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bstract. Most eye localization methods suffer from illumination
ariation. To overcome this problem, we propose an illumination nor-
alization technique as a preprocessing step before localizing eyes.
his technique requires no training process, no assumption on the

ight conditions, and no alignment between different images for illu-
ination normalization. Moreover, it is fast and thus effective for

eal-time applications. Experiment results verify the effectiveness
nd efficiency of the eye localization scheme with the proposed illu-
ination normalization technique. © 2009 SPIE and

S&T. �DOI: 10.1117/1.3086868�

Introduction
ye localization has been an intensive research topic for its
ide applications in face recognition, driver fatigue moni-

oring systems, etc.1–4 Unfortunately, it is still very hard to
nd an illumination-independent eye localization algo-
ithm. Thus, the active infrared-based approaches are em-
loyed to diminish the influence of illumination
ariation.1,2 However, eye localization in visible-spectrum
mages is more relevant, since it is more practical in appli-
ations, without needing extra equipments. Consequently, it
s often essential to normalize illumination before localiz-
ng eyes in visible-spectrum images of widely varied light-
ng. Jung et al.3 apply the self quotient image �SQI� to
ectify illumination and get satisfactory eye localization re-
ults on their private face database. However, in SQI, the
mage is normalized by division over its smoothed version,
hich depends on the kernel size of the weighed Gaussian
lter to a great extent. The kernel size is rather difficult to
etermine since the intrinsic information will be severely
educed if the kernel size is small or halo effects might
ppear if the kernel size is large. Although a multiscale
echnique is adopted to alleviate this problem, computa-
ional cost is added, and sometimes overcompensation re-
ions still exist. In addition, the image noise would be am-
lified by the division operation, which also deteriorates the
erformance of eye localization. This letter proposes to take
dvantage of a more effective illumination normalization
ethod, the logarithmic total variation �LTV� model,5 as a

reprocessing step for eye localization, and it validates the
erformance of this eye localization scheme on some public
ace databases. In Sec. 2, the LTV model is presented to
ormalize illumination on the face. Since the computational
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cost of the LTV model is expensive for real-time applica-
tions, a modified graph cut–based algorithm is proposed to
solve the model in Sec. 3 so that the proposed preprocess-
ing step is accelerated. Experimental results are given in
Sec. 4, followed by conclusions in Sec. 5.

2 The LTV Model for Illumination Normalization
According to the Lambertian model, the captured face im-
age I�x ,y� can be represented as

I�x,y� = �x,ySx,y , �1�

where � is the albedo of the object surface, and S�x ,y� is
the final light strength received at location �x ,y�. The al-
bedo � is the intrinsic representation of the captured face
and is independent of the ambient lighting condition, which
can be investigated for illumination-independent eye local-
ization. Taking the logarithm of Eq. �1�, we have:

log�I� = log��� + log�S� . �2�

If we denote f =log�I�, v=log���, and u=log�S�, respec-
tively, then

f = v + u . �3�

Chen et al.5 argued that one of the differences between
the intrinsic structure and the illumination pattern of a face
image is the scale difference, and the intrinsic structure is
usually smaller than the illumination artifacts and shadows.
In a way, v promotes the variation patterns of the albedos
of small-scale facial features. Thus, in order to eliminate
the interference of ambient lighting in eye localization, one
needs to extract v from f . We notice that the TV-L1 model
has shown its effectiveness for this task.5 Hence, we could
use the TV-L1 model to estimate u:

u = argminu �
�

���u� + ��f − u��dx , �4�

where � is a penalty parameter. As � increases, the term
�f −u� becomes more dominant, and thus u becomes more
smoothing. One advantage of this LTV model is that the
parameter �, which depends only on the scale of image, is
very easy to set. According to the LTV model, larger struc-
tures such as extrinsic illumination are left in u �or S�, and
�, which is taken as the output image of illumination nor-
malization, can be obtained by �=exp�v�=exp�f −u�.

Therefore, the illumination normalization problem is
transformed to how to solve the TV-L1 model. Since partial
differential equation–based algorithms often have numeri-
cal difficulties, Chen et al.5 cast Eq. �4� as a second-order
cone program and solved it by the modern interior-point
methods. But this iterative solution is expensive in both
memory and computation time. To make this illumination
normalization technique suitable for real-time applications,
a graph cut–based algorithm is proposed to solve Eq. �4�.

3 Efficient Solution to the TV-L1 Model
First, we show how to decompose Eq. �4� as several inde-
pendent binary energy minimization problems. The images
discussed in this letter are defined as m�n matrices in
Zm�n, where Z denotes the set of nonnegative integers that
Jan–Mar 2009/Vol. 18(1)1
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epresent the grayscale levels of images, and m�n denotes
he size of images. Let f �Zm�n and u�Zm�n denote the
riginal and separated images, respectively. According to
q. �3�, each element of these matrices satisfies

f i,j = vi,j + ui,j, for i = 1, . . . ,m, j = 1, . . . ,n . �5�

oreover, we assume that all images satisfy the Neumann
ondition on the boundary of the domain �, i.e., the differ-
ntials on the image edges are defined to be zero. This
ssumption can be guaranteed by padding the image using
he boundary elements. In this letter, to simplify and accel-
rate our algorithm, we just use the 4-neighbors of ui,j to
pproximate the gradient of u at the location �i , j�. Conse-
uently, the regularization term in Eq. �4� can be defined in
he discrete case by

�u� = �
i,j

��ui+1,j − ui,j� + �ui,j+1 − ui,j�� . �6�

uppose � as given, and define Bi,j =1 for ui,j ��; other-
ise, Bi,j =0. Define x+=max �x ,0�, where x is an arbitrary

eal number. There exists �Bi,j −Bk,l���Bi,j −Bk,l�++ �Bk,l

Bi,j�+. For each pair of neighboring pixels �i , j� and �k , l�,
ui,j −uk,l� can be expressed in terms of the elements of Bi,j
ver all grayscale levels �=0,1 , . . . , lmax as follows:

ui,j − uk,l� = �
�=0

lmax

�Bi,j − Bk,l� = �
�=0

lmax

	�Bi,j − Bk,l�+ + �Bk,l

− Bi,j�+
 , �7�

here lmax=maxi,j�ui,j��255. In this way, the original
roblem is reformulated into several independent binary
roblems based on the decomposition of a function into its
evel sets. Hence, combining Eq. �6� with Eq. �7�, the first
erm in the right part of Eq. �4� can be binarized as

�
�

��u�dx = �
�=0

lmax

�
i,j

�	�Bi,j − Bi+1,j�+ + �Bi+1,j − Bi,j�+
 + 	�Bi,j

− Bi,j+1�+ + �Bi,j+1 − Bi,j�+
� . �8�

imilarly, we define Bi,j� =1 for f i,j ��; otherwise, Bi,j� =0.
or binary numbers Bi,j� and Bi,j, there exists �Bi,j� −Bi,j�
�1−Bi,j� �Bi,j +Bi,j� �1−Bi,j�. The second term of the right

ide in Eq. �4� can then be binarized as

�
�

�f − u�dx = �
i,j

�f i,j − ui,j� = �
�=0

lmax�

�
i,j

	�1 − Bi,j� �Bi,j + Bi,j� �1

− Bi,j�
 , �9�

here lmax� =maxi,j�f i,j��255. As a result, Eq. �4� is refor-
ulated by combining Eq. �8� with Eq. �9�. For given input

f and � and a fixed level �� �0,1 , . . . , lmax� �, Eq. �4� can be
ewritten as

= argmin �
�=0

lmax�

E�B; f ,�,�� , �10�
ournal of Electronic Imaging 010503-
E�B; f ,�,�� = �
i,j

�	�Bi,j − Bi+1,j�+ + �Bi+1,j − Bi,j�+
 + 	�Bi,j

− Bi,j+1�+ + �Bi,j+1 − Bi,j�+
 + �	�1 − Bi,j� �Bi,j

+ Bi,j� �1 − Bi,j�
� . �11�

Thus, the problem of minimizing discretized Eq. �4� is
decomposed into minimizing E�B ; f ,� ,�� for all levels
�=0,1 , . . . , lmax� . It is noted that the minimizer u* of
Eq. �4� can be constructed from the minimizers
�B

�
* :�=0,1 , . . . , lmax� � using the relationship6

u
i,j
* = max	��B

�
*�i, j� = 1
 . �12�

We then construct a directed capacitated graph corre-
sponding to E�B ; f ,� ,�� to find its minimizer B

�
* at every

level �=0,1 , . . . , lmax� . It is worth noting that the nodes/
pixels in the graph are all binary and that the cost of each
n-link connecting one pair of neighboring pixels equals 1
and a t-link connecting �i , j� with the source or the sink
costs �Bi,j� and ��1−Bi,j� �, respectively. In this way, a sim-
plified two-terminal s-t graph representation of Eq.�11� is
constructed, and then the minimizer B

�
* is obtained via the

min-cut algorithm on the graph.7

To sum up, by introducing divide-and-conquer method-
ology and a simplified graph representation, the minimizer
u* of Eq. �4� can be computed more efficiently. This
method is essentially identical with Ref. 6 but is easier to
understand and implement. Consequently, the LTV model–
based illumination normalization technique is accelerated,
called Fast LTV �FLTV� in this letter.

4 Experiments
Three well-known benchmark databases were chosen to
evaluate the performance of the proposed eye localization
scheme under both good and bad lighting conditions. In the
Chinese Academy of Science: Pose, Expression, Accessory,
Lighting �CAS-PEAL� face database,8 the Lighting and
Normal subsets were used, which contain 2450 frontal face
images under widely variable illumination and 1040 frontal
face images under normal illumination, respectively. Yale
face database B �Ref. 9�, which contains 650 frontal face
images was also adopted since it allows for testing under
large variations of illumination, including strong shadow
and side lighting. Another 3368 frontal face images under
general illumination were chosen from the Face Recogni-
tion Technology �FERET� face database.10 All images are
roughly cropped so that the facial regions are left and then
resized to the appointed size. Then, illumination normaliza-
tion is executed on the images. SQI and FLTV are both
conducted here for comparison.

It is obvious that the darkest pixel in the eye region is
most often a part of a pupil. Thus, this gray valley can be
employed to localize eyes in face images. Generally, to
suppress noise and alleviate the interference of other ob-
jects �e.g., hair, eye corner�, a mean filter and a circular
averaging filter are usually used to enhance the image. This
simple eye localization approach requires no initialization
and training process. Moreover, it is extremely fast and
easy to implement and thus is widely used in practical ap-
plications. This approach is also used to test the illumina-
Jan–Mar 2009/Vol. 18(1)2
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ion normalization methods here. For higher accuracy and
peed, we limit searching gray valleys to the top half of the
ace image.

A few localization results on the Lighting subset of
AS-PEAL and Yale B face database are illustrated in Fig.
and Fig. 2, respectively. The upper images are the original

mages; the lower images are the eye localization results on
orresponding illumination-normalized images using FLTV.
ote that the same method used to select � in Ref. 4 is also

dopted here. It can be observed that there exist no over
ompensation regions in the normalized images. To evalu-
te the accuracy of eye localization, a general criterion4 to
laim successful eye localization is adopted:

rr =
max��lc − lc��,�rc − rc���

�lc − rc�
� 0.25, �13�

here lc and rc are the manually marked left and right eye
ositions, and lc� and rc� are the automatically located posi-
ions. Thus, the correct localization rates directly on the
riginal images and the preprocessed images with SQI and
LTV on the four test sets are separately obtained and are
hown in Table 1. It can be seen that SQI and FLTV can
reatly improve eye localization accuracy on all test sets,
nd FLTV outperforms SQI under both good and bad illu-
ination. In order to evaluate the computational cost, we

et the average location time per image by calculating the
ean of the total execution time. The average location

imes on a 128�128 face image using SQI and FLTV as a
reprocessing step are 0.781 s and 0.057 s, respectively. It
s easy to conclude that FLTV is much faster than SQI and
s effective for real-time eye localization. In addition, it
akes 6.53 s on average for the original LTV model to pro-
ess a 128�128 image, which is much slower than the

Fig. 1 Correct localization samples from CAS-Lighting subset.

Fig. 2 Correct localization samples from Yale B.
ournal of Electronic Imaging 010503-
proposed FLTV and SQI methods. All the experiments are
conducted with C		 on a Pentium D 2.8 GHz computer.

The experimental results demonstrate that our illumina-
tion normalization technique is reliable for robust eye lo-
calization under extreme lighting conditions. It can also
greatly improve the eye localization accuracy on images
under good lighting conditions. One reason may be that
FLTV not only retains useful information for eye localiza-
tion, but also eliminates the interference of hair of large
size �structure� by leaving it in S. Therefore, using such a
simple eye localization approach can achieve better or
closer accuracy than other complicated eye localization al-
gorithms.

5 Conclusion and Discussion
In this letter, we propose an illumination normalization
technique as a preprocessing step before localizing eyes.
This eye localization scheme is proven to be very fast and
reliable under variable illumination. Motivated by the ef-
fectiveness and efficiency of the proposed illumination nor-
malization technique, we might expect good performance
when combining it with other existing eye localization al-
gorithms, which is also our future work.
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