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Abstract
The authors developed an integrated computer-aided detection (CAD) scheme for detecting and
classifying metaphase chromosomes as well as assessing its performance and robustness. This
scheme includes an automatic metaphase-finding module and a karyotyping module and it was
applied to a testing database with 200 digital microscopic images. The automatic metaphase-
finding module detects analyzable metaphase cells using a feature-based artificial neural network
(ANN). The ANN-generated outputs are analyzed by a receiver operating characteristics (ROC)
method and an area under the ROC curve is 0.966. Then, the automatic karyotyping module
classifies individual chromosomes of this cell into 24 types. In this module, a two-layer decision
tree-based classifier with eight ANNs established in its connection nodes was optimized by a
genetic algorithm. Chromosomes are first classified into seven groups by the ANN in the first
layer. The chromosomes in these groups are then separately classified by seven ANNs into 24
types in the second layer. The classification accuracy is 94.5% in the first layer. Six ANNs
achieved the accuracy above 95% and only one had lessened performance (80.6%) in the second
layer. The overall classification accuracy is 91.5% as compared to 86.7% in the previous study
using two independent datasets randomly acquired from our genetic laboratory. The results
demonstrate that our automated scheme achieves high and robust performance in identification
and classification of metaphase chromosomes.
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I. Introduction
In each specimen slide of metaphase chromosomes prepared in a genetic laboratory, the
higher fraction of metaphase chromosome cells cannot be used to analyze for diagnostic
purpose due to stain debris, incomplete cells, and severely overlapped chromosomes. Visual
searching for analyzable metaphase chromosome cells and karyotying the identified
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chromosomes using an optical microscope are two fundamental procedures required for the
diagnosis of cancers and genetic diseases in the genetic laboratories, since Tjio and Levan 1

discovered that the number of human chromosomes was 46 in 1956 and the Denver Group
classification of chromosomes was established in 1960 2. The purpose of metaphase finding
is to delete stain debris, interphase cells, and other un-analyzable cells to preserve and
identify analyzable metaphase cells, in which individual chromosomes are not severely
overlapped or touched. Karyotyping is a process to orderly arrange the human chromosomes
of a single metaphase cell based on the related banding patterns, size, and the centromere
position 3. Figure 1 shows two regions of interest (ROI) that depict an un-analyzable
metaphase chromosome cell, an analyzable metaphase cell, several interphase cells, and the
corresponding karyotype of an analyzable metaphase chromosome cell. The disadvantages
of the manual process to identify analyzable metaphase cells and perform karyotyping
include that: (1) it is very time-consuming and tedious, (2) it can introduce the large inter-
observer variability and potentially affect the diagnostic accuracy and treatment decision.4

Hence, it leads to great research interest to develop and test automatic metaphase finding
and karyotyping systems.

In the last 30 years, great efforts have been made in the developing automated metaphase-
finding and karyotyping systems. In an attempt to identify and analyze metaphase
chromosome cells, a number of metaphase finding schemes have been reported. 5–8 The
various algorithms including a rule-based approach 9, a knowledge-based chromosome
contour searching method 10, a novel recursive algorithm 11, a minimum entropy
segmentation method 12, and an artificial neural network (ANN) 13, have been tested and
implemented in different automated metaphase-finding schemes. In order to automatically
classify metaphase chromosomes, different methods have also been investigated and
reported in previous studies, which include ANN 14–21, statistical models 5, 8, 22–26,
knowledge-based expert schemes 27–29, a transportation algorithm 30, a homologue-
matching algorithm 31, a fuzzy-logic based classifier 32, and other algorithms 11, 33, 34.
Among them, statistical models and ANN classifiers are two of the most popular methods
employed for the classification of human chromosomes. Previous research reported that
ANN approach was more efficient and achieved very comparable performance comparing to
the statistical classifiers in identifying and classifying human chromosomes 13, 35. For
example, when applying to the same images acquired from Edinburgh Database, an ANN
and a maximum likelihood (ML) based classifier achieved accuracy rates of 82.8% and
81.7% respectively.18 Due to these research efforts, several commercialized systems
including Magiscan, Cytoscan, AKS-2 systems, and Genetiscan have been used in some
genetic laboratories to assist automated metaphase chromosome finding and karyotyping
tasks. 36 However, due to the unstable (un-robust) performance of these systems, the
operator intervention is often required to correct errors in the clinical practice.

There are several factors restricting the clinical utility of the current automated metaphase
chromosome identification and karyotype schemes and systems. First, most current
automated metaphase-finding systems use low-resolution images to search for the location
of potentially analyzable cells. The results need to be visually confirmed and cannot be
directly used by the automated karyotype system. Specifically, some previously reported
metaphase finding systems 5, 6, 13 can only alert the cytogeneticist of the location of
potentially analyzable metaphase cells. Visual examination is needed by switching to
another microscopic objective with high magnification power (i.e., from 10X to 100X) to
determine whether the cell is analyzable or not. Second, most automated karyotype schemes
use a single classifier to classify 24 different types of chromosomes. Based on machine
learning theory, using a single ANN or another machine learning classifier to simultaneously
classify 24 chromosomes makes the classifier very complicated and difficult to train. 20

Without a very large training image database and a set of effective (non-redundant) features,
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these classifiers tend to generate unstable and poorly robust results when applying to new
image datasets.

In an attempt to overcome these limitations, we have separately developed an automated
algorithm to detect analyzable metaphase cells and a two-layer decision tree-based classifier
to identify different chromosome (karyotyping) in our previous studies. 37, 38 This study
aims to (1) integrate these two computerized algorithms (modules) into one computer-aided
detection (CAD) scheme and (2) test performance and robustness of the scheme. This
integrated CAD scheme automatically detects analyzable metaphase cells depicted on the
digital microscopic images acquired by an optical microscope with high magnification
objective (e.g., 100X) and directly classifies individual chromosomes of the identified
analyzable cells. During the automated chromosome classification (karyotyping), a decision-
tree based classifier involving eight ANNs is used. The ANN in the first layer of the
decision tree is applied to classify chromosomes into seven groups based on the
classification standards of Denver Groups. The second layer of the classifier employs seven
adaptively optimized ANNs (one in each group) to further classify individual chromosomes
into 24 types. The performance and robustness of this integrated CAD scheme was tested
using a new image database, which has not be involved during the previous development
and optimization of each of these two computer modules. The description of this new
integrated scheme and the detailed experimental results are presented in the following
sections.

II. Materials and Methods
2.1 Experimental Dataset

In this study, we selected a new image database including 200 digital microscopic images
that were originally obtained from peripheral blood and amniotic fluid samples of patients
who underwent diagnosis at the genetic laboratory of University of Oklahoma Health
Science Center (OUHSC). All testing sample specimens were stained using Giemsa dye
mixture as the staining agent and the band levels of these chromosomes are determined to be
400. Each image was captured using a digital camera installed on the Nikon LABOPHOT-2
optical microscope, which is equipped with an oil immersion based objective for
magnification of 100X and has a numerical aperture (NA) of 1.45. The pixel size of the
digital image is 0.2 µm × 0.2 µm.

Among these 200 images, 100 images were identified containing analyzable metaphase cells
and the metaphase chromosome cells in the other 100 images were classified as un-
analyzable by the cytogeneticists in our laboratory. In the dataset of 100 analyzable
metaphase cells, 6 metaphase cells were previously diagnosed as demonstrating Down’s
syndrome and exhibiting polysomy (including three chromosome 21). Three metaphase cells
had other genetic diseases, in which one metaphase cell contained only one chromosome 21,
and the other two metaphase cells had two X chromosomes and one Y chromosome. In
summary, the 100 analyzable metaphase cell dataset contains a total of 4607 chromosomes.
Specifically, this dataset comprises 200 chromosomes for each of 21 types (from type #1 to
#20, and type #21), 205 chromosomes for type #21, 141 chromosomes for type X, and 61
chromosomes for type Y. The results of experts’ visual classification of the analyzable
metaphase chromosome cells and each individual chromosome inside the analyzable cells
were also recorded in the “truth” file.

2.2 The first module to identify analyzable metaphase cells
The first module of our CAD scheme includes the following steps to identify analyzable
metaphase cells and delete the un-analyzable cells.37 In brief, a median filter is first used to
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reduce the noise and artifact background in the digital microscopic chromosome images.
Second, an adjustable threshold is applied to obtain binary images from the original
microscopic images. Third, a component labeling algorithm 39 and a raster scanning method
are applied to label and group the detected targets and delete the isolated small areas. Fourth,
from each grouped region, the scheme computes and selects six features including (1) the
number of labeled regions, (2) the average size of all labeled regions, (3) the standard
deviation of region size, (4) the average pixel value of all regions, (5) the standard deviation
of pixel values, and (6) the average radial length of all regions. The detailed definitions and
computing methods of these six features have been reported elsewhere.37

These six features are then used to build an artificial neural network (ANN) to classify
between analyzable and un-analyzable metaphase cells. This ANN uses a simple three-layer
feed-forward topology. The input layer includes six neurons that are represented by the six
features. The hidden layer involves three neurons and the output layer contains one decision
neuron. A standard back-propagation training algorithm is implemented to train the ANN. In
order to minimize the risk of over-fitting and keep the robustness of the ANN performance
when applying to new testing cases,40 we selected a limited number of training iterations as
well as a large ratio between the momentum and learning rate based on our previous
experience to achieve optimal results in training and testing the similar multi-feature based
ANNs for detecting and classifying between true-positive lesions and the suspicious but
actually negative regions depicted on medical images.41 Specifically, we empirically
selected that the number of training iterations was 400; the momentum and the learning rate
were set at 0.9 and 0.01, respectively for this application. Assuming there are M analyzable
cells and N un-analyzable cells involved in each training iteration cycle, the ANN training
program computes the mean square error (MSE) as:

, where Oi and Oj are computed output values for i
and j cells, T1 = 0.9 and T2 =0.1 indicating definite analyzable and un-analyzable cells. The
ANN was trained to minimize the MSE of the training dataset in our previous study 37.

2.3 Feature computation
In classification of individual chromosomes, we first computed a set of features from each
chromosome. Among the computed features, size, the centromere position, and the banding
patterns of a chromosome are considered the three most important features in
karyotyping. 5, 23 A centromere is a uniquely specialized region in a chromosome
characterization, where the chromatids are joined and by which the chromosome is attached
to the spindle during cell division. 42 Polarity assignment determines the orientation of a
chromosome through the identification of a p-arm (a shorter arm) and a q-arm (a longer
arm). 43 It assigns the top of the p-arm to the top of a chromosome. Figure 2 displays an
ideogram of chromosome #1 and the corresponding centromere, p-arm and q-arm. Because
of the diversity of morphologies produced by the different stages of the cell cycle, slide
preparation, and banding characteristics of metaphase chromosomes depicted on clinical
images (Figure 2), there is a large variability in shapes and orientations of chromosomes,
which substantially reduces the performance and robustness of the computerized schemes
for automatic karyotyping. In this integrated scheme we applied a previously developed
image processing and classification method to detect centromere and assign corresponding
polarity for each individual chromosome.44 In brief, because of the limitation of the
conventional skeleton (thinning) algorithm when applying to the varying chromosomes with
different morphologies and shapes, our method uses a modified thinning algorithm to detect
the medial axis of each segmented chromosome. Figure 2 also shows examples of four
chromosome #1 with different bending shapes as well as the medial axes detected by a
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conventional and our modified thinning algorithm. The computer program then detects and
records the perpendicular lines along the medial axis of a chromosome followed by a rule-
based classifier to detect centromere and assign corresponding polarity for each individual
chromosome.

After detecting medial axis of the chromosome, our scheme computes three profiles
(including density, shape, and banding profile).38 Each profile defines a one-dimensional
graph of a chromosome property computed at a sequence of points along the identified
medial axis of a chromosome. A density profile determines the average grey scale value of

every perpendicular line across the medial axis of a chromosome (x). ,
where gi(x) and n are the gray value of each pixel and the number of all pixels located in a
perpendicular line. A shape profile records the weighted width of every perpendicular line

across the medial axis of a chromosome (x). , which
corresponds to the sum of the product of the grey scale value gi(x) and its corresponding
Euclidean distance di(x) away from the medial axis of the perpendicular line, divided by the
sum of the distance 23. A banding profile is computed by processing a density profile D(x)
with a non-linear transform filter defined by Kramer and Bruckner method 45. In the density
profile each band is characterized by a uniform density and the transitions between
neighboring bands use step functions.46

Based on these three profiles, a total of 31 features are computed for each chromosome in an
identified analyzable metaphase cell. These features form an initial feature pool, which is
summarized and listed in Table 1. The detailed definitions and computing methods of these
features have been reported in our previous study.38 In brief, the 31 features can be
classified into four types. The first type includes two features related with the centromere
index (CI). The second type contains the global features that contain chromosome area,
chromosome length, and chromosome density. The third type of feature includes 12 local
band features. The forth type includes 14 image features that are computed from global band
patterns based on weighted density distribution (WDD) functions.46 Figure 3 demonstrates
eight WDDs. For example, WDD2 expresses whether the density is mainly distributed in the
middle of the profile. Six of eight WDD functions (WDD1 to WDD6) have been tested in a
previous study 46. In our previous study 38, we added and tested two new functions WDD7
and WDD8 in this group of features. WDD7 is used to search for a dark band in the p-arm of
a chromosome and WDD8 determines if there are three equally spaced dark bands in the q-
arm of a chromosome.

2.4 The second module to classify metaphase chromosomes
To reduce the training difficulty and the complexity of a classifier to simultaneously classify
24 types of chromosomes, a two-layer decision-tree based classifier is utilized in the second
module of our CAD scheme. The classifier includes eight artificial neural networks (ANN)
established in its decision nodes as shown in Figure 4. All chromosomes of a single
analyzable metaphase cell detected by the first stage of our CAD scheme are processed and
classified by an ANN in the first layer of the classifier. This ANN has three output neurons
and can generate eight different outputs (from “000” to “111”). Based on the different
output, the ANN classifies each of the chromosomes in the cell into one of seven groups
(A~G) by the characteristics and definition of Denver Group standard 2. For example, if the
ANN output is “000”, the chromosome is classified to group A; while the ANN output is
“110” the chromosome is assigned to group G (Figure 4). The output “111” is not activated.
Any “111” output indicates that the chromosome cannot be correctly classified by this
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classifier and it is defined and reported as an “undetermined” chromosome. In the second
layer, seven ANNs (one for each group) were adaptively optimized to classify individual
chromosomes into 24 types. Thus, for each chromosome that has been classified into one of
the seven groups (A to G), another corresponding ANN is applied to classify it into one of
the specific 24 types of chromosomes.

The initial feature pool includes 31 computed features. To eliminate the redundant features
and select effective features based on the different image characteristics of chromosomes in
different groups, all ANNs used in this two-layer decision tree based classifier have been
optimized using a genetic algorithm (GA) in our previous study.38 A publicly available GA
software known as Genesis developed by John Grefenstette 47 was selected for this study. In
GA optimization, the binary coding method is applied to create a chromosome used in GA.
To avoid confusion, the GA chromosomes are all presented in Italic format. In this study,
there are 35 genes in a GA chromosome, in which the first 31 genes correspond to initially
extracted features and the last four genes represent the hidden neurons. For each feature-
related gene, “1” indicates that this feature is selected as one input feature of the ANN;
while “0” means that this feature is discarded. The mean square error (MSE) between ANN
generated testing scores and the pre-recorded truth for all training samples is used as GA
fitness criterion to assess ANN classification performance. We also used default initial
parameters of GA software in the optimization process. These include that (1) the initial
population size of GA chromosomes is set as 100 and (2) the crossover rate, the mutation
rate, and the generation gaps are specified as 0.6, 0.001, and 1.0, respectively.47 The
effectiveness of this GA optimization protocol has been extensively tested and evaluated in
our previous studies.38, 41 Using this protocol, GA searches for the better GA chromosome
with smaller MSE until the searching results converges to the “best” GA chromosome.
Table 2 summarizes the eight “best” GA chromosomes for eight optimized ANNs. For
example, the first ANN that classifies chromosomes into seven groups has 15 input neurons
and 6 hidden neurons because in the first 31 genes of the GA chromosome there are 15 “1”
and 16 “0” (indicating that 15 features are selected and 16 are discarded) and the last four
genes are 0110 representing 6 in the decimal system. The results indicate that due to the
different image characteristics of chromosomes in seven groups, different feature sets should
be selected for different ANNs to achieve optimal performance.

2.5 Assessment of scheme performance and robustness
In this study, we designed a computer interface to link two modules together and built an
integrated CAD scheme. Two detection and classification modules were previously
optimized using different image databases. To assess its performance and robustness, this
integrated CAD scheme was applied “as is” to the new database collected for this study. We
tested and analyzed the performance of each module as well as the integrated CAD scheme.
In assessment of the first module, we used a receiver operating characteristic (ROC)
method 48 to evaluate the performance. The ANN-generated classification scores of all
analyzable and un-analyzable samples in this testing dataset were converted into two
histograms with 11 bins each 37. Based on these two histograms, we plotted an un-smoothed
ROC type performance curve and applied ROCFIT program 49 that uses maximum
likelihood estimation method 50 to compute an area under the ROC curve (AZ value) that is
used as an index to assess the module performance. To evaluate the performance of the
second module and the integrated CAD scheme, we counted and compared the percentage of
chromosomes that were assigned correctly to the seven groups and 24 types of chromosomes
visually classified by the cytogeneticists.
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III. Results
The performance of the first CAD module reaches AZ = 0.966 ± 0.003 in detecting and
classifying between 100 analyzable and 100 un-analyzable metaphase chromosome cells.
Figure 6 shows a ROC-type performance curve of the testing result of the first module in the
CAD scheme applied to this image dataset. According to this performance curve, our
scheme correctly detects and classifies all 100 analyzable cells with the maximum five false-
positive detections (namely, classifying five un-analyzable cells as analyzable cells). This
high performance indicates the large interclass discrimination and insensitivity to extraneous
variables (little signal-to-noise ratio dependency) of the selected features. For example,
Figure 7 displays a scatter diagram between the average pixel values and the number of
labeled regions in each identified metaphase cell. For these two features, the analyzable cells
are mostly located in the upright corner of the diagram, which indicates that the analyzable
cells typically have larger numbers of labeled regions and higher pixel values than un-
analyzable cells. Thus, one of the most important reasons for the metaphase cells being
classified as un-analyzable is that these cells have a higher percentage of overlapped
chromosomes resulting in a smaller number of separated or independent regions labeled by
the computer scheme.

The second stage (karyotyping module) of our CAD scheme uses eight ANNs in the two-
layer decision tree classifier to classify individual chromosomes inside the identified
analyzable metaphase cells. Table 3 summarizes the detailed classification results of each
ANN. As shown in Table 3 94.5% (4354 out of 4607) of chromosomes in our testing dataset
are correctly classified by the ANN located in the first layer into one of the seven groups (A
to G). Then, separately applying seven adaptively optimized ANNs located in the second
layer to the chromosomes in corresponding groups, the ANN classification accuracies range
from 80.6% to 98.8%, in which six ANNs achieve the classification accuracy above 95.2%
and only one ANN (group C) has lessened performance with 80.6% accuracy. The overall
classification accuracy is 91.5% or the error rate is 8.5% indicating that 4217 out of 4607
chromosomes are correctly classified by our scheme.

IV. Discussion And Conclusions
Development of the automated metaphase finding and karyotyping systems has been
attracting extensive research interest in the last two decades. It aims to help clinicians more
accurately and efficiently detect chromosomal rearrangement, which is a powerful indicator
in the diagnosis of cancers and genetic diseases as well as in monitoring the cancer
prognosis and treatment efficacy. Although considerable research efforts and substantial
progress have been made in developing automated computer schemes for identifying
metaphase chromosomes and karyotyping, current available automated systems have a
number of limitations. First, many of previous studies selected a large number of features,
built very complex classifiers, and used difficult computational methods to simultaneously
classify chromosomes into 24 types 51. These previous studies have shown that these
sophisticated systems and methods limited their ability to achieve high and robust
performance in clinical cytology and pathology applications 52. Second, most of the
available systems are actually semi-automated systems that need substantial human
intervention during the operation. For example, human interventions are often required to
switch the microscopic objectives in detecting analyzable metaphase chromosome cells (the
metaphase finding). In our previous studies, we used different approaches to develop a set of
simple CAD modules for detecting analyzable metaphase cells and classifying individual
chromosomes. In the first module of automatically detecting analyzable metaphase cells,
compared with previously reported studies using low-resolution images 5, 6, 13, our scheme
directly applies to the high-resolution images 37. As a result, the analyzable metaphase cells
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detected and prompted by the scheme can be directly examined and analyzed by
cytogeneticists for the purpose of diagnosis without using the microscope. The
chromosomes involved in the detected analyzable metaphase cells can be directly processed
by the automatic karyotyping or other CAD schemes to perform more comprehensive tasks.
In addition, due to the use of a simple ANN with six features to detect analyzable metaphase
cells, the over-fitting of the scheme can be relatively easy minimized. For the second
module (automated karyotyping) of classifying individual chromosomes, our scheme applies
a new concept of using an adaptive optimization method to build an automated scheme with
a two-layer classification structure and tests the feasibility of using a GA to separately select
effective features and optimize the topology of each ANN.

In this study, we integrated the two automated modules into a complete CAD scheme and
assembled a new image dataset to assess its performance and robustness. The results of this
assessment study show that when applying to this new image dataset, the performance of our
CAD scheme maintains a level very comparable to the level from the previous dataset for
optimizing the two modules of the scheme 37, 38. We also examined and compared other
chromosome classification results reported in a number of previous studies 14, 17, 19 in which
a single large ANN was developed to classify 24 types of chromosomes. These studies used
three publicly available databases (the Copenhagen, Edinburgh, and Philadelphia databases)
and selected different image features to build ANNs. Due to the complexity of the ANN
topology (e.g. an ANN with 15 input neurons, 100 hidden neurons, and 24 output
neurons 17). The reported classification error rates are approximately 6.2%, 17.8%, and
22.7% for Copenhagen, Edinburgh, and Philadelphia databases, respectively 17. In this
study, we used a database collected from our genetic laboratory, and the overall error rate of
our classifier based on the combination of two layers of ANNs was 8.5%. Table 4 describes
and compares the image characteristics between our dataset and three public datasets. Since
the Copenhagen database contains high quality and straight chromosomes in which the
locations of centromeres are known through manual identification, the testing performance
of ANN classifiers is usually high. Three previous studies reported classification error rates
of 6.2%, 8.8%, 10.3%, respectively on Copenhagen database14, 15, 17. Edinburgh and
Philadelphia datasets contain more difficult chromosomes resulting in the substantially low
performance of the computer schemes. The reported error rates ranged from 15.3% to 22.1%
and 22.7% to 28.6% for Edinburgh and Philadelphia databases, respectively.14, 17, 23, 30

Based on the image characteristics summarized in Table 4 we estimated that the difficult
level of our dataset is similar to Edinburgh databases. Thus, the 8.5% error rate of our
classifier suggests that our scheme achieves a very comparable or improved performance
due to the diversity of our database. In addition, although the size of dataset used in this
study is doubled as compared to the size of dataset used in our previous study (4607 versus
2300), the overall classification accuracy of 91.5% (or 8.5% error rate) achieved in this
study is higher than 86.7% achieved in the previous study.38 The most obvious performance
improvement occurs in group C (80.6% versus 67.5%) indicating that new dataset contains
less number of difficult chromosomes in this group. For other six groups the performance
differences are within ±5%. Therefore, despite of the potential difference in dataset
difficulty level, the testing results clearly indicate that the topology design of our scheme
using eight simply structured ANNs in a two-layer decision tree and the adaptive ANN
optimization approach using genetic algorithm effectively avoids the risk of over-fitting
using the limited training dataset. As a result, the performance of our scheme is consistent
and robust when it is applied to the new testing dataset.

In summary, the main purpose of developing computer schemes to automatically detect
analyzable metaphase chromosome cells and to classify individual chromosomes is to
eliminate or minimize the tedious and labor-intensive manual process, which is routinely
used in current genetic laboratories to identify analyzable metaphase chromosome cells and
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perform karyotyping of the chromosomes. The success of the automated CAD scheme may
also help improve (1) diagnostic accuracy by detecting and analyzing more cells and (2)
diagnostic consistency by reducing intra- and inter-reader variability. However, since most
of the automated schemes developed for this purpose were trained and optimized using
machine learning methods, testing the robustness of each scheme using new independent
image datasets is important. In this study, we reassessed the performance of our CAD
scheme using a new dataset that has never been involved during the training and
optimization process of the scheme. The testing results indicate that our CAD scheme
achieved higher and robust performance in analyzable metaphase chromosome cell detection
and individual chromosome classification. In our future studies, we will continue to improve
the performance level of our CAD scheme and assess its potential clinical utility.
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Figure 1.
The examples of metaphase chromosome cells and corresponding karyotype images. (a)A
region of interest (ROI) depicting an un-analyzable metaphase cell and an interphase cell,
(b) a ROI depicting an analyzable cell and three interphase cells, (c) a ROI with segmented
analyzable metaphase chromosome cells, (d) the corresponding karyotyping image of the
analyzable cell displayed in Fig. (c).
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Figure 2.
Ideograms of chromosome #1, examples of variability of morphologies of chromosome #1,
and the medial axis results of chromosome #1. (a) – (d) the original chromosomes, (e) – (h)
the chromosomes marked with the medial axis detected by the conventional thinning
algorithm, and (i) – (l) the chromosomes marked with the medial axis detected by our
modified thinning algorithm.
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Figure 3.
Illustration of the weighted density distribution functions utilized in feature computation.
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Figure 4.
A diagram of a two-layer decision tree-based classifier using 8 adaptively optimized ANNs.
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Figure 5.
An example of using a GA to train an ANN in a two-layer decision tree based classifier.
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Figure 6.
A ROC-type performance curve generated by an ANN in the dataset.
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Figure 7.
A scatter diagram between two features of 200 testing samples including 100 analyzable and
100 un-analyzable cells.
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Table 1

Distribution of 31 computed chromosome features in karyotyping subsystem

Feature type Number of
features

Brief feature description

1. Centromere index 2 Area of CI and length of CI.

2. Pixel distribution 3 Chromosome size, length, and the average density.

3. Local band patterns 12 Band distributions including the number, location, size of specific dark or white bands

4. Global band patterns 14 Band patterns computed from 8 WDD functions and 6 differences (the first order derivatives) of
WDD functions.
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Table 2

Feature used in eight ANNs

ANN GA chromosome Input
neurons

Hidden
neurons

1 11100101010101100110001000011100110 15 6

2-1 11101000010000000001001111001111110 13 14

2-2 00010010110100100010111010111001111 14 15

2-3 01001001111010000001000111011010101 14 5

2-4 00000101000101101101111111010111101 17 13

2-5 01110110010100000011011110010011110 15 14

2-6 11110100001101100000010011000111010 14 10

2-7 01100011010000000001101100110001000 11 8
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Table 4

Summary of different chromosome databases

Database Copenhagen Edinburgh Philadelphia OUHSC

Number of chromosomes 8106 5548 5847 4607

Data quality Good Fair Poor Fair

Including severely bent or touching chromosomes No Yes Yes Yes
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