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Abstract. In the biometric verification system of a smart gun, the
rightful user of the gun is recognized based on grip-pattern recogni-
tion. It was found that the verification performance of grip-pattern
recognition degrades strongly when the data for training and testing
the classifier, respectively, have been recorded in different sessions.
The major factors that affect the verification performance of this sys-
tem are the variations of pressure distribution and hand position
between the probe image and the gallery image of a subject. In this
work, three methods are proposed to reduce the effect of the varia-
tions by using different sessions for training, image registration, and
classifier fusion. Based on these methods, the verification results
are significantly improved. © 2008 SPIE and IS&T.
�DOI: 10.1117/1.2892675�

1 Introduction
Our work focuses on the development of a prototype rec-
ognition system as part of a smart gun with grip-pattern
recognition, ensuring that it can only be fired by its rightful
user. The smart gun is intended for use by the police, since
carrying a gun in public brings considerable risks. In the
United States, vital statistics show that about 8% of the
law-enforcement officers killed in a shooting incident were
shot by their own weapons.1 Biometric authentication is an
attractive solution to this problem, because it requires mini-
mal or no additional action by the user. This approach has
been taken up by a small number of parties, both industrial
and academic, who proposed a number of solutions. In Ref.
2, an authentication system based on voice verification is
described. The drawback of such a system is that it is not
reliable in noisy environments. Solutions based on finger-
print recognition have been described in Ref. 3, for ex-
ample. The disadvantage of fingerprint recognition on a
pistol is that it does not work in combination with gloves
and that it is sensitive to dirt and weather conditions.

Grip-pattern recognition, i.e., recognition based on the
pressure exerted when holding an object, does not have
these disadvantages. This type of biometric recognition has
been investigated by the New Jersey Institute of
Technology,4,5 by Belgian weapon manufacturer FN Her-
stal, and by us.6–12 The only results reported, besides ours,
were published in Ref. 5, which is different from the one

reported here in various aspects. First, in Ref. 5, the dynam-
ics of the grip-pattern prior to firing are used, while in our
approach recognition is, at present, based on a static grip
pattern. Second, in Ref. 5, 16 pressure sensors are used: one
on the trigger, and 15 on the grip of the gun. These sensors
are piezo-electric sensors, producing 16 time signals. We
apply a much larger resistive sensor array, which produces
a pressure image. Third, the recognition methods of both
systems differ. In Ref. 5, a method based on neural net-
works is presented, which seems to be trained for identifi-
cation, whereas we apply likelihood-ratio-based
verification.13 Another difference is the way that both sys-
tems have been evaluated. In Ref. 5, data was collected
from four shooters, while we used data from 39 trained
police officers, who are the targeted user group. The recog-
nition results are, unfortunately, difficult to compare be-
cause in Ref. 5 the recognition rates obtained in an identi-
fication experiment were presented, while we present equal
error rates in a verification experiment, which is more rel-
evant for the final application.

The first prototype of our grip-pattern recognition sys-
tem has been described in Refs. 6 and 7 in terms of its
design, implementation, and evaluation. The sensor, used
for measuring the grip pattern, is a 44�44 piezo-resistive
pressure sensor made by Tekscan Incorporated, South
Boston.14 An initial collection of grip patterns was gathered
from a group of mostly untrained subjects with no experi-
ence in shooting. Figure 1 shows both the prototype of the
smart gun and an example of a grip pattern. From Fig. 1�b�,
one can see the pressure pattern of the thumb in the upper-
left part of the image and those of the other fingers in the
lower-left part. Note that only three fingers are present,
because the index finger is on the trigger of the gun. First
experimental results indicated that the grip pattern con-
tained useful information for identity verification.7

To explore the verification performance of the system
when used by its target user, the police, we have collected
new data from a group of police officers in three sessions
with one month and four months in between, approxi-
mately. The data have been processed for verification by
using the recognition algorithm described in Refs. 7 and 11.
The experimental results indicate that if data for training
and testing come from the same session, the verification
results are fairly good, with an equal-error rate �EER� of
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below 1%. If data for training and testing come from dif-
ferent sessions, with weeks or more in between, the results
are unsatisfactory, i.e., about 15% EER on average. The
EER is the false-accept rate �FAR�, or false-reject rate
�FRR�, at the point of operation of the verifier where the
FAR equals the FRR. Since in practice there will always be
a time interval between data enrollment and verification,
the across-session results are more realistic, and therefore,
need to be improved.

After analyzing the images collected in different ses-
sions, we have found that even though the grip-pattern im-
ages from a certain subject collected within one session
look fairly similar, a subject tends to produce data with
larger variations across sessions. First, a variation of pres-
sure distributions occurs between grip patterns from a sub-
ject across sessions. Second, another type of variation re-
sults from the hand shift of a subject. Figure 2 shows two
images collected from one subject in two different sessions,
respectively. One can see that these two images have quite
different pressure distributions. Also, the grip pattern in
Fig. 2�b� is located higher than that in Fig. 2�a�. Further

research has shown that these variations are the main rea-
son for the unsatisfactory across-session verification
results.11 Therefore, to improve the recognition results, the
effect of the across-session variations of data needs to be
reduced.

First, we have combined the data of two out of three
sessions for training to model the across-session variations
in the training procedure better, and we have used data of
the remaining session for testing. This has brought signifi-
cant improvement of the recognition results. Second, to fur-
ther reduce the variation caused by the hand shift, we have
applied template-matching registration �TMR�15 as a pre-
processing step prior to classification. For comparison,
maximum-matching-score registration �MMSR�11 has also
been implemented. It has been found that TMR is able to
effectively improve the across-session verification results,
while MMSR is not. However, the hand shift measured by
MMSR has proved particularly useful in discriminating im-
postors from genuine users. If two images belong to the
same subject, the hand shift value produced by MMSR is
on average much smaller than if they belong to different
subjects. This has inspired the design of a new classifier,
based on both the grip pattern and the hand shift. The veri-
fication error rates have been further reduced significantly.

Fig. 1 �a� Prototype of the smart gun. �b� An example of grip-pattern
image.

Fig. 2 Grip-pattern images of a subject in different sessions.
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This work presents and analyzes methods to improve the
verification performance of the system. Section 2 describes
the verification algorithm. Subsequently, the procedure of
data collection is reviewed in Sec. 3. Section 4 presents and
analyzes the experimental results. Finally, conclusions are
given in Sec. 5.

2 Verification Algorithm
It is assumed that the data are Gaussian. The verification is
based on a likelihood-ratio classifier. The likelihood-ratio
classifier is optimal in the Neyman-Pearson sense, i.e., the
FAR is minimal at a given FRR or vice versa, if the data
have a known probability density function.13,16 The pixels
in the 44�44 image containing the grip pattern have values
in the range �0…255�, corresponding to a pressure range of
0 . . .30 psi.6 These pixel values are arranged into a �in this
case 44�44=1936-dimensional� column vector x. Prior to
classification, the measurement vector x is normalized, i.e.,
�x�2=1, and subsequently each element xi is replaced by
log�xi+��, with �=10−16 added to prevent problems if xi

=0. The reason for the normalization is that it makes the
verifier robust to global pressure variations. The reason for
taking the logarithm is that the probability density function
�PDF� of the data better approximates a Gaussian PDF.

A measured grip pattern originates either from a genuine
user, or from an impostor. The grippattern data of a certain

subject is characterized by a mean vector �W and a cova-
riance matrix �W, where the subscript W denotes “within-
class,” while the impostor data is characterized by �T and
�T, where the subscript T denotes “total.” The underlying
thought is that we assume that no further assumptions can
be made about an impostor. Therefore, the impostor data
are drawn from the density of all possible grip patterns,
which is called the total density. The matching score of a
measurement x with respect to this subject is derived from
the log-likelihood ratio. It is computed by

S�x� = − �x − �W�T�W
−1�x − �W� + �x − �T�T�T

−1�x − �T� .

�1�

The superscript T denotes vector or matrix transposition. If
S�x� is a preset threshold, the measurement is accepted as
being from the genuine user. Otherwise it is rejected. The
threshold determines the FRR and the FAR of the verifica-
tion.

In practice, the mean vectors and covariance matrices
are unknown, and need to be estimated from a set of train-
ing data. In our case, the number of training samples from
each subject should be much greater than 1936. Otherwise,
the algorithm would become overtrained, and estimates of
�T and �W would be inaccurate. In fact, as a rule of thumb,
it is recommended to use at least ten times as many training
examples as the number of parameters to be estimated.17

Clearly, we could not possibly acquire such a large number
of measurements. This problem was solved by the follow-
ing steps prior to classification. First, we whiten the data by
means of principal component analysis �PCA�, such that �T
becomes an identity matrix with a reduced dimensionality
of NPCA. At this point we make a simplifying assumption
that all subjects share the same within-class covariance ma-
trix, so that it can be estimated more accurately from the
data of all the subjects. It has been proved in Ref. 7 that in
this new feature space, the number of modes of variations
contributing to the verification is not more than Nuser−1,
where Nuser is the number of subjects in the training data.
Moreover, these modes of variations are those with the
smallest variances. Accordingly, a further dimensionality
reduction is achieved by applying another orthogonal trans-
form to the data, thus diagonalizing the within-class cova-
riance matrix, and subsequently discarding all the modes of
variations except the Nuser−1 ones with the smallest vari-
ances. This last operation is in fact a dimensionality reduc-

Table 1 Within-session experimental results.

Session EER�%�

0 1.4

1 0.5

2 0.8

3 0.4

Table 2 Across-session experimental results.

Train Test EER �%�

2 1 5.5

3 1 14.7

1 2 7.9

3 2 20.2

1 3 24.1

2 3 19.0

Fig. 3 FAR and FRR curves obtained from across-session, within-
session, and LM-plug-in experiments. Session 1 was used for train-
ing, session 2 for testing.
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tion by means of linear discriminant analysis �LDA�. After
LDA, the total covariance matrix remains an identity ma-
trix, while the within-class covariance matrix becomes di-
agonal. Both covariance matrices have a dimensionality of
NLDA=Nuser−1.7 The whole procedure of dimensionality re-
duction can be represented by a multiplication by a trans-
formation matrix F. As a result, Eq. �1� can be rewritten as

S�x� = − �p − q�T�W
−1�p − q� + �p − r�T�p − r� , �2�

where

p = Fx , �3�

q = F�W, �4�

r = F�T, �5�

and �W denotes the resulting diagonal within-class covari-
ance matrix. Therefore, a total of four entities needs to be
estimated from the training data: �W, �T, F, and �W. The
reader is referred to Ref. 7 for more details of the verifica-
tion method.

3 Data Collection
We have recorded the grip-pattern data from a group of
police officers in three sessions,8 with approximately one
and four months in between. In total, 41 subjects have par-
ticipated in both the first and second sessions with 25 grip-
pattern images recorded from each subject. Data from two
subjects have not been used in the experiments in this
work, because the image quality was insufficient. In the

third session, however, data have been collected from 22
subjects out of the same group and each subject contributed
50 images.

In each session, the subject was asked to pick up the
gun, aim it at a target, hold it, say “ready” as a signal for us
to record his grip-pattern image, and then release the gun
after the recording was finished. For each subject, this pro-
cedure has been repeated for the recording of all the
samples.

4 Experiments, Results and Discussion

4.1 Initial Experiments

4.1.1 Experiment setup and results
Two types of experiments have been done. One is the
within-session experiment, in which data for training and
testing are clearly separated but come from the same ses-
sion. The other is the across-session experiment, in which
data collected in two different sessions are used for training
and testing, respectively. The verification performance is
evaluated by the overall EER of all the subjects. The EER
is the false-accept rate �FAR�, or false-reject rate �FRR�, at
the point of operation of the verifier where the FAR equals

Table 3 Across-session experimental results in EER �%� with one entity estimated from subset B.

Train 2 3 1 3 1 2

Test 1 1 2 2 3 3

RF 5.5 14.7 7.9 20.2 24.1 19.0

�w 1.0 2.2 2.1 2.8 2.7 2.6

�W 6.0 13.5 7.3 17.3 24.3 19.9

�T 5.5 14.9 8.0 20.0 24.0 19.2

F 3.8 23.8 3.2 18.3 13.7 14.9

Table 4 Across-session experimental results with double-trained
model.

Train Test EER�%�

2+3 1 4.0

1+3 2 5.1

1+2 3 13.7 Fig. 4 FAR and FRR curves obtained from the across-session ex-
periments with and without registration approaches.
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the FRR. It is computed from the likelihood ratios of all the
genuine users and impostors. In the within-session experi-
ment, the overall EER is computed based on all the likeli-
hood ratios obtained from 20 runs. In each single run, 75%
of the data are randomly chosen for training and the re-
maining 25% for testing. The number of dimensions re-
tained after the PCA step �see Sec. 2� is given by NPCA
=75. This number was obtained experimentally and is not
very critical. The number of features after the LDA step
was given by NLDA=Nuser−1. This means that NLDA=38
when data from the first and second sessions were used for
training, and NLDA=21 when data from the third second
session was used.

The results are presented in Table 1. As a reference, the
result obtained with data collected from a group of un-
trained subjects who have no experience in shooting is also
presented, denoted as session 0. Table 2 shows the across-
session experimental results. The corresponding FAR and
FRR curves are shown in Fig. 3. Here, as an example, the
data from the first and second sessions are used for training
and testing, respectively.

One can see that if data for training and testing come
from the same session, the verification results are fairly
good. Also, much lower error rates have been obtained with
data from the police officers, compared to the case where
data have been collected from the untrained subjects. How-

ever, much worse verification results were produced when
data collected in two different sessions were used for train-
ing and testing, respectively.

4.1.2 Data characteristics
Comparing the grip-pattern images of one subject recorded
in different sessions, we have found large across-session
variations. That is, the grip pattern of a certain subject
seems to vary greatly from one session to another. See Fig.
2 for an illustration of this effect. Specifically, two types of
variations have been observed. First, the pressure distribu-
tion of one’s data recorded in one session is usually quite
different from that recorded in another session. Second, the
hand position changes from one session to another.

As a result of the across-session variations of data, the
value of each entity in Sec. 2 ��W, �T, F, and �W� varies
from session to session. To find out the variation of which
entity affects the verification performance the most, we did
the following “plug-in” experiment. First, we randomly
split the test set into two subsets of equal size, denoted as A
and B, then we use one subset, for example, A, for testing.
In the computation of Eq. �2�, each time we estimate three
out of the four entities from the training set, yet the fourth
one from subset B.

The experimental results are given in Table 3, in which
the last four rows contain the EERs obtained with �W, �T,
F, and �W estimated from subset B. As a reference, the
original EERs of the across-session verification are also
shown, denoted as RF. Obviously, the across-session varia-
tion in �W, the mean value of each individual subject’s
data, affects the verification performance the most. If this
type of variation is reduced, the verification results improve
dramatically and become much closer to those shown in

Table 5 Across-session experimental results in EER �%� with and without registration approaches.

Train 2 3 1 3 1 2

Test 1 1 2 2 3 3

RF 5.5 14.7 7.9 20.2 24.1 19.0

TMR 3.9 12.9 6.0 17.8 18.4 18.9

MMSR 5.8 17.7 8.0 22.9 27.7 22.8

Table 6 Across-session experimental results in EER �%� with
double-trained model, with and without registration approaches.

Train 2+3 1+3 1+2

Test 1 2 3

RF 4.0 5.1 13.7

TMR 3.2 5.5 13.1

MMSR 4.4 7.7 20.1
Fig. 5 Probability distributions of hand shift after TMR.
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Table 1. The error rates before and after “plugging in” the
mean values are shown in Fig. 3. It can be observed that the
FRR has decreased compared with the across-session case.
On the other hand, the FAR has increased. However, this
effect is not as strong as that of the decrease of FRR.

4.2 Experiments with a Double Trained Model

Given the previous analysis, the verification results can be
improved by reducing the across-session variations in the
mean value of each subject’s data. Therefore, we combine
data of two out of the three sessions for training and use
data of the remaining session for testing. In this way, both
the variation of the pressure distribution and that of the
hand position are modeled much better in the training pro-
cedure, compared to the case where the classifier is trained
on only one session of data. Table 4 shows the experimental
results. One can see that great improvement has been
achieved, compared to those shown in Table 2.

Fig. 6 Probability distributions of hand shift after MMSR.

Fig. 7 �a� Template image of one subject from the first session; �b� image of an impostor from the
second session; �c� image of the impostor after TMR; and �d� image of the impostor after MMSR.
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4.3 Experiments with Data Registration
To reduce the data variation caused by the hand shift fur-
ther, we apply data registration as a preprocessing step
prior to classification. According to our observation, only
translation is relevant in the grip-pattern image registration.
Two registration methods are concerned: template-
matching registration �TMR� and maximum-matching
score registration �MMSR�. We first introduce these ap-
proaches. The experimental results by using them are com-
pared afterward.

4.3.1 Registration method description
In TMR,15 the cross correlation of a measured image and a
registration-template image is computed. The location of
the pixel of the highest value in the output image deter-
mines the hand shift value of the measured image with
respect to the template image. If the measured image is
well aligned regarding the template image, this pixel should
be located precisely in the origin of the output image. In
our case, the measured image, the template image, and the
output image are all of the same size, i.e., 44�44. The
shifted version of an original image after TMR can be de-
scribed as

x0 = arg max
x̃

y · x̃

�y��x̃�
, �6�

where x̃ denotes a shifted version of an original image x,
and y denotes the template image for registration.

In MMSR, a measured image is aligned to such a posi-
tion that the maximal matching score, S�x� in Eq. �2�, is
obtained. Specifically, an image is shifted pixel by pixel in
both the horizontal and vertical directions. After each
movement, a new matching score is computed. This proce-
dure continues until the original image has been shifted to
all the possible locations within a predefined scope of
20 pixels in each direction. In the end, the shifted image
with the maximal matching score is selected as the regis-
tration result. It can be represented as

x0 = arg max
x̃

S�x̃� , �7�

where x̃ denotes a shifted version of the original image x.

4.3.2 Experimental results after registration
Prior to classification, we applied TMR and MMSR to the
test data, respectively. Note that in both cases TMR was
applied to the training data to build up a stable after-
registration model with user-specific registration templates.
Specifically, among all the training samples of a certain
subject, the one with the minimal Euclidean distance to
their mean value was used as the registration template of
this subject. This procedure was repeated iteratively until
no more shift occurred for each image. Also, we only used
the lower-left part, of size 33�33, of each image, where
the fingers of the subjects are located, to compute the cross

Table 7 Across-session experimental results in EER �%� with reference and improved classifiers.

Train 2 3 1 3 1 2

Test 1 1 2 2 3 3

RF 5.5 14.7 7.9 20.2 24.1 19.0

TMR 3.9 12.9 6.0 17.8 18.4 18.9

COM 3.4 8.1 5.0 12.4 11.0 12.6

Table 8 Across-session experimental results in EER �%� with
double-trained model, with reference and improved classifiers.

Train 2+3 1+3 1+2

Test 1 2 3

RF 4.0 5.1 13.7

TMR 3.2 5.5 13.1

COM 2.3 4.5 9.5Fig. 8 Scatter graph of matching scores computed from both grip
pattern and hand shift.
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correlation. There are several reasons for this. First, for a
certain subject, sometimes the positions of the thumb and
fingers do not always change in the same way �see Fig. 2�.
Second, according to our observation, sometimes the pres-
sure pattern of one’s thumb is rather unclear or not even
present, and therefore, not reliable enough for the registra-
tion.

Tables 5 and 6 present the experimental results. As a
reference, the results without any data registration are also
shown, represented as RF. One can see that except in one
case in Table 6, the results have been improved when TMR
is applied to the test data, while the results become worse
when the test data are preprocessed by MMSR.

The corresponding FAR and FRR curves can be found in
Fig. 4. In this figure, the data from the first and second
sessions were used for training and testing, respectively.
One can see that when either of the two registration meth-
ods is in use, for a certain threshold of the matching score,
FRR decreases and FAR increases compared to their coun-
terparts without any registration step. However, in the case
of TMR, FRR decreases more than FAR increases, while in
the case of MMSR it is the other way around.

The different effects of these registration methods result
from their working principles and the characteristics of the
grip-pattern images. Apart from the hand shift, a large
variation of the pressure distribution may exist between a
measured grip pattern and the template to which it is com-
pared �see Fig. 2�. Therefore, neither of the registration
methods may yield an ideal result. Note that in TMR the
“template image” refers to the registration template image,
while in MMSR it refers to the recognition template image,
i.e., �W in Eq. �2�. The increase in EER when MMSR is
applied, shown in Table 5, may be explained as follows.
Since the original matching scores of the impostors will be
relatively low compared to those from the genuine users,
the increase in the matching scores of the impostors will be
on average larger than of the genuine users. That is, the
effect of the increasing FAR will be stronger than that of
the decreasing FRR. In contrast, TMR, not aiming at a
maximum matching score, does not increase the FAR as
much as MMSR does. As a net effect, TMR improves the
verification results, whereas MMSR does not.

4.4 Verification Based on Both Grip Pattern and
Hand Shift

For each measured image, the application of both TMR and
MMSR results in a value of hand shift. We found that if the
measured image and the template image belong to the same
subject, the produced hand shift value is on average much
smaller than if they belong to two different subjects, re-
spectively. This is easy to understand, since the variations
of data from two different subjects are supposed to be more
than those from the same subject. Therefore, it is very
likely that the grip pattern of the impostor needs to be
shifted more than that of the genuine user to obtain the
highest matching score. As an example, Figs. 5 and 6
present the probability distributions of the l2-norm of the
hand shifts as measured by TMR and MMSR, respectively.
The training data are from the third session, and the test
data are from the first session. One can see that the hand
shifts from the impostors are generally small values in Fig.
5, yet those in Fig. 6 are much more wildly distributed.

From these figures it can be observed that genuine and
impostor hand shifts are more discriminative if they are
produced by MMSR rather than by TMR. Specifically, the
hand shifts from the impostors produced by MMSR are on
average larger than those produced by TMR, while the
hand shifts from the genuine users have similar values pro-
duced by these two approaches. This may be because the
registration results of TMR depend more on the global
shapes of the grip patterns, which constrains the shift val-
ues of the images from impostors to a relatively small
value. See Fig. 7 for an illustration of this effect.

Inspired by the special characteristic of the hand shift
produced by MMSR, we implemented a new classifier as a
combination of two classifiers. Specifically, one is based on
the grip pattern by using the current recognition algorithm,
with TMR as a preprocessing step. The other one performs
the verification based on the minus l2-norm, obtained from
the hand shifts in both the vertical and horizontal directions
produced by MMSR. Note that in both classifiers, TMR is
applied to the training data to build up a stable after-
registration model. A measured grip-pattern image is veri-
fied as being from the genuine user if, and only if, the
verification results given by both classifiers are
positive.18,19

This can be interpreted by Fig. 8, where circles and stars
represent images from the genuine users and the impostors,
respectively. Let the threshold value be set as −5 on the
horizontal axis, and as −100 on the vertical axis. Then only
those corresponding images, represented as scatter points
located in the upper-right corner on the plot, will be clas-
sified as being from the genuine user, while all the other
images will be rejected.

Tables 7 and 8 show that the verification results have
been further improved by using the combination of these
two classifiers, denoted as COM. For easy comparison, the
experimental results in the third and the fourth rows of
Table 5 are presented as well.

5 Conclusion
The grip pattern has been proved to contain useful informa-
tion for identity verification. However, due to large varia-
tions of each subject’s data collected in different sessions,
the recognition performance of the system is not yet satis-
factory. There are mainly two types of variation. One is the
variation of pressure distributions. The other type of varia-
tion results from the hand shift of the subject.

To improve the verification results, we first apply the
double-trained model. The data of two sessions are com-
bined for training, so that the variations can be modeled
better in the training procedure. In this way, significant im-
provement of the verification results is achieved. Second,
two registration approaches are applied to further reduce
the variation caused by the hand shift: template-matching
registration �TMR� and maximum-matching score registra-
tion �MMSR�. Both methods prove to be useful to improve
the verification performance of the system. Specifically,
verification error rates are reduced effectively when the
TMR is used as a preprocessing step prior to classification.
Also, the hand shift value produced by the MMSR is on
average much smaller if the measured image and the tem-
plate image belong to the same subject rather than if they
belong to two different subjects, respectively. As a result, a
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new classifier is designed based on both the grip patterns
preprocessed by TMR, and the hand shifts produced by
MMSR. The application of this combined classifier has
greatly improved the verification results further.
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