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bstract. Presented is a unique halftone geometric configuration
or color halftone printing with an arbitrary number of colorants. The
onfiguration uses a plurality of halftone screens to produce prints
hat are moiré free and possess uniform hexagonal periodic ro-
ettes. Moiré-free N-color halftoning is achieved by selecting half-
one frequencies from harmonics of two rosette fundamental fre-
uencies. With such screen configurations, the interference
etween any halftone frequency components, fundamentals, or
igher-order harmonics of different colorants is a linear integer com-
ination of the two rosette fundamental frequencies. The linear inte-
er combination produces a hexagonal grid of frequency compo-
ents with no components lower than the rosette frequencies other
han the zero-frequency component. Thus, no visible interference,
r moiré, occurs within the halftone screen combinations. The ob-
erved halftone pattern is a visually pleasing, two-dimensionally uni-
ormly repeated hexagonal rosette. The uniform-rosette configura-
ions can be implemented using digital single-cell nonorthogonal
alftone screens. The uniform-rosette method can be used with con-
entional cyan-magenta-yellow-black halftone printing or with print-
ng systems that require a relatively large number of halftone
creens. The additional screens can be used for enhanced printing
pplications, such as printing with high-fidelity colorants, light colo-
ants, or special colorants, such as white, metallic, and
uorescent. © 2008 SPIE and IS&T. �DOI: 10.1117/1.2907206�

Introduction
ost digital color printers operate in a binary mode, where

or each color separation, a given pixel is written as a col-
red spot or it is not written. The human visual system
rovides the illusion of continuous color tones by spatial
veraging of the printed colored spots and intermediate
pace. Digital halftoning controls the printing of the col-
red spots and, therefore, defines the appearance of the
alftone output. The most common halftone method is
creening, which compares requested continuous tone lev-
ls to predetermined threshold levels typically defined over
rectangular cell that is tiled to fill the image plane. The

utput of the screening process is a binary pattern of mul-
iple small “dots,” which are regularly spaced as deter-
ined by the addressability of the imaging system. Mark-

ng processes such as electrophotography and offset
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printing typically cluster the small dots �or activated pixels�
within a cell because the larger clustered mass prints with
more consistent size and density than spots printed with
individual isolated pixels. The alignment of the clusters via
the halftone-cell tiling defines the geometry of the halftone
screen. The resulting halftone structure is a two-
dimensionally �2D� repeated pattern, possessing two funda-
mental spatial frequencies that are completely determined
by the geometry of the halftone screen.

A common problem in digital color halftoning is the
potential manifestation of moiré patterns. Moiré is an un-
desirable interference pattern that can occur when two or
more color halftone separations are printed in overlay. The
interference occurs mainly due to the nonlinearity of color
mixing of subtractive colorants. Another cause of moiré is
development suppression of one colorant by another colo-
rant. As a result, low frequency components can be visibly
evident as pronounced interference patterns in the halftone
output. To avoid moiré due to misalignment, misregistra-
tion, or other related printing conditions, different halftone
screens are typically used for different color separations
and the fundamental frequency vectors of the different half-
tone screens are separated by relatively large angles. Given
a large angular separation, the vector frequency difference
between any two fundamental frequencies of the different
screens will be large enough so that no visibly objection-
able moiré patterns are produced.

In the printing industry, there is a classical screen com-
bination that provides suitable angular separation for two-
colorant printing under most print conditions and provides
moiré-free printing for three-colorant printing. This combi-
nation consists of three screens constructed by halftone
cells that are square in shape, are of identical frequency,
and are placed one each at 15, 45, and 75 deg.1

The difficulty in avoiding objectionable moiré between
halftone screens becomes more challenging when consider-
ing that four colorants are used in most printing presses.
The four colorants are typically cyan �C�, magenta �M�,
black �K�, and yellow �Y�. The classical 15/45/75 screen
configuration is commonly used for C, M, and K, but
screening methods for Y are often less than optimal. One
common clustered-dot Y halftone configuration employs a
0-deg screen with a frequency that is �10% higher than the
Apr–Jun 2008/Vol. 17(2)1
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ther screens.2 Under some printing conditions, low con-
rast moiré can be seen in images printed by such halftone
onfiguration for certain combinations of yellow and other
olorants. Another common configuration for Y halftoning
ses a stochastic screen or error diffusion. The small iso-
ated dots produced by those methods can result in a high
egree of instability when used by many common printing
rocesses. The result is inconsistency of page-to-page color
nd nonuniformity of color within a page.

There are several high quality, or enhanced, printing ap-
lications that require more than four image separations.
or example, high fidelity �hi-fi� color printing typically
ses one or more additional primary colorants to extend the
amut of a print engine. Two common choices of additional
rimaries are orange and green, but other colorants, such as
ed, blue, and violet may be used. A well-known example
f high fidelity printing is Pantone Hexachrome printing.
ow chroma printing employs an additional toner or ink
ith the same or similar hue as a conventional toner. For

xample, low chroma magenta may be used along with
onventional magenta to enable smoother tone gradations
nd reduced texture in flesh tones compared to using con-
entional magenta alone. Typical low chroma, or light,
olorants include light magenta, light cyan, and gray. Other
4-colorant enhanced printing methods may employ spe-

ial colorants, such as white, metallics, and fluorescents,
nd may have applications in security and special imaging
ffects.

Due to moiré considerations associated with additional
lustered-dot halftone screens, the alternatives currently
vailable for enhanced printing with �4-channel halftoning
uffer from color instability, undesirable halftone structure
ppearance, or limitations on applications. For example,
tochastic screens and error diffusion have been used for
i-fi colorant and low chroma toners, but the small dot sizes
end to produce unstable results for xerography and offset
rinting. Line screens have also been used, but the line
tructure tends to be considered undesirable unless used at
ery high frequencies, which, on the other hand, can be
nstable. Some methods use the same screen or same
creen frequencies and angles for a hi-fi colorant and for its
omplimentary colorant �e.g., same screen for cyan and or-
nge�, but that method can place limitations on the color
anagement operations and strict requirements on color-to-

olor registration, and it does not readily apply to low
hroma toners.3,4

The understanding of moiré becomes even more compli-
ated, and the solutions more challenging, when you con-
ider that clustered dot halftoning produces 2D repeated
inary patterns. A periodic binary structure contains fre-
uency components other than the fundamentals. Because
hese harmonics can possess strong amplitude, moiré
aused by interference between the various harmonics can
e pronounced and unacceptable for certain colorant com-
inations. Moiré, and moiré within halftones in particular,
as been studied extensively. One example is by Amidror
t al.,5 where a spectral model based on Fourier analysis
as used to explain the moiré due to the superimposition of
alftone screens. Amidror et al. further developed an algo-
ithm for moiré minimization, which included minimization
f moiré due to interference of high-order harmonics. How-
ver, most halftone screen designs, including the classical
ournal of Electronic Imaging 023003-
three-color moiré-free solution, can satisfy only the moiré-
free condition for moiré between fundamental frequencies
of two or three colors.

One aspect of halftone screen interference that has re-
ceived much less study is the micromoiré, or rosette pat-
tern, that forms for three superimposed overlapping rotated
halftone screens. Several publications in this area analyze
rosette formation for the classical three-colorant
combination.6,7 Amidror and Hersch8 investigated the prop-
erties of rosettes and found conditions under which the mi-
crostructure varies or is invariant under relative shifts of the
superimposed layers.

In this paper, we propose a novel screen configuration,
the uniform-rosette configuration, for true moiré-free
N-colorant halftoning. Instead of finding solutions as trade-
offs between the contradictory tendencies of the various
potential moiré frequencies, this new configuration com-
pletely eliminates all moiré from all possible colorant com-
binations. As a result, the halftone output for multiple colo-
rants exhibits a unique 2D spatially periodic structure, a
uniformly repeated hexagon-shaped rosette.

We start with a basic frequency analysis of halftone pat-
terns and moiré in Sec. 2. We use the classical three-color
moiré-free solution to demonstrate the spectra of different
halftone structures and their superimposition. We describe
the moiré-free conditions using frequency vectors that rep-
resent individual halftone screens. In Sec. 3, we present
uniform-rosette halftoning. We first introduce the concept
using a halftone configuration similar to the classical
moiré-free solution, but using identical rectangular half-
tone cells of a particular dimension placed at 15, 45, and
75 deg, rather than square cells. A general definition of the
uniform-rosette configuration is then provided using a lat-
tice conceptualization and nonorthogonal halftones. �Here,
the term nonorthogonal should be understood as not neces-
sarily orthogonal. So, the square and rectangular halftone
screens are not excluded.9� The method is then extended to
halftone configurations for N colorants. In Sec. 4, we trans-
late the frequency-vector specifications for the uniform-

Fig. 1 Example halftone outputs for the classical three-color moiré-
free configuration with square halftone screens rotated to 75, 15,
and 45 deg for C, M, and K separations, respectively. �Color online
only.�
Apr–Jun 2008/Vol. 17(2)2
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osette configurations to the form of spatial vectors, which
efines the geometry of the halftone screens. The spatial
ectors allow us to find digital solutions for uniform-rosette
onfigurations using single-cell nonorthogonal halftone
creens for color printers with limited resolutions. An ex-
mple of a practical configuration is described and illus-
rated. Section 5 discusses the misregistration insensitivity
f uniform rosettes, and Sec. 6 briefly summarizes the
aper.

Frequency Analysis of Halftone Patterns

.1 Frequency Representation

n conventional halftone screening, a halftone cell is repli-
ated to tile across the entire image plane to form a screen
hat is applied to threshold image pixel values. With any
onstant input, the halftone output of this halftone screen is
2D spatially periodic function. From Fourier analysis,10 it

s understood that such a periodic function can be described
s a 2D Fourier series composed of two fundamental fre-

Fig. 2 Frequency representations of the three
fundamental frequencies of the periodic pattern
frequency components including high-order har
ournal of Electronic Imaging 023003-
quency vectors and their higher-order harmonics, which are
linear integer combinations of the two fundamental fre-
quency vectors.

For the following discussion of moiré elimination, we
focus on the locations of the fundamental halftone fre-
quency vectors and their 2D harmonics and ignore the am-
plitude and phase of each component. For example, the
three halftone patterns shown in Fig. 1 demonstrate the
outputs of halftoning the C, M, and K separations where the
halftone dots provide approximately 30% area coverage.
The example illustrates the results from screens constructed
of rotated square halftone cells at 75, 15, and 45 deg, re-
spectively, in the classical three-color moiré-free configu-
ration. The frequency representations, or the Fourier trans-
forms, of the three 2D periodic halftone patterns of Fig. 1
are illustrated by the three plots of Fig. 2, where we use
circular dots to indicate locations of all discrete frequency
components including the fundamentals and all high-order
harmonics within the frequency limits specified by the
plots. Subscript 1 and subscript 2 notations are used as a

ne patterns of Fig. 1. The vectors show the
small circular dots indicate locations of discrete
.

halfto
s, and
monics
Apr–Jun 2008/Vol. 17(2)3
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onvention to refer to frequency vectors that are above �0 to
0 deg� or below �270 to 360 deg, or equivalently −90 to
deg� the 0-deg axis, respectively. Unless otherwise noted,
e use subscripts c, m, y, and k, to aid in teaching the
resently described halftoning processes due to the com-
on practice of four-color printing with cyan, magenta,

ellow, and black. Even though we are teaching using that
otation, the concepts are general so that other colorants
ay be used. For example, we may use the notation fm1 and

se examples that refer to it as a frequency vector for the
agenta screen, but it is to be understood that we intend it

o generally imply a frequency vector in the first quadrant
or some available colorant. Further, we note that colorants
or particular screen geometries are interchangeable. For
xample, we may have yellow halftoned with a screen of a
rst geometry, and black halftoned with a screen of a sec-
nd geometry, but it is practical and reasonable to assume
hat the screens may be interchanged and yellow may be
alftoned with the screen of the second geometry and black
ith the first.
Note that the jargon of the field of halftoning can cause

ome confusion when discussing screen geometries. Or-
hogonal typically refers to screens constructed of square
alftone cells, but screens with cells that are not restricted
o square shapes are referred to as nonorthogonal. Orthogo-
ality does not refer to a 0- and 90-deg alignment of the
ells to the grid. Rectangular cells, although geometrically
rthogonal, have often been referred to as nonorthogonal
alftones due to their departure from classical square
hapes.

.2 Moiré-Free Conditions
n color printing, more frequency components than the fun-
amental frequencies are typically created in the halftone
mage due to the superimposition of halftone screens for
ifferent process colors. Using Fourier analysis, we can ex-
ress the result caused by such superimposition of two dif-

Fig. 3 Superimposition of the C and M halfton
ournal of Electronic Imaging 023003-
ferent colorants as their frequency-vector combination; for
example, fcm= fc+ fm, where fx represents any of fx1, −fx1,
fx2, −fx2, and fcm is the combined vector. The sign definition
of frequency vectors is rather arbitrary because each Fou-
rier component has its conjugate; that is, there is always a
frequency vector −fc that represents the conjugate compo-
nent of fc. There are two fundamental frequency vectors for
each halftone dot screen, thus the color mixing of two
screens for two different colors yields eight unique com-
bined vectors for the fundamental frequency vectors. Con-
sidering the other harmonics of the halftone frequency vec-
tors, the combinations can yield a large number of
difference vectors. In Fig. 3, the superimposition of the
cyan and magenta halftone patterns depicted in Fig. 1 is
shown on the left, and its frequency representation is on the
right. The frequency spectrum of the mixed colors is quite
complicated and is certainly not a 2D periodic function as
are the single-color spectra shown in Fig. 2, and this ex-
plains why the halftone pattern of the superimposition in
Fig. 3 cannot be described as tiling a simple cell as it does
in the monochromatic cases.

When the superimposition involves three colors, typi-
cally, C, M, and K, the situation becomes even more com-
plex. As shown in Fig. 4, the halftone pattern, often referred
to as the rosette pattern, is not a simple repeated pattern.
Although the fundamental frequencies follow a simple re-
lationship, arrayed at equal angular spacing on a circle in
the frequency domain, the set of harmonics and combina-
tion of frequency components is significantly more compli-
cated than that for the two-color case, as can be seen in the
right sides of Figs. 3 and 4. It has been proved that the
rosette pattern resulting from such a halftone configuration
is theoretically nonperiodic.1 In other words, the rosette
pattern never repeats on the same page.

The common strategy to avoid objectionable two-color
moiré is to select frequency vectors that ensure that no
two-color difference vector of the fundamental halftone fre-

rns in Fig. 2 and its frequency representation.
e patte
Apr–Jun 2008/Vol. 17(2)4
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uency vectors is sufficiently small, or short in length, to be
erceived as a noticeably low frequency. The two-color
oiré-free condition can be summarized by

fc + fm� � fhigh, �1�

here fc represents any one of fc1, −fc1, fc2, −fc2; fm repre-
ents any one of fm1, −fm1, fm2, −fm2; and fhigh is a fre-
uency limit set somewhere between 50 and 70 cycles / in.
or just noticeable moiré.

It is well known that a troublesome moiré is the three-
olor moiré, which can appear in cyan-magenta-black
rints produced by CMYK four-color printers. As an exten-
ion of the two-color case, one aspect of the three-color
oiré-free condition can be summarized by

fc + fm + fk� � fhigh, �2�

here fk represents any one of fk1, −fk1, fk2, −fk2; and fhigh
s set similar to the two-color case. There are altogether 64
ombinations that can be obtained by drawing one from fx1,
fx1, fx2, −fx2 for x equal to each of c, m, k, but the 64
ombinations contain positive and negative conjugate pairs,
o in practice we consider 32 unique frequency vectors of
nterest. Due to the large number of frequency components,
t stands as a matter of practicality that to make all three-
olor difference vectors as well as all two-color difference
ectors large enough to avoid any color moiré is very dif-
cult, unless the halftone screens have very high frequency
undamentals, say higher than 200 cycles / in. Another ap-
roach to achieving the moiré-free condition is to make two
f the three-color difference vectors null while keeping the
est large. Given that both the signs and the indices of fre-
uency vectors are defined somewhat arbitrarily, without
osing the generality, the three-color moiré-free condition
an be specified by the following vector equation:

Fig. 4 Superimposition of the C, M, and K halfto
Although fundamental frequencies are simply a
harmonics and combinations of frequency comp
ournal of Electronic Imaging 023003-
fc1 − fm1 + fk2 = 0, �3a�

or, equivalently due to the conventional screen
configuration,

fc2 − fm2 − fk1 = 0. �3b�

Equations �3a� and �3b� are two of all the possible fre-
quency combinations of the three colors. In most practical
applications, the rest of the combinations satisfy the in-
equality of Eq. �2� for fhigh as large as min��fc � , �fm � , �fk � � /2
and are not specially specified, and the combination of half-
tone outputs produces a rosette appearance rather than an
objectionable moiré. The vector additions of Eq. �3� are
illustrated in Fig. 5.

Most conventional halftone screens use square-shaped
halftone cells for tiling. Therefore, the two fundamental
frequency vectors of each screen are not independent of
each other. Once one of the two equations, Eqs. �3a� or
�3b�, is satisfied, the other one is automatically held. Re-
cently, we have taught halftone methods9 using nonor-
thogonal halftone cells, or general parallelogram-shaped
halftone cells, to construct halftone screens for moiré-free
color halftoning, in which case the two fundamental fre-
quencies of each parallelogram-shape–based screen are in-
dependent of each other and thus satisfying both Eqs. �3a�
and �3b� is required for the three-color moiré-free
condition.

It is also worth pointing out that the three-color moiré-
free condition described by Eqs. �3a� and �3b� is specified
for the fundamental frequencies only. However, although it
is understood that as a practical matter, fundamental fre-
quencies are always more important than higher-order har-
monics, there is never-the-less no guarantee that the moiré
caused by combining with high-order harmonics from dif-

terns in Fig. 1 and its frequency representation.
on a circle in the frequency domain, the set of

s is quite complicated.
ne pat
rrayed
onent
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erent colors would not be observable. It is very desirable
o have all moirés eliminated, regardless of whether they
re caused by the combining of fundamental frequencies
nly or of any harmonics.

Uniform Rosettes

.1 Uniform Rosettes Using Rectangular Halftone
Screens

e introduce the uniform, hexagonal rosette halftone con-
guration using a modification of the previously described
lassical configuration. Assume again halftone screens ro-
ated to 15, 45, and 75 deg, respectively, for three different
olors. In the present example, the halftone screens are se-
ected to satisfy Eq. �3�, but are constructed of rectangular
ells having a specific side-length relationship, rather than
quare cells. The monochromatic halftone outputs of this
onfiguration, shown as C, M, and K halftone patterns, and
heir spectra are shown in Figs. 6 and 7. The halftones have
imilar appearances as the ones of the classical configura-
ion shown in Fig. 1 with the difference being that the re-
eated halftone pattern in the current case is a rectangular
ell with a specific ratio between the lengths of the two
ides equal to 0.866, or exactly cos�30° �. The frequency
epresentations of the halftone patterns shown in Fig. 6 are
llustrated by the three plots in Fig. 7. Due to the rectangu-
ar structure of the cells having this cos�30° � side-length
elationship, the two fundamental frequency vectors of each
attern are perpendicular to each other and the ratio of the
wo frequencies is also equal to cos�30° �.

Figure 8 shows the superimposition and frequency rep-
esentation of the C and M halftone patterns of Fig. 6.
espite the similarity between monochromatic images in
igs. 1 and 6, the superimposition halftone pattern in Fig. 8

Fig. 5 �a� Screen frequency vectors for a co
frequency vectors shown to sum to zero freque
ournal of Electronic Imaging 023003-
reveals significant differences. The difference is even more
evident in the superimposition of three colors, as shown in
Fig. 9. An examination of the rosette in Fig. 9 reveals a
uniform, hexagonal structure, whereas the conventional su-
perimposition of Fig. 4 showed irregular, aperiodic rosettes.
The perfect periodicity of the uniform rosettes is consistent
with the absence of moiré: there exists no frequency lower
than the frequency defined by the strictly periodic rosettes.
An interesting observation can be made from the frequency
representation of the halftone superimposition. In the fre-

nal halftone design. �b� Conventional screen

Fig. 6 Halftone outputs of a uniform-rosette configuration with rect-
angular halftone screens rotated to 75, 15, and 45 deg for C, M, and
K, respectively.
nventio
ncy.
Apr–Jun 2008/Vol. 17(2)6
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uency representation of the three-colorant superimposition
n Fig. 9, fundamental frequencies and harmonics of each
onochromatic screen are illustrated by dots of the color of

hat screen. Gray dots indicate a frequency formed by the
nteractions of multiple screens. All frequency components,
ncluding all fundamental frequencies and the respective
armonics of the monochromatic halftones, and frequencies
ue to all possible color combinations, can be located on a
exagonal lattice in the Fourier representation. The lattice
an be seen by drawing a line connecting the nearest neigh-
ors of any point in the spectrum.

The uniform, hexagonal rosettes possess a much simpler
exture that can be more visually pleasing than aperiodic
osettes. To understand this property, consider the lowest
requency components of the superimpositions of uniform
osettes compared to classical rosettes. The human visual
ystem has a visual transfer function �VTF� that attenuates
igh frequency components. For suitably high frequency
alftones �e.g., 200 cycles / in.�, the perception of the uni-
orm rosette is almost completely suppressed by the VTF.
ence, the halftone texture is barely perceived because

Fig. 7 Frequency representations of
ournal of Electronic Imaging 023003-
there are no lower frequencies present in this configuration.
In a classical rosette configuration, a multitude of low fre-
quency components exists and can be perceived even when
high frequency halftones are employed. We note that a con-
trary condition can exist for low frequency halftones. The
periodicity of the uniform rosette could be well resolved by
the human visual system and be objectionable, but the ape-
riodicity of the classical configuration can suppress the per-
ception of halftone structure.

Though the present example constructed uniform ro-
settes from rectangular halftone cells having a specific side-
length ratio, below we present more general frequency-
vector relationships that generate uniform rosettes.

Classical halftone rosettes possess different morpholo-
gies depending on the relative shift of the halftone screens.
The examples of Fig. 4 aligned the screens such that the
center of the holes �white space� between halftone dots are
coincident at a reference point in space for the different
colorants. This type of alignment produces what is known
as clear-centered rosettes. We see from Fig. 9 that the
uniform-rosette configuration can also be aligned to pro-

ee halftone patterns shown in Fig. 6.
the thr
Apr–Jun 2008/Vol. 17(2)7
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uce clear-centered rosettes. Similar correspondences occur
or uniform-rosette and classical-rosette morphologies for
ther displacements of the colors. Examples of dot-centered
osettes are shown in Fig. 10. The focus of the present
aper is deriving moiré-free halftone screen sets using the
niform-rosette geometry. The focus is not on
isplacement-induced changes in rosette morphology, so
e limit the remainder of the examples to clear-centered

osettes.
As indicated earlier, unlike halftone outputs by the clas-

ical configuration and most other halftone methods, the
ultiple-color halftone patterns produced by the uniform-

osette configuration with spatially constant input colors are
D periodic patterns. These periodic patterns can be fully
escribed as a discrete 2D Fourier series with two funda-
ental frequencies, or rosette frequency vectors, fR1 and

R2. Other than the zero-frequency component, there are no

Fig. 8 Superimposition of the C and M halfton

Fig. 9 Superimposition of the C, M, and K halfto
ournal of Electronic Imaging 023003-
frequencies lower than the two fundamentals in the Fourier
series. In the current example, fR1= fk1 /2 and fR2= fc2 /2. All
fundamental frequency vectors defining the three different
halftone screens for C, M, and K are harmonics, or linear
integer combinations, of the rosette fundamental frequency
vectors. Similarly, all higher-order harmonics of the three
individual halftones are also linear integer combinations of
the rosette fundamental frequencies. As described previ-
ously, the interference due to color mixing results in new
frequency components that are the combinations of fre-
quency vectors of individual colorants. Because all fre-
quency components of individual colorants in the uniform-
rosette configuration are harmonics of rosette fundamental
frequencies, there are no components created by color mix-
ing that are not harmonics defined by rosette fundamental
frequencies. With a uniform-rosette configuration, all fre-
quency components, regardless of the number of colorants

rns in Fig. 6 and its frequency representation.

terns in Fig. 6 and its frequency representation.
e patte
ne pat
Apr–Jun 2008/Vol. 17(2)8
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nd the order of harmonics, fall on the 2D hexagonal grid
efined by the two rosette fundamental frequency vectors.
hus, the frequency representations of Figs. 8 and 9 are
uch simpler and freer of low frequency components than

he classical cases shown in Figs. 4 and 5. In other words,
oiré-free conditions are satisfied for all color mixing, as
ell as for all harmonics. As a result, uniform-rosette half-

oning is completely moiré-free.

.2 Lattice Description of the Uniform-Rosette
Configuration

he uniform-rosette halftone configuration is based on de-
ning rosette fundamental frequency vectors, of sufficiently
igh frequency and angle separation, that can be used to
enerate a hexagonal lattice of rosette harmonics. To avoid
bjectionable low frequency texture due to excessively
arge rosettes, we require

fR1� � fmin, �fR2� � fmin, �fR1 � fR2� � fmin. �4�

ypically, to meet visual acceptability standards, fmin can
e set to be approximately 80 cycles / in. However, lower
uality printed material could use fmin as low as
0 cycles / in., or perhaps lower, and high quality printed
aterial might require fmin=120 cycles / in. Practically,

nly two vectors with comparable frequencies that are
eparated by an angle close to 60 deg �equivalent to close
o 120 deg� provide uniform-rosette solutions for three-
olor moiré-free halftoning. The lattice is generated by lin-
ar integer combinations of the rosette fundamental fre-
uency vectors. Angles and frequencies for individual
alftone screens are chosen from the rosette lattice points.

screen set selected in such a manner is moiré-free be-
ause no combination of frequency lattice points can pro-
uce a beat lower than the two rosette frequency vectors
sed to generate the lattice. The lattice structure defined by
he rosette makes it possible to choose pairs of frequency
ectors for an almost arbitrary number of colorants without
ntroducing any moiré in a N-colorant combination. Practi-
al frequency lattices can be realized through the use of
onorthogonal screens. In this section, we generally de-
cribe the lattice formalism for three-colorant screens and
xtend it to additional colorants in the next section.

To better understand this rosette vector concept, con-
ider the example of Fig. 9, redrawn in Fig. 11 with rosette
ectors fR1, fR2 shown as red arrows, and the lowest fre-
uency components of the rosette are shown as circles. It is

ig. 10 Dot-centered rosettes for �a� classical halftone configuration
nd �b� uniform-rosette configuration.
ournal of Electronic Imaging 023003-
easy to see that the set of lowest frequency components
form the vertices of a hexagon. We refer to the hexagon
formed by the lowest frequency components as the first-
order spectral hexagon. The halftone fundamental frequen-
cies as well as their conjugate fundamental frequency vec-
tors are also shown in Fig. 11. The figure shows that the set
of all halftone fundamental frequencies can be connected to
form a hexagon, illustrated in Fig. 11 as a thin black line.
The halftone fundamental frequencies form the vertices as
well as define points that roughly bisect the sides of the
hexagon. This hexagon connects the frequency components
that lie just outside of the first-order spectral hexagon. We
refer to this hexagon as the second-order spectral hexagon.
The relationships between the screen frequency vectors and
rosette vectors are given by

fc1 = 2fR1 − fR2 = fR1 − fR12, fc2 = 2fR2, �5a�

fm1 = fR1 + fR2, fm2 = − 2fR1 + 2fR2 = 2fR12, �5b�

fk1 = 2fR1, fk2 = − fR1 + 2fR2 = fR2 + fR12, �5c�

where fR12 represents the frequency vector difference,

fR12 = fR2 − fR1. �5d�

If fR1 and fR2 are similar in vector length and near 60 deg
�equivalently, near 120 deg�, then fR12 is also of similar
vector length and angular separation and can thus be con-
sidered an alternative rosette fundamental frequency vector.
Again, both the signs and the indices of frequency vectors
are defined somewhat arbitrarily without loss of generality.
Equations �5a�–�5d� define a uniform-rosette configuration
with all six halftone fundamental frequencies for three

Fig. 11 Frequency lattice generated from the rosette fundamental
frequency vectors. Circles represent vertices of the first-order spec-
tral hexagons, which correspond to the rosette frequencies, and the
thick black line is the second-order spectral hexagon, which con-
tains the fundamental frequencies of the halftones in this example.
Apr–Jun 2008/Vol. 17(2)9
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olorants and their conjugates “evenly” distributed
ngularly.

.3 Uniform Rosettes for an Arbitrary Number of
Colorants

hough it is interesting and useful to produce uniform, hex-
gonal screen sets for three colorants, the hexagonal struc-
ure can be readily extended to moiré-free printing for the
onventional four-colorant CMYK printing. Further, the
ormalism can address the difficult problem of N-colorant
rinting.

A mathematical statement of the general principle of
-halftone lattice-based screen configurations can be writ-

en by considering the frequency lattice structure defined by
osette vectors fR1, fR2. For a screen configuration with N
alftone screens, let fi1, fi2, respectively, denote first and
econd fundamental frequency vectors for screens i
1,2 , . . . ,N, where fi1, fi2 are chosen to satisfy

fi1,fi2� = �mi1fR1 + mi2fR2,ni1fR1 + ni2fR2� �6�

or integers m and n. N-colorant halftone configurations are
enerated by using configurations in which halftone funda-
ental frequency vectors can be selected from any lattice

oints beyond the first-order spectral hexagon,

ig. 12 Fourth, fifth, and sixth halftone patterns that can be used
ith the halftones of Fig. 6.

ig. 13 Fundamental frequency vectors for the halftone patterns of
igs. 6 and 12.
ournal of Electronic Imaging 023003-1
�fik� � max��fR1�, �fR2�, �fR12�� . �7�

To better understand the N-colorant uniform-rosette
halftone configuration, consider extending the rectangular
cell example of Fig. 6 to a six-colorant configuration,
where the fourth, fifth, and sixth colorants are chosen to be
yellow, red, and green, respectively. Exemplary m and n
values that are consistent with the present teaching are as
follows:

Cyan: mc1=2 mc2=−1 nc1=0 nc2=2
Magenta: mm1=1 mm2=1 nm1=−2 nm2=2
Black: mk1=2 mk2=0 nk1=−1 nk2=2
Yellow: my1=3 my2=−2 ny1=1 ny2=2
Red: mr1=2 mr2=1 nr1=−2 nr2=3
Green: mg1=3 mg2=−1 ng1=−1 ng2=3

or, in vector notation, we include the following equa-
tions with Eq. �5�:

fy1 = 3fR1 − 2fR2, fy2 = fR1 + 2fR2, �8a�

fr1 = 2fR1 + fR2, fr2 = − 2fR1 + 3fR2, �8b�

fg1 = 3fR1 − fR2, fg1 = − fR1 + 3fR2. �8c�

Halftone screen outputs for the fourth, fifth, and sixth
screens are shown in Fig. 12, and the respective fundamen-
tal frequency vectors are shown in Fig. 13. In Fig. 13, it can
be seen that the fundamental frequency vectors of these
fourth, fifth, and sixth screens deviate from the second-
order spectral hexagon. Superimpositions of halftone out-
puts are shown in Fig. 14. Figure 14�a� shows cyan, ma-

Fig. 14 �a� Cyan, magenta, black, and yellow; �b� yellow, red and
green; and �c� superimposition of all six colorants. �Color online
only.�

Fig. 15 Spatial-vector and frequency-vector representations of a
nonorthogonal halftone screen.
Apr–Jun 2008/Vol. 17(2)0
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enta, black, and yellow; Fig. 14�b� shows yellow, red and
reen; and Fig. 14�c� shows the superimposition of all six
olorants. Observe that a regular rosette pattern is formed
n all cases and no moiré is present.

Often, it is desirable to avoid dot-off-dot/dot-on-dot con-
gurations due to misregistration sensitivity. That can be
chieved by specifying halftone fundamental frequency
ectors such that any �fi1, fi2� vector pair is not equal to any
ther �f j1, f j2� vector pair. That is, no two screens possess
dentical fundamental frequency vector pairs. On the other
and, if dot-off-dot/dot-on-dot screens are desired, say for
easons of increased gamut or reduced texture, then at least
ne �fi1, fi2� vector pair is specified to equal another �f j1,
j2� vector pair.

It can be desirable to use screens that do not require
arge �m� or �n�, say �6 or 8, because the frequency of those
creens might be beyond the resolution of common printing
rocesses, but note that certain high resolution processes
e.g., high resolution proofers� may allow a much higher
requency. To achieve a balance between minimizing vis-
bility and maximizing stability, it is often desirable to have
articular screens at a relatively low frequency, but not as
ow as the rosette frequency. For example, screens could be
hosen such that

� �mi1� + �mi2� � 4, �9a�

� �ni1� + �ni2� � 4. �9b�

In some cases, a screen may possess low visibility due to
he hue of the colorant or amount of colorant required. For
xample, the human visual system has low acuity for yel-

Colorant fi1

1 f11=2fR1
=�75,150�

=167.7 lpi at 63.4°

f12=
=�11

=135.2

2 f21= fR1− fR2
=�0,150�

=150 lpi at 90°

f22=
=�

=150

3 f31=2fR1+ fR2
=�112.5,75�

=135.2 lpi at 33.7°

f3
=�7

=167.7

4 f41=2fR1− fR2
=�37.5,225�

=228.1 lpi at 80.5°

f42=
=�18

=201.9

5 f51=3fR1+2fR2
=�187.5,75�

=201.9 lpi at 21.8°

f52=
=�37

=228.1

6 f61=3fR1+ fR2
=�150,150�

=212.1 lpi at 45°

f62=
=�1

=212.1

7 f71=2fR1
=�75,150�

=167.7 lpi at 63.4°

f7
=�7

=167.7
ournal of Electronic Imaging 023003-1
low. In such cases, the low visibility screen can be defined
by small values of m and n, e.g., one or both of the yellow
vectors could equal a rosette vector, fy1= fR1, fy2= fR2, where
my1=1, my2=0, ny1=0, ny2=1.

Ishii11 includes a fourth screen in a halftone configura-
tion in a moiré-free manner by setting its frequency vectors
to be the same as the frequency vectors of two other
screens �e.g., fy1= fk1, fy2= fc1�. Because no new frequency
vectors are added to the system, no new moiré components
are generated. Also note that the fourth screen shares vec-
tors from two different screens, so it is angularly displaced
from any one screen. This angular displacement allows the
screen to possess a degree of color-shift insensitivity to
misregistration similar to other rotated screen designs. Fur-
ther, note that at least one screen must not be orthogonal to
achieve such frequency vector sharing.

Frequency vector sharing can be employed within the
uniform-rosette configuration. For example, a first screen
can be included in the configuration by setting a first fun-
damental frequency vector of that screen to be equal to a
first fundamental frequency vector of a second screen, but
not setting its second fundamental frequency vector equal
to the second fundamental frequency vector of the second
screen. Because the first screen does not share both funda-
mental frequency vectors of the second screen, it is still
angularly displaced from that second screen. This angular
displacement allows the screen to possess color-shift insen-
sitivity to misregistration similar to other rotated screen
designs.

Line screens can be employed within the uniform-rosette

vi1 vi2

fR2
5�
33.7°

v11= �−4,6� v12= �8,4�

fR2
�
t 0°

v21= �8,0� v22= �0,8�

0�
63.4°

v31= �8,4� v32= �−4,6�

fR2
5�
21.8°

v41= �2,5� v42= �−6,1�

fR2
5�
80.5°

v51= �6,1� v52= �−2,5�

fR2
0�
−45°

v61= �4,4� v62= �−4,4�

0�
63.4°

v71= �8,4� v72= �−8,4�
Table 1 Vector specifications for a seven-colorant halftone configuration.

fi2

fR1+2
2.5,−7
lpi at −

2fR1+2
150,0
.0 lpi a

2=2fR2
5,−15
lpi at −

2fR1+3
7.5,−7
lpi at −

−fR1+2
.5,−22
lpi at −

fR1+3
50,−15

lpi at

2=2fR2
5,−15
lpi at −
Apr–Jun 2008/Vol. 17(2)1
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onfiguration by selecting m and n values for a given
creen such that one halftone fundamental frequency vector
f the pair has length 0��fi � =0�.

Digital Implementation of the Uniform-Rosette
Configuration

o implement any moiré-free periodic clustered-dot half-
one configuration, it is critical to have very specific and
ccurate rotation angles for the halftone screens. For ex-
mple, an angular error of a few tenths of a degree within
he classical configuration leads to a moiré period on the
rder of a few inches. Unfortunately, in digital halftoning,
he selection of possible rotations for halftone screens is
reatly restricted by the digital grid, or raster, defined by
he location of physical pixels. In this section, we show that
he uniform-rosette configuration can be produced with
ommon digital resolutions and does not require special
irrational” screening methods or supercells.2

.1 Spatial Vectors and Their Relationship to
Frequency Vectors

n the previous discussion, the geometry of the halftone
creen is defined by two fundamental frequency vectors.
lternatively, the screen geometry can be defined by two

patial vectors as well. For example, if a rectangular cell is
iled in a manner that forms an arbitrarily rotated screen,
he spatial structure of the screen tiling can be represented
y two orthogonal spatial vectors, v1 and v2, which corre-
pond to two orthogonal fundamental frequency vectors, f1
nd f , respectively. The frequency vectors are orthogonal

Fig. 16 Frequency lattice generat
2

ournal of Electronic Imaging 023003-1
to their respective spatial vectors, and the moduli, or the
absolute value, �f1� and �f2�, are equal to 1 / �v2� and 1 / �v1�,
respectively.

The shape of a halftone cell that can be tiled to fill the
image plane is not restricted to square or rectangular. In-
stead, the cell can be any parallelogram shape, which can
be specified using two nonorthogonal vectors, v1�x1, y1�
and v2�x2, y2�, illustrated in Fig. 15. Halftone outputs gen-
erated by the specified halftone screen can be represented
by a 2D Fourier series with two fundamental frequency
vectors, f1�fx1, fy1� and f2�fx2, fy2�, also shown in Fig. 15.
Similar to the orthogonal case, f1 and f2 are perpendicular
to v1 and v2, respectively. However, their moduli, �f1� and
�f2�, are not given by the reciprocals of �v2� and �v1�, as for
the orthogonal screens. Instead, �f1� and �f2� are equal to the
reciprocals of h1 and h2, which are the heights of the par-
allelogram, or the pitches between cells, shown by the dot-
ted lines in Fig. 15. Because the product, �v1 �h1= �v2 �h2
=A, is the area of the specified parallelogram-shape cell, we
may write the moduli of the frequency vectors by the fol-
lowing equations:

�f1� = 1/h1 = �v1�/A, �f2� = 1/h2 = �v2�/A , �10�

where A is given by the absolute value of the cross product
of the two spatial vectors, �v1�v2�, that is

A = �x1y2 − x2y1� . �11�

Because the spatial vector v �x , y � and the frequency

rosette frequency vectors fR1, fR2.
ed by
1 1 1

Apr–Jun 2008/Vol. 17(2)2
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Fig. 17 The left side shows the halftone outputs as provided by halftone screens 1 �a� through 7 �g�,
and the right side shows the respective Fourier representations.
ournal of Electronic Imaging Apr–Jun 2008/Vol. 17(2)023003-13
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ector f1�fx1, fy1� are perpendicular to each other, so are
2�x2, y2� and f2�fx2, fy2�. From Eq. �11� it is not difficult to
rove that

fx1 = y1/A, fy1 = − x1/A, fx2 = y2/A, fy2 = − x2/A . �12�

Equation �12� provides a transformation from spatial-
ector components to frequency-vector components. It may
e rewritten to provide the inverse transformation, from
requency-vector components to spatial-vector components,

1 = − Afy1, y1 = Afx1, x2 = − Afy2, y2 = Afx2. �13�

ubstituting into Eq. �11� gives an alternative expression
or A,

= 1/�f f − f f � . �14�

Fig. 17
x1 y2 x2 y1

ournal of Electronic Imaging 023003-1
To implement halftoning based on tiling a halftone cell,
the tangent of the rotation angle, specified by the argument
of the spatial vector v, has to be a rational number. This
restriction is due to the fact that tiling a cell on a discrete
pixel grid requires the cell dimensions to be defined by
integer multiples of the pixel spacing. However, neither 15-
nor 75-deg rotation of a halftone screen can be imple-
mented digitally because the tangents of these angles are
irrational. The halftone screens defined in the previous sec-
tion for a general uniform-rosette configuration are speci-
fied in the frequency domain and most likely do not have a
simple digital implementation. However, a translation of
the frequency specification of the uniform rosette of Eqs.
�5� and �6� to a spatial description allows us to show that
digital implementations for that particular configuration are
readily available.

tinued).
�Con
Apr–Jun 2008/Vol. 17(2)4
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In designing a screen set, we proceed by defining rosette
requency vectors of suitable size and angular separation
hat possess even-valued x and y components. The even
alues ensure that integer solutions can be found for half-
one frequencies on the second-order spectral hexagon. We
hen transform these halftones to the frequency domain and
pply the moiré-free conditions of Eq. �5� to find additional
creens. The additional screens can be tested to determine if
hey can be rendered with an integer solution by applying
q. �13�.

.2 Uniform Rosette by Nonorthogonal Halftone
Screens

he example of N-colorant uniform-rosette halftoning
bove was constrained to use classical angles for three of

ig. 18 Various superimpositions of the seven halftone outputs: �a�
olorants 1, 2, and 3; �b� colorants 1, 2, 3, and 4; �c� colorants 5, 6,
nd 7; �d� colorants 1 to 7. �Color online only.�
ournal of Electronic Imaging 023003-1
the screens. Here we provide a seven-colorant example us-
ing nonorthogonal screens, where the screens are all realiz-
able on a 1200 dpi �dot-per-inch� pixel grid. We choose the
following two spatial vectors to define the shape of the
uniform rosette:

vR1 = �16,8�, vR2 = �− 16,8� , �15�

where the spatial vectors are defined in pixel units. The
corresponding uniform-rosette fundamental frequencies and
their vector differences are given by

fR1 = �37.5,75� = 83.9 lpi at 63.4 deg,

fR2 = �37.5,− 75� = 83.9 lpi at − 63.4 deg,

fR12 = �75,0� = 75 lpi at 0 deg, �16�

where the frequencies are given in units of lpi �lines per
inch�. From these vectors, we can specify the seven-
colorant configuration given in Table 1.

Figure 16 shows the Fourier representation and fre-
quency vectors of the rosettes for this seven-colorant half-
tone screen configuration. The left side of Fig. 17 shows the
halftone outputs as provided by halftone screens 1
�Fig.17�a�� through 7 �Fig. 17�g��, while the right side
shows the respective Fourier representations. Figure 18
shows various superimpositions of the seven halftone out-
puts. Figure 18�a� depicts the superimposition of the colo-
rants 1, 2, and 3. Figure 18�b� depicts the superimposition
of the colorants 1, 2, 3, and 4. Figure 18�c� depicts the
superimposition of the colorants 5, 6, and 7. Figure 18�d�
depicts the superimposition of the colorants 1 to 7. The
figures illustrate that the superimpositions are free of moiré
and possess pleasing hexagonal rosettes.

5 Discussion on Registration Sensitivity
A quick examination of the uniform-rosette configuration
has led some observers to conjecture that this configuration
may possess color-shift sensitivity to misregistration simi-
lar to dot-off-dot and dot-on-dot designs. In the present
paper, we provide the intuition for relative insensitivity, and
we reserve a future publication to present a rigorous simu-
lation of the phenomenon. The conjecture on high sensitiv-
ity is based on observations of figures, such as Fig. 8, and
noting that the dots are relatively disjoint and there may be
the possibility of much more overlap at other registrations.
To understand this phenomenon, consider the dot-on-dot
example of Fig. 19. The two registrations �shifted by a

Fig. 19 Superimposition of identical C and M halftone patterns. Left:
Perfect dot-on-dot registration. Right: quarter-period lateral
misregistration.
Apr–Jun 2008/Vol. 17(2)5
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uarter period� generate very different fractional areas for
yan alone, magenta alone, the overlap of cyan and ma-
enta, and white paper. These area types are the Neuge-
auer primaries.12 The Neugebauer model would predict a
ignificant color shift13 due to the significant change in the
ractional areas of the primaries.

A uniform-rosette pattern with similar dot size and fre-
uency is shown in Fig. 20. Although, indeed there is a
ignificant amount of disjoint area between the colors, the
eometry differs from the dot-on-dot configuration in ben-
ficial ways. Consider the dots within a single rosette. At
he top, cyan is to the left and magenta is to the right, and
t the bottom, cyan is to the right and magenta is to the left.

similar opposite relationship occurs on the sides of the
osette. On the left, magenta is above and cyan is below,
nd on the right, cyan is above and magenta is below. As
olor planes are misregistered in any one direction, the dif-
erent spatial relationships within the rosette allow the frac-
ional area coverages to remain relatively constant, thereby
ausing a minimal shift in average color. The right side of
ig. 20 shows the cyan halftone pattern laterally shifted by
quarter period. Although the shape of the rosette changes,

t is readily seen that the fractional area coverages are much
ore constant than the dot-on-dot case shown in Fig. 19.

Summary
imilar to an orchestra, which needs to tune all musical

nstruments to match a reference pitch for a harmonic per-
ormance, the uniform-rosette halftoning method requires
ll halftone frequencies to match two common fundamen-
als for a harmonic halftoning. Based on this concept,
niform-rosette halftoning employs higher-order harmonics
f a 2D periodic rosette pattern for all halftone screens and,
herefore, completely avoids moiré due to color mixing. In
ddition, the visually pleasant appearance of uniform ro-
ettes and the color stability are other advantages of this
ovel halftone method. The lattice formalism readily allows
esigns of uniform-rosette halftone configurations with an
rbitrarily large number of colorants. With nonorthogonal
creening technology, uniform-rosette halftoning can be
asily implemented for most current digital color printers.
or example, screen design specified by the vectors of
able 1 is a perfectly moiré-free solution for 1200-dpi color
rinters.

ig. 20 Superimposition of C and M halftone patterns generated by
niform-rosette halftoning. Left: perfect registration. Right: quarter-
eriod lateral misregistration.
ournal of Electronic Imaging 023003-1
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