
Storage and addressing scheme for
practical hexagonal image processing

Xiangguo Li

Storage and addressing
scheme for practical
hexagonal image processing

Xiangguo Li
Henan University of Technology, College of Information
Science and Engineering, Zhengzhou Hi-tech Development
Zone, Lianhua Street, Zhengzhou, Henan 450001, China
E-mail: xiangguoli@gmail.com

Abstract. We present a practical hexagonal storage and addressing
scheme, which eliminates the difference between theory and imple-
mentation in other addressing methods. This scheme employs a mid-
dleware-based address-mapping module that separates the algorithm
and specific data addressing; thus any hexagonal algorithm can keep
the native and consistent forms as in the coordinate system through
theory and implementation. The scheme simplifies the implementa-
tion work and preserves all excellent features of the hexagonal lattice.
Finally, we discuss the implementation issues and show that it’s fea-
sible and can be implemented efficiently.© 2013 SPIE and IS&T [DOI:
10.1117/1.JEI.22.1.010502]

1 Introduction
Almost 50 years ago, Petersen and Middleton1 studied the
general sampling problem in two and higher dimensions,
and they showed that hexagonal lattice was optimal for cir-
cularly band-limited images. Besides 13.4% fewer samples
than the rectangular counterpart, Mersereau2 further demon-
strated that hexagonal processing was superior in filter
performance and computational efficiency. Furthermore,
hexagonal lattice has better geometric properties, such as
equidistant neighbors and uniform connectivity,3 and it
can also be widely found in the structure of biological visual
sensors, such as compound eyes of insects and retina of
human eyes; therefore, hexagonal processing is attractive
in computer vision.

Generally, the coordinate systems for hexagonal lattice
are not orthogonal, and this causes inconveniences for prac-
tical implementations. For instance, given a rectangular
shape image, if it is sampled with rectangular lattice, as in
the real world, the sampled data can be mapped into an
array in memory naturally and can be addressed the same
as in the Cartesian coordinates; if the image is sampled
with hexagonal lattice, as shown in Fig. 1(a), things become
different. Because the coordinates are skewed, if we want to
address data as in the skewed coordinates, we may map the
parallelogram region into an array;4,5 obviously it is not
efficient in memory usage.

Intuitively, we need to store the image data only,4,5 i.e.,
map the rectangular region into an array as shown in
Fig. 1(b). Meanwhile, new trouble arises. Consider two pix-
els located on an odd row and even row, respectively,

together with their own six neighbors, it’s clear that the
two area shapes are quite different in the storage array,
which means two sets of filters are needed for the odd
rows and the even rows separately.5,6 Recently, Rummelt
et al.7 proposed a scheme called array set addressing
(ASA), in which two arrays were used to store odd rows
and even rows separately. Three coordinates were used in
the system. Rummelt also developed fundamental operation
rules for the ASA system, and its significant feature is that
it provides uniform addressing and operations for all data.
In addition, there are other addressing methods for hexa-
gonal shape images,8–10 and they are not the concern of
this paper.

Except for the parallelogram region mapping, we observe
that current implementations rely on the specific data storage
and addressing closely, which results in expression differ-
ence from the original forms in the skewed coordinate sys-
tem, and this also introduces a gap between theory and
implementation. Motivated by the description of row-based
storage in Ref. 5, we adopt the middleware concept, and use
an address-mapping module to separate the algorithm and
data addressing. In this scheme, any algorithm uses the
coordinates in the skewed hexagonal system, and accesses
data from the storage array through the module; therefore,
any algorithm can keep the consistent forms through
theory and implementation. We also discuss the imple-
mentation issues, and show it’s simple and feasible for
practical use.

2 Proposed Scheme

2.1 Fundamentals
We start with a regular hexagonal sampling lattice as shown
in Fig. 2, in which four vectors vh1, vr1, vh2, and vr2 are
defined. Then we can use vh1 and vh2 to define a sampling
matrix:11

Vh ¼ ½vh1jvh2� ¼
�
1 − 1

2

0
ffiffi
3

p
2

�
: (1)

Obviously, any sampled pixel can be located by a pair of
integer values, and we can set up a hexagonal coordinate sys-
tem ðu; vÞ, which is natural and complete for the hexagonal
processing.

We can define another sampling matrix using vr1 and
vr2:

Vr ¼ ½vr1jvr2� ¼
� 1

2
0

0
ffiffi
3

p
2

�
: (2)

Because vr1 and vr2 are orthogonal, we can set up a Cartesian
coordinate system ðx; yÞ. In this case, the coordinates of
any sampled pixel are integers but not arbitrary; thus it is
not suitable for hexagonal processing.

Given a sampled pixel in Fig. 2, and let its coordinates be
ðui; viÞ in ðu; vÞ, and ðxi; yiÞ in ðx; yÞ, its position can be
given as Vh½ ui vi � 0 and Vr½ xi yi � 0. Since the same pixel
corresponds with the same position, the following equality
holds:

Paper 12482L received Nov. 19, 2012; revised manuscript received Jan. 14,
2013; accepted for publication Jan. 16, 2013; published online Jan. 31, 2013.

0091-3286/2013/$25.00 © 2013 SPIE and IS&T

Journal of Electronic Imaging 010502-1 Jan–Mar 2013/Vol. 22(1)

JEI Letters

http://dx.doi.org/10.1117/1.JEI.22.1.010502
http://dx.doi.org/10.1117/1.JEI.22.1.010502
http://dx.doi.org/10.1117/1.JEI.22.1.010502
http://dx.doi.org/10.1117/1.JEI.22.1.010502
http://dx.doi.org/10.1117/1.JEI.22.1.010502
http://dx.doi.org/10.1117/1.JEI.22.1.010502

Vh

�
ui
vi

�
¼ Vr

�
xi
yi

�
: (3)

Because Vr is nonsingular, we can get

�
xi
yi

�
¼ V−1

r Vh

�
ui
vi

�
¼

�
2 −1
0 1

��
ui
vi

�
: (4)

Similarly, we have the following equation:

�
ui
vi

�
¼ V−1

h Vr

�
xi
yi

�
¼

�
1
2

1
2

0 1

��
xi
yi

�
: (5)

That is, the coordinates in one system can be uniquely
mapped into the other system and vice versa.

2.2 Middleware-Based Address Mapping
We aim to use both the natural hexagonal coordinates and the
memory efficient array storage, and set up address mapping
from the hexagonal coordinate system to the storage array,
where the rectangular addressing serves as a bridge. Let
ðui; viÞ, ðxi; yiÞ, and ðri; ciÞ be the addresses of one
pixel in the hexagonal coordinate system, in the Cartesian
coordinate system, and in the storage array, respectively;
then, we express the mapping process as ðui; viÞ ⇒
ðxi; yiÞ ⇒ ðri; ciÞ. An example is shown in Fig. 3.

2.2.1 Hexagonal to rectangular

This conversion is based on Eq. (4), and can be rewritten as
�
xi ¼ 2ui − vi
yi ¼ vi

: (6)

2.2.2 Rectangular to array

It’s natural to map a block of rectangular data into an array,
while the data are staggered in this case. From the coordi-
nates corresponding between Fig. 3(b) and 3(c), we can
reach the relation:

�
ri ¼ yi
ci ¼ bxi∕2c

(7)

with b·c the floor operator.

2.2.3 Comprehensive mapping

Combining Eqs. (6) and (7), we can get the final mapping
formulae:

�
ri ¼ vi
ci ¼ bð2ui − viÞ∕2c

: (8)

Based on the addressing relation, a middleware module
can be designed to perform a data-accessing function.

3 Implementation Issues

3.1 Address Mapping Computation
Given a rectangular shape image is hexagonally sampled
with nR rows and nC columns, and the data are stored in
an array ImData[nR][nC]. Suppose a pixel (ui; vi) is stored

Fig. 1 Illustration of one hexagonally sampled rectangular shape
image: (a) pixels in the hexagonal coordinate system, and (b) data
in the storage array.

Fig. 2 Illustration of hexagonal lattice and the coordinate system.

Fig. 3 Example of address mapping: (a) in the skewed hexagonal coordinate system; (b) in the Cartesian coordinate system; and (c) in the storage
array.

Journal of Electronic Imaging 010502-2 Jan–Mar 2013/Vol. 22(1)

JEI Letters

at (ri; ci), we can access the pixel (ui; vi) by ImData[vi]
[bð2 � ui − viÞ∕2c] from Eq. (8). However, it’s not apparent
which pixel is accessed in the expression. Instead, we choose
to apply a macro substitution

#define FunImDataðui; viÞ
ImData½vi�½bð2 � ui − viÞ∕2c�

to hide the address mapping and data accessing. The form
(ui; vi) is much close to the array form [ri][ci], and it’s
clear and readable.

Further, we can treat bð2 � ui − viÞ∕2c as ð2 � ui − viÞ∕2
followed by the floor operation b·c. Since the multiply-
ing and dividing of 2 can be efficiently executed by shift
instructions, we prefer to rewrite ð2 � ui − viÞ∕2 as
ððui << 1Þ − viÞ >> 1. Because the floor operation b·c is
a byproduct of the integer operations, and the coordinates
are indeed integer values, the floor operator b·c can be omit-
ted. Therefore, we obtain the efficient expression:

#define FunImDataðui; viÞ
ImData½vi�½ððui << 1Þ − viÞ >> 1�:

3.2 Array Addressing Computation
In the addressing of two-dimensional (2-D) array ImData[ri]
[ci], i.e., nC � riþ ci, there is a multiplication instruction.
Snyder et al.4 proposed an alternative approach, and we
adopt here. The 2-D array is serialized to a one-dimensional
(1-D) array row-by-row: ImData[nR � nC], and another 1-D
array is also defined: FirstPtr[nR], which is used to store the
address of the start element of each row. Then, the macro is
rewritten as

#define FunImDataðui; viÞ
ImData½FirstPtr½vi� þ ððui << 1Þ − viÞ >> 1�;

in which the multiplication is eliminated through the
lookup table.

3.3 Neighbor and Distance Computation
Since the coordinates contain position information, we can
perform geometry-related operations easily; for example,
finding neighbors and computing distance.

As illustrated in Fig. 4, the relative positions of any
pixel and its six neighbors are stable. We label the six neigh-
bors as 0 to 5, and define two 1-D offset arrays:4 ou ¼
f1; 1; 0;−1 − 1; 0g, and ov ¼ f0; 1; 1; 0;−1;−1g; then, the
coordinates of the k’th neighbor can be given as (uiþ ou½k�;
viþ ov½k�).

For any two points Piðui; viÞ and Pjðuj; vjÞ, the
Euclidean distance can be defined as

DðPi; PjÞ ¼
ffi
ðui − ujÞ2 þ ðvi − vjÞ2 − ðui − ujÞðvi − vjÞ

q
.

(9)

4 Conclusion
We present a middleware-based storage and addressing
scheme for practical hexagonal image processing. The
scheme uses the original coordinates in the hexagonal sys-
tem, and two benefits are kept. One is that we can implement
the algorithm naturally as in the theory; the other is that we
can perform geometry-related operations easily. The scheme
is feasible and efficient.

References

1. D. P. Petersen and D. Middleton, “Sampling and reconstruction of
wave-number-limited functions in n-dimensional Euclidean spaces,”
Inf. Control 5(4), 279–323 (1962).

2. R. M. Mersereau, “The processing of hexagonally sampled two-
dimensional signals,” Proc. IEEE 67(6), 930–949 (1979).

3. L. Middleton and J. Sivaswamy, Hexagonal Image Processing: A
Practical Approach, Springer, London (2005).

4. W. E. Snyder, H. Qi, and W. Sander, “Coordinate system for hexagonal
pixels,” Proc. SPIE 3661, 716–727 (1999).

5. J. Rosenthal, “Filters and filterbanks for hexagonally sampled signals,”
Ph.D. Thesis, Georgia Institute of Technology (2001).

6. R. C. Staunton, “Hexagonal sampling in image processing,” Adv. Imag.
Electron Phys. 107, 231–307 (1999).

7. N. I. Rummelt and J. N. Wilson, “Array set addressing: enabling tech-
nology for the efficient processing of hexagonally sampled imagery,”
J. Electron. Imag. 20(2), 023012 (2011).

8. I. Her, “Geometric transformations on the hexagonal grid,” IEEE Trans.
Image Process. 4(9), 1213–1222 (1995).

9. P. Sheridan, Spiral Architecture for Machine Vision, Ph.D. Thesis,
Univ. of Technology Sydney (1996).

10. L. Middleton and J. Sivaswamy, “Framework for practical hexagonal-
image processing,” J. Electron. Imag. 11(1), 104–114 (2002).

11. D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital
Signal Processing, Prentice Hall, Englewood Cliffs, New Jersey
(1984).

Fig. 4 Illustration of relative position of one pixel and its six neighbors.

Journal of Electronic Imaging 010502-3 Jan–Mar 2013/Vol. 22(1)

JEI Letters

http://dx.doi.org/10.1016/S0019-9958(62)90633-2
http://dx.doi.org/10.1109/PROC.1979.11356
http://dx.doi.org/10.1117/12.348629
http://dx.doi.org/10.1016/S1076-5670(08)70188-5
http://dx.doi.org/10.1016/S1076-5670(08)70188-5
http://dx.doi.org/10.1117/1.3589306
http://dx.doi.org/10.1109/83.413166
http://dx.doi.org/10.1109/83.413166
http://dx.doi.org/10.1117/1.1426078

