a concave surface with a sharper

Table 4 The disadvantages of the CFM for image segmentation.

Disadvantages for Image
Segmentation

1 The CFM can leak through the weaker
and broken gradients of objects being
segmented.

2 The initial contours have to be placed
entirely inside regions of interest.
curvature shown in Fig. 24�b�. These two charges repel
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each other with a force along the line connecting their cen-
ters. Unlike the force in Fig. 24�a�, which is primarily par-
allel to the surface, a majority of the repulsive force be-
tween the charges in Fig. 24�b� is perpendicular to the
surface. It is the parallel components of the repelling forces
to make charges move along the surface of a conductor.
Since the component of the force parallel to the surface is
considerably less, the two charges in Fig. 24�b� are pushed
by other neighboring charges to the position S. On the other
hand, two charges on a convex surface would be pushed
away like the diagram shown in Fig. 24�c�. Therefore, there
are relatively weaker charges at the position U.

In image segmentations the propagating interface will be
irregularly shaped. In a noisy region, the propagating inter-
face is particularly rough, with many sharp points. As a
consequence, the charges tend to accumulate at locations
where the curvature is locally higher through the whole
propagating interface. This leads to a nonuniform charge
distribution. Such a nonuniform charge distribution along
the interface of the charged fluid increases the complexity
and difficulty of tracing the propagating front, which we
addressed by tracing a 1-pixel-wide front from the
2-pixel-wide interface during curve evolution �see Secs. 3.2
and 3.3�. Therefore, the propagating front can be rapidly
and correctly reconstructed using a simple contour tracing
technique.

5.3 Summary
We introduced the concept of using the simulation of a
charged fluid to perform image segmentation. The algo-
rithm was used to segment noisy and inhomogeneous ob-
jects with sharp corners and cusps in monochrome images.
We illustrated a wide variety of applications of using the
CFM in the segmentation of phantom, photographic, and
medical images with the sole setting of parameter 
, which
we quantitatively evaluated by �, the conformity measure.

This algorithm is limited to the segmentation of an ob-
ject with a closed boundary, and it cannot simultaneously
segment objects within that boundary. Another limitation is
that the current algorithm must be initialized somewhere
inside this boundary. It is not necessary to place the initial
contour at the center of the object being segmented, but
initialization near the center can save processing time.
Lastly, the current algorithm does not allow splitting of the

Fig. 24 Electric forces between two charges o
tween two charges on a flat surface is paralle
charges on a concave surface with high degree
The two charges will eventually advance to the
�c� The interaction of electric force between two
that they are pushed away. The charge dens
electrostatic equilibrium is achieved.
propagating front �although this could be implemented if
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needed�. Our approach requires no curvature computation,
and the area and length of the ROI can be obtained with
subpixel precision. The advantages and properties of the
CFM indicate that it is a promising image segmentation
technique in a wide variety of image processing applica-
tions. The acceleration and automation of the CFM algo-
rithm is currently under investigation. Additional work is
required to investigate the segmentation of blurred images
by incorporating image regional data or attractive forces, as
described in Sec. 5.1.
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