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Abstract

We investigate the use of different trabecular bone descriptors and advanced machine learning

tech niques to complement standard bone mineral density (BMD) measures derived from dual-

energy x-ray absorptiometry (DXA) for improving clinical assessment of osteoporotic fracture

risk. For this purpose, volumes of interest were extracted from the head, neck, and trochanter of

146 ex vivo proximal femur specimens on multidetector computer tomography. The trabecular

bone captured was characterized with (1) statistical moments of the BMD distribution, (2)

geometrical features derived from the scaling index method (SIM), and (3) morphometric

parameters, such as bone fraction, trabecular thickness, etc. Feature sets comprising DXA BMD

and such supplemental features were used to predict the failure load (FL) of the specimens,

previously determined through biomechanical testing, with multiregression and support vector

regression. Prediction performance was measured by the root mean square error (RMSE);

correlation with measured FL was evaluated using the coefficient of determination R2. The best

prediction performance was achieved by a combination of DXA BMD and SIM-derived geometric

features derived from the femoral head (RMSE: 0.869 ± 0.121, R2: 0.68 ± 0.079), which was

significantly better than DXA BMD alone (RMSE: 0.948 ± 0.119, R2: 0.61 ± 0.101) (p < 10−4).

For multivariate feature sets, SVR outperformed multiregression (p < 0.05). These results suggest
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that supplementing standard DXA BMD measurements with sophisticated femoral trabecular bone

characterization and supervised learning techniques can significantly improve biomechanical

strength prediction in proximal femur specimens.

Keywords

osteoporosis; trabecular bone; dual x-ray absorptiometry; bone mineral density; quantitative
computer tomography; scaling index method; support vector regression

1 Introduction

Osteoporosis is one of the most common age-related diseases among elderly people. The

progression of osteoporosis can lead to osteoporotic fractures, which reduces the quality of

life and increases the mortality rate. Previous studies have predicted that the number of

people at risk for osteoporotic fracture will reach 6.26 million worldwide by the year

2050.1,2 Thus, accurate prediction of osteoporotic fracture risks can be an important aid for

clinical assessment and management of osteoporosis.

Dual-energy x-ray absorptiometry (DXA) has been used as a standard technique for

measuring bone quality in terms of bone mineral density (BMD) for purposes of

osteoporotic fracture risk estimation.3–6 BMD measurements through DXA at the site of the

proximal femur have shown to be highly predictive of bone fractures when compared to

other sites.3–5,7 However, DXA-derived BMD measurements are affected by interference

from surrounding cortical shell, adipose tissue, and soft tissue, which can result in

inaccuracies in bone strength estimation.6–11 Quantitative computer tomography (QCT) can

overcome such shortcomings by eliminating interference from the surrounding tissue and

provide an exclusive measure of BMD in the trabecular bone compartment. In fact, the

ability of QCT to improve the efficacy of fracture risk assessment, by excluding sources of

error, such as osteophytes and hypertrophic posterior elements, which may artificially

elevate integral BMD measures, has been previously demonstrated in spinal fracture

studies.11–14

While QCT-based BMD measures exhibit a strong correlation with fracture risk, they still

do not serve as reliable predictors of bone strength. Previous work has shown that QCT-

based BMD measurements for patients with and without prevalent femur fractures

overlap,15,16 which is further supported by observations that QCT-based BMD

measurements within the average normal range only suggests a lower probability of

developing osteoporosis or related fractures.11–14,17 This inconsistency could stem from the

fact that such QCT-based BMD measures do not account for a complete profile of

morphological and structural variations in trabecular bone microarchitecture. In this regard,

other studies have investigated the inclusion of anatomical variables such as bone volume,

femoral head axis length, and other structural parameters in addition to BMD.18–20 More

recently, textural approaches involving gray-level co-occurrence matrices or geometrical

features derived from the scaling index method (SIM) have been proposed to characterize

trabecular bone microarchitecture and complement conventional DXA and QCT-based

BMD measures.18,19,21–23
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In this study, we propose, implement, and evaluate an automated approach to bone strength

prediction that includes both conventional DXA BMD measurements and a complete

characterization of trabecular bone microarchitecture on multidetector CT (MDCT) images.

Furthermore, such characterization extracted from a training subset of ex vivo proximal

femur specimens is used to construct bone strength prediction models with advanced

machine learning techniques. We specifically focus on the use of support vector regression

(SVR) over traditionally used multiregression. These models are subsequently evaluated on

an independent test set of femur specimens for their ability to predict bone strength. This

application of supervised learning allows us to evaluate the predictive power of such

features under experimental conditions that simulate a clinical setting where such

applications could potentially find use, which distinguishes our work from previous studies

that have been restricted to establishing correlations between different features and bone

strength.

We demonstrate our approach in this study by pursuing three different approaches to

capturing information pertaining to the trabecular bone microarchitecture in the proximal

femur for purposes of complementing conventionally used DXA BMD: (1) statistical

moments of the MDCT BMD distribution, (2) morphometric parameters, such as bone

fraction, trabecular thickness, etc., and (3) geometrical features derived from the SIM. SIM

can be used to extract information related to local geometric properties in point distributions

and gray-level patterns.24,25 Previous work has successfully demonstrated the ability of

SIM-derived geometric features to characterize the complex trabecular bone

microarchitecture for osteoporosis assessment on different imaging modalities.19,21,26–29

Once the feature sets are extracted from the trabecular compartment of the femur, they are

subsequently processed with different regression models for the prediction task, as discussed

in the following sections.

2 Materials and Methods

2.1 Femur Specimens

Femur specimens were harvested from 248 formalin-fixed human cadavers at the Institute of

Anatomy at the Ludwig Maximilians University, Munich, Germany, for educational and

research purposes, in compliance with local institutional and legislative requirements.

Exclusion criteria included (1) identification of diffuse metastatic bone disease or

hematologic or metabolic bone disorders other than osteoporosis through histological

examination of samples biopsied from the iliac crest and (2) detection of fracture on

radiographs or during specimen preparation for storage and scanning. Taking these

exclusions into account, a subset of 146 human femur specimens were used in this study.

The donors (73 women, 73 men) had a mean life span of 79.39 years (standard deviation:

10.57 years, range: 52 to 100 years). The bones, along with a variable amount of

surrounding soft tissue, were removed from the cadavers; the soft tissue was subsequently

excised prior to imaging and biomechanical testing. The specimens were degassed for at

least 24 h before MDCT. The degassing procedure involved submerging the specimens in a

formalin solution within a cylindrical vacuum container, which was subsequently evacuated
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to −0.95 bar with a special vacuum pump. During the study, the specimens were stored in

fixative solution to prevent storage and air artifacts.

2.2 DXA Measurements

DXA was used to determine BMD in the entire proximal femur, as well as in the neck and

trochanter regions. The measurements were performed with a Prodigy Scanner (GE/Lunar;

GE Medical Systems, Milwaukee, Wisconsin). The femur specimens were positioned

similar to in vivo examination conditions: mildly internally rotated in a vessel filled with

water to 15 cm in height to simulate soft tissue. The measurements were evaluated by using

the Lunar Prodigy Encore 2002 software (GE Medical Systems). It should be noted that

DXA measurements were not performed in the femoral head alone, owing to

superimposition with the acetabulum in in vivo conditions.

2.3 Multidetector CT Measurements

Cross-sectional images of the femora were acquired with a 16-detector CT scanner

(Sensation 16; Siemens Medical Solutions, Erlangen, Germany). The specimens were placed

in plastic bags filled with a 4% formalin-water solution. These plastic bags were sealed after

air was removed by a vacuum pump. These bags were positioned in the scanner to simulate

conditions of an in vivo examination of the pelvis and proximal femur, with mild internal

rotation of the femur. Each specimen was scanned using a protocol involving a collimation

and table feed of 0.75 mm and a reconstruction index of 0.5 mm. A high-spatial-resolution

reconstruction algorithm (kernel U70u) was used, with a resulting in-plane resolution of

0.29 × 0.29 mm2. Additional scanning parameters were 120 kVp, 100 mA, an image matrix

of 512 × 512 pixels, and a field of view of 100 mm. Voxel size was 0.19 × 0.19 × 0.5 mm3.

For calibration purposes, a reference phantom with a bone-like and a water-like phase

(Osteo Phantom, Siemens Medical Solutions, Erlangen, Germany) was placed in the scanner

below the specimens, as shown in Fig. 1.

2.4 Image Processing and Volume of Interest Selection

The outer surface of the femoral cortical shell was segmented in an automated manner using

the bone attenuations of the phantom on each image as reference. In 3% of the specimens,

the segmentation mask was adversely affected by errors induced by high-grade focal bone

loss or penetration of adjacent anatomical structures, such as blood vessels, into the cortex

(mostly in the femoral head); manual corrections were performed by one of the two

radiologists. An algorithm previously proposed by Huber et al.22 was used to fit volumes of

interest (VOIs) approximated from a sphere for the trabecular region of the femoral head, a

cylinder for the neck, and a cone for the greater trochanter. Further details regarding this

automated algorithm can be found in Ref. 22. Figure 2 shows the cross-sectional boundary

of selected VOIs on different regions of a representative proximal femur specimen. The

average number of voxels included in the final mask was 3.77 × 105 for the femoral head,

4.33 × 104 for the neck, and 1.83 × 105 for the trochanter.
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2.5 Quantitative CT BMD Measurements

The mean BMD of each VOI was calculated by converting pixel attenuations on MDCT

(Hounsfield units) into BMD values (mg/cm3) using a conversion proposed in Ref. 20.

BMD was calculated as

(1)

Here, HAW (0 mg/cm3) and HAB (200 mg/cm3) were the densities of the water-like and

bone-like parts of the hydroxyapatite calibration phantom, while HUW and HUB were their

corresponding attenuations on the MDCT images. After BMD conversion, the range of

BMD values within the regions of interest (ROIs) were limited to a window of [−200,1200]

(values outside this interval were set to the boundary values), which were the calculated

BMD values for air and bone according to Eq. (1) in order to emphasize bone content.

Examples of ROIs converted to BMD are shown in Fig. 2.

2.6 Biomechanical Tests

The failure load (FL) was assessed with a side-impact test in which a lateral fall on the

greater trochanter was simulated, as described previously in Ref. 20. The femur shaft and

head were faced downward and could be moved independently of one another while a load

was applied to the greater trochanter by using a universal materials testing machine (Zwick

1445; Zwick, Ulm, Germany) with a 10-kN force sensor and dedicated software. FL was

defined as the peak of the load-deformation curve. Fracture sites were commonly noted in

the neck and trochanter regions for most specimens (trochanter: 54, neck: 66, shaft: 26). The

146 femur specimens used in this study had a mean FL of 3.94 kN (standard deviation: 1.56

kN, range: 0.66 to 8.16 kN). For prediction of relative bone strength, the FL was adjusted for

total body height (FL/H) and weight (FL/W), as previously proposed in Ref. 19, and used

for subsequent analysis.

2.7 Trabecular Bone Feature Analysis on MDCT

2.7.1 Statistical features—bone mineral density—The MDCT BMD distribution

within VOIs was first represented by the following statistical feature sets, referred to in this

work as BMD features—(1) mean (BMD.mean), (2) mean and standard deviation

(BMD.m2), (3) mean, standard deviation, skewness, and kurtosis (BMD.m4), and (4) 19

quantiles (BMD.p19).

2.7.2 Morphometric parameters—For calculation of morphometric parameters, MDCT

images of the femur specimens were first binarized to label the pixels as “bone” or

“marrow” for further analysis. For this purpose, a binarizing threshold of 200 mg/cm3 was

previously proposed based on visual examination of images from 30 proximal femur

specimens.20 After binarization, two-dimensional (2-D) parameters were calculated in

analogy to standard histomorphometry using the mean intercept length method30 on every

slice of the VOI: bone fraction (bone volume/total volume), trabecular number, trabecular

separation, and trabecular thickness. For each parameter, the values calculated on each slice
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of a VOI were averaged and then concatenated into a four-dimensional feature vector that

represented the morphometric feature set of that VOI.

2.7.3 Geometric features-scaling index method—The SIM24,25 was used to extract

geometrical features that characterized the structural properties of trabecular bone

microarchitecture observed in the VOIs. Consider N pixels in an ROI represented by a three-

dimensional vector Ni = (xi, yi, gi), i = {1, …, N}, where xi and yi are the spatial dimensions

and gi is the gray-level intensity of the i'th pixel, i.e., gi = g(xi, yi). The application of SIM

for a given scale R can be regarded as an image transformation where each pixel of the

original ROI is assigned a local scaling property αi = α(xi, R) resulting in a transformed

SIM ROI . The local scaling property index α can be calculated as

(2)

where dij = ∥xixj∥ is the Euclidean distance between the i'th and the j'th pixel and R defines

the Gaussian neighborhood surrounding the i'th pixel. To prevent the ROI border from

imposing an artificial local geometry (stemming from pixels close to the border having

incomplete neighborhoods within the ROI), α-values were only computed for pixels farther

than 2R from the border. Such an SIM transformation is computed for every slice in the

VOI, and the resulting distribution of α-values reveals nonlinear structural information

related to the gray-level patterns in the VOI. The entire distribution of α-values within the

VOI was represented by its 19 quantiles, i.e., 5th to 95th. This served as a 19-dimensional

geometrical feature vector that characterized the trabecular bone microarchitecture captured

within the VOI, as shown in Fig. 3.

We note the absence of an intrinsic scaling factor that defines the relationship between

spatial coordinates and intensity that defines each pixel while computing the α-values. We

propose to investigate a set of scaling factors (SF) to be applied to the gray-level intensities

within the VOI prior to the SIM transformation and choose the optimum SF that minimizes

the FL prediction error. In this study, we investigated different values for the scaling factor,

i.e., SF = {0.01, 0.1,1,5,10,50,100}, in calculating the scaling index α for each pixel using a

set of radii R = {1, 2, 3, 4, 5}. Examples of applying SIM to VOIs used in this study are

shown in Fig. 3.

2.8 Function Approximation

After the calculation of different bone characterizing feature sets, their ability to predict the

biomechanical strength of the specimens, as indicated by the FL, was evaluated. Standard

multiregression analysis was used for each feature set to assess a linear prediction.

In addition, SVR with a linear kernel31–33 was used. SVR is an extension of support vector

machine (SVM),34 which is a supervised learning model that is widely used in the literature

for different data analysis and pattern recognition tasks. SVM aims to devise a

computationally efficient method for identifying a hyperplane that imposes a maximal
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margin of separation between two classes of data points in the high-dimension feature space.

While many such hyperplanes could exist, the preferred hyperplane (or decision boundary)

is the one that has the least chance of misclassifying future data points yet to be encountered.

This is determined by maximizing the distance between such a hyperplane and the training

points closest to it (known as support vectors) so that the remaining training data are much

further from this decision boundary. This key characteristic of SVM, also known as large

margin intuition,35 ensures that the decision boundary is optimally chosen to accommodate

unknown data points and likely explains its superiority over other traditional classifiers.

Further details of this algorithm can be found in many different resources, including Refs.

32 to 34. While SVMs are used to predict binary labels, SVR allows for the prediction of

continuous values and finds use in our study as a function approximation for predicting FL.

The SVR implementation was taken from the libSVM library.36

2.9 Prediction Performance

The prediction performance of the features was evaluated in a cross-validation strategy

where the dataset was divided into a training set (80%) and an independent test set (20%).

The independent test set allowed for an unbiased evaluation of the bone strength prediction

performance achieved by the regression models. The training set was used to approximate

the target function, i.e., FL and adjusted FL (FL/H and FL/W). The resulting model was

used to predict the FL (and adjusted FL) of the remaining specimens that constituted the

independent test set. The average residual error between the predicted FL (FLpred) and the

true FL (FLtrue) for the test set Ti, i = 1, …, Niter, was measured by the root mean square

error (RMSETi).

(3)

The calculation of RMSE, as detailed above, was repeated 50 times for different randomly

chosen training and test set collections, resulting in an RMSE distribution for each bone

feature set. In addition, the coefficient of determination R2 was calculated to evaluate the

correlation between different feature sets and FLtrue for each iteration. A Wilcoxon signed-

rank test was used to compare two RMSE distributions and test for statistical significant

differences in performance. The statistical analysis, feature extraction, function

approximation, performance evaluation, and significance testing were performed in

MATLAB®, version R2010a (MathWorks, Natick, MA).

The overall experimental setup is presented in Fig. 4.

3 Results

3.1 Exploring the Impact of SIM Free Parameters

We were specifically interested in evaluating the impact of the scaling factor SF and radius

R on the overall performance. Figure 5 shows the impact of different choices of values for

SF and R on the prediction performance achieved with SIM-derived geometric features and

both function approximation models, i.e., multiregression and SVR. The best prediction
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performance was observed for SF = 1 when radius R = 4 or R = 5 was used in the

computation of α-values, of which regression model was used. With these settings, the

original BMD values were not modified by the scaling factor, while the larger radii allowed

better characterization of local structure. Based on these results, SF = 1 was used for further

experiments.

3.2 Prediction Performance of Trabecular Bone Descriptors

3.2.1 Femoral head region—The top panel of Fig. 6 shows the performance achieved

with different trabecular bone characterizing feature sets extracted from the femoral head in

predicting the true FL of the femur specimens. As seen here, the best performance is

achieved by BMD.mean, as computed on MDCT, in combination with multiregression

(RMSE: 1.11 ± 0.14, R2: 0.49 ± 0.13). While comparable performance is achieved with

MDCT BMD features, such as BMD.m2, all other feature sets are outperformed when

multiregression is used. We also note that for the univariate BMD.mean, no difference in

performance was achieved regardless of the regression model used.

When SVR is used, the MDCT-extracted BMD.p19 (RMSE: 1.08 ± 0.14, R2: 0.51 ± 0.13)

registers a significant improvement over the MDCT BMD.mean (RMSE: 1.11 ± 0.14, R2:

0.49 ± 0.13) (p < 10−4). Comparable per formance to the MDCT BMD.mean is achieved by

the SIM (R = 5) feature set (RMSE: 1.13 ± 0.13, R2: 0.49 ± 0.08) and the feature vector of

morphometric parameters (RMSE: 1.12 ± 0.16, R2: 0.50 ± 0.11).

3.2.2 Femoral neck region—The middle panel of Fig. 6 shows the performance

achieved with different trabecular bone characterizing feature sets extracted from the

femoral neck in predicting the true FL of the femur specimens. As seen here, the prediction

performance of different feature sets are much worse when compared to the results observed

in the femoral head.

MDCT-extracted BMD feature sets and morphometric parameters perform better than SIM

feature sets when multi-regression is used (p < 0.05). While the performance of SIM feature

sets significantly improves when SVR is used instead of multiregression (p < 0.05), it is still

outperformed by MDCT-extracted BMD feature sets and morphometric parameters (p <

0.05).

3.2.3 Femoral trochanter region—The bottom panel of Fig. 6 shows the performance

achieved with different trabecular bone characterizing feature sets extracted from the

femoral trochanter in predicting the true FL of the femur specimens. As seen here, the

prediction performance of different feature sets are still worse when compared to the results

observed in the femoral head but present an improvement over those observed in the neck.

Again, MDCT-extracted BMD feature sets, such as BMD.m2 and BMD.m4, and

morphometric parameters perform better than SIM feature sets regardless of regression

model used (p < 0.001). We also note that the performance of multivariate feature sets, such

as BMD.p19, and SIM feature sets with different R significantly improves when SVR is

used in place of multiregression (p < 0.001).

Yang et al. Page 8

J Electron Imaging. Author manuscript; available in PMC 2014 August 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



3.3 Prediction Performance of Trabecular Bone Descriptors in Combination with DXA BMD

Having identified the femoral head as a suitable candidate region for extracting features that

characterize the trabecular bone microarchitecture, we also investigated the prediction

performance achieved when BMD measurements from DXA were combined with different

trabecular bone descriptors extracted from MDCT images, i.e., BMD.mean, SIM (R = 5)

features, and morphometric parameters, extracted from the femoral head. These were

compared to the prediction performance achieved with DXA BMD alone. The results

obtained with multiregression and SVR are shown in Tables 1 and 2, respectively.

As seen in Tables 1 and 2, the best prediction performance for FL is obtained when DXA

BMD is combined with SIM-derived geometrical features extracted from the femoral head.

Such feature sets achieve significantly better performance than DXA BMD measurements

alone (p < 10−4). For multivariate feature sets, such as combinations of DXA BMD and

SIM, SVR was found to yield significantly better performance at predicting FL over

multiregression (p < 0.01). Overall, the combination of DXA BMD evaluated from the

entire femur and SIM (R = 5) features, when processed with SVR, was found to achieve the

best performance at predicting FL.

Similar trends in performance were noted when the machine learning task involved

predicting FL adjusted for height (FL/H), i.e., the combination of DXA BMD and SIM

features extracted from MDCT images of the femoral head were found to yield the best

prediction performance. The use of SVR over traditionally used multiregression was also

found to contribute to the observed performance. However, the opposite was true when the

FL was adjusted for body weight (FL/W), i.e., the combination of DXA BMD and SIM

features was significantly worse at predicting FL/W when compared to DXA BMD alone.

4 Discussion

This study presents an automated approach to predicting the biomechanical strength of

femur specimens through imaging-based analysis of BMD and local geometry of the

trabecular bone microarchitecture. Our results suggest that supplementing conventionally

used descriptors of BMD, such as DXA BMD, with geometrical features describing the local

structure of the trabecular bone, specifically extracted from the femoral head region, can

significantly improve the performance achieved at predicting the FL of such specimens.

Furthermore, as the feature sets that characterize the trabecular bone become larger to

accommodate such detailed information, SVR is a better choice than multiregression for the

machine learning task. The noninvasive approach employed for extracting such predictors

from the femoral bone makes them attractive candidates for potential diagnostic biomarkers

that could aid in improved prediction of osteoporotic fracture risks, clinical assessment and

management of osteoporosis, and quantification of the effects of different therapeutic

intervention strategies.

The results of our study are in agreement with other studies involving high-resolution

magnetic resonance imaging,21,25,37,38 MDCT,18–20,22 and micro CT,39 which have

consistently shown that supplementing DXA BMD with features that characterize trabecular

bone microarchitecture can strengthen the corresponding correlation to bone strength.
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However, rather than establishing correlations between individual features and bone

strength, we propose a new approach where different features are combined to form high-

dimensional feature vectors, which are subsequently used to train and test supervised

learning algorithms for predicting bone strength. As seen in our study, this combination of

feature extraction and machine learning exhibits improved prediction performance and

easily extends to computer-aided diagnosis applications in a clinical setting. The modular

design of our approach, as detailed in Fig. 4, allows easy integration of different feature

extraction or machine learning techniques, which could precipitate further improvements in

prediction performance.

Our results suggest that when features are extracted from different regions of the proximal

femur on MDCT, the best prediction performance is achieved when features are extracted

from the head region of the proximal femur, as seen in Fig. 6. This observation is in

accordance with other studies that have also shown that bone strength is highly correlated to

BMD measurements performed in the femoral head region.19,20,22 We suspect that such

findings suggest that the femoral head is an important load-bearing region in the hip joint,

and thus, its features are directly correlated with the biomechanical strength of the proximal

femur as a whole. We also note that features extracted from the trochanter region exhibit the

second-best prediction performance, while those extracted from the neck region perform the

worst. This trend is also observed in other studies that have investigated correlation between

bone strength and BMD measurements extracted from the head, neck, and trochanter

regions.19,20,22 The observed results seem to correspond with the volume of the VOIs

extracted, which was largest in the femoral head and smallest in the neck. However, we

found no significant differences in correlation between the FL of the specimens and the

volumes of VOIs extracted from the three anatomical regions. In addition, the features

investigated in this study, such as SIM-derived geometrical features, are not directly reliant

on VOI size, and the VOIs from all regions are sufficiently large to rule out poor data

sampling of voxels during the feature extraction process. Thus, any contribution of the VOI

volume to the prediction performance is expected to be minimal at best.

Interestingly, while BMD features and morphometric parameters extracted from the femoral

head on MDCT outperformed SIM features when evaluated separately, they did not

contribute to improvements in prediction performance when combined with DXA BMD

measurements. In fact, the best performance was noted when DXA BMD was combined

with SIM features from the femoral head, as seen in Tables 1 and 2. This suggests that these

SIM features, which capture local geometrical properties of the trabecular bone

microarchitecture, provide information that is complementary to that captured by DXA

BMD measurements in the proximal femur. However, such SIM features likely do not

capture adequate global information about the trabecular bone structure to be as effective as

the MDCT BMD features or morphometric parameters when used independently. Similar

trends are noted when the machine learning task involved predicting FL adjusted for height

(FL/H). However, as seen in Tables 1 and 2, the performance of such features is worse when

predicting FL adjusted for body weight (FL/W). This is not surprising given that previous

studies have noted weak correlations between features characterizing trabecular bone

structure and FL/W owing to the strong influence that body weight has on FL.19
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Finally, we also investigated the impact of replacing multiregression with SVR for the

machine learning task. Our results suggest that the prediction performance achieved by the

feature sets is not affected by the choice of regression model when the feature sets in

question involve a small number of features (e.g., most BMD-derived feature sets).

However, as the feature set becomes larger, SVR is clearly better equipped to appropriately

process the input feature sets and hence outperforms multiregression with such feature sets

(e.g., SIM feature sets, combined DXA BMD and SIM feature sets), as seen in Fig. 6 and

Tables 1 and 2.

We acknowledge certain limitations with the experimental setup of the current study. The

femur specimens used in our analysis were not scanned in situ but in a water bath as a

relatively simple model to simulate the soft tissue environment. In vivo, soft tissue scatter

may compromise the image quality compared to the in vitro setting of this study.40 Also,

specimens were harvested from formalin-fixed cadavers, which may have affected their

biomechanical properties. Given that the MDCT images were not acquired with iso-tropic

voxels, both SIM features and histomorphometric parameters were extracted in 2-D from

every slice of the VOI. We also note that the geometric features used in this study do not

take into account the intrinsic anisotropy of the trabecular bone compartment. Recent studies

have shown that anisotropic geometric features can provide limited improvements in

achieved correlation with bone strength.41 Our study was focused on investigating the

ability of features that characterize the trabecular bone for predicting FL and only used

previously proposed anisotropy-independent geometric features. However, the approach

proposed here can be extended to include anisotropy-weighted features as well, and will be

explored in future studies.

5 Conclusion

This study proposes an automated approach to predicting biomechanical bone strength in

proximal femur specimens through characterization of BMD and trabecular bone

microarchitecture used in conjunction with machine learning techniques. The results of our

work suggest that supplementing conventionally used DXA BMD measurements with SIM-

derived geometrical features that characterize the trabecular compartment in the femoral

head for generating prediction models with SVR can effect significant improvements in

bone strength prediction performance. The automated and objective manner in which the

trabecular bone microarchitecture is analyzed and the subsequent rediction performance

achieved suggest tremendous potential in serving as diagnostic biomarkers for osteoporosis

diagnosis, tracking disease progression, and evaluating responses to therapeutic intervention.

However, trabecular bone structure analysis using high-resolution MDCT at the proximal

femur is currently not feasible for osteoporosis diagnostics and therapy monitoring in

clinical practice owing to its radiation dose equivalent lying in the upper range of medically

acceptable radiation exposure. Future studies will need to overcome this drawback before

larger controlled trials can be conducted for validating the applicability of our approach in a

clinical setting.
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Fig. 1.
Multidetector computer tomography (MDCT) images of selected femur specimens. From

left to right, the specimens are categorized as high, medium, and low, based on failure load.

The osteo phantom used for each specimen is also shown at the bottom.
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Fig. 2.
Cross-sectional regions of interest (ROIs) of the volumes of interest (VOIs) defined in the

femoral head (a), neck (b), and trochanter (c). The top row shows the ROIs overlaid on

MDCT images of these regions. The bottom row shows these ROIs where pixel intensities

are indicative of bone mineral density (BMD, mg/cm3). Note that the neck and trochanter

images are of different scales and, thus, zoomed in for purposes of presentation only.
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Fig. 3.
ROIs with BMD values extracted from the head VOIs of three specimens characterized as

having high (8.16 kN, first row), medium (4.07 kN, second row), and low (1.15 kN, third

row) failure load, respectively, are shown on the leftmost column of the first three rows.

Subsequent columns in these rows show the scaling index method (SIM) transformations

achieved with different radii, R = {1, 2, 3, 4, 5} and scaling factor, SF = 1. Scaling indices

(α) are color-coded according to the colorbar shown on the right. The (α) histograms for

these ROIs for different SIM radii are shown in the fourth row; representations of these

histograms using 19 quantiles are shown in the fifth row. Note that only the central slice of

each VOI is shown here; however, the histograms and quantile curves represent the

distribution of α-values within the entire VOI. As seen here, the histograms and quantile

curves can be used to distinguish between femur specimens of different biomechanical

strengths.
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Fig. 4.
Overview of the experimental setup and methods used. The true failure load (FLtrue) was

recorded from biomechanical tests after MDCT imaging. Images were then postprocessed to

facilitate conversion of intensity values from Hounsfield units to BMD. Different trabecular

bone features (statistical moments of MDCT BMD distribution, geometrical features from

SIM, and morphometric parameters) were computed from VOIs annotated on the

postprocessed MDCT images. Two function approximation methods, i.e., multiregression

and support vector regression, were then used to predict FLtrue. Prediction performance was

quantified using root mean square error (RMSE) and R2.
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Fig. 5.
Prediction performance (RMSE) achieved with SIM-derived geometric features computed

for different radii (R) and scaling factor (SF) values using both multiregression and support

vector regression. Each RMSE distribution is represented by the central mark that

corresponds to the median, and edges that correspond to the 25th and 75th percentile. As

seen here, the best prediction performance is achieved for SF = 1 and R = 5, as marked with

bold triangles.
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Fig. 6.
Comparison of prediction performance (RMSE) for trabecular bone characterizing features

extracted from the femoral head (top), neck (middle), and trochanter (bottom) on MDCT,

i.e., mean BMD, SIM features, and morphometric parameters (Morph.), when processed

with both multiregression and support vector regression. For each RMSE distribution, the

central mark corresponds to the median and the edges are the 25th and 75th percentile. The

best prediction performance was noted achieved with both regression models in the head

(marked with *) when compared to the neck and trochanter (best features marked with +).

Yang et al. Page 20

J Electron Imaging. Author manuscript; available in PMC 2014 August 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Yang et al. Page 21

Table 1

Prediction performance [mean root mean square error (RMSE) (std)] achieved from multiregression by

combining dual-energy x-ray absorptiometry (DXA) bone mineral density (BMD) measured from different

regions with different feature sets extracted from the femoral head region. Note that “total” indicates that the

DXA BMD measurement was determined from the entire proximal femur. “–” indicates that no multidetector

computer tomography (MDCT)-derived features were used. As seen here, combination of scaling index

method (SIM) features from head region with DXA BMD yields significantly better prediction performance as

opposed to using DXA BMD alone.

DXA BMD MDCT features from femoral head Failure load
(FL) (kN)

FL adjusted for total body
height (FL/H) (kN/cm)

FL adjusted for total body
weight (FL/W) (kN/kg)

Total – 0.95 (0.12) 5.37 × 10−3 (7.04 × 10−4) 1.84 × 10−2 (1.68 × 10−3)

BMD.mean 0.96 (0.12) 5.44 × 10−3 (6.92 × 10−4) 1.86 × 10−2 (1.62 × 10−3)

SIM.R5 0.90 (0.10) 5.29 × 10−3 (5.78 × 10−4) 1.97 × 10−2 (2.80 × 10−3)

Morphometric parameters (Morph.) 0.95 (0.15) 5.44 × 10−3 (8.55 × 10−4) 1.82 × 10−2 (1.78 × 10−3)

Neck – 0.97 (0.12) 5.52 × 10−3 (6.86 × 10−4) 1.85 × 10−2 (1.77 × 10−3)

BMD.mean 0.98 (0.12) 5.54 × 10−3 (6.59 × 10−4) 1.87 × 10−2 (1.75 × 10−3)

SIM.R5 0.94 (0.11) 5.55 × 10−3 (6.20 × 10−4) 1.98 × 10−2 (2.75 × 10−3)

Morph. 0.97 (0.14) 5.55 × 10−3 (7.96 × 10−4) 1.84 × 10−2 (1.94 × 10−3)

Trochanter – 0.94 (0.12) 5.45 × 10−3 (7.22 × 10−4) 1.87 × 10−2 (1.68 × 10−3)

BMD.mean 0.96 (0.12) 5.54 × 10−3 (7.07 × 10−4) 1.89 × 10−2 (1.62 × 10−3)

SIM.R5 0.90 (0.10) 5.34 × 10−3 (6.26 × 10−4) 1.99 × 10−2 (2.87 × 10−3)

Morph. 0.94 (0.15) 5.47 × 10−3 (8.63 × 10−4) 1.82 × 10−2 (1.86 × 10−3)

Note: The significance of bold values is p < 10−3.
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Table 2

Prediction performance [mean RMSE (std)] achieved from support vector regression by combining DXA

BMD measured from different regions with different feature sets extracted from the femoral head region. Note

that “total” indicates that the DXA BMD measurement was determined from the entire proximal femur. “–”

indicates that no MDCT-derived features were used. As seen here, combination of SIM features from head

region with DXA BMD yields significantly better prediction performance than using DXA BMD alone.

DXA BMD MDCT features from femoral head FL (kN) FL/H (kN/cm) FL/W (kN/kg)

Total – 0.95 (0.12) 5.42 × 10−3 (7.12 × 10−4) 1.84 × 10−2 (1.69 × 10−3)

BMD.mean 0.96 (0.11) 5.47 × 10−3 (6.90 × 10−4) 1.87 × 10−2 (1.64 × 10−3)

SIM.R5 0.87 (0.12) 5.14 × 10−3 (6.96 × 10−4) 1.93 × 10−2 (2.10 × 10−3)

Morph. 0.95 (0.14) 5.56 × 10−3 (8.30 × 10−4) 1.86 × 10−2 (1.90 × 10−3)

Neck – 0.97 (0.12) 5.52 × 10−3 (6.81 × 10−4) 1.85 × 10−2 (1.72 × 10−3)

BMD.mean 0.97 (0.12) 5.53 × 10−3 (6.58 × 10−4) 1.88 × 10−2 (1.75 × 10−3)

SIM.R5 0.88 (0.13) 5.30 × 10−3 (7.40 × 10−4) 1.96 × 10−2 (2.42 × 10−3)

Morph. 0.96 (0.13) 5.52 × 10−3 (7.75 × 10−4) 1.87 × 10−2 (2.03 × 10−3)

Trochanter – 0.94 (0.12) 5.49 × 10−3 (7.31 × 10−4) 1.86 × 10−2 (1.70 × 10−3)

BMD.mean 0.98 (0.13) 5.61 × 10−3 (7.02 × 10−4) 1.89 × 10−2 (1.65 × 10−3)

SIM.R5 0.89 (0.12) 5.24 × 10−3 (6.73 × 10−4) 1.98 × 10−2 (2.06 × 10−3)

Morph. 0.97 (0.15) 5.63 × 10−3 (8.74 × 10−4) 1.87 × 10−2 (1.97 × 10−3)

Note: The significance of bold values is p < 10−4.
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