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This paper presents a delay compensation algorithm for a Gaze-contingent video 

Compression System (GCS) with a robust Targeted Gaze Containment (TGC) performance. The 

TGC parameter allows varying compression levels of a gaze-contingent video stream by 

controlling its perceptual quality. The delay compensation model presented in this paper is based 

on the Kalman filter framework that models human visual system with eye position and velocity 

data. The model predicts future eye position and constructs a high quality coded Region of 

Interest (ROI) designed to contain a targeted amount of gaze samples while reducing perceptual 

quality in the periphery of that region. Several model parameterization schemes were tested with 

21 subjects and the delay range of 0.02-2 s and targeted gaze containment of 60-90%. The results 

indicate that the model was able to achieve targeted gaze containment levels with compression of 

1.4-2.3 times for TGC=90% and compression of 1.8-2.5 for TGC=60%.  Lowest compression 

values were recorded for high delays while highest compression values were reported during 

small delays.  
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1 INTRODUCTION 

Image compression has been a fruitful research area for many years. Modern methods use 

different techniques such as run-length encoding, entropy coding, chroma subsampling, 

transform coding, and motion compensation to achieve high ratios of compression in image and 

video. But the knowledge of the limitations of the human visual system (HVS) gives us more 

powerful means of improving already existing methods. The diameter of the eye’s highest visual 

acuity, the fovea, extends only to 2 degrees. The parafovea, the next highest acuity zone, extends 

to about 4 to 5 degrees, and sharpness of vision drops off quickly beyond that point [1]. An HVS 

aware gaze-contingent compression offers tremendous potential for video bandwidth reduction 

[2-8]. In addition to bandwidth reduction, researchers report a drop of the computational burden 

for synthetic video and 3D imagery [4, 9]. As a result, gaze-contingent compression is quite a 

promising technique that can satisfy the needs of most recent bandwidth-hungry applications 

such as high-definition television, flight simulators, environment teleportation, virtual reality, 

telemedicine, remote vehicle operation, teleconferencing, etc. 

The main idea behind gaze-contingent compression methods is to increase the resolution 

within the area of gaze point and to reduce the image quality in the periphery according to an 

acuity degradation function. The acuity-based peripheral degradation is possible due to 

characteristics of the light sensors and their distribution within the eye [10]. In a practical case of 

gaze-contingent compression systems, peripheral degradation has to be properly mapped to a 

specific method of compression (codec) to be perceptually lossless [11-13].  

The information about gaze location is obtained by a device called an eye tracker [10]. The 

cost and accuracy of such devices have been improved recently. Still, many unsolved issues 

remain when eye trackers are employed in the realm of gaze-contingent compression. For 
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example, point based peripheral degradation can work in a simple scenario in which an eye-

tracker and a display unit are connected to the same computer. However, in situations that 

involve compression and transmission of the video from one point of the globe to another, the 

delay between gaze sensing and display can be quite significant. The delay effects would be 

noticeable when gaze lands on a not yet updated part of the image, thereby subjecting the viewer 

to the compression artifacts [14]. Therefore, if the future gaze location is predicted, a high 

quality ROI can be placed to “contain” future gaze coordinates, thus negating delay effects. It is 

obvious that the larger the amount of gaze samples are contained within an ROI, the higher 

perceptual quality the video will have. Therefore, it is important to have a parameter, such as 

Targeted Gaze Containment, that allows containing requested amounts of gaze samples within a 

ROI. 

The idea of the targeted gaze containment was first investigated by Komogortsev and Khan 

[15]. The researchers created a Histogram Eye-Speed Analysis (HESA) model that allowed the 

ROI to contain a targeted amount of gaze samples given the value of the feedback delay. With 

empirically selected target gaze containment parameter, this method was able to contain 

approximately 90% of the gaze samples and provided estimated compression of up to 2 times in 

case of 33 ms and 1.4 times for 166 ms delay. Low compression factors of 1.1-1.2 were reported 

for the 1-2 s delay range, indicating a point of saturation for the HESA model. An additional 

weakness of the HESA model was the large difference between the TGC and the actual gaze-

containment, sometimes reaching the level of 47%. The goal of this paper was to develop a 

model that would have more reliable performance in terms of the TGC and the actual gaze 

containment while providing higher compression values. 
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A new model proposed in this paper constructs ROI by a Two State Kalman Filter (TSKF), 

where the TSKF predicts future eye position by employing a Kalman filter given the value of the 

feedback delay. A Kalman filter is selected as a classical predictive framework that estimates the 

state of a dynamic system from a series of incomplete and noisy measurements. Parameters 

provided by the TSKF model constructs the ROI, assuming the highest resolution coding inside 

of this region and an HVS-based resolution degradation in the periphery. The engineering 

challenge related to the performance of any real-time RGC is to produce an optimum ROI where 

the targeted amount of gaze samples can be contained within a minimum visual space. Such a 

challenge is especially pertinent in case of a dynamic content where gaze behavior changes 

frequently.  Addressing the challenge mentioned above, different TSKF parameterization 

approaches are presented in this paper. 

2 RELATED WORK 

A good summary of current research in the gaze-contingent display and compression fields 

can be found in [16-19]. A significant amount of gaze-contingent research was focused around 

spatial and temporal visual acuity degradation models and the implementation of those models 

for specific encoding schemes [11-13, 20, 21].  

Itti and colleagues have devised several content analysis methods to detect image regions that 

might attract viewers’ attention [22-24]. Those studies were directed to indentify the factors 

attracting visual attention in top down and bottom up scenarios of attention deployment. The 

attention maps called the saliency maps produced in this research can be employed in gaze-

contingent compression systems by pre-encoding parts of the image with highest probability of 

attention using high resolution and reducing the resolution in the remaining part of the image. 
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The early research on the high quality coded ROI placement was done in the works of 

Duchowski and colleagues: [4, 20, 25, 26]. The main objective of that research was to place high 

quality coded regions on the part of the image that might be potentially interesting to the viewer 

and provide a way to encode the periphery which has lower quality with a method that prevents 

the detection of gaze-contingent compression artifacts. The ROI placement was either manually 

selected or calculated from the past gaze data recorded from several subjects’ viewings - there 

was no real-time feedback between the gaze stream and the location/size of the ROI. The ROI 

radius was fixed to be 5°, based on the fact that acuity at 5° of eccentricity is roughly 50% of the 

acuity at the fovea [25]. 

An important study was conducted by Loschky and Wolverton that investigated the 

dependency between the image update delay in a gaze-contingent display and the detection 

ability of the compression artifacts [14]. The researchers have placed a fixed size ROI on top of 

the subjects’ eye fixation after a pre-set interval and recorded the rate of detection of the 

peripheral “blurriness” by participants. A conclusion was made that if the image was updated 

within 60 ms after the beginning of a fixation, the gaze-contingent display provided perceptually 

lossless compression.  

Several ROI placement strategies, with a direct feedback between current gaze data and the 

ROI placement/size, were investigated by Komogortsev and Khan: [7, 8, 15, 27, 28]. The main 

objective of that research was to place an ROI on the future gaze location to compensate for the 

sensor/transmission delay effects present in a gaze-contingent compression system. Methods for 

ROI calculation were broken into three categories: 1) ROI size/placement was determined only 

by current gaze stream and the delay value [7, 8, 15, 29]; 2) ROI size/placement was determined 

by hybrid methods that employed real-time extraction of object information from an MPEG-2 
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video stream and current gaze data with a delay value [27]; and 3) ROI size/placement was 

determined by the aggregation of several concurrent gaze data streams from multiple viewers  

[28]. The categories presented above can be also divided into two groups:  

a) best effort – maximum amount of gaze samples are contained within the smallest ROI [8]. 

b) targeted performance - ROI size/placement attempted to contain targeted amount of gaze 

samples within the ROI given the value of the delay [7, 15, 27, 28]. The method presented in this 

paper belongs to the second category with an objective of creating an algorithm that will give 

better control over actual gaze containment, given the value of Target Gaze Containment (TGC), 

while providing higher compression levels. 

3 HUMAN VISUAL SYSTEM AND GAZE-CONTINGENT COMPRESSION 

The human visual system (HVS) exhibits a variety of eye movements: fixations, saccades, 

smooth pursuit, optokinetic reflex, vestibulo-ocular reflex, and vergence [30]. This paper 

concentrates on the first three. With great simplifications, their roles can be described as follows: 

fixation – eye movement that keeps gaze stable in regard to a stationary target, providing visual 

pictures with highest acuity; saccade – very rapid eye rotation moving the eye from one fixation 

point to another; and pursuit stabilizes the retina in regard to a moving object of interest [10]. 

Highest acuity vision occurs during fixations and pursuits. The vision is suppressed during 

saccades. 

The HVS-based gaze-contingent compression approach adopted in this paper comes from the 

work of Daly et al. [5] and employs a visual sensitivity function that is related to the contrast 

sensitivity of the human eye: 

𝑆 𝑥, 𝑦 =
1

1 + 𝐸𝐶𝐶 ∙ 𝜃𝐸(𝑥, 𝑦)
 (1) 
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Here, S is the eye visual sensitivity as a function of the image position (x,y),  ECC is a 

constant (in this work ECC=0.24), and 𝜃𝐸(𝑥, 𝑦) is the eccentricity in the visual angle. Ideally 

such sensitivity function should provide perceptually lossless compression in a gaze-contingent 

system but the actual results will depend on the mapping between such a function and the actual 

compression algorithm [5]. The diagram of the eye sensitivity function is presented by Figure 1. 

4 ROI DESIGN & APPLICATION  

4.1 Delay Effects 

The delay is defined as a period of time between the instance the eye position is detected by a 

sensor and the moment when the compressed image is displayed. The delay should be taken into 

consideration because future fixations/pursuits should fall within the highest quality region of the 

image, ensuring that gaze-contingent compression remains perceptually lossless. It is noteworthy 

that the properties of video transmission might change over time, thus increasing or decreasing 

the length of the delay. A network delay can be as high as a few seconds. As a result of the delay,  

saccades can place gaze on the low quality coded part of the image.  Therefore, a real-time gaze-

contingent system must have a prediction algorithm that allows placing high quality coded ROI 

on top of the future fixation/pursuit movement to compensate for the delay effects.  

4.2 ROI Construction 

The purpose of this study is to compensate for the delay effects by calculating the size and 

the placement of the high quality coded ROI and incorporate this ROI into the gaze-contingent 

compression model through visual sensitivity function. The objective of the ROI is to contain a 

targeted amount of gaze samples that belong to eye fixations and pursuits within the smallest 

possible area.  
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We move our eyes using saccades. The acceleration, rotation, and deceleration involved in 

ballistic saccades are guided by the muscle dynamics of the eye and demonstrate stable behavior. 

The latency, vector, direction of the gaze, and the eye-fixation duration have been found to be 

highly dependent on the content of the media presented in addition to being unpredictable. 

Therefore, we model the ROI as an ellipse, allowing the gaze to take any direction from the 

center. Each gaze contingent compression model has to define the center (𝑥𝑐𝑒𝑛
𝑅𝑂𝐼 𝑘 , 𝑦𝑐𝑒𝑛

𝑅𝑂𝐼 𝑘 ) and 

the length of the major, minor axis of the ROI ellipse (𝑥𝑑𝑖𝑚
𝑅𝑂𝐼  𝑘 , 𝑦𝑑𝑖𝑚

𝑅𝑂𝐼  𝑘 ). Figure 2 presents an 

example.  

The Two State Kalman Filter (TSKF) model presented in this paper places the ROI center on 

top of the gaze position. The accuracy of such prediction and the amount of  gaze samples 

previously contained by the ROI define its dimensions. Section 8 presents details. 

4.3 ROI & Gaze-Contingent Compression 

The logical structure represented by the ROI can be applied to bandwidth/computational 

burden reduction cases by reducing peripheral image characteristics though visual sensitivity 

function. To achieve this goal, a new visual sensitivity function incorporating the ROI concept 

needs to be computed. Assuming that the coordinates of the ROI center, the ROI dimensions, and 

the delay value Td are provided, Equation (1) can be transformed into the form: 

𝑆𝑡 𝑥𝑝𝑖𝑥 , 𝑦𝑝𝑖𝑥  =  

1,         𝑤ℎ𝑒𝑛       𝐼𝑛_𝐸𝑙𝑙𝑖𝑝𝑠𝑒(𝑡) < 0

1/ 1 + 𝐸𝐶𝐶
180

𝜋
𝑡𝑎𝑛−1  

𝐼𝑛_𝐸𝑙𝑙𝑖𝑝𝑠𝑒(𝑡)

𝑉𝐷
  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (2) 

where 𝐼𝑛_𝐸𝑙𝑙𝑖𝑝𝑠𝑒(𝑡) =   
𝑉𝑦  𝑡  𝑥𝑝𝑖𝑥 −𝑥𝑐𝑒𝑛

𝑅𝑂𝐼  𝑡  

𝑉𝑥  𝑡 
 

2

+  𝑦𝑝𝑖𝑥 − 𝑦𝑐𝑒𝑛
𝑅𝑂𝐼 𝑡  

2

− 𝑦𝑑𝑖𝑚
𝑅𝑂𝐼  𝑡 . 𝑥𝑝𝑖𝑥 , 𝑦𝑝𝑖𝑥  are coordinates of 

every pixel of the image presented. 𝑥𝑐𝑒𝑛
𝑅𝑂𝐼 𝑡 , 𝑦𝑐𝑒𝑛

𝑅𝑂𝐼 𝑡  are the ROI center’s coordinates and 

𝑥𝑐𝑒𝑛
𝑅𝑂𝐼 𝑡 , 𝑦𝑐𝑒𝑛

𝑅𝑂𝐼 𝑡  are  the ROI’s dimensions at the time instance “t”. VD is the distance between 
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the viewer’s eyes and the screen surface. Note that all distances have to be converted to the pixel 

distances for this equation to be true.  

The peak point presented by the Equation (1) and depicted by Figure 1 becomes the ellipse of 

the ROI depicted by Figure 2, therefore the role of 𝐼𝑛_𝐸𝑙𝑙𝑖𝑝𝑠𝑒(𝑡) < 0 expression of the Equation 

(2) is to provide a check if a pixel with coordinates 𝑥𝑝𝑖𝑥 , 𝑦𝑝𝑖𝑥  is inside of the ROI ellipse or not. 

Every pixel inside of the ROI has to have the original visual quality with sensitivity value of 1. 

The slope of the visual sensitivity degradation is defined by the Equation (1) where eccentricity 

𝜃𝐸(𝑥, 𝑦) is calculated to take into the account the ROI dimensions and the distance to the screen. 

Figure 3 provides a graphical representation of the Equation (2).  

5 TWO STATE KALMAN FILTER MODEL 

5.1 Basics of Kalman Filtering 

The Kalman filter is a recursive estimator that computes a future estimate of the dynamic 

system state from a series of incomplete and noisy measurements. A Kalman Filter minimizes 

the error between the estimation of the system’s state and the actual system’s state. Only the 

estimated state from the previous time step and the new measurements are needed to compute the 

new state estimate. Many real dynamic systems do not exactly fit this model; however, because 

the Kalman filter is designed to operate in the presence of noise, an approximate fit is often 

adequate for the filter to be quite useful [31]. 

The Kalman filter addresses the problem of trying to estimate the state 𝑥 ∈ ℜ𝑛  of a discrete-

time controlled process that is governed by the linear stochastic difference equation [31]: 

𝑥𝑘+1 = 𝐴𝑘+1𝑥𝑘+𝐵𝑘+1𝑢𝑘+1 + 𝑤𝑘+1 (3) 

with the measurement 
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𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘  (4) 

The n-by-n state transition matrix Ak+1 relates the state at the previous time step k to the state 

at the current step k+1 in the absence of either a driving function or process noise. Bk+1 is an n-

by-m control input matrix that relates m-by-l control vector uk+1 to the state xk. wk is an n-by-1 

system’s noise vector with an n-by-n covariance matrix Qk. 𝑝 𝑤𝑘 ~𝑁 0, 𝑄𝑘 . The measurement 

vector zk contains state variables that are measured by the instruments.  Hk is a j-by-n 

observation model matrix which maps the state xk into the measurement vector zk. vk is a 

measurement noise j-by-1 vector with covariance Rk. 𝑝 𝑣𝑘 ~𝑁 0, 𝑅𝑘 . 

The Discrete Kalman filter has two distinct phases that compute the estimate of the next 

system’s state [31].  

Predict: 

Predict the state vector ahead: 

𝑥 𝑘+1
− = 𝐴𝑘+1𝑥𝑘+𝐵𝑘+1𝑢𝑘+1 (5) 

The 𝑥 𝑘+1
−  is a prediction of the position of the future gaze. 

Predict the error covariance matrix ahead: 

𝑃𝑘+1
− = 𝐴𝑘+1𝑃𝑘𝐴𝑘+1

𝑇 + 𝑄𝑘+1 (6) 

The predict phase uses the previous state estimate to predict the estimate of the next system’s 

state. 

Update: 

Compute the Kalman gain: 

𝐾𝑘+1 = 𝑃𝑘+1
− 𝐻𝐾+1

𝑇 (𝐻𝑘+1𝑃𝑘+1
− 𝐻𝑘+1

𝑇 + 𝑅𝑘+1)−1 (7) 

Update the estimate of the state vector with a measurement zk+1: 
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𝑥 𝑘+1 = 𝑥 𝑘+1
− + 𝐾𝑘+1(𝑧𝑘+1 −𝐻𝑘+1𝑥 𝑘+1

− ) (8) 

Update the error covariance matrix: 

𝑃𝑘+1 = (𝐼 − 𝐾𝑘+1𝐻𝑘+1)𝑃𝑘+1
−  (9) 

5.2 Two State Kalman Filter Model 

The TSKF models an eye as a system with two states: position and velocity. The acceleration 

of the eye is modeled as white noise with known maximum acceleration and used in the design 

of the Qk matrix for the Equation (6).  

The TSKF models an eye as a system which has two state vectors xk and yk. 

𝑥𝑘 =  
𝑥1(𝑘)
𝑥2(𝑘)

  (10) 

where 𝑥1(𝑘) is horizontal coordinate of the gaze position and 𝑥2(𝑘) is horizontal eye-velocity at 

time k. 

𝑦𝑘 =  
𝑦1(𝑘)
𝑦2(𝑘)

  (11) 

where 𝑦1(𝑘) is vertical gaze position and 𝑦2(𝑘) is vertical eye-velocity at time k. 

The state transition matrix for both horizontal and vertical states is: 

𝐴 =  
1 ∆𝑡
0 1

  (12) 

where t is the eye-tracker’s eye-position sampling interval. 

The observation model matrix for both state vectors is: 

𝐻 =  1 0  (13) 

By definition the covariance matrix for the measurement noise is 𝑅𝑘 = 𝐸[ 𝑣𝑘 −

𝐸(𝑣𝑘)  𝑣𝑘 − 𝐸(𝑣𝑘) 𝑇]. Because only eye position is measured 𝑣𝑘  is a scalar making 𝑅𝑘 =

𝑉𝐴𝑅[𝑣𝑘] = 𝛿𝑣
2, where 𝛿𝑣 is the standard deviation of the measurement noise. In this paper, it is 
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assumed that the standard deviation of the measurement noise relates to the accuracy of the eye 

tracker and is bounded by one degree of the visual angle. Therefore 𝛿𝑣 was conservatively set to 

1°. In cases when the eye tracker fails to detect eye position coordinates, the standard deviation 

of measurement noise is assigned to be 𝛿𝑣 = 120°. The value of 120° is chosen empirically, 

allowing the Kalman Filter to rely more on the predicted eye position coordinate 𝑥 𝑘
−.  

The TSKF is initialized with zero valued initial vectors 𝑥 0, 𝑦 0 and an identity error 

covariance matrix P0. 

Parameterization of the process noise covariance matrix Qk will result in three separate ROI 

construction models (TSKF Simple, TSKF Content Accel, TSKF Fixed Accel) with details 

presented in the next three subsections. 

5.3 TSKF Simple  

By definition, the process noise covariance matrix is 𝑄𝑘 = 𝐸[ 𝑤𝑘 − 𝐸(𝑤𝑘)  𝑤𝑘 −

𝐸(𝑤𝑘) 𝑇], where 𝑤𝑘  is a 1x2 system’s noise vector   𝑤𝑘 =  𝑤1(𝑘) 𝑤2(𝑘) 𝑇. TSKF Simple 

model assumes that variables 𝑤𝑖(𝑘) are uncorrelated between each other (velocity is independent 

of eye position), i.e., 𝐸  𝑤𝑚 (𝑘 𝑤𝑛 𝑘  = 𝐸  𝑤𝑚(𝑘 ]𝐸[𝑤𝑛 𝑘    for all 𝑛 ≠ 𝑚 and 

𝑝 𝑤1(𝑘) ~𝑁 0, 𝛿1
2 , 𝑝 𝑤2(𝑘) ~𝑁 0, 𝛿2

2 . These assumptions generate following the system’s 

noise covariance matrix: 𝑄𝑘 =  
𝛿1

2 0

0 𝛿2
2 .  The TSKF Simple model assumes that the standard 

deviation of the eye position noise 𝑤1(𝑘) is connected to the characteristics of the eye fixation 

movement. Each eye fixation consists of three basic eye-sub-movements: drift, small involuntary 

saccades, and tremor [32]. Among those three, involuntary saccades have the highest amplitude - 
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about a half degree of the visual angle; therefore 𝛿1 is set conservatively to 1°. Standard 

deviation value for eye velocity was selected to be 𝛿2 = 1°/s. 

5.4 TSKF Acceleration-Based Approaches 

Kohler has derived a process noise covariance matrix Qk for a system that models 

translational motion with constant velocity and white noise acceleration of the maximum 

amplitude a [33]. Suggested Qk matrix was: 

𝑄𝑘 =
𝑎2∆𝑡

6
 

2𝐼(∆𝑡)2 2𝐼(∆𝑡)

3𝐼(∆𝑡) 6𝐼
 𝑠 (14) 

where I is an identity matrix; ∆t=tk+1+tk – time between eye-position sampling, s - unit seconds; a 

– acceleration.  

  Out of the three eye movements, fixation, pursuit, and saccade only, saccades are responsible 

for the rapid eye rotation and exhibit the highest acceleration values. Therefore, it would be 

reasonable to assume that properties of the saccadic eye movements should define acceleration 

parameter 𝑎 for the matrix Qk. Two approaches define the value for 𝑎. The first approach, the 

TSKF Content Accel, monitors eye acceleration during stimuli perception and assigns the highest 

recorded eye acceleration value to 𝑎. The second approach, TSFK Fixed Accel, takes into 

account that that high average eye acceleration is approximately 4000°/s
2
 [10] and assigns this 

fixed value to 𝑎. 

5.5 ROI Construction 

For each ROI placement model, i.e., TSKF Simple, TSKF Content Accel, TSKF Fixed Accel 

two separate instances of the given model are employed in the eye movement prediction process. 

The first instance is the base which provides updated gaze coordinates each time a measurement 
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arrives from an eye tracker. The second instance is the actual predictor that uses updated 

coordinates as an input and predicts future gaze position given the feedback delay value. The 

ROI center is placed on top of the predicted gaze. A previous history of the magnitude of the 

error between predicted and measured eye position determines the size of the ROI. The 

following paragraphs provide description that is more detailed. 

The TSKF considers the horizontal and the vertical components of the eye movement 

separately. The base model iterates each time a new measurement arrives from the eye tracker 

providing updated gaze coordinates and covariance error matrixes (𝑥 𝑘+1, 𝑃𝑘+1 and 𝑦 𝑘+1, 𝑃𝑘+1). 

Those values are supplied as initial values to the new instance of the TSKF that predicts the 

coordinates of the future gaze, providing the compensation for the delay. The number of 

iterations required for prediction can be represented by the value 

m =  Td ∙ eye_tracker_sampling_frequency_HZ .  The challenge presented in front of the 

predictor TSKF is to obtain the position of the future gaze samples given the value of the 

feedback delay with no measurements present during this time interval. The challenge is resolved 

by assigning the required measurements zk for horizontal and vertical components to 𝑥 𝑘+1and 

𝑦 𝑘+1  mentioned above. Very importantly, the standard deviation of the measurement noise 𝛿𝑣 is 

assigned to be 120° making the measurement noise covariance matrix 𝑅𝑘 = 1202. This 

assignment allows the Kaman filter to rely more on the HVS model for prediction and practically 

ignore the last valid eye position measurement in the update stage. Theoretically, the 𝛿𝑣 should  

be  set to infinity; but practically, the value of 𝛿𝑣 = 120 brings better results.  As a result of m 

iterations of the predictor TSKF, the values 𝑥 𝑘+𝑚+1
−  and  𝑦 𝑘+𝑚+1

− , become the predicted 
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coordinates of the future gaze. The ROI center coordinates become (𝑥𝑐𝑒𝑛
𝑅𝑂𝐼 𝑘 = 𝑥 𝑘+𝑚+1

− , 

𝑦𝑐𝑒𝑛
𝑅𝑂𝐼 𝑘 = 𝑦 𝑘+𝑚+1

− ). 

The ROI dimensions are selected to be proportional to the gaze position prediction error. 

Ideally, such an error would be normally distributed 𝑁(𝜇, 𝜎2) with 𝜇 = 0. The relationship 

between the amount of samples contained under the bell curve of the normal distribution 

between (𝜇 − 𝑛𝜎2, 𝜇 + 𝑛𝜎2) can be represented by the integral [34] 

𝐹 𝑛 =
2

 𝜋
 𝑒−𝑡

2
𝑑𝑡

𝑛/ 2

0

 (15) 

 

 Therefore, if the ROI dimensions are assigned to be (𝑛𝜎𝑥
2, 𝑛𝜎𝑦

2) the solution to the equation 

TGC=F(n) will provide the value for n, necessary to contain the amount of gaze samples 

specified by TGC. Unfortunately, integral (15) cannot be expressed in terms of elementary 

functions; therefore, linear approximation n = (TGC-41)/27 is employed. This linear 

approximation is based on the fact that approximately 68% of values drawn from a normal 

distribution are within one standard deviation from the mean, and 95% of the values are within 

two standard deviations [34]. The use of the linear approximation of n value will not be 

advisable for the TGC greater than 95% due to inaccuracies appearing as a result of the 

approximation. 

Standard deviation (SD) of the prediction error is calculated as 

𝜎𝑥(𝑡) =   
 𝑥 𝑘+𝑚+1

− −𝑥 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  
2

 𝑡−𝑇𝑑  ∙
𝐴𝐸𝐺𝐶 (𝑡)

100

𝑡−𝑇𝑑
𝑘=𝑗 , where AEGC(t) is the average amount of gaze samples 

contained by the ROI from the moment j of the recording up to the moment t. The value t-Td-j 
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will represent the size of the sampling window where the calculation of 𝜎𝑥(𝑡) and the AEGC(t) 

occurs. The existence of such a temporary window will prevent having “outdated” samples for 

𝜎𝑥(𝑡). For more accurate results, the size of this window should be content dependent. In the 

experiments presented in this paper, j was set to 1. The maximum possible value for AEGC(t) is 

100. The performance of the real-time Gaze-contingent Compression System (GCS) has to be 

conservative, i.e., actual gaze containment has to be above the targeted gaze containment to 

provide the required perceptual quality. The value applied in denominator 
𝐴𝐸𝐺𝐶(𝑡)

100
 increases 𝜎𝑥(𝑡) 

in cases when the actual gaze containment goes down, therefore increasing the size of the ROI 

and containing more gaze samples. The same logic is applied in calculating the standard 

deviation for the vertical component of movement. 

It can be argued that the suitable value for 𝜎𝑥(𝑡) can be extracted from the error covariance 

matrix Pk calculated by the Kalman filter, but the investigation of the approach is beyond the 

scope of this paper.  

6  EXPERIMENT SETUP 

6.1 Eye Movement Detection Algorithm 

It is important to estimate the performance of the ROI construction in terms of various eye 

movement types such as fixations, saccades, and pursuits. This work adopts the Velocity-

Threshold Identification (I-VT) model [35]. The original I-VT model proposed by Salvucci & 

Goldberg classified eye position samples as fixation when eye velocity was below 100°/s and 

saccades when eye velocity was above 300°/s. These values seem to be in contradiction with 

oculomotor research and neurological literature. Leigh and Zee [30] indicate that saccade onset is 

detected when eye velocity rises to 30°/s, and smooth pursuit eye movements are detected with 
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eye velocities of 5-30°/s. A different group of researchers represented by Meyer and colleagues 

[36] found out that the human visual system (HVS) maintains pursuit motion with velocities of 

up to 90°/s.  These facts show that it is hard to define an automated instant eye movement 

detection criterion, especially if eye position sample data is the only source of information. 

Nevertheless, this paper adopts classification based on velocity values suggested by Leigh and 

Zee: fixations (0-5°/s), saccades (more than 30°/s), and pursuits (5-30°/s).  

6.2 Test Multimedia Content 

Human eye movements are highly dependent on the visual content. Some types of scenes 

inherently offer more opportunity for compression, and some offer less. Any media compression 

algorithm should continuously analyze the complexity of a scene and provide the best 

performance possible. Unfortunately, there is no easy or agreed means of measuring the 

complexity of the content. Several video clips were looked at, each offering different 

combinations of subjective complexities. In this paper, three representative cases are considered 

with rough subjective-complexity descriptions presented below: 

Car: This video shows a moving car. It was taken from a security camera view point in a 

university parking lot. The visible size of the car was approximately one fifth of the screen. The 

car was moving slowly, allowing the subject to develop smooth pursuit movements. Several 

pedestrians and distant cars appeared in the background several times, often capturing the 

attention of the subject. The remaining part of the video’s background was still.  

Shamu: This video captures a night performance of an Orca whale under a tracking 

spotlight. The video consists of several moving objects: the whale, the trainer, and the crowd. 

Each of those objects is moving at different speeds during various periods of time. The 
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interesting aspect of this video is that a subject can concentrate on different objects and it results 

in a variety of eye movements: fixations, saccades, and smooth pursuits. The background of the 

video was constantly in motion due to the fact that the camera was trying to follow the 

swimming whale. Such a stimulus suits the goal of challenging prediction models to deal with 

different types of eye movements. The fact that the clip was taken during the night provides an 

interesting aspect of the video perception by a subject. 

Airplanes: This video depicts formation flying of supersonic planes, rapidly changing their 

flying speeds.  The number of planes varies from one to five during the clip. The scene-recording 

camera movements were rapid zoom and panning. Frequently the camera could not focus very 

well on a plane and the subject had to search for it. This aspect brought an additional 

complication to the general pattern of eye movements. The background of this video was in 

constant motion and presented a blue sky. 

All three videos had a resolution of 720x480 pixels, frame-rate of 30fps, and were between 1 

and 2 minutes long [37].  

6.3 Equipment & Setup 

The experiments were conducted with a Tobii 1750 eye tracker which is represented by a 17 

inch flat panel with resolution of 1280x1024 and built-in eye tracking camera. This eye tracker 

performs binocular tracking with the following characteristics: sampling rate - 50Hz, accuracy 

0.5°, spatial resolution 0.25°, and drift less than 1°. The Tobii 1750 model allows 300x150x200 

mm freedom for the head movement [38].  Nevertheless, during the experiments, every subject 

was asked to hold his/her head motionless. Subjects were seated approximately 650 mm from the 

eye tracker. The experiment facilitator monitored subjects during each recording for any head 
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movements outside of 300x150x200 mm range. No such movements were reported.  Before 

running each experiment, the eye tracker was calibrated for each subject and checked for 

calibration accuracy. The stimuli were presented in the following order for each subject “Car”, 

“Shamu”, and “Airplanes”. None of the video files was available publicly; therefore, it was safe 

to assume that this was the first time the subjects saw these stimuli. 

The performance evaluation was conducted for a 0.02-2 s delay range and the TGC of 60-

90%. All performance analysis was done off-line with feedback delay simulated as a time 

difference between predicted and measured gaze samples Td seconds apart. 

6.4 Participants 

The subject pool consisted of 21 volunteers of both genders and mixed ethnicities, aged 20-

40 with normal, corrected and uncorrected vision. Subjects with uncorrected vision reported that 

they were comfortable working with a computer without vision correction. The subjects were 

instructed to watch the video clips in any way they wanted.  

6.5 Evaluation Metrics 

6.5.1 Gaze Containment 

Average Gaze Containment (AEGC) metric computes the number of gaze samples that are 

contained within the ROI region. The AEGC metric can be considered as a quantitative 

measurement of the perceived quality of the gaze-contingent compression system – the more 

gaze samples are contained within the high quality coded ROI, the lesser is the probability that 

compression artifacts are detected. Mathematically AEGC is computed as: 

𝐴𝐸𝐺𝐶 =
100

𝑁
 𝐺𝐴𝑍𝐸𝑅𝑂𝐼(𝑘)

𝑁

𝑘=1

 (16) 
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Variable 𝐺𝐴𝑍𝐸𝑅𝑂𝐼(𝑘) equals one when k
th

 gaze falls within the ROI boundaries and zero 

otherwise. N is the number of gaze samples under consideration. AEGC metric can be employed 

to measure gaze containment during fixations, saccades, and pursuits. For the perceptually 

lossless gaze-contingent compression systems, AEGC should be equal to 100% with the ideal 

ROI size equivalent to the size of the fovea. In practice, AEGC should be equal to the TGC 

parameter set by the system designer. 

6.5.2 Perceptual Resolution Gain 

The actual amount of bandwidth/computational burden reduction achieved by a gaze-

contingent compression system will depend on the ROI size and the method selected for 

peripheral image degradation [7]. The compression estimation approach selected in this paper is 

based on the visual sensitivity function presented in Section 4.3 and is calculated by a metric 

Average Perceptual Resolution Gain (APRG)  computed with the formula:  

𝐴𝑃𝑅𝐺 =
𝑀 ∙ 𝐻 ∙ 𝑊

   𝑆𝑘(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝐻

0

𝑊

0
𝑀
𝑘=1

 (17) 

where M represents a set of gaze samples during an experiment. 𝑆𝑘(𝑥, 𝑦) is the eye sensitivity 

function defined by Equation (2). The ROI size required for the 𝑆𝑘(𝑥, 𝑦) calculation is extended 

by one degree in every direction to reduce the probability of compression detection in cases 

when gaze falls on the ROI boundary. W and H are the width and height of the visual image.  

The APRG values above one will indicate that the gaze-contingent approach provides 

additional savings in terms of bandwidth/computational burden reduction. The APRG value of 

one will indicate that the gaze-contingent approach with given parameters does not provide any 

benefits. It is important to understand the maximum benefit that gaze contingent compression 

can achieve. It is assumed that such case occurs when feedback delay is zero and the eye-gaze is 
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directed toward the center of the screen for the duration of the experiment. According to the 

Equation (2) and assuming that the ROI’s radius is 1° of the visual angle and taking into 

consideration setup parameters presented in Section 6 the maximum value for the APRG can be 

estimated to be 2.6.   

7 RESULTS 

The experiment results which show the performance of the gaze-contingent compression 

system with incorporated delay compensation algorithm are presented by Figure 4 and Figure 5. 

The results were averaged between all recordings. 

Between three models, the TSKF Simple provided the highest compression results (APRG of 

2.5-1.4)  with the AEGC values higher than the TGC values for small feedback (0.02 s). For 

larger feedback delays (0.5-2 s), the AEGC was lower than the TGC but not more than by 7%.  

The TSKF Fixed Accel was the most conservative model in terms of the AEGC performance 

given the value of the TGC, i.e., the AEGC value was always higher than the TGC value. This 

property was achieved at the cost of reduced compression (0-18% reduction) for the same input 

parameters.  

The performance of the TSKF Content Accel was similar to the TSKF Simple model for small 

and medium delays (0.02-0.5 s), but in the case of large delays (1-2 s) the TSKF Content Accel 

was able to provide a 4% higher AEGC while achieving a 5-6% higher compression, indicating 

the benefit of eye gaze-based acceleration choice. It should be noted that for large delays, the 

AEGC values achieved by the TSKF Content Accel model were lower than the targeted values by 

up to 3%; therefore, the TSKF Fixed Accel model was still the most conservative choice with 

more gaze containment but slightly less compression. 



To appear in the Journal of Electronic Imaging, 2009 

22 

 

8 DISCUSSION 

8.1 Perceptual Quality and AEGC 

This paper did not evaluate subjectively the distraction impact caused by the gaze samples 

not being contained by the ROI, i.e., gaze containment calculation and compression estimation 

were done off-line. Therefore, it is important to ask how “bad” it would be for a real-time gaze-

contingent compression system if the gaze sample belonging to an eye fixation or pursuit falls 

outside of the high quality coded ROI. The results might vary, depending on how far the missed 

eye-fixation is from the ROI boundary and the implementation of the visual sensitivity function. 

In case a viewer notices the “blurred” effect and is unable to see a specific detail in the picture, 

he or she can fixate the eyes on the point in question; and the system will place the ROI
 
on the 

spot under attention. The amount of time required for this operation will directly depend on the 

delay duration. Additionally, it is important to take into consideration that the timing of the ROI 

placement does not have to be perfect, i.e., if the ROI is placed 60ms after the onset of a fixation, 

the system remains perceptually lossless [14]. Further investigation is necessary to match gaze 

containment numbers to specific goals imposed on a gaze-contingent compression system. 

8.2 TSKF vs HESA 

The Histogram Eye Speed Analysis (HESA) model was introduced by Komogortsev and 

Khan in [15]. The HESA model is a target gaze containment performance oriented model. The 

HESA model places the ROI center on the last available to the system gaze sample with the ROI 

dimensions defined as a product of the Future Predicted Eye Speed (FPES) and the feedback 

delay value. FPES is computed by a histogram analysis of the recorded eye speeds. 
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8.2.1 Gaze Containment  

One of the weaknesses of the HESA model was the fact that the model required empirical 

selection of the TGC parameter to receive the required AEGC. For the TGC=90%, the AEGC 

values were close to 100%, and no compression was achieved. Empirically selected TGC values 

allowing the AEGC achievement of 90% were 18-44% below the 90% mark. As it was pointed 

out in Section 7, the most conservative model, the TSKF Fixed Accel, in instances where 

TGC=90%, the provided AEGC values were always higher than the TGCwith the maximum 

recorded difference of 2-6% (0.02s delay case). Therefore, it is possible to conclude that the 

TSKF Fixed Accel model provides a more robust performance in terms of the AEGC, given the 

value of the TGC, than the HESA model. 

8.2.2 Compression  

To compare the performance of the TSKF based models and the HESA model, the TSKF 

Fixed Accel model was selected as the model providing the most conservative performance in 

terms of AEGC vs. TGC. The following table presents APRG values obtained by the HESA and 

the TSKF Fixed Accel for 0.5 – 2 s delay and the AEGC of 90% or higher.  

Model Name/Delay 

value 
0.5 s 1 s 2 s 

HESA 1.19 1.14 1.12 

TSKF Fixed  Accel 1.5  1.44 1.4 

One-Way ANOVA 
F(1, 64)=3.46, 

p=0.067 

F(1,64)=3.7, 

p=0.059 

F(1,64)=3.9, 

p=0.052 

It is possible to conclude that, on average, the TSKF Fixed Accel provided more compression 

with a strong trend toward statistical significance. Tests with a higher number of subjects have to 

be performed to establish results that are more accurate.  
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8.3 Average Gaze Containment vs. Average Fixation Containment 

This paper continues the empirical evaluation of the hypothesis that the Average Gaze 

Containment is a more conservative metric than the Average Eye Fixation Containment (AFC). 

Originally this hypothesis was proposed by Komogortsev and Khan [15] and was empirically 

validated for the Dwell-Time Fixation detection method in the same work.   

Experiments conducted with the I-VT eye movement detection model for this paper indicate 

that the hypothesis is true for low feedback delay cases. More specifically, in the case of the 

“Car” and “Airplanes” videos, the AFC was always higher than the AEGC. For small feedback 

values of 0.02 s, the difference between the AFC and the AEGC was statistically significant 

(pair-wise t-test, p<0.05) for all models and TGC values and not statistically significant for 

feedback delay values of 0.5 s and higher.  In the case of the “Shamu” video, the AFC was 

always higher than the AFC for the delays of 0.02 s (p<0.05). For higher delay cases, the AFC 

was lower in several instances than the AEGC, but the difference did not exceed 4% (not 

statistically significant).  

The Average Pursuit Containment (APS) was higher than the AEFC in all scenarios. The 

Average Saccade Containment (ASC) was less than the AEGC in all cases. The HVS is 

effectively blind during saccades [10]; therefore, low ASC should not negatively affect the 

performance of a gaze-contingent compression system.  

Figure 6 depicts two representative cases of the average gaze containment for all movement 

types for the “Car” and “Shamu” videos.  
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9 CONCLUSION 

This paper presented a Kalman filter-based algorithm for the sensor/processing/transmission 

delay compensation in a gaze-contingent compression system with the targeted gaze containment 

performance. The algorithm constructed an elliptically shaped high quality coded ROI and 

placed this ROI on top of the predicted gaze coordinates. The goal of the ROI was to contain a 

targeted amount of gaze samples within the smallest ellipse, given the value of the delay. The 

ROI parameters were calculated by a two state Kalman filter that modeled an eye as a system 

with translational motion and white noise acceleration. Content-based and fixed acceleration 

selection approaches were employed. The ROI construction was evaluated by 21 subjects, three 

multimedia files, 0.02-2 s delay range, and such metrics as: gaze containment (quantitative 

estimation of the quality of the compressed image) and perceptual resolution gain (estimation of 

bandwidth/computational burden reduction achieved by gaze-contingent compression). The 

performance of the gaze contingent compression system was assessed with the targeted gaze 

containment of 60-90%. Content-based and low acceleration parameterization provided the 

compression of 1.4-2.5 but for some of the high delay cases, average gaze containment was 7% 

less than the targeted value. The model with fixed eye acceleration of 4000°/sec
2
 always 

provided average gaze containment  that was higher than targeted values with a reported 

compression of 1.4-2.3 times. It is possible to hypothesize that a more accurate model of the 

human visual system [39] should improve the predictive performance of the Kalman filter and, 

therefore, bring higher compression results.  

Gaze containment and perceptual resolution gain numbers achieved by the TSKF model can 

be compared to the previously published Histogram Eye-Speed Analysis (HESA) model [15] that 

achieved 90% of the average gaze containment and 1.12-1.19 compression for the 0.5-2 s delay 
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range. The most conservative Kalman filter-based model presented in this work achieved 

approximately a 25% higher compression with the same perceptual performance.  

The experiments conducted in this paper partially support the hypothesis suggested by 

Komogortsev and Khan [37] that gaze containment is a more conservative metric for the 

evaluation of the perceptual quality of the gaze-contingent compression than a fixation-

containment metric. The results indicate that the average gaze containment metric can be 

considered as a lower boundary for average fixation/pursuit containment and an upper boundary 

for the average saccade containment. 

Additional research should be performed to evaluate the effect of distraction caused by the 

gaze samples that are not contained by the ROI. Different levels of gaze containment have to be 

mapped to a set of goals imposed on a gaze-contingent compression system. 

10 GLOSSARY 

AEGC – Average Eye Gaze Containment 

AFC – Average Fixation Containment 

APC- Average Pursuit Containment 

ASC – Average Saccade Containment 

GCS - Gaze-contingent video Compression System 

HVS -  Human Visual System 

ROI – region of interest 

TGC – Targeted eye Gaze Containment 

TSKF – Two State Kalman Filter 
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Figure 1. Visual Sensitivity 
Function: single gaze point case.
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Figure 2. Region of Interest: 
dimensions are designed to 
compensate for the delay effects.
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Figure 3. Visual Sensitivity 
Function: with incorporated ROI.
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Figure 4. Average Eye Gaze Containment performance for various target 
gaze containment and delay scenarios. Error bars represent standard 
deviation.
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Figure 5. Average Perceptual Resolution Gain performance for various target 
gaze containment and delay scenarios. Error bars represent standard deviation.
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Figure 6. Average Gaze vs. Fixation vs. Pursuit vs. Saccade Containment.
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