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Abstract. The multiscale morphological approaches for segmenting directional structures are proposed. First,
the use of the composition of connections to extract the directional structures of the image is investigated. We
show that even though the composition of connectivities enables the correct determination of the main directional
structures, the requirement of the scales for segmenting the image makes this algorithm more or less complex to
apply. Then, a morphological image segmentation approach is proposed based on the concept of connectivity in
a viscous lattice sense. Two functions are computed to characterize the directional structures: viscosity and
orientation. The viscosity function codifies the different scales of the structure and is computed from the
supremum of directional erosions. This function contains the sizes of the longest lines that can be included
in the structure. To determine the directions of the line segments, the orientation function is employed. By com-
bining both images—viscosity and orientation functions— an orientation partition function is created. This last
function contains information of the maxima of the viscosity function and their orientation. Finally, the elements of
the orientation partition function are merged according to some criteria, using a histogram-based segmentation
approach to compute an optimal partition. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, includ-
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1 Introduction
Although anisotropic structures are frequently found in
many classes of images (materials, biometry images, biol-
ogy, remote sensing, among others), few works dealing
with directional analysis in morphological image processing
have been carried out. There are some studies that treat this
subject from an algorithmic point of view,1,2 while applica-
tion analysis has been addressed elsewhere.3–22 Among these
works, the most interesting is that proposed by Soille and
Talbot,1 in which the authors carry out a comprehensive
study on directional morphological filtering. Despite the
numerous applications of anisotropic structures, it is in the
domain of fingerprint recognition [see Fig. 1(a)], which is
the most widely used biometric features for personal identi-
fication today, where the study of directional structures based
on field-orientation detection is an active subject of research.
Some recent papers on this subject are Refs. 5 and 8 to 13,
just to mention a few. In particular, the work of Oliveira and
Leite5 is of great interest since there are only few works in
the literature that characterize fingerprints based on math-
ematical morphology.

However, orientation detection also plays a fundamental
role in other domains.14–22 Lee et al.14 proposed a method
based on oriented connectivity for segmenting solar loops,
while Kass and Witkin16 introduced a method to analyze
oriented patterns in wood grain. On the other hand, a new
approach has been introduced by Sandberg and Brega17

for segmenting thin structures in electron micrographs.
Recently, Truc et al.19 proposed a vessel enhancement frame-
work for angiography images based on directional filter
bank, whereas Wang and Tseng20 introduced an adaptive
dual-directional filter based on a slope filter. This last
work is focused on the filtering of nonground points from
point clouds to obtain terrain relief from airborne LiDAR
data. Also, directional filtering has been used to remove
noise.21,22 In addition, the orientation may play a fundamen-
tal role to characterize structures in materials science.3,23,24

For example, the pearlite phase displays a morphology in
the form of parallel lines [see Fig. 1(b)], and when further
grains are formed, these can change direction. In this case,
the extraction of directional structures from an image
becomes a useful technique. It is well known that many
physical and mechanical properties in materials are closely
related to microstructure. Thus, great interest exists in the use
of image-processing techniques for determining the relation-
ship between microstructure and material properties.

Given the interest in orientation pattern models for char-
acterizing structures, this paper investigates the use of math-
ematical morphology for modeling orientation structures. In
particular, we focus on the problem of segmenting images
containing directional structures as those shown in Fig. 1.
As in the human vision system, computer image processing
of oriented image structures often requires a bank of direc-
tional filters or template masks, each of them sensitive to
a specific range of orientations. Hence, one investigates the
use of a bank of filters based on directional morphology.
Particularly, we will focus on the most sensitive filters
that can detect the critical elements of the structure. In the
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literature, several works characterize directional structures
based on the computation of gradients, which can be formal-
ized in terms of mathematical morphology. See, for example,
Refs. 9, 16, and 18. The problem with gradients is that they
work at pixel scale; they are very sensitive to noise and a final
stage is required to enhance directional structures. Therefore,
the main idea in this paper is motivated by another approach
that permits to take into account the whole context of the
structures contained in an image. Mainly, two methods for
segmenting directional structures are introduced. First, a seg-
mentation method based on a composition of connections
generated by openings and dilations using directional struc-
turing elements is introduced. This method enables the
correct segmention of this type of structures. The major
drawback of this approach is the number of parameters
that must be taken into account. Second, to decrease the
complexity, an approach based on directional erosions,
which takes into account the connectivity in the viscous
lattice sense, is proposed. Strictly speaking, this last method
requires only one parameter that is linked to the number of
regions of the segmented image.

This paper is organized as follows. In Sec. 2, the concepts
of morphological filter, directional morphology, and the con-
nected class notion are presented. In Sec. 3, a method for
segmenting images based on a composition of connections
is introduced. Subsequently, in Sec. 4, the notions of viscos-
ity and orientation functions derived from the supremum of
directional erosions are proposed. Also, an algorithm for seg-
menting the images based on the notion of the orientation
partition function (OPF) and the histogram of orientations
is proposed. The OPF is built using the viscosity function,
the orientation function, and the catchment basins transfor-
mation. The proposed algorithms are discussed in Sec. 5, and
the limits of the approach are addressed as well.

2 Some Basic Concepts of Morphological Filtering
and Connections

2.1 Basic Notions of Morphological Filtering
Mathematical morphology is mainly based on the so-called
increasing transformations.25–27 A transformation T is
increasing if for two sets X, Y such that X ⊂ Y ⇒
TðXÞ ⊂ TðYÞ. In the gray-level case, the inclusion is substi-
tuted by the usual order, i.e., let f and g be two functions;
then f ≤ g ⇔ fðxÞ ≤ gðxÞ for all x. Then, a transformation
T is increasing if for all pair of functions f and g, with
f ≤ g ⇔ TðfÞ ≤ TðgÞ. In other words, increasing transfor-
mations preserve the order. A second important property
is the idempotence notion. A transformation T is idempotent
if and only if TT½ðfÞ� ¼ TðfÞ. The use of both properties
plays a fundamental role in the theory of morphological fil-
tering. In fact, one calls morphological filter to all increasing
and idempotent transformations. The basic morphological fil-
ters are the morphological opening γλB and the morphological
closing φλB with a given structuring element. Here, B repre-
sents the elementary structuring element containing its origin
(for example, a square of 3 × 3 pixels), B

̮
is the transposed set

(B
̮
¼ f−x∶x ∈ Bg), and λ is a homothetic parameter. Then,

the morphological opening and closing are given by

γλBðfÞ ¼ δλB
̮ ½ελBðfÞ� and φλBðfÞ ¼ ελB

̮ ½δλBðfÞ�; (1)

where the morphological erosion ελB and dilation δλB are
expressed by ελBðfÞðxÞ¼∧ffðyÞ∶y∈ λB

̮
xg and δλBðfÞðxÞ¼

∨ffðyÞ∶y∈ λB
̮
xg, respectively, and ∧ is the inf operator and

∨ is the sup operator. Henceforth, the set B will be suppressed,
so the expressions γμ and γμB are equivalent (γμ ¼ γμB). When
the parameter μ is equal to one, all parameters are sup-
pressed (δB ¼ δ).

In the present work, we are particularly interested in
morphological directional transformations that are character-
ized by two parameters. A directional structuring element
depends on its length (size λ) and the slope (angle α) of
the element. Thus, the set of points of a line structuring
element Lα;λ is computed by two sets of points for
α ∈ ½0; 90�. These sets of points fðxi; yiÞg are defined by
the following expressions:

if 0 ≤ α ≤ 45 then; yi ¼ xi tanðαÞ
for xi ¼ 0; 1; · · · ; ðλ∕2Þ cosðαÞ if 90 ≥ α > 45

then; xi ¼ yi cotðαÞ for yi ¼ 0; 1; · · · ; ðλ∕2Þ cosðαÞ

and the set of points fð−xi;−yiÞg. This means that the struc-
turing element is a symmetric set. Similar expressions can be
found for α ∈ ð90;180�. Then, the morphological opening
and closing are given by

γα;λðfÞ ¼ δα;λ½εα;λðfÞ� and φα;λðfÞ ¼ εα;λ½δα;λðfÞ�; (2)

where the morphological erosion and dilation are given
by εα;λðfÞðxÞ ¼ ∧ffðyÞ∶y ∈ Lα;λðxÞg and δα;λðfÞðxÞ ¼
∨ffðyÞ∶y ∈ Lα;λðxÞg.

2.2 Connected Classes
One of the most interesting concepts proposed in mathemati-
cal morphology is the notion of connected classes introduced

Fig. 1 Examples of directional structures. (a) Fingerprint image.
(b) Pearlitic phase image. (c) and (d) Segmented images.
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by Serra.25 Intensive work has been done on the study of
connectivity classes. Recent studies dealing with this subject
have been carried out in Refs. 28 to 38. In fact, a connection
or connected class on E is a set family C ⊆ PðEÞ that satisfies
the following three axioms:

i/ ∅ ∈ C,
ii/ x ∈ E ⇒ fxg ∈ C,
iii/ for each family Xi in C, ∩ Xi ≠ ∅ ⇒∪ Xi ∈ C.

An equivalent definition to the connected class is the con-
nection openings expressed by the following theorem, which
provides an operating way to act on connections.

Theorem 1 (Connection openings) The datum of a con-
nected class C on PðEÞ is equivalent to the family fγx; x ∈
Eg of the so-called connection openings such that

i/ for all x ∈ E, we have γxðxÞ ¼ fxg,
ii/ for all A ⊆ E, x; y in E, γxðAÞ and γyðAÞ are equal or

disjoint,
iii/ for all A ⊆ E and for all x ∈ E, we have

x ∈= A ⇒ γxðAÞ ¼ ∅.

Observe that γxðAÞ, x ∈ E constitutes a partition of A. In
the present work, we will focus on three connections: con-
nections generated by extensive dilations and openings, and
the connection on viscous lattices.

The first one, based on extensive dilations, acts by clus-
tering the arc-wise connected components.25,29

Definition 1. Let γx, x ∈ E, be a system of connectivity
openings on PðEÞ corresponding to a connectivity class C.
For each x ∈ E, define the operator νx on PðEÞ by
νxðXÞ ¼ X ∩ γxδλðXÞ: (3)

Another connection31 is given by the openings as follows.

Definition 2. Let C be a connectivity class and γλ an
opening on PðEÞ. Let Cσ be the subset of C consisting of
∅, all singletons fxg, and all elements of C ∩ InvðγÞ.
Then, Cσ is a connectivity class with associated connectivity
openings given by

σxðXÞ ¼
( γxγλðXÞ; if x ∈ γλðXÞ
x; if x ∈ X \ γλðXÞ
∅; if x ∈= X

: (4)

Then, Cσ is a connection on PðEÞ, and for any X ∈ PðEÞ, the
connected components according to Cσ are the connected
components of γλðXÞ and the singletons of X \ γλðXÞ.
Finally, let us introduce the connection on viscous latti-
ces.35,39 In Ref. 35, the usual space PðEÞ is replaced by
a viscous lattice structure given by the family L ¼
fδλðXÞ; X ∈ PðEÞg; with λ > 0, that is both the image
PðEÞ under an extensive dilation δλ and under the opening
δλελ. Now, let C be a connected class on PðEÞ. Since dilation
δλ is extensive by definition, it preserves the whole class C,
and the adjoint erosion ελ treats the connected component
independent of each other, i.e., X ¼∪ fXi; Xi ∈ Cg ⇒
ελðXÞ ¼∪ ελðXiÞ.

Given that Serra proposes to define connections on PðEÞ
before the dilation δλ, thus, one expresses the C0 viscous

connected components of a given set A as a function of
its C components (arc-wise connected components) as

γδðxÞ ¼ δλγxελ: (5)

According to this proposition, the number of connected
components depends on the viscosity parameter λ.
Figure 2(a) illustrates the original image composed of
three arc-wise connected components or three components
at viscosity λ ¼ 0. Figures 2(b) to 2(e) show the eroded
images by disks of sizes 20, 22, 27, and 36, respectively.
Then, at viscosity λ ¼ 20, one has four connected compo-
nents, whereas at viscosity λ ¼ 22, the image is composed
of five connected components [see Figs. 2(b) and 2(c)].
The image in Fig. 2(f) shows the connected components
for viscosity λ ¼ 22. However, by considering disks as the
elementary shapes of the image, it is not possible to detect
six connected components for any viscosity. The solution to
this problem is to select the connected components at differ-
ent viscosities (scales). The traditional algorithm is the
well-known ultimate erosion, and it consists of selecting
the connected components at viscosity λ such that they are
removed for viscosity λþ 1. Another way to select the con-
nected components is to compute the distance function as
shown in Fig. 2(g) and detect its maxima. The image in
Fig. 2(h) shows the ultimate eroded components for viscos-
ities (sizes) 25, 34, 45, 64, 66, and 68, whereas Fig. 2(i) illus-
trates the connected components in the viscous lattice sense.
This is a most interesting connection since it exploits the goal
in binary image segmentation, which is to split the connected
components into a set of elementary shapes.

3 Image Segmentation of Directional Structures
Based on a Composition of Connections:
Connectivities Generated by Openings and
Dilations

Image segmentation is one of the most interesting problems
in mathematical morphology.40–42 It is well-known that the
notion of connectivity is linked to the intuitive idea of a seg-
mentation task, where the objective is to determine a set of
elementary shapes (connected components) that will be proc-
essed separately. The result of the segmentation depends
on the notion of connected components. If one supposes
a priori that the elementary shapes of the set in Fig. 2(a)
are disks, then the viscous connection gives better results
than the watershed transformation [see Figs. 2(j) and 2(k)].
Similarly, for the images shown in Fig. 1, the problem lies
in determining what a connected component is. Different
approaches can be chosen to introduce such a concept
based on the connected classes notion. According to the
usual connectivity, the set X in Fig. 3(a) is composed of
13 connected components. However, the number of con-
nected components of this set depends on the connection
used to analyze it. For example, using the connection gen-
erated by openings Cσ [Eq. (4)], the connected components
of the set X are given by all singletons fxg ∈ X \ γα;λðXÞ and
all elements of γα;λðXÞ. Nevertheless, from a practical point
of view, the use of a partial connection of Cσ is more inter-
esting as proposed by Ronse.32 In this case, for the partial
connection C�σ , the connected components of a set X are
the connected components of γλðXÞ, whereas X \ γλðXÞ
will be the residual. Then, by using the partial connection
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C�σ , this set can be interpreted differently. Consider three-
directional openings with λ1 ¼ 25 and α1 ¼ f45;90;135g
and the derived partial connection openings given by

σ
γα1 ;λ1
x ðXÞ ¼

�
γxγα1;λ1ðXÞ; if x ∈ γα1;λ1ðXÞ
∅; if x ∈= γα1;λ1ðXÞ

: (6)

For α1 ¼ 90, the original image has 17 connected com-
ponents as illustrated in Fig. 3(b), whereas for α1 ¼ 45,

the image X is composed of 13 connected components
as shown in Fig. 3(c). Finally, for α1 ¼ 135, there also
exist 13 connected components as illustrated in Fig. 3(d).
Nevertheless, from a practical point of view [see Figs. 1(c)
and (d)], the connected components according to C�σ , must be
analyzed by a clustering process derived from the connection
Cν in Definition 1. One requires a connectivity generated by
the composition of the partial connection C�σ and the connec-
tion Cν. Thus, the connected components are given by

Fig. 2 Viscous connectivity. (a) Original image X (b), (c), (d), and (e) Eroded connected components at
viscosity λ ¼ 20, λ ¼ 22, λ ¼ 27, and λ ¼ 36, respectively. (f) Connected components at viscosity λ ¼ 22,.
(g) Distance function. (h) Maxima of distance function (ultimate eroded). (i) Connected components in the
viscous lattice sense computed from the maxima. (j) Segmentation by watershed. (k) Connected
components.
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κα1;λ1;α2;λ2y ðXÞ ¼ ν
δα2 ;λ2
y ½Vxσ

γα1 ;λ1
x ðXÞ� ¼ ν

δα2 ;λ2
y ½γα1;λ1ðXÞ�:

(7)

By using directional dilations with parameters λ2 ¼ 15
and α2 ∈ f0;135; 45g applied to Figs. 3(b) to 3(d), respec-
tively, one computes the images in Figs. 3(e) to 3(g).
According to this composed connection, the set X has
five connected components for Vyκ

90;25;0;15
y ðXÞ,

Vyκ
45;25;135;15
y ðXÞ, and Vyκ

135;25;45;15
y ðXÞ as illustrated in

Figs. 3(e) to 3(g). Then, the set X has 15 connected compo-
nents as shown in Fig. 3(h).

In the real case, see Figs. 1(a) and 1(b), the task of
extracting the connected components becomes a difficult
problem since they are not well separated and belong to

different scales (see Fig. 4). For example, the composed
connection using two-directional openings of size λ1 ¼ 20
and α1 ¼ f45; 60g and directional dilations using λ2 ¼ 10
and α2 ¼ f135;150g were applied to the image in
Fig. 4(a). Then, the largest connected components,
illustrated in Figs. 4(b) and 4(c), were extracted according
to κ45;20;135;10y and κ60;20;150;10y . Now, the main problem lies
in deciding which of these connected components represents
a region better in the original image. A simple criterion to
take this decision is to choose the largest one. Thus, the sol-
ution to extract the largest connected component from the set
X lies in applying to this set the κ operator with fixed size
parameters λ1 and λ2, α1 ∈ ½0;180� and α2 perpendicular to
α1. Then, one must take the largest connected component A1

for all α1. As a precision, when the operator ν
δα2 ;λ2
y is applied,

Fig. 3 Composition of connections. (a) Original image X ,. (b), (c), and (d) Connected components
according to V

x
σ
γ90;25
x ðX Þ, V

x
σ
γ45;25
x ðX Þ and V

x
σ
γ135;25
x ðX Þ, respectively. (e), (f), and (g) Connected components

according to V
y
κ90;25;0;15y ðX Þ, V

y
κ45;25;135;15y ðX Þ and V

y
κ135;25;45;15y ðX Þ, respectively. (h) Connected compo-

nents according to the composed connectivity.
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it is preferable to make the intersection with the original
image. Figure 4(d) illustrates this component. Next, one
computes the residual X \ A1 as shown in Fig. 4(e), and
the operator κ is applied again, by decreasing λ1 ¼
λ1 − Δλ1 to compute the largest connected component A2

of X \ A1. The procedure is iterated until a given number
of connected components NC is obtained whose union is
a partial partition PpðXÞ of the image. The following pro-
cedure illustrates the method.

Depending on the images (fingerprint or pearlite phase
images), the method requires a careful examination of the
images to establish the largest size of the directional
openings λ1 and the amount Δλ1 to decrease the scale
λ1.Conversely, the λ2 parameter is very robust, and the
size λ2 ¼ 5 works correctly for all images. Figure 4 illus-
trates the performance of the algorithm. The image in
Fig. 4(f) shows five connected components computed by

this procedure. This is the partial partition PpðXÞ. The
idea of computing the final partition comes from the work
of Ronse,32 and it consists of building the influence zones
of the connected components in Fig. 4(f) inside the image
in Fig. 4(g). This last image was computed from the set
X by applying a morphological closing. The influence
zones are illustrated in Fig. 4(h). Figure 4(i) shows the
final partition. The main problem of this method is the estab-
lishment of paramenters λ1 and Δλ1, which it will be
described in Sec. 5. In the next section, a method not requir-
ing these parameters is introduced.

4 Histogram-Based Segmentation Using the
Orientation Partition Function

In this section, an approach to decrease the complexity of the
segmentation problem is introduced. The flow chart in Fig. 5
illustrates the different steps to carry out a segmentation. It

Fig. 4 Fingerprint segmentation based on a composition of connections. (a) Original image X , (b) and
(c) connected components according to κ45;20;135;10y and κ60;20;150;10y , (d) largest connected component A1,
(e) residue X \ A1, (f) five connected components, (g) geodesic mask, (h) and (i) segmented image.
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consists of codifying the size and orientation of the structures
by means of two functions: viscosity ðVfXÞ and orientation
ðOmXÞ. Then, a method to establish relationships between
maxima of the viscosity function is proposed. This informa-
tion is codified in a gray-level image called OPF.
Subsequently, a systematic merging process is performed
on this image to obtain the final segmentation based on
the histogram of the OPF. Finally, in the last step, small
regions are removed.

4.1 Size and Orientation Codification Based on
Viscous Connectivity

A method to characterize the orientation field was proposed
by Soille and Talbot.1 The directional morphological open-
ings and closings are used to filter bright and dark structures,
respectively. Among the different functions proposed by the
authors for codifying structures, the following functions
were used to extract the orientation information of the
images.

Dirþλ ¼ fαi∶γαi ;λ ≥ γαj;λ; ∀ αj ≠ αig
Dir−λ ¼ fαi∶φαi;λ ≤ φαj;λ; ∀ αj ≠ αig: (8)

Particularly in fingerprints, the function Dirþλ is used to
extract the orientation of bright ridges, whereas Dir−λ enables
the extraction of dark ridges. This approach is general in dif-
ferent aspects: it can be applied to gray-level and binary
images, and to all types of images containing directional
structures. Here, we are strictly interested in segmenting
images that can be considered binary images, as those in
Fig. 1. We are looking for an approach where the scale
and orientation information of the structures of the image
are easily accessible to determine its connected components.
First, let us define the directional structures of an image by
assigning a viscosity to each pixel in the image. Each point of
the structure is described by two quantities: the angle to the
horizontal axis and a weight. Orientations have a periodicity
of 180 deg in comparison to vectors, which have a periodic-
ity of 360 deg. On the other hand, the weight will be given by
the largest viscosity element, i.e., the longest line segment
completely included in the structures. Two functions that
codify the directional structures, by size and orientation,
are introduced below. First, let us define a new function
that codifies size information.

Definition 3. The viscosity function VfXðxÞ is a transfor-
mation that associates the largest viscosity λ with each pixel
x of a set X.

VfXðxÞ ¼ Vfλjx ∈ V
α∈½0;180�

fεα;λðXÞgg: (9)

A way to compute this function is as follows. Let X be a
given set; one begins with a small structuring element by
taking into account all orientations to compute the set

V
α∈½0;180�

fεα;λðXÞg. This means that all the points of the

image selected are those not removed by at least one of
the directional erosions. Next, VfX is increased by one at
all points x belonging to the set V

α∈½0;180�
fεα;λðXÞg; this pro-

cedure is continued by increasing the size of the structuring
element until the structure (the image) is completely
removed. This means the procedure is carried on until a
λmax value is obtained such that Vα∈½0;180�fεα;λmax

ðXÞg ≠ ∅
and Vα∈½0;180�fεα;λmaxþ1ðXÞg ¼ ∅. As expressed before,
the gray levels of the function VfX are the sizes of the lon-
gest lines that can be included in the structure. For the struc-
tures that can be considered as composed by a set of lines
[Figs. 1(a) and (b)], the maxima of the function VfX play
a main role since they codify the longest lines that take
into account the whole context of the image. In this manner,
the position of the largest structuring elements that are

Algorithm 1 Image segmentation using a composition of connec-
tions (partial partition).

Input:Original image X0 ¼ X ,. Size of directional opening λ1,. Size of
directional dilation λ2,. Connected components (NC)

1. Connected components extraction

For i ¼ 1 to NC

Ai ¼ ∅

For α1 ∈ ½0;180� and α2 ¼ α1 þ 90

Compute X 0
i ¼ δα2;λ2 γα1;λ1 ðXi−1Þ

Extract the largest connected component A0 (usual connectivity)
from X 0

i

Determine the composed connected component

κα1;λ1;α2;λ2y ðXi−1Þ ¼ A 0 ∩ X0

If the size of Ai is smaller than the size of κα1;λ1;α2;λ2y ðXi−1Þ, then

Ai ¼ κα1;λ1;α2;λ2y ðXi−1Þ

end

Compute the residue Xi ¼ Xi−1 \ Ai

Decrease λ1 ¼ λ1 − Δλ1

end

2. Compute the partial partition PpðXÞ ¼∪i Ai

Output: Partial partition PpðXÞ

Input
image X

V fx (x) and
Omx(x)

Histogram-
based

Segmentation

Removal of
small regions

Output
image

OPT (x)

Fig. 5 Flow chart of the segmentation process.
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completely included in the structure is obtained by means of
the maxima of VfX. However, the angles of these structuring
elements (line segments) are not accessible from the image
VfX. Therefore, a second function associated with the vis-
cosity function needs to be introduced.

Definition 4. The orientation functionOmXðxÞ is a trans-
formation that associates the angle of the viscosity in VfXðxÞ
with each pixel x of a set X.

The directions of the line segments are stocked in a sec-
ond imageOmX called orientation function, when the viscos-
ity function is computed. Figure 6 shows an interesting
example where the maxima play a fundamental role to char-
acterize the directional information. Figures 6(b) and 6(c)
illustrate the viscosity and orientation functions, respectively,
computed from the image in Fig. 6(a), whereas the image in
Fig. 6(d) displays the original image and the maxima (in
white) of the viscosity function. Particularly, observe that
there exists only one maximum for each component. The vis-
cosity and orientation functions can be used for extracting
the line segments characterizing the structure. To illustrate
the information contained in these images, a line segment
of size VfXðxÞ was placed at each maximum point “x,”
with an angle given by the image OmXðxÞ. This reconstruc-
tion can be observed in Fig. 6(e). It seems that maxima are
good features to describe directional structures. Let us illus-
trate this reconstruction with a real example (pearlitic phase
micrograph) that is shown in Fig. 7. The images in Figs. 7(b)
and 7(c) illustrate the image of the viscosity function VfX
and the image containing the orientation OmX , respectively,
computed from the binary image in Fig. 7(a). Finally, the

image in Fig. 7(d) has been reconstructed using the respec-
tive viscosity and orientation functions. Only the maxima of
the viscosity function were used in the reconstruction.
Therefore, we can observe that both features, the maxima
of the viscosity function and the orientation function, play
a main role to extract directional structures. The maxima
of VfX and the orientation image will be used to propose
a method for segmenting the images.

4.2 Orientation Partition Function
Since the maxima of the viscosity function and their orien-
tations codified in the orientation function play a main role to
reconstruct the original image, we propose method to estab-
lish the relationships among the maxima of the viscosity
function. The main idea in this approach consists of building
an image that codifies the neighborhood relations between
the maxima and their orientations. A transformation that
takes into account these relationships among maxima is
the watershed, by working with the inverse image of VfX .
Therefore, this transformation will be used to find basic rela-
tions between the connected components (characterized by
maxima). However, instead of using the watershed lines,
the catchment basins associated with the watershed will
be used. In fact, the catchment basins related to the maxima
can be computed by means of geodesic dilations. Figure 7(e)
shows the maxima of the image VfX in Fig. 7(b), whereas
Fig. 7(f) illustrates the watershed image computed from the
inverse image of VfX . Figure 7(g) shows the catchment
basins weighted by the values of the angles of the OmX
image in Fig. 7(c) at the position of the regional maxima.
This new function in Fig. 7(g) is the OPF, whereas the

Fig. 6 Viscosity and orientation functions. (a) Original image. (b) Viscosity function. (c) Orientation func-
tion. (d) Maxima of the viscosity function (in white) and original image. (e) Reconstructed objects.

Journal of Electronic Imaging 023007-8 Mar–Apr 2014 • Vol. 23(2)

Paredes-Orta et al.: Morphological segmentation approaches of directional structures based on connections



image in Fig. 7(h) is the representation of the orientation of
the image in Fig. 7(a) using the OPF. By analyzing a region
of the image in Fig. 7(g), one can identify the neighboring
regions presenting similar orientations. These regions may
belong to the same connected component. To take into
account these neighborhood relationships, the histogram
of the OPF will be used to carry out the merging process.

4.3 Histogram-Based Segmentation
In this section, we discuss an approach for segmenting direc-
tional structures based on the histogram of the OPF. It is
well-known that this approach can yield very good results
when the objects have distinct ranges of intensity. This is
not strictly the case for directional structures; however, in
the case of fingerprints, the following hypothesis can be
posed: two neighboring regions in the image have neighbor-
ing values in the histogram of orientations. Hence, the spatial

analysis is practically equivalent to the gray-level analysis in
the histogram. In the case of pearlite phase images, one
assumes that the intensities have distinct ranges in the
OPF. This hypothesis is supported by the fact that the
grain structure displays a morphology in the form of parallel
lines, and when forming another grain, these change direc-
tion. In this case, the histogram segmentation approach can
also be used for segmenting the images.

Thus, after computing the histogram H of the OPF asso-
ciated with the original image, the histogram is clustered
independently by splitting it into several sections corre-
sponding to representative classes of pixels in the image.
Therefore, the segmentation problem is reduced to finding
the threshold values that dissect the histograms in a finite
number of clusterings. Adjacent sections of the histogram
will be merged according to the following strategy. A
one-dimensional (1-D) adjacency graph of the histogram

Fig. 7 Orientation partition function. (a) Original image. (b) and (c) Viscosity and orientation functions,
respectively. (d) Reconstructed image. (e) and (f) Maxima of the viscosity function and its image partition
computed by the watershed transformation. (g) Catchment basins of the partition weighted by the ori-
entation partition function (OPF). (h) Orientation representation of image using the OPF.
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sections is built, and the two adjacent sections showing the
smallest value of a given criterion in the histogram are iden-
tified and merged. The procedure of merging adjacent
regions is carried out until a number of predefined classes
is achieved. This solution that resembles the supervised
approach proposed by Lezoray43 enables a reduction in
the number of regions of the OPF in an optimal manner.
Several criteria for merging adjacent sections were studied.
However, the best results were found by using the gray-level
variance of the regions represented by two adjacent sections
of the histogram. Let Si be the sections of histogram H, with
i ∈ f0; 1; 2; : : : ; 179g. The variance value is given by

σðSi−1; SiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPuðSiÞ
k∈lðSi−1Þ HðkÞ2ðk − μÞ2PuðSiÞ

k∈lðSi−1Þ HðkÞ

vuuut ; (10)

where the mean value μ is

μðSi−1; SiÞ ¼
PuðSiÞ

k∈lðSi−1Þ HðkÞ � kPuðSiÞ
k∈lðSi−1Þ HðkÞ

: (11)

HðkÞ is the number of pixels of gray level k and lðSiÞ [resp.
uðSiÞ] is the lowest (resp. highest) gray level in section Si.
The adjacency graph is updated each time two sections are
merged and the algorithm is iterated until the number of sec-
tions in the histogram is Ns. Figure 8 illustrates some seg-
mented images for different Ns values. The output images in
Figs. 8(b) to 8(f) were computed from the original image in
Fig. 8(a) using Ns ¼ 8; 6; 5; 4; 3, respectively. The seg-
mented images form a hierarchy of partitions depending
on the Ns parameter. Thus, let PNs

ðfÞ be the segmented
image of f. With regard to partitions, one has that for any

Fig. 8 Histogram-based segmentation. (a) Original image. (b) to (f) Segmented images using variance
criteria Ns ¼ 8, 6, 5, 4, 3, respectively. (g) The four largest regions of image (f). (h) Mask image.
(i) Influence zones of (g) inside (h).
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i and j with j < i,; this implies that PiðfÞ ⊂ PjðfÞ. It is clear
that the number of regions of the segmented images does not
correspond to the number of selected clusters Ns as shown in
Fig. 8. However, despite this lack of correspondence, these
images are practically segmented in the main regions. For
example, to compute the image in Fig. 8(f), the selected
number of sections of the histogram was Ns ¼ 3, but the
segmented image has the four largest regions that are repre-
sentative of the directional structures of the image in
Fig. 8(a).

4.4 Removal of Small Regions
Even when the output images computed by the histogram-
based segmentation contain large representative regions,
the method also generates small classes as those signaled
by an arrow in Fig. 8(f). Small classes turn out to be inherent

in segmenting techniques. To remove these regions, another
approach, such as the use of the regions adjacency graph
(RAG) structure, could be used for obtaining the final seg-
mentation. By merging neighboring regions with close val-
ues in the gray level (orientation criterion) using the RAG,
the order between partitions is preserved. Nevertheless, two
main problems arise when removing small regions with the
RAG structure: the complexity of the method and the fact
that small regions have no correlation with their neighboring
ones. For instance, the small regions signaled by an arrow in
Fig. 8(f) have a gray level (orientation) that is not close to the
gray level of the neighboring region, which means that a
large criterion value is required to merge these regions. A
large value of the criterion carries the risk of merging rep-
resentative regions. Thus, we prefer to use a recent and
formal approach proposed by Serra,44 which also preserves

Fig. 9 Examples of segmentation based on a composition of connections. (a) Original image X .
(b) Connected components. (c) Mask image. (d) Influence zones of connected components in (b) inside
the mask image in (c). (e) Segmented image. (f) Original image. (g) Connected components. (h) and (i)
Segmented image.
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an order. Serra establishes what he calls grain building order-
ing. Consider two partitions PA and PB. Then,

PA⪯PBwhen each class ofPB contains at least one class ofPA.

It does not preserve inclusion since some connected
classes of the smaller partition, PA, may lie partly or even
completely outside of PB. Figure 8 illustrates this concept.
The image in Fig. 8(g) (partition PB) has been computed by
removing the small regions of the image in Fig. 8(f) (parti-
tion PA). Only the four largest regions remain intact. Now, to
compute the output image in Fig. 8(i), the influence zones of
the connected components in Fig. 8(g) are built inside the
mask in Fig. 8(h). This new partition, say PC, is greater
than partition PA, i.e., the order is preserved (PA⪯PC).
This is a most interesting method for removing small regions
given its simplicity and perfomance, which will be illustrated
in the next section.

5 Results and Discussion

5.1 Image Segmentation Based on the
Connectivities Generated by Openings and
Dilations

The first algorithm described in Sec. 3 has been tested on
several images with good results. Here, we illustrate other

examples and comment on some drawbacks of the approach.
Figure 9 shows two examples of segmented images.
Figure 9(b) shows the connected components computed
from Fig. 9(a) using this procedure, whereas Fig. 9(d) dis-
plays the influence zones inside the mask in Fig. 9(c),
and Fig. 9(e) shows the segmented image. Another example
is illustrated in Fig. 9(f). Figure 9(g) shows seven connected
components computed by the mentioned algorithm, whereas
Figs. 9(h) and 9(i) display the segmented image. In this last
example, the influence zones of the connected components
in Fig. 9(g) are built using the whole image as a mask.
However, there are some drawbacks in this method. One
problem is the need for determining the values of parameters
λ1 and Δλ1, and a second one is the large computation time.
With regard to the former, it requires to carry out some
experiments to select the largest scale λ1 and the decrease
Δλ1. This can be avoided by computing all the scales as
in the viscosity function; nevertheless, it risks to increase
considerably the computation time.

Now, concerning the latter problem, even computing few
connected components, the method is slow when compared
with the other one that uses the OPF and the histogram-based
segmentation. Let us illustrate the number of operations
requiered by this algorithm. We express the computational
time in terms of basic erosions and dilations (size 1), and
one considers that the contribution of the basic erosion

Fig. 10 Examples of reconstructed images using the máxima of the viscosity function. (a) to (e) Original
images. (f) to (j) Reconstructed images.
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and dilation is the same. Principally, two steps of the algo-
rithm involve a considerable amount of computational time:
the use of openings and dilations to compute the connected
components at each orientation, and the selection of the larg-
est connected component. To determine the first connected
component, one needs to apply 2λ1 erosions and dilations
(directional openings of size λ1), followed by λ2 dilations.
These transformations are applied at each point of the
image and for all direction α; this meansð180∕ΔαÞ ·
ð2λ1 þ λ2Þ basic operations for each point of the image,
where Δα is the angle step (Δα ¼ 5 for the examples in
Fig. 9). Moreover, this is the number of operations for
each connected component; then NCð180∕ΔαÞð2λ1 þ λ2Þ
operations are necessary to obtain the segmented image.
Regarding the second step—the selection of the largest con-
nected components—it also requires NCð180∕ΔαÞð2λ1þ
λ2Þ scannings of the image. Therefore, the number of scan-
nings required to compute the segmented image makes the
algorithm very slow.

5.2 Some Comments About the Codification of Size
and Orientation

In Sec. 4, when the viscosity and orientation functions were
introduced, we claimed that the pair of data, maxima of the
viscosity function and their orientations, contains the main
information of the original structures. This hypothesis was
later used to build the OPF to segment the images. Before
establishing this hypothesis, several experiments were car-
ried out with a set of images. Figures 10(f) to 10(j) illustrate
some examples of reconstructed images. The reconstruction

percentage is ∼63%, which seems small. However, by com-
paring the images in Figs. 10(f) to 10(j) and those of
Figs. 10(a) to 10(e), we appreciate that the reconstructed
images are representative of the original images since they
contain the main shapes. The remaining information is
redundant. Then, the maxima of the viscosity function
play a crucial role in the characterization of directional struc-
tures. Moreover, the orientation function faithfully represents
the shape of the structures. Let us illustrate this assertion with
examples. Figures 11(b) and 11(c) show the viscosity func-
tion and its associated orientation function of the original
image in Fig. 11(a). In addition, a color representation of
the orientation function is also shown in Fig. 11(d). The
gray-level orientation image enables the introduction of a
connectivity criterion. Figures 11(e) and 11(f) illustrate
the connectivity introduced by the orientation of the struc-
tures. The image in Fig. 11(e) was computed from the
image in Fig. 11(c) using a threshold between 160 and
172 deg (gray levels in the image). Then, by using the
arc-wise connectivity, the number of connected components
between these angles can be determined. Similarly, for the
image in Fig. 11(f), the number of connected components
with an orientation lying between 92 and 152 deg can
also be computed.

Now, Fig. 12(a) illustrates a real example having similar
directional structures as those of the image in Fig. 11(a). In
Fig. 12(b), the orientation function in color representation is
shown. To extract directional structures, a threshold in a
given interval is applied to this last image. For instance,
the image in Fig. 12(c) was computed using a threshold

Fig. 11 Extraction of connected components using the orientation function. (a) Binary image.
(b) Viscosity function. (c) Orientation function. (d) Color representation of (c). (e) Threshold between
160 and 178 gray levels computed from the image in (c). (f) Threshold between 92 and 152 gray levels
computed from the image in (c).
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between 100 and 180 deg (gray levels in the orientation func-
tion). A main structure and some small ones are observed in
this image. In order to extract the principal structure, a direc-
tional dilation at 45 deg (more or less perpendicular to the
main structure) is applied to the image in Fig. 12(c) to com-
pute the image in Fig. 12(d). Next, the largest connected
component is extracted as shown in Fig. 12(e). A similar pro-
cedure is carried out for computing other directional struc-
tures, as displayed in Fig. 12(f). Finally, one builds the
influence zones of the regions in Fig. 12(f) inside the
image in Fig. 12(g). Figures 12(h) and 12(i) show the seg-
mented image. Even if this algorithm is very fast, particularly
when the method proposed below in Sec. 5.5 to compute the
viscosity and orientation functions is applied, the main prob-
lem lies in the fact that it is not easy to compute an optimal
segmentation.

5.3 Some Comments About the Histogram-Based
Segmentation

In the proposed algorithm for the histogram-based segmen-
tation in Sec. 4, all the sections of the histogram were used
for segmenting the images. However, in a first solution, one
may suppose that the representative sections (clusters) of
the histogram are located around the regional maxima.
Let us illustrate some problems using this assertion.
Figures 13(a) to 13(e) show the OPFs of the original images
in Figs. 10(a) to 10(e), whereas in Figs. 14(a) to 14(e), the
histograms of the OPFs are illustrated. Several comments
about the behavior of the histograms can be made. First,
observe that a main representative section in the histogram,
linked to a principal directional structure, is always present
and this behavior is reflected in the histogram by a wide sec-
tion, such as those of Figs. 14(a) and 14(d). Even in the case

Fig. 12 Example of segmentation using the orientation function. (a) Binary image. (b) Orientation func-
tion. (c) Threshold between 100 and 180 gray levels computed from the image in (b). (d) Directional
dilation at 45 deg. (e) Largest connected component. (f) Four connected components. (g) Mask
image. (h) and (i) Segmented image.
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Fig. 13 Examples of OPFs. (a) to (e) OPFs of the images in Figs. 10(a) to 10(e), respectively.

Fig. 14 Histograms of OPFs. (a) to (e) Gray-level histograms of Figs. 13(a) to 13(e), respectively.
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of the histogram shown in Fig. 14(e), corresponding to the
OPF image in Fig. 10(e), this main structure is present and
can be detected. Nevertheless, small representative direc-
tional regions are also included and can be also detected
by a clustering process carried out in the histogram.

Now, as expressed above, a first solution for dissecting the
histogram can be achieved by computing a 1-D watershed of
the complement (Hc). Then, maxima of H (minima of Hc)
are supposed to mark the main regions of the images.
Nevertheless, one observes that maxima are numerous in
the histograms of Fig. 14; this may cause an oversegmenta-
tion problem. Instead of using the minima ofHc, one can use
the so-called h-minima as seeds for the 1-D watershed. This
avoids oversegmentation. This idea of segmenting images
comes from the work of Lezoray.43 However, the major
drawback of this approach for selecting the main regions
of the structure does not always yield good results, that
is, the maxima of the histogram are not strictly representative
of the principal structures. Moreover, when an angle step Δα
different from 1 deg is used for computing the OPF as illus-
trated in Fig. 15, all the values in the histogram, multiple of
Δα are maxima. This is the reason why in the algorithm pro-
posed in Sec. 4 we take all the possible regions in the histo-
gram with the same gray level for segmenting the images.
This means, 180 sections for Δα ¼ 1, or 90 sections for
Δα ¼ 2, and so on.

To illustrate the performance of the histogram-based seg-
mentation approach using the OPF, several examples are dis-
played in Figs. 16 and 17. First, we show the segmentation
process in the fingerprint case. The images in Figs. 16(e) to
16(h) were computed from those in Figs. 16(a) to 16(d) using
the histogram-based segmentation. All segmented images
present small regions. For removing these regions, the

method described in Sec. 4.4, based on the concept of
grain building ordering, was applied to the images in
Figs. 16(e) to 16(h). The images in Figs. 16(i) to 16(l) illus-
trate the final segmentations. In addition, Fig. 17 shows the
examples of pearlite phase images. They have been seg-
mented using the histogram-based segmentation approach
followed by the algorithm for removing small regions.
Figures 17(b) and 17(c) illustrate the segmented images com-
puted from the image in Fig. 17(a), whereas in Figs. 17(d)
and 17(e) two grains are shown. Finally, Figs. 17(f) and
17(h) show two last examples of pearlite phase images,
and in Figs. 17(g) and 17(i) their respective segmented
images in color representation are shown as well.

Now, let us make some comments concerning the com-
putation time of the method. Four steps are required to obtain
the segmented image as shown in Fig. 5. Three of them are
determined very fast: OPF determination, histogram-based
segmentation, and small regions removal. The step that
involves a considerable amount of operations is the compu-
tation of the viscosity and orientation functions. Unlike the
method based on the composed connectivities (Sec. 3) that
uses openings and dilations, this step requires only erosions.
If these functions are computed using Eq. (9) directly, the
method becomes very slow, ð180∕ΔαÞ erosions at each
point of the image for every scale λ. However, by using
the algorithm described below in Sec. 5.5, the computation
time is considerably reduced. The idea in the algorithm
described below consists of determining the critical line
segments at each point of the image, i.e., the longest line
segments that can be placed inside the structure. Once the
viscosity and orientation functions are calculated, they are
used for the computation of the OPF, which needs only
one scanning to obtain the catchment basins associated to
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Fig. 15 Examples of histograms of OPFs. (a) and (b) OPF using a five-degree step and its corresponding
histogram. (c) and (d) OPF using a 10-degree step and its corresponding histogram.
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the watershed. The existence of an efficient algorithm to
compute the watershed is well-known. Regarding the histo-
gram-based segmentation, the computation time is negligible
since this step involves the calculation of Eqs. (10) and (11)
on a vector of length 180. Finally, the removal of small
regions is also a fast algorithm given that two procedures
are only required: computation of the largest regions and
the influence zones determination.

5.4 Comparison of the Method with Manual
Segmentation of Pearlitic Phase Images

To test the performance of the method based on the OPF and
histogram-based segmentation, the segmented images from
this algorithm were compared with manual segmentations
carried out by a materials science specialist. To our knowl-
edge, the work of Jeulin and Kurdy3 is the only article
addressing the segmentation of pearlite phase images.
Since in their work there is no comparison of their method,
we decided to evaluate the performance with the ground
truths provided by an expert. There are several works in
the literature focused on testing segmented images with
ground truths (see Refs. 45 to 47). Here, we will focus on
the use of the index proposed by Martin et al.45 Let PðfÞ
and PMðfÞ be the partition computed from image f using
the proposed method and the ground truth, respectively.

Let \ denote the set difference and jAj the cardinality of
set A. If PðfÞðxÞ is a region (class or element of the partition)
at point x in the segmentation PðfÞ, the local refinement
error between the classes PðfÞðxÞ and PMðfÞðxÞ is defined
as

E½PðfÞðxÞ; PMðfÞðxÞ� ¼
jPðfÞðxÞ \ PMðfÞðxÞj

jPðfÞðxÞj : (12)

Note that this local error encodes a measure of refinement
in one direction only. When PðfÞðxÞ is a refinement of
PMðfÞðxÞ the error is zero. Given this local refinement
error at each direction for each pixel x, a way to combine
the values into an error measure for the entire image is
the local consistency error. Let N be the number of pixels
of the image. Then

LCEðS1;S2Þ

¼ 1

N

X
i

minfE½PðfÞðxÞ;PMðfÞðxÞ�;E½PMðfÞðxÞ;PðfÞðxÞ�g:

(13)

Now, the images were manually segmented by the spe-
cialist as illustrated in Figs. 18(a) to 18(c). The error

Fig. 16 Examples of the histogram-based segmentation. (a) to (d) Original images. (e) to (h) Segmented
images using variance criteria Ns ¼ 4. (i) to (l) Segmented images corresponding to those of (e) to (h)
without small regions.
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minfE½PðfÞðxÞ; PMðfÞðxÞ�; E½PMðfÞðxÞ; PðfÞðxÞ�g was
computed at each point of the image between the ground
truth images and those segmented by the proposed method
[Figs. 17(c), 17(g), and 17(i)]. The images in Figs. 18(d) to
18(f) illustrate this error. We observe that the error is greater
for the border pixels [white color in Figs. 18(d) to 18(f)],
whereas it is smaller (dark regions) for larger well-defined
grains. See, for example, the image in Fig. 18(d). Another
source of error is not well-defined grains. See, for example,
the region (red ellipse) of the image in Fig. 18(b) and its cor-
responding error image in Fig. 18(e). In this region, the pearl-
ite phase does not display a morphology in the form of
parallel lines. Similarly, when one has small grains, neigh-
boring of a larger one, it is not possible to carry out a proper
segmentation as shown in Fig. 18(f). However, from a prac-
tical point of view, the pearlite phase images are, in general,
segmented correctly. Finally, the mean error was computed
on a set of images using Eq. (12), finding a value of 0.19.

5.5 Nonparametric Algorithm to Build the Viscosity
and Orientation Functions

The number of operations needed for computing the viscos-
ity and the orientation functions is considerable, making this
a very expensive method in computation time. Moreover, the
building of these functions seems to require a size parameter
(the largest structuring element) and an angle step to com-
pute them. Let us illustrate an algorithm to build these func-
tions, which does not require any parameter and is not
expensive in computation time. First, the size parameter
(largest structuring element) can be fixed to the size of
the image diagonal, that is, the size of the largest structure
that can be included in the image. Let Sx and Sy be the
dimensions of the images in the horizontal and vertical
axes, respectively. For example, for a VGA 640 × 480

image, one has L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2x þ S2y

q
¼ 800. Then the largest

structuring element has a size of 400 since one uses

Fig. 17 Pearlitic phase image segmentation. (a) Original image. (b) Segmented image using variance
criterionNs ¼ 4. (c) Color representation. (d) and (e) Two connected components. (f) and (g) Original and
segmented images using variance criterion Ns ¼ 4. (h) and (i) Original and segmented images using
variance criterion Ns ¼ 4.
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symmetrical structuring elements. It is clear that few cases of
images containing such structure characteristics can be found
in real images. Next, to compute the line segments, the step
in degrees must be fixed. In practice, a 5-deg step (Δα) is
sufficient, but let us fix a smaller value (1 deg) to show
the limiting case in computation time. Figures 19(a) to 19(c)
show the line segments of size 200 for angle steps of 10, 5,
and 1 deg, respectively. Next, 180 structuring elements of
size L are computed and stocked in a structure data (list
of lists). Since symmetrical structuring elements are used,
only half of the straight lines are stocked and centered at
the origin ð0; 0Þ. In fact, only the Freeman codes are stocked.
Let fLsig with i ∈ f0; 1; 2; : : : ; 179g be the lists containing
the Freeman codes required to build half of the structuring
elements, and let Lsj be a given list. The structuring element
is built using the list Lsj ¼ fckgwith ck ∈ f0; 1; 2; 3; : : : ; 7g
and its symmetrical data L

̮
sj ¼ fc̮ kg with c

̮
k ¼ ðckþ

4Þmod 8.
To illustrate the algorithm, let us consider the example in

Fig. 19(d), where an erosion by a line segment is applied to
the structure in gray color. The structuring element is
obtained from the list Lsj ¼ f0; 1; 0; 1; 0; 1; 0; 1; 0g (blue
0 and red 1) and L

̮
sj ¼ f4; 5; 4; 5; 4; 5; 4; 5; 4g (green 4

and yellow 5). Now, to calculate the erosion at point
ðx; yÞ of an image f marked by a white dot, one begins
by computing the smallest value among the points
ðx − 1; yÞ, ðx; yÞ, and ðxþ 1; yÞ. Then, the erosion size 1
is given by the infimum (the intersection of sets)
ε1ðfÞðx; yÞ ¼ fðx − 1; yÞΛfðx; yÞΛfðxþ 1; yÞ. Next, the
erosion size 2 is obtained by using the following two points
of the structuring element ðx − 2; y − 1Þ and ðxþ 2; yþ 1Þ
and the erosion size 1 ε1ðfÞðx; yÞ. Hence, ε2ðfÞðx; yÞ ¼
fðx − 2; y − 1ÞΛε1ðfÞðx; yÞΛfðxþ 2; yþ 1Þ. The pro-
cedure continues until the last pair of points of the structuring

element is taken into account. In this example, a longer
structuring element is required to remove the point ðx; yÞ
of the image. Nevertheless, in the example in Fig. 19(e),
after applying the third erosion, the point is removed;
i.e., ε3ðfÞðx; yÞ ¼ fðx − 3; y − 2ÞΛε2ðfÞðx; yÞΛfðxþ 3; yþ
3Þ ¼ 0. Hence, the procedure is stopped. This process is
applied to each point of the image. It is clear that the fact
of using the infimum (AND operation in a computer) to
compute the erosion and to stop the procedure when it is
no longer required allows a faster calculation of the
erosion of the image. Then, instead of calculating
Vα∈½0;180�fελ;αðXÞg, one computes at each point x of the
image, the longest structuring element that cannot remove
this point. Subsequently, the length of this structuring
element is used to affect the function VfX at point x.

Now, in order to know approximately the time complexity
order for computing the viscosity and orientation functions,
let us consider the limit case of a structure composed of a line
segment at direction α ¼ 0, 1 pixel thick and 2 � nþ 1 pixels
in length, with n ≫ 1. To compute the critical elements of the
supremum of erosions at the center x of the line segment, nþ
1 directional erosions are required at direction α, plus
(approximately) m erosions for the other angles. The
value m ≪ n, depends on the angle of the directional ero-
sion. It is 1 for an angle perpendicular to α and is a maximum
m for an angle close to α, according to a given angle step Δα.
For example, for Δα ¼ 5, one has more or less m ¼ 5. For
the other points of the line segment, the number of operations
depend on the point position, and their values are between 1
and n at direction α and m erosions for the other angles.
Hence, the number of directional erosions required to test
all points is ðnþ 1Þ2 þ ð180∕ΔαÞ �m � n. Let us illustrate
an example. For a line segment of length n ¼ 99 and
Δα ¼ 5, 10,000 erosions are required at the direction

Fig. 18 Comparison of the histogram-based segmentation method with manual segmentations. (a) to
(c) Ground truth images. (d) to (f) Error minfE ½Pðf ÞðxÞ; PM ðf ÞðxÞ�; E ½PM ðf ÞðxÞ; Pðf ÞðxÞ�g.
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α½termðnþ 1Þ2�, whereas for other angles (term m � n)
between 100 and 500 erosions. Now, for a line segment
of thickness 2 pixels, one has approximately 2 � ½ðnþ 1Þ2þ
ð180∕ΔαÞ �m � n�. By increasing the thickness of the line
segment, the determination of the time computation order
becomes more complex. Then, for thin (k pixels) and
long segments, a good value for the order is k � ½ðnþ 1Þ2þ
ð180∕ΔαÞ �m � n�.

Finally, let us show the computation time of the present
approach. For instance, in the example of the pearlitic phase
image of size 512 × 512 pixels, 5 s are required to compute
the viscosity and orientation images using a 1-deg angle step,
whereas when working with a 5-deg step in the interval
[0,180], only 1 s is required. For the fingerprint image
(300 × 300 pixels), <2 s are required using a 1-deg angle
step. The computer used for these experiments was a laptop
with 1.59 GHz processor and 256 MB RAM.

5.6 Limits of the Approach
Let us take some geometrical examples to illustrate certain
limitations of the approach proposed above using the OPF to
extract the directional characteristics. The first example is
the case of a rectangle of length l and width h shown in
Figs. 19(f) and 19(g). The longest line segments that can
be placed inside the rectangle are the diagonal lines of length
½l2 þ h2�1∕2, and their angle is given by α ¼ tan−1ðh∕lÞ. It is
clear that the larger l is, the smaller h is, and the closer α is to
0 deg (l → ∞; or h → 0;⇒ α → 0). Consider an example
where the rectangle has l ¼ 100 pixels. Then, for h ¼ 20,
α ¼ 11.5 deg; for h ¼ 10, α ¼ 5.7 deg; and for h ¼ 5,
α ¼ 2.8 deg. Another source of error is the rectangle
extremes since, at the limits, the angle of the longest line
(in this example) has an angle value of 90 deg. Moreover,
the points remaining in the line that cuts the rectangle
along the horizontal at h∕2 through its center can vary

Fig. 19 Algorithm to build Vf X and OmX images and some geometrical examples. (a) to (c) Line seg-
ments size 200, with step angles of 10, 5, and 1 deg, respectively. (d) and (e) Directional erosions. (f) and
(g) Rectangular structures with their orientation functions. (h) and (i) Original structure and its orientation
function.
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between α ¼ tan−1ðh∕lÞ and 90 deg. Figures 19(f) and 19(g)
show two examples in color representation. This drawback
can be avoided by applying the supremum of directional
openings; however, the computation time to determine the
longest lines included in the structure will increase consid-
erably. To illustrate this, let us remember the traditional geo-
metrical interpretations of the erosion and the opening. In the
erosion case, one selects the center of the structuring element
that is completely included in the structure, whereas in the
opening case, all the points hitting the structuring element
are chosen. This means that when an opening is applied,
the points in the image are analyzed several times, and it
is not possible to apply the algorithm proposed above.

Now, let us analyze another geometrical example given by
a shape formed by two concentric circles of different radii
(annulus or ring of width h) as illustrated in Fig. 19(h). In
the case of a disk, the maximum symmetrical distance lies
in the middle point of the segment joining any two points
of the circle (chord); the longest chord goes through the
center of the disk (diameter of the disk). In the case of
a ring, the longest line segment is the tangent to the inner
circle, and the smallest line is zero, a point on the outer circle.
Between these two extremes, different chords exist, all at the
same angle. Then, when working with structures with a
given curvature, the error in the direction is smaller than
in the case of a straight line (or without error when the region
takes a shape resembling a ring) as illustrated in Fig. 19(i).
However, the maxima of the viscosity function will remain
close to the contour (inner contour) of the structure. The lim-
its of the approach shown in this section are attenuated when
the image is composed of thin structures as those of the pearl-
itic phase micrograph or when the structures have curvatures
as in fingerprint images.

6 Conclusion and Future Works
This paper shows the possibilities of applying the connectiv-
ity class notion to segment images containing directional
structures. Initially, the composition of connections gener-
ated by the openings and dilations was investigated. This
composition of connectivities is used to describe a class
of hierarchical data structures, which allows the classifica-
tion of the various orientations at different scales. The
approach enables the correct segmentation of images con-
taining directional structures; however, its computation
time is large. Subsequently, a second local approach was
considered. This approach involves a local analysis using
the concepts of viscosity and orientation functions proposed
in this paper. The maxima of the viscosity function were used
for computing the loci of maximal structuring elements, and
the orientation function to obtain the angles of the line seg-
ments. These pairs of local parameters yield a good descrip-
tion of the image by means of line segments. Subsequently,
an OPF of the image was computed by means of the catch-
ment basins associated with the watershed transform
weighted by the orientation function. This method allows
the segmentation of the image based on a supervised
approach using the clustering of the OPF histogram. The
results based on the algorithms presented in this paper
show the good performance of the approach. Future work
will consist of searching for segmenting images in the
gray-level case, and we will focus on a new lattice approach

for morphological image segmentation recently proposed by
Serra.48
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