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Abstract
We discuss improved image reconstruction and segmentation in a framework we term model-
controlled flooding (MCF). This extends the watershed transform for segmentation by allowing
the integration of a priori information about image objects into flooding simulation processes.
Modeling the initial seeding, region growing, and stopping rules of the watershed flooding process
allows users to customize the simulation with user-defined or default model functions
incorporating prior information. It also extends a more general class of transforms based on
connected attribute filters by allowing the modification of connected components of a grayscale
image, thus providing more flexibility in image reconstruction. MCF reconstruction defines
images with desirable features for further segmentation using existing methods and can lead to
substantial improvements. We demonstrate the MCF framework using a size transform that
extends grayscale area opening and attribute thickening/thinning, and give examples from several
areas: concealed object detection, speckle counting in biological single cell studies, and analyses
of benchmark microscopic image data sets. MCF achieves benchmark error rates well below those
reported in the recent literature and in comparison with other algorithms, while being easily
adapted to new imaging contexts.

1 Introduction
Image segmentation is one of the most central, yet often challenging problems in many areas
including biological single-cell studies and computer vision. For example, accurate
segmentation of cell nuclei from microscopic images is usually a first and crucial step in
single-cell studies in systems biology.1–3 However, adapting existing algorithms to such
problems has proven to be difficult due to complicated imaging conditions, the diversity of
image features represented across differing cell types, weak intensity contrast, and touching
nuclei, among other issues.4 Examples in computer vision involve automated detection and
segmentation of concealed objects in terahertz images. In this context, specialized
algorithms5 have been developed as general, state-of-the-art algorithms (e.g., level sets6 and
the normalized cut algorithm7) typically fail due to weak intensities and low signal-to-noise
ratios, coupled with the lack of a frame-work for adapting these approaches to each new,
specific population of objects under consideration.

Multiple approaches to segmentation are surveyed in Refs. 8–11. Among advanced
segmentation approaches, watershed12–14 and connected operator methods10,11,15–17 are
among the most generally effective. The watershed transform operates on an input image
considered as a topographical surface. Initially implemented in a discrete format via
flooding simulations13 or hierarchical queues,14 watershed was later recapitulated in a
continuous framework using eikonal partial differential equations.18 Connected operators
(e.g., filters by reconstruction, attribute filters) also operate on topographical surfaces but
take a quite different approach in filtering connected components at each surface contour. A
key difference between these two approaches is that, while they each partition an image into
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connected components through region growing, the watershed algorithm does this by
growing into neighboring pixels sequentially and the connected operator by growing into
neighboring regions based on connectivity. Bertrand et al.19 bridged this gap with the
topological watershed transform, defining watershed based on connected operators. This
approach puts the connected operator at the heart of watershed transform analysis and
enables implementation of the topological watershed via component-tree based algorithms
that work very well for connected operators.

Connected operators play a major role in many image reconstruction and segmentation
algorithms and continue to be the core of recent active studies.20–22 Our work builds on this
but extends the framework to also admit algorithms that are not necessarily based on
connected operators and that can yield improved segmentation results. The innovation here
is closely related to a particular implementation of the marker-controlled watershed
algorithm, so we provide a brief introduction and its formulation as follows.

Any grayscale image can be considered as a topographic surface or landscape. The original
watershed transform is a segmentation method that simulates a landscape being flooded by
rain. Rain falling on the surface of a landscape will flow to some regional minima, with all
rain falling on a given catchment basin flowing toward the same regional minimum.
Watershed lines that separate catchment basins are treated as boundaries between regions for
the purpose of segmentation. An alternative model is based on flooding simulation. If the
surface is flooded from its regional minima and the merging of water from different sources
is prevented by building dams, the image is partitioned into two different sets: catchment
basins and watershed lines (dams), defining a natural segmentation of the original image.

Vincent and Soille13 proposed an efficient algorithmic implementation based on flooding
simulations. Formally, let I be a grayscale image under study, with hmin and hmax being the
smallest and largest values taken by I in its domain DI. Let Th (I) stand for the threshold set
function of I at level h:

(1)

The following recursion between gray levels defines the watershed algorithm based on
flooding simulation:

(2)

with Xh being the union of the set of catchment basins computed at level h, MINh the union
of all regional minima at level h, and IZA (B) the union of geodesic influence zones of the
connected components of B with B ⊆ A. Further details on IZA (B) can be found in Ref. 13.
In this approach, the algorithm starts from the lowest regional minima Xhmin at level hmin.
Xhmin is then flooded at level hmin+1 represented by Tmin+1 The geodesic influence zone
function IZ is then employed to propagate Xhmin to Xhmin+1 based on geodesic distance
while preventing merging of regional minima by building watershed lines. This process
continues until the highest regional maxima are reached at level hmax.

In general, the watershed transform leads to severe over-segmentation in contexts of high
frequency noise in the input image; this is usually dealt with by preprocessing steps using
techniques such as filters by reconstruction or attribute filters. This issue is intrinsic as
segmentation is completely driven by the regional minima, regardless of other prior
information about the objects of interest. Marker-controlled and hierarchical watershed
methods were developed as remedies by either providing strong prior information

Wang and West Page 2

J Electron Imaging. Author manuscript; available in PMC 2013 June 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(“markers”) to preprocess the image before applying watershed transforms,14 or via merging
rules to postprocess oversegmented regions.23–27 The success of these methods depend
heavily on the choice of initial markers and the rules specific to the image, and it has proven
difficult to define generally useful methods.27,28 In an attempt to include both intensity
contrast and region size criteria into the flooding process, a generalized method was
introduced in Ref. 29 for the partial differential equation formulation. The resulting uniform
volume flooding method showed improvement for certain problems but adapting this
method to different image characteristics is a complex task. Vargas-Vazquez et al.30 recently
introduced an approach based on the watershed transform, which skips the filtering step by
adding a shape-related criterion to the flooding process to control how image structures are
recovered.

Despite active research in the field, image segmentation remains a challenging problem due
to the diversity and complexity of application contexts. While connected operators can be
parameterized in the form of attribute filters, the choices for attributes satisfying connected
operator constraint are limited. This makes generality and portability of such methods a
major challenge. Use of the watershed algorithm incorporating criterion suffers from the
same issue. Using the geodesic influence zone function as the only propagating model in the
flooding process makes it extremely hard to generalize to other attributes.

Our work here defines a general, adaptable approach to addressing all these issues. The
novel model-controlled flood (MCF) simulation framework represents advances toward
effective and automatic use of context-sensitive information in the flooding process; this
generalizes both the watershed algorithm and connected operators by introducing modeling
and parameters to make the process more general and portable. MCF allows users to define
application-specific, parameterized, plug-in functions that utilize prior information specific
to the problem to control how the objects of interest should behave during a recursive
flooding simulation process. The specification is direct and intuitive, as our examples
demonstrate, and the results can represent substantial improvements over existing
approaches. This paper provides detailed descriptions and illustrations of the following
aspects of the MCF algorithm:

• Description of the novel model-controlled flooding (MCF) framework for image
reconstruction and segmentation;

• Definition of the MCF-based size transform and its applications to binary and gray
scale image segmentation, and discussion of advantages of the framework over
attribute filters and watershed algorithms;

• Examples of biological cell counting using customized size transforms on
benchmark human and fly image collections;

• Examples of using an MCF-based algorithm exploiting both size and shape
information for detection and segmentation of concealed objects from terahertz
images;

• Examples of MCF size/shape transforms for single molecular identification, or so-
called “speckle counting,” in biological single cell studies.

The novel MCF framework is introduced in Sec. 2, and its connections with—and
distinctions from—the marker-controlled watershed algorithm and attribute filters are
discussed. Section 2 also introduces a special case of the MCF implementation—the size
transform—followed by some representative segmentation examples to demonstrate its
simplicity and superior performance relative to existing algorithms. Section 3 discusses size
transform customization using shape information, aspects of performance evaluation,
parallel implementations, and a variety of examples to further justify the advantages of the
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proposed framework. The MCF algorithm performance is further validated using a total of
56 benchmark microscopic image sets from the Broad Institute Bioimage Benchmark
Collection.31 With benchmark error rates well below published results, the proposed
algorithm substantially improves segmentation results across multiple examples, while being
general, easily customizable and portable. Section 4 further demonstrates the portability of
the algorithm by applying and adapting the algorithm to two very different, topical
applications: detection and segmentation of concealed objects without modification, and
speckle counting in single cell studies with minor customization. Concluding comments
appear in Sec. 5.

2 MCF Framework and Size Transform
2.1 MCF Framework

Let Th (I) be the threshold set of an image I at level h as defined in Eq. (1). We define the
model-controlled flooding (MCF) framework by the following recursion between gray
levels of the image:

(3)

where hmin, hmax, Xh are as in Eq. (2), CF(B1, B2, θ) is any function that maps binary
images B1 and B2 into another binary image of the same size using a given parameter θ,
Ah+1 is a grayscale image and C = AGR(A, B, φ) is any function that maps a grayscale
image A and a binary image B into another grayscale image C using a given parameter
vector ϕ subject to

(4)

Compared to Eq. (1) for watershed algorithm, the MCF framework described by Eq. (3) is
novel in three aspects. First, it introduces a second status variable Ah to maintain a grayscale
image at each flooding level h, which makes it potentially also an algorithm for
reconstruction. Second, it allows the use of parameters at each step. These parameters are
not associated with any particular feature of an image in the framework but are provided as a
way to incorporate prior information regarding the specific segmentation/reconstruction
problem into the flooding process. Examples will be given in later sections on the use of
such parameters. Third, two functions CF, for controlled flooding, and AGR, for
aggregation, are introduced to update Xh and Ah respectively. Instead of hardwiring a
geodesic influence zone function into the flooding process as in Eq. (1) for updating Xh, the
framework makes it more flexible by allowing user-defined, plug-in functions in the
updating process. Similar to the role of the geodesic influence zone function in the
watershed algorithm, CF acts as an object modeling tool to decide how the result from the
previous level h should update/expand itself based on the newly available information Th+1,
the threshold set at current level h+1. The newly introduced function AGR then acts as a
moderator to decide how to combine the cumulative result Ah from previous levels with the
newly updated result Xh+1 at the current level, possibly using prior information in the
parameter vector φ. Equation (4) is introduced merely to impose restrictions on CF and AGR
such that flooding at a higher level does not invalidate the previous result.

The MCF framework described by Eq. (3) is illustrated in the flow chart of Fig. 1. Suppose
that the goal is to identify the round-shaped object from the contaminated input image. The
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input image is first inverted and viewed as a topographic surface. The lowest level hmin is
identified to initialize two status variables as shown in the second row; they are trivial in this
case. As the flooding level moves up (row 3 to row 7), the threshold set is first identified
(the red arrow). Then a controlled flooding function CF (the green arrows) is deployed to
extract information of interest using the result from the previous step and the new
thresholding set. Some straightforward information about this object is that it is round, solid,
and its size in terms of pixels is within a certain range. Taking this prior information as
parameters, the CF function can score the objects in the threshold set in column 1 and take
actions as necessary. For example, it removes the objects in row 3 that are not round or that
are too small; it can fill the hole in the object in row 4 that has the right size but is not solid;
it can select the round object in row 5 but discard the elongated blob from the same
threshold set; it can further remove objects in row 6 that are either too big or too small. The
results of applying CF function are shown in column 2 and only the objects that fit the
model are preserved and/or enhanced. The AGR function (the orange arrows) is shown in
Fig. 1 as column 3, which in this case simply stacks up all the results from column 2 without
using any parameters. As suggested by the final result Ahmax in row 7, column 3, and its
topographic view in the bottom row, the reconstructed image using MCF is much cleaner
than the original image.

The final result from Eq. (3) can be in the form of a +reconstructed grayscale image to be
further segmented using existing methods, or in terms of just a binary mask that represents
the final segmentation result, depending on how the aggregation function is formed. We
will, however, demonstrate that the reconstructed images usually have very desirable
features that can be easily segmented using standard existing methods.

2.2 MCF Examples
Based on Eqs. (3) and (4) we provide two MCF examples using different CF and AGR
functions. Our first example demonstrates that the marker-controlled watershed algorithm is
a special case of MCF. The second example provides a simple MCF size transform and is
used in the remaining sections to illustrate the approach.

Marker-controlled watershed algorithms (with criterion)—Let AGR (A, B, ϕ) = B
and CF (B1, B2, θ) = IZB2 (B1) ∪ [B2 \ R (B2, B1)], where R (B2, B1) is the opening by
reconstruction operator.32 Then plugging AGR and CF into Eq. (3) yields

and

Note that the last step is obtained by observing the fact that the regional minima MINh+1 are
the points that belong to threshold set Th+1 but not R[Ah,Th+1(I)]. This makes the marker-
controlled watershed transform a special case of MCF. It is then obvious that the watershed
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transform does not take any prior information into consideration during its flooding process.
Also, region growing is wholly defined by the influence zone function. However, a new
variant of marker-controlled watershed was recently introduced to include a criterion or
shape information into the flooding process.30 This modifies the threshold set at each
flooding level through mathematical opening with parameterized structure elements before
computing influence zones. If we set CF (B1, B2, θ) = IZγθ (B2) (B1), where γθ is the
mathematical opening operator with structure element size θ, our controlled flooding
function then describes the algorithm proposed in Ref. 30, making it a parameterized special
case of MCF.

Size transform—In many image segmentation problems, the sizes of objects in a given
image are usually the most recognizable features other than intensity values. The following
realization of MCF gives a very simple example that exploits this feature.

Suppose B2 is a binary image of k connected components Z1, Z2,…,Zk with corresponding
areas (numbers of pixels) P1, P2,…,Pk. Define θ = (sizemin, sizemax) by two prior values
sizemin, and sizemax, and set φ to be a vector of zero length. Further, set

(5)

in the MCF algorithm. This specific CF function simply filters out from the threshold set B2
any connected components that are too small or too large; AGR simply aggregates the result
by adding up the filtered binary masks for the threshold sets at all levels. We call this
realization in Eq. (5) an MCF size transform as it only uses the minimum and maximum
sizes for object modeling.

Compared to the watershed algorithm, this formulation is very simple but illustrates the very
fundamental aspect of the framework: using simple functions to integrate prior information
into the flooding process. The minimum size parameter sizemin here provides an automatic
way of finding initial seeds or markers, while the maximum size parameter sizemax provides
a stopping rule for the flooding process. Region growing in the process is simplified by
accumulation of binary masks from each flooding level and is guaranteed by Eq. (4).
Further, it is clear that the size transform is not an attribute filter as defined in Ref. 16 and
that the grayscale area opening is a special case of this transform if only the minimum size
parameter is used. Attribute filters are strictly built on connected operators and changes to
the threshold sets are made only through connected components; in contrast, MCF allows
any changes to be made on each pixel based on a model function, as shown via the
customized size transforms in following sections. In other words, the MCF framework
provides extension of both attribute filter and watershed transform approaches. It allows
region growing based on a model and prior parameters in a flooding process. Importantly, it
is not necessarily hardwired to a connected operator and attribute as in the case of attribute
filters, nor is it hardwired to a specific function—such as the influence zone function—as in
the watershed transform.

2.3 Representative Segmentation Examples Using Size Transform
We present three examples that involve directly applying the MCF size transform as defined
in Eq. (5).

Example 1. Identifying pears in a gray scale image—Figure 2(a) gives the grayscale
input image of several pears from the Matlab Image Processing Toolbox. The goal is to
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identify/separate pears from the background and from each other. Figure 2(b) is the typical
resulting mosaic image after applying the watershed transform to the gradient magnitude of
Fig. 2(a). It is evident that the image is highly over segmented due to the blemishes and high
frequency noise. Figure 2(c) is obtained using the marker-controlled watershed transform as
suggested in Ref. 3. The foreground markers are generated by a multistep pipeline involving
edge detection, image smoothing using “filters by reconstruction,” and global thresholding.
The background markers are calculated by applying watershed transform to the distance
map of the Otsu thresholding33 of the original image Fig. 2(a).

Figure 2(d) is the result Ahmax> 0 after applying the proposed MCF size transform Eq. (5)
based on the parameter θ = (500, 17500), i.e., we assume that all the pears to be identified
will have a size of at least 500 pixels and at most 17,500 pixels, rough visual estimates of
the pear sizes in the image. Figure 2(c) and 2(d) uses random colors to indicate the identified
pears and the segmentation results are superimposed on the original image. This simple
MCF size transform clearly identifies more pears correctly in a coherent, naturally and
easily understood way.

Example 2. Segmentation of a binary particle image—This example was analyzed
in Ref. 34 using a six-step adaptive watershed algorithm to segment irregular-shaped binary
images based on the concept of overlap parameter. The simple procedure we use is
implemented in three steps:

• Step 1: Calculate the distance map of the input binary image.

• Step 2: Apply the MCF size transform to the distance map and extract local
maxima as markers. Set sizemax to a very large value to just filter out oversized
objects.

• Step 3: Segment the distance map from step 1 according to the markers from step 2,
using the marker-controlled watershed algorithm.

While the first and the third steps are standard for most binary segmentation problems, the
second step is the most important: it uses the MCF size transform to reduce the spurious
local maxima to achieve satisfactory results; see Fig. 3.

Figure 3(a) is the input irregular-shaped binary particle image. Figure 3(b) shows the result
from the conventional watershed algorithm using the Matlab watershed transform
implementation; this is a special case of MCF size transform with sizemin = 0. Over-
segmentation is clearly evident. Figure 3(c) and 3(d) gives results using the size transform
with sizemin = 25 and sizemin = 100. Figure 3(e) plots the total number of segmented
particles against the single nontrivial parameter sizemin. Further investigation shows that the
proposed algorithm: a) produces oversegmented results when sizemin is smaller than 7; b)
produces under-segmentation results when sizemin is larger than 157; c) gives the same
result as shown in Fig. 3(c) for any parameter between 8 and 52; d) gives the same result as
shown in Fig. 3(d) for any parameter between 53 and 157. It is evident that the algorithm is
relatively insensitive to the choice of parameter and produces very stable and satisfying
results across a wide range of values of this single parameter. Testing on multiple other
binary images suggests that a default setting of sizemin = 10 usually suppresses most
spurious local minima and yields good segmentation results.

Example 3. Cell segmentation using microscopic images of budding yeast—
Cell segmentation of clustered budding yeast from a microscopic image is a critical
challenge for many biological studies.35 Here we use the size transform to both identify the
foreground and segment the foreground into individual cells for such images. A three-step
procedure is used:
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• Step 1: Apply the size transform to reconstruct the images to enhance the contrast
between the foreground (regions of cell clusters) and the background.

• Step 2: Identify the foreground by thresholding the result from step 1.

• Step 3: Use the procedure described in example 2 to segment the binary foreground
for individual budding yeast cells.

Figure 4(a) shows the input testing microscopic image of budding yeast colonies, generally
shown as the dark and round, tightly clustered regions. Figure 4(b) gives the result Ahmax
after step 1, using the trivial parameter θ = (1, a/4), where a is the total number of pixels in
the image. Figure 4(c) shows the extracted foreground after step 2; this suppresses those
maxima of Fig. 4(b) with height less than 20; this uses the Matlab function ihmax, and any
number between 10 and 30 will give very similar results. Figure 4(d) gives the final
segmentation result after step 3 and using the default parameter setting.

A very simple global thresholding method converts the transformed result in step 1 into a
binary image in step 2. In case of dealing with a series of similar images, other methods such
as Local Histogram Equalization or Rank Transform on Hybrid images3 can be employed to
avoid manually choosing a global threshold.

3 Discussions and Comparisons
The size transform Eq. (5) demonstrates the ability to incorporate prior information into the
flooding simulation process to shape the final results. By customizing the CF and/or AGR
functions according to the unique features of a problem we can apply this approach to a
broad range of imaging studies. For example, for most biological cell nuclei segmentation
problems we can assume that the nuclei are convex with somewhat smooth borders. This can
be reflected in the MCF function by applying morphological opening/closing to the
threshold set for border smoothing and by “filling holes” before or after filtering out
unwanted objects based on size. The resulting CF function no longer operates on the
connected components and thus does not fall into the category of attribute filters. We give
examples using this modification in the following section, analyzing 56 images from two
benchmark collections from the Broad Bioimage Benchmark Collection (BBBC).36 In these
examples we calculate benchmarks and make comparisons with two leading segmentation
algorithms: CellProfiler37 and Gradient Flow Tracking.38

3.1 Benchmark Image Sets for Cell Counting
To test and evaluate existing or new algorithms for bioimage analysis, we refer to the Broad
Institute at MIT collection of freely downloadable microscopic images and “ground truth”
(expected results) obtained by human experts. The BBBC site also defines benchmarks for
matching ground truth in cell counting, segmentation, and so forth. We use two collections
on cell nuclei counting from microscopic images of Human HT29 Colon Cancer 1 cells
(human) and Drosophila KC 167 1 cells (fly), as have published benchmark results from
CellProfiler. Further, on these data sets the historically large variation in “ground truth”
assessments from human observers indicate that these are nontrivial and challenging test
images. More details about these data sets can be found at Ref. 36; we note that there are a
total of 50 fly image data sets and six cancer image data sets in these collections, and the
performance results reported come from the full set of 56 example analyses.

We summarize the results of our comparative analyses in Tables 1 and 2 and Fig. 5. Table 1
lists details on the data sets, methods, parameters, and benchmark calculations. The same
MCF size transform is applied to both data sets with different parameters. Table 2 gives
results compared to the published results from CellProfiler and Gradient Flow Tracking.
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MCF outperforms the published CellProfiler results, improving benchmarks from 17% and
6.7% to 3.99% and 0.1% respectively. While Gradient Flow Tracking performs almost as
well as MCF for the human data set, it performs poorly for the fly data set. Figure 5 gives
segmentation results for randomly selected images from both data sets using different
methods. The first row in Fig. 5 shows input images from the human and two fly samples;
the second row gives CellProfiler results, the third row those from Gradient Flow Tracking,
and the final row from MCF. It is evident that MCF size transform produces results that are
consistently and significantly less over- or undersegmented.

3.2 Parallel Implementation
In general, as we drop the connected operator requirement from the MCF framework, we
will also abandon component-tree based approaches17 that dominate the attribute filter
algorithms. However, by modeling threshold sets at each level separately, the MCF size
transform and its variants are immediately suitable for parallel implementation. In contrast
to the marker-controlled watershed algorithm, the model function described in Eq. (5) does
not depend on the first input B1, or Xh in Eq. (3). Hence, we can first calculate Xh
independently and in parallel at each level h. Then all results at all levels are summarized
based on the AGR function. The recursive algorithm in Eq. (3), as illustrated by the
flowchart in Fig. 6, then naturally fits into the popular Map/Reduce parallel algorithm
scenario39 by treating CF as a Map step and AGR as a Reduce step. As multicore
computers40 and Graphics Processing Unit (GPU) becomes more widely used, the potential
for modeling threshold sets independently in parallel are immense and should be exploited.

3.3 Sensitivity to Parameters
The MCF analysis for the benchmark data sets depends on three essential but typically
easily assessable parameters:

• maximum “object” size,

• minimum disk structure element radius chosen to smooth object borders,

• minimum highest intensity value that an object has to reach.

The maximum object size is usually determined by visually identifying and estimating the
largest object in the image, and generally has a negligible influence on the final
segmentation/counting result. The minimum disk structure element is, in contrast, often
critical to the final segmentation result and generally serves as a tuning parameter. The
minimum highest intensity value is introduced mainly to filter out the objects that are too
dim to be considered and usually can be chosen with ease. For our biological examples, Fig.
7 gives plots of the benchmark error rates for the human and fly data sets as a function of
minimum structure element radius when the other two parameters are fixed. The horizontal
lines give the published benchmarks. We see that inappropriate choice of this parameter can
cause over-segmentation when it is too small or undersegmentation when it is too large.
Also, there is a wide range of parameter values in each case that lead the MCF analysis to
outperform published results, confirming its relative parameter insensitivity and robustness.

4 Additional Applications of MCF
We explore two further applications to demonstrate scope and performance of MCF in very
different and nontrivial image analysis problems of broad current interest.

4.1 Detection and Segmentation of Concealed Objects in Terahertz Images
Images of objects concealed beneath the clothing of a human subject can be obtained using
terahertz imaging techniques, with applications to automatic detection and segmentation of
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concealed objects such as guns and knives. Standard segmentation methods have as yet
proven to deal poorly with these images due to inherent physical properties of the terahertz
imaging technique, i.e., poor contrast and low signal to noise ratio. Recent studies of state-
of-the-art segmentation methods and a new unsupervised algorithm that outperforms them
are given in Ref. 5. This new algorithm takes a three-step approach: (i) reduce noise using a
NL-Means image denoising algorithm,41 (ii) classify pixels from a cleaned image into three
“rough” regions (background, human body, and concealed objects) using Gaussian mixture
modeling or similar standard methods,42 and (iii) apply multilevel thresholding to further
identify concealed objects from the human boundary that was misclassified in step (ii).

MCF can be readily customized to segment concealed objects; see Fig. 8(a). The strategy is
to use size transform to first segment the background from the rest, and then to segment the
concealed objects from the human body.

Background detection—The human body and the background in testing images are
relatively large connected regions. Successful segmentation is likely if we can smooth both
regions separately without blurring the region boundary. We accomplish this using the size
transform with the same size parameters twice: first, on the original image to generate a
reconstructed image A; second, on the complement of the original image to a reconstructed
image B; see red and green channels in Fig. 8(b). Evidently, both background and human
regions are cleaner with borders preserved. Since the goal is to remove noise, the choice of
size parameters is trivial and results are quite insensitive to broad ranges of values. For
example, the min and max sizes are taken here as 10% and 90% of the total number of pixels
in the input image, respectively. If we change these to 1% and 99%, we obtain basically the
same results. To further identify the background, we simply mark a pixel as background if
its value in A is larger than that in B, which effectively segments the background from the
rest in each case; see Fig. 8(c).

Concealed object detection—To identify the concealed objects from a terahertz image
using the same size transform, we assume that: (i) any concealed object has a minimum size
in pixels of at least 1% of the size of the human body, (ii) a maximum size of at most 10%
of that of the human body, and (iii) the object boundary can be smoothed by a mathematical
morphological opening of size 2. Figure 8(d) gives the results of applying the MCF size
transform to Fig. 8(c). This reliably highlights all the concealed objects which can then be
easily identified using simple global thresholding as suggested in Sec. 3. The parameters are
not optimized in any way, but already show the ability of the simple and automatic MCF
analysis. A more rigorous approach would involve training the parameters using a subset of
manually labeled images.

4.2 Speckle Counting
As a broad platform for biological imaging, CellProfiler37 provides an advanced pipeline for
Speckle Counting, to identify smaller objects (foci) within larger objects (nuclei) with very
many tunable parameters for user customization. Some of the important parameters are size
and smoothness of both the larger and smaller objects. We show here that the MCF size
transform can be used for all the tasks involved here, including cell nuclei identification,
touching cell nuclei separation and foci detection, automatically and with minimal
customization.

Nuclei detection—Figure 9(a) gives an example from Cell-Profiler. It seems easy for
human eyes to segment, but poses problems when an algorithm is applied due primarily to
the weak gradient surrounding cell nuclei and also the large intensity variation within each.
We reconstruct the image by smoothing both background and foreground, keeping the cell
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nuclei boundary relatively unchanged. Figure 9(b) shows the reconstructed result using
MCF size transform with the same size parameters as in the previous example (10% of total
pixels for minimum size and 90% for maximum size). As expected, both background and
cell nuclei are more homogenous in intensity distribution and the borders are preserved. A
simple global thresholding such as Otsu’s method yields the cell nuclei identification; see
Fig. 9(c).

Touching nuclei separation—While Fig. 9(c) gives a binary mask of all nucleus within
the image, touching nuclei have to be further separated. This can be done easily using the
procedure described in Sec. 2 on segmentation of a binary particle image; see Fig. 9(d). The
single size parameter can range from 20 to 5000 without changing the final nuclei
segmentation result.

Foci detection—Figure 9(e) shows the image that captures the foci. As suggested in the
CellProfiler pipeline, all foci will have minimum and maximum sizes and certain border
smoothness. We characterize this prior information by setting the minimum and maximum
size parameters to 10 and 100 pixels respectively, and also by assuming that the detected
foci will be smoothed by a morphological opening of size 1. Applying MCF size transform
to data in Fig. 9(e) yields results as in Fig. 9(f) (log scale); generally, some foci will be
touching each other, although their centers are identified by local maximum regions that can
be further segmented using a watershed algorithm. A direct approach avoiding this problem
is to simply customize MCF via the AGR function in order to only include a component if
its inclusion does not invalidate the maximum size restriction defined in the model function.
This results in Fig. 9(f), defining the final estimation of image foci. Figure 9(g) and 9(h)
gives close-ups of the upper-right nuclei. For comparison, the corresponding segmentation
result for that upper-right region from the CellProfiler pipeline using its default parameters
is shown in Fig. 9(i).

5 Conclusions
The Model-Controlled Flooding framework generalizes both the marker-controlled
watershed algorithm and attribute filters by allowing users to integrate prior information
regarding objects of interest directly into the flooding simulation process and by relaxing the
connected operator constraint on modeling functions applied to threshold. Using the size
transform and its customized versions as examples, we demonstrate that simple model
functions operating on binary images can be effectively used to control all aspects of the
flooding process: providing initial flooding regions (initial markers) implicitly through
minimum size requirements in a region, deciding when the flooding should stop through
maximum size of a region, and determining how a region should grow by using shape and
smoothness constraints. The aggregation function adds an extra layer of flexibility by
allowing the process to decide how to combine binary results from different threshold set
levels. The end results of the proposed algorithm are reconstructed images with improved
contrast and more homogenous intensity distributions, images that can be further segmented
using existing methods. By contrast, the marker-controlled watershed transform uses only
predefined initial markers as starting points, and hardwires the influence zone function as a
model function during the flooding process. The attribute filters only operate on the
connected regions of threshold sets and do not allow alteration of flat zones.11

We have defined a size transform as a special case of the MCF algorithm and used it to
effectively segment both irregular-shaped binary particle images and grayscale images. We
have further demonstrated this new approach through a variety of reconstruction and
segmentation examples. Using a modified size transform that incorporates shape-related
information into the model function, we successfully segmented cell nuclei in the
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microscopic images from two benchmark image sets of human and fly data, and achieved
substantial improvements over contemporary, published benchmark error rates. With
examples for different image processing problems such as segmentation of concealed
objects from terahertz images and speckle counting, we demonstrated that the proposed
algorithm can be used to solve a diverse range of practical segmentation problems, with easy
and robust customization through simply interpreted, low-dimensional parameters defining
model and aggregation functions. A range of numerical experiments indicate that the
proposed algorithm is relatively insensitive to the choice of parameters compared to other
leading algorithms, and further examples and experiments (not reported) add to the
empirical evidence supporting the view that of the approach can substantially improve
segmentation accuracy. We also note that the proposed MCF size transform algorithm is
intrinsically parallel and can be readily implemented in a parallel computing environment.

However, we also note that the added flexibility of using modeling functions in flooding
process can invalidate existing algorithms. These algorithms become efficient by taking
advantages of some intrinsic features. The component-tree approaches can no longer in
general be employed as they are based on the connected operator constraint. Also, the
flooding algorithm for watershed transform cannot be used, as the pixel queue used in the
implementation cannot be defined in advance. We propose parallel implementation ideas but
further investigations of implementations with particular modeling functions are desirable.

Future developments will enhance the utility of these methods, in areas including automated
methods for parameter selection, additional model and aggregation functions suited to other
segmentation problems, and integration of MCF into imaging packages such as CellProfiler.
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Fig. 1.
The flow chart of the model-controlled flooding framework.
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Fig. 2.
Pear data example, (a) original image, (b) watershed transform, (c) combination of marker-
controlled watershed transform and morphological operations, (d) MCF size transform.
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Fig. 3.
(a) input binary particle image, (b) watershed segmentation, (c) MCF size transform with
minimum size 25, (d) MCF size transform with minimum size 100, (e) number of particles
versus minimum size.
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Fig. 4.
(a) Input budding yeast image; (b) contrast enhancement using MCF size transform; (c)
extracted foreground; (d) final result using binary particle segmentation algorithm as in
example 2.
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Fig. 5.
Segmentation results for selected human and fly data. Row 1: input images; row 2: Gradient
Flow Tracking; row 3: CellProfiler; row 4: MCF size transform.
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Fig. 6.
Flowchart for parallel MCF size transform implementation
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Fig. 7.
Benchmarks versus tuning parameter “disk structure element radius” for (a) human and (b)
fly (b) data sets. Blue lines are benchmarks from the new MCF algorithm and red lines are
the published results from CellProfiler.
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Fig. 8.
Detection and segmentation of concealed objects in terahertz images. Column (a): the
original images; column (b): smoothed background and human body using size transform;
column (c): identified background; column (d): identified concealed objects using size
transform.
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Fig. 9.
Speckle counting. (a) original nuclei image; (b) preprocessed image using size transform; (c)
Otsu global thresholding of (b); (d) nuclei separation using size transform; (e) original foci
image; (f) foci detection result using size transform; (g), (h) close-up images of (e) and (f)
enclosed by the rectangles; (i) CellProfiler result.
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Table 1

Benchmark analyses: Implementation details.

Human HT29 Colon Cancer 1 Drosophila KC 167 1(fly)

Number of data sets 6 5

Images per data set 1 10

Total number of images 6 50

Method 1 Apply the customized size transform to transform input images.

2 Use Rank Transform on hybrid images with default parameters threshold images.

3 Use the procedure described in example 2 for final binary segmentation.

Parameters Structure element radius 2 5

Maximum cell size 5000

Minimum Highest Intensity
value

0 (not used) 20

Benchmark calculations: Compute absolute difference between the
algorithm’s count and the average of the
humans’ counts, then divide by the latter
to obtain deviation from ground truth (in
percent). The mean of these values over
all six images is the final result.

Compute the algorithm’s mean cell count over
the set of 10 images. Calculate the absolute
difference between this mean and the average of
the humans’ counts for the sample, then divide
by the latter to obtain the deviation from ground
truth (in percent). The mean of these values over
all five data sets is the final result.
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Table 2

Benchmark results.

Method Human Fly

CellProfiler 6.7% 17%

Gradient Flow Tracking 1.35% 82%

MCF 1.13% 3.9%
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