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Abstract. Radar coincidence imaging (RCI) is a new instantaneous imaging technique that does not depend
on Doppler frequency for resolution. Such an imaging method does not require target relative motion and has
an imaging interval that is even shorter than a pulse width. The potential advantages in processing both the
relatively stationary and maneuvering targets make RCI provide a supplementary imaging approach for the
conventional range Doppler imaging methods. The simulation experiments have preliminarily demonstrated
the feasibility of the RCI technique. However, further investigations show that the imaging error arises for mov-
ing targets, and moreover, it is particularly related to target scattering maps. The paper analyzes the target-
motion-induced error and points out that three factors are involved: target velocity, target scattering map, and
the time-space independence of detecting signals. The current image-reconstruction algorithms of RCI, which
are based on the least-square (LS) principle, are found to be seriously sensitive to the motion-induced errors
and will be limited in practical imaging scenarios. Accordingly, the compressive sensing (CS) recovery algo-
rithm is employed, which can utilize sparsity restriction to diminish the effect of the motion-induced error on
image reconstruction. Simulations are designed to illustrate the three factors of the target-motion-induced error.
The imaging performance of the LS and the CS methods in RCI image recovery are compared as well. © The
Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.23.2.023014]
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1 Introduction
Various radar imaging techniques based on the range
Doppler (RD) principle derive target images via the process-
ing of measuring time-delay and Doppler frequency.1 High
resolution is generally obtained by high bandwidth and large
aspect-angle variation. Especially, for a high azimuth reso-
lution, there are two typical approaches to increase the
aspect-angle integration. One way is the utilization of a
real-aperture antenna array, but the antenna number com-
mensurate with a desired high azimuth resolution is quite
high, and it is too complex to realize the maximum resolution
limited by the hardware and physical environment.2,3 The
other is synthetic aperture radar imaging that achieves
aspect-angle integration via the relative motion between tar-
gets and radars.1,4 This method requires relative motion to
keep uniform during the imaging time. Unfortunately, this
condition could hardly be satisfied in real imaging scenarios
where a lot of noncooperative targets and fast maneuvers
exist.5 Consequently, the noncooperative motion induces
time-varying Doppler frequency into the return signals,
which widens the frequency spectrum and would badly
blur the images beyond recognition. Therefore, relative
motion between targets and radars indeed provides the
desired resolution, but meanwhile the resultant nonuniform
space sampling would produce blurred images, which are
difficult to be refocused even though various motion com-
pensation algorithms are applied.5,6

On consideration of aforementioned reasons, our recent
work in Ref. 7 developed an instantaneous imaging tech-
nique—radar coincidence imaging (RCI)—which was moti-
vated by classical coincidence imaging in optical systems.
Classical coincidence imaging is a nonlocal (images are pro-
duced in the channel without objects) imaging method,
where the target pattern is obtained via signal spatial fluctu-
ations on the imaging plane.8–10 The extension of such im-
aging formulism to microwave system has two potential
advantages: (1) it does not depend on Doppler gradient
for resolution, and then the targets that are relatively station-
ary to radars can be well imaged and (2) the imaging interval
can be shorter than a pulse width, and then the impact of
target noncooperative motions will be considerably
decreased. The key property of RCI is to yield time-
space-independent radar signals in the detecting area,
which makes targets or scatterers at different locations reflect
mutually independent echoes. Therefore, targets or scatterers
within a radar beam can be resolved via the independent
waveforms of their echoes instead of the time-delay and
Doppler analysis. For the targets in the same range bin,
they remain resolvable even if their Doppler frequencies
are equal to each other. RCI presents potential advantages
in processing both the stationary targets and the maneuvering
ones, which could be a supplementary imaging approach for
the conventional range Doppler imaging methods.

The experiments in Ref. 7 using simulated data have pre-
liminarily shown the feasibility of RCI for imaging both
stationary targets and maneuvering ones, as shown in
Figs. 1(a) and 1(b). This experiment, which derives satisfac-
tory results, employs a simple target model consisting of*Address all correspondence to: Dongze Li, Email: dongzeli1010@126.com
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several scattering centers. In our further investigation, how-
ever, obvious contrast arises when we employ a plane target
model, which is more complex, as shown in Figs. 1(c) and
1(d). The imagery quality of the plane model remains satis-
factory when it is stationary, whereas it gets seriously
degraded beyond recognition when it moves. Thus, the per-
formance of the RCI technique is related not only to the tar-
get movement but also to the target scattering maps.
Obviously, the current image-reconstruction algorithms of
RCI will be quite limited in the practical imaging scenarios
where moving targets or various scattering maps generally
exist. In consideration of this problem, the paper investigates
the reason of the degraded imagery quality in RCI and then
analyzes the limitation of the current recovery algorithms
and finally provides an applicable approach for RCI in
the presence of motion-induced error.

The remaining sections are organized as follows.
Section 2 gives the fundamental analysis of RCI. Section 3
is devoted to the analysis of the target-motion-induced error
and the image reconstruction. Along with simulation results,
the three factors of the motion-induced error are illustrated
and the imaging performance of the LS method and CS algo-
rithm are discussed in Sec. 4. Section 5 concludes this paper.

2 Basic Analysis of Radar Coincidence Imaging
The essential requirement to perform RCI is to produce time-
space-independent detecting signals.7 It means that the
detecting signals in different positions or at different time
instants should be independent of each other. In classical
coincidence imaging of optical system, this requirement

can be easily accomplished via a fully incoherent thermal
source that contains numerous particle subsources emitting
fields independently and randomly.9 To satisfy such a
requirement in microwave radar systems, a multitransmitting
configuration is necessary, based on which the detecting sig-
nals exhibiting spatial diversity could be produced.

Coincidence imaging basically depends on the coinci-
dence processing of two channel signals, i.e., the detecting
signal and the received signal. As depicted in Fig. 2, there is
an array of N transmitters and one receiver. The transmitters
will be controlled to emit group-orthogonal and time-inde-
pendent signals. Then the detecting signals of time-space
independence will be generated in the detecting area. In
other words, the wave front will present great spatial
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Fig. 1 Radar coincidence imaging (RCI) example. (a) Imaging result of a four-point target when it is
stationary. (b) Imaging result of a four-point target when it is uncooperatively moving. (c) Imaging result
of a plane target when it is stationary. (d) Imaging result of a plane target when it is uncooperatively
moving.
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incoherence at each time instant. Illuminated by such
detecting signals, the scatterers within a radar beam will
reflect echoes whose waveforms are highly different from
each other according to their respective positions. As a result,
the coincidence processing can extract the echo component
of every scatterer from the received signal via measuring
their independent waveforms and will finally reconstruct
the target image.

Generally, the target location can be first estimated based
on the detection and localization techniques.7,8 Then we
define a target area centered at the estimated location. It is
assumed that the target area is large enough to cover the entire
target or targets within the radar beam. Therefore, target
images will be obtained if we can reconstruct the scene of
the target area. Herein, the target area or the imaging area
is denoted as I. Then a local coordinate system is established
at the target area center, as shown in Fig. 2. The target area is
discretized to a grid consisting of L small rectangles of uni-
form size and shape. Each small rectangle is the grid cell and
is approximated by its own center. Thus, the discrete target
area is expressed as I ¼ fr1; r2; : : : ; rLg, where rl is the posi-
tion vector of the l’th grid-cell center.RnðtÞ andRrðtÞ denote
the position vector of the n’th transmitter and the receiver,
respectively. StnðtÞ is the transmitted signal of the n’th trans-
mitter. Radar imaging basically employs the start-stop
approximation, which assumes that the target is stationary
while the radar pulse illuminates the target because of
the so-short individual pulses. Since the imaging interval
of RCI is no more than a pulse width, the targets are
assumed to be stationary during the data acquisition time.
Hence,RrðtÞ ≈ RrðtrefÞ ¼ Rr,RnðtÞ ≈ RnðtrefÞ ¼ Rn, where
tref is the reference time of estimating the target center.

Radar signals distributed in the target area are denoted as
SIðr; tÞ, where r is the position vector of an arbitrary point
within I. Then, SIðr; tÞ is referred to as the detecting signal,
and fSIðr; tÞ; r ∈ Ig is the wave front at t. The detecting sig-
nal can be expressed as

SIðr; tÞ ¼
XN
n¼1

Stn

�
t −

jr − Rnj
c

�
: (1)

Then, the autocorrelation of SIðr; tÞ is given to present the
spatial characteristic of the detecting signal.

RIðr;r 0;τ;τ 0Þ¼
Z

SIðr;t−τÞS�I ðr 0;t−τ 0Þdt

¼
XN
m¼1

XN
n¼1

Stm

�
t−

jr−Rnj
c

−τ

�
St�n

�
t−

jr−Rmj
c

−τ 0
�
;

¼
XN
n¼1

XN
n 0¼1

RTran

�
m;n;

jr−Rmj
c

þτ;
jr 0−Rnj

c
þτ 0

�
; (2)

where RTranðm; n; τ; τ 0Þ ¼ ∫ Stmðt − τÞStnðt − τ 0Þdt is the
cross-correlation of the transmitted signals.

Note that the ideal transmitted waveform of the RCI is
group-orthogonal and time-independent,7 which is expressed
as

RTranðm; n; τm; τnÞ ¼ δðτm − τn; m − nÞ: (3)

Substituting Eq. (3) in Eq. (2), RIðr; r 0; τ; τ 0Þ becomes

RIðr;r 0;τ;τ 0Þ¼
XN
n¼1

δ½jr−Rnj− jr 0−Rnj−cðτ 0−τÞ�: (4)

Obviously, the maximum of RIðr; r 0; τ; τ 0Þ is N.
Reference 7 has demonstrated that, on the condition of
N > 2, the right side of Eq. (4) will reach its maximum
only when r ¼ r 0 and τ 0 ¼ τ. If the antenna number is
≫2, for example N ¼ 6, the shape of RIðr; r 0; τ; τ 0Þ will
reach the top of 6 at r ¼ r 0, τ 0 ¼ τ, and sharply decrease
for the other cases. Thus, RIðr; r 0; τ; τ 0Þ can be approxi-
mately regarded as a delta function.

RIðr; r 0; τ; τ 0Þ ∼ Nδðr − r 0; τ 0 − τÞ: (5)

Therefore, the detecting signals present the time-space-
independent characteristic, as denoted in Eq. (5), on the
condition that the N (N > 2) transmitted signals are group-
orthogonal and time-independent. Note that the noise signals
naturally satisfy such requirements. For instance, the trans-
mitted signal can be produced by imposing zero-mean
Gaussian-noise modulation on amplitude, expressed as

StnðtÞ ¼ AnðtÞ exp½jð2πftþ φÞ� · rect
�

t
Tp

�
: (6)

Herein, fAnðtÞ; 1 ≤ n ≤ Ng labels the mutual indepen-
dent stochastic process functions, of which the cross-
correlation function is RAðn;m; τ1; τ2Þ ¼ δðn −m; τ1 − τ2Þ.
Then, the cross-correlation of the transmitted signals can
be learned as follows:

lim
TP→∞

1

TP

Z
TP∕2

−TP∕2
Stmðt − τmÞSt�nðt − τnÞdt

¼ lim
TP→∞

1

TP

Z
TP∕2

−TP∕2
Amðt − τmÞA�

nðt − τnÞ

× exp½−j2πfðτn − τmÞ�dt
¼ exp½−j2πfðτn − τmÞ� · E½Aðt − τmÞA�ðt − τnÞ�
¼ exp½−j2πfðτn − τmÞ� · RAðτÞ
¼ δðτm − τn; m − nÞ: (7)

Thus, the transmitted signals as denoted in Eq. (6)
approximately have time-independence and orthogonality,
which will produce the detecting signals presenting time-
space-independent feature in the target area. Based on
Eq. (5), the spatial distribution of the wave front is

E½SIðr; tÞS�I ðr 0; tÞ� ¼ RIðr; r 0; 0; 0Þ ∼ Nδðr − r 0Þ: (8)

It indicates that detecting signals of different locations are
independent, and the wave front shows spatial independence
at each instant.

Then, the received signal SrðtÞ can be expressed as the
superposition of SIðr; tÞ.
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SrðtÞ ¼
XL
l¼1

σlSI

�
rl; t −

jrl − Rrj
c

�
; (9)

where σl is the scattering coefficient of the l’th grid cell, and
for the cells without target scattering centers, σl ¼ 0. For the
sake of simplicity, the coincidence imaging formulism needs
a reference signal,10 which herein can be simply structured
using SIðr; tÞ as follows:

Sðr; tÞ ¼ SI

�
r; t −

jr − Rrj
c

�
: (10)

Obviously, the reference signal Sðr; tÞ is just the trans-
form of SIðr; tÞ with an additional time delay induced by
the propagation to the receiver. Then, Eq. (9) becomes

SrðtÞ ¼
XL
l¼1

σlSðrl; tÞ: (11)

Finally, the scattering coefficient at an arbitrary grid cell
rx can be explicitly obtained via the correlation between the
received signal and Sðrx; tÞ.Z

SrðtÞS�ðrx; tÞdt¼
Z �XL

l¼1

σl · SI

�
rl; t−

jrl −Rrj
c

��

· S�I

�
rx; t−

jrx −Rrj
c

�
dt

¼
XL
l¼1

σl · RI

�
rl; rx;

jrl −Rrj
c

;
jrx −Rrj

c

�

∼
XL
l¼1

σl · Nδðrl − rxÞ

¼ N · σx: (12)

That is,

σx ∼
1

N

Z
SrðtÞS�ðrx; tÞdt: (13)

Since the detecting signal or Sðr; tÞ can be derived in
advance, the scattering coefficient of every imaging cell
will be extracted from the received signal as denoted in
Eq. (13). Thus, RCI can obtain the target image when the
transmitted signals generate the time-space-independent
detecting signals by satisfying the condition in Eq. (3).

Based on the analysis above, the essence of RCI is straight-
forward and its peculiarity can be clarified in comparisonwith
conventional radar imaging methods based on the RD princi-
ple. RD imaging resolves targets by extracting the differences
emerging in time delay and Doppler gradient of their echoes.
With respect to RCI, the superposition of the time-indepen-
dent and group-orthogonal transmitted signals makes the
wave front on a target exhibit such a marked spatial incoher-
ence that each scatterer is illuminated by mutually indepen-
dent signals. As a result, targets or sactterers within a beam
reflect echoes of independent waveforms associated with
their respective locations. Therefore, target echoes do not
just differ from each other upon time delay or Doppler fre-
quency, and above all, their waveforms are highly different,

which provides alternative information for distinguishing
themselves. Especially, this resolvable characteristic does
not require aspect-angle integration and can be achieved
within a pulse-width interval. Consequently, due to the
very short imaging time, the influence of the target nonco-
operative motion on imagery qualities will be considerably
reduced. In addition, RCI does not require the target to
move for cooperating data acquisition. Therefore, targets
can be well imaged either when they are relatively stationary
or have noncooperative motions.

The excellent point-to-point relationship inEq. (13),which
means a high resolution, depends on a remarkable time-space
independence of the detecting signals. It requires that the
transmitted signals have the perfect time-independence as pre-
sented in Eq. (3). However, a complete time-independence is
almost impossible in practice. The requirement of highly time-
independent signals imposes particularly demanding require-
ments on radar systems. Due to the limited system condition,
the inadequate time-independence of the transmitted signal,
thus, will degrade the time-space-independent characteristic
of the detecting signal. That is to say, the desired point-to-
point relationship as denoted in Eq. (13) is difficult to be real-
ized in microwave radar system. Consequently, the image
recovery simply depending on the correlation between
SrðtÞ and Sðr; tÞ cannot generate a resolution for RCI as
high as that in the classical case [the correlation of Eq. (13)
can provide a high resolution for classical coincidence imag-
ing because the thermal optical signals, whose natural ran-
domness leads to marked time-independence, will produce
the detecting signals of sharp spatial independence].11

To improve the resolution, the parameterized method is
employed for the image reconstruction of RCI, which is
less constrained by the signal time-independence. This
method structures a coincidence imaging equation based
on the relationship between the received signal and the
reference signal. According to Eq. (11), SrðtkÞ ¼P

L
l¼1 σlSðrl; tkÞ, where tk is the time sample. Then, an im-

aging equation can be given as follows:

Sr¼ S · σ2
666664

Srðt1Þ
Srðt2Þ

..

.

SrðtKÞ

3
777775¼

2
666664

Sðr1; t1Þ Sðr2; t1Þ : : : SðrL;t1Þ
Sðr1; t2Þ Sðr2; t2Þ : : : SðrL;t2Þ

..

. ..
.

: : : ..
.

Sðr1; tKÞ Sðr2; tKÞ : : : SðrL; tKÞ

3
777775 ·

2
666664

σ1

σ2

..

.

σL

3
777775;

(14)

where S is the reference signal matrix, Sr is the vector of the
received signal, σ is the unknown scattering coefficient vec-
tor, and K is the number of time samples.

Obviously, the imaging equation has a unique solution on
the condition that S is nonsingular. Thus, the time samples
first should not be less than the imaging cells, i.e., K ≥ L,
which is generally tractable to be satisfied. For the sake
of simplicity, we let K ¼ L, leading to a square matrix of
S. As denoted in Eq. (10), the columns and the rows of S
fundamentally represent the detecting signals in different
positions and at different instants. Thus, the linear independ-
ency of the matrix S corresponds to the time-space independ-
ence of the detecting signals. The detecting signals of high
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independence indicate a perfectly nonsingular S and vice
versa. It suggested that the row rank and the column rank
of S are determined by the independent degree of the
detecting signal in time and space. Therefore, the independ-
ence characteristic denoted in Eq. (5) ensures the incoher-
ence property of the matrix SL×L, based on which σ can
be uniquely recovered.

An example is given to look into the time-space independ-
ence of the detecting signals, and also the incoherence of the
matrix S. As mentioned previously, the detecting signals will
present time-space-independent characteristic when more
than two transmitters emit orthogonal and time-independent
signals. Thus, the example employs the signals given in
Eq. (6) and uses an N-transmitter one-receiver linear
array, which consists of six antenna elements with 0.5-m dis-
tance between each other. The grid cell is 0.5 × 0.5 m. The
carrier frequency is 9.5 GHz, the pulse width is 50 μs, the
bandwidth is 1 GHz, and the sampling frequency is
2 GHz. Then, the detecting signals of an area 5 km away
from the array center is given in Fig. 3. For the sake of
comparison, the detecting signals produced by the conven-
tional linear frequency modulated (LFM) signals are also
illustrated.

As depicted in Figs. 3(a) and 3(b), the RCI wave front
sharply fluctuates in space, whereas that produced by the
LFM signals shows highly spatial correlation. It indicates
that the RCI technique can produce the detecting signals pre-
senting time-space-independent characteristic via transmit-
ting group-orthogonal and time-independent signals. Then,
we pay attention to the incoherence of the matrix S,
which is highly related to these detecting signals. Herein,
we measure matrix incoherence via the condition number,
which is defined as condðSÞ ≡ kSk · kS−1k. condðSÞ is

lower when the matrix S has better incoherence and vice
versa. As shown in Fig. 3, the detecting signals of RCI
give a condition number of 542, leading to a nonsingular
S, whereas it is 9.87 × 1016 for the LFM signals, where
the S is singular.

Then, a subsequent question is whether the matrix inco-
herence is entirely determined by the detecting signals.
The matrix incoherence or condðSÞ represents the linear
independence of the rows/columns of S. Take the first
two columns of S, for instance, i.e., sT1 and sT2 . Their corre-
lation is s�1s

T
2 ¼ P

K
k¼1 S

�ðr1; tkÞSðr2; tkÞ, which basically is
the correlation between the detecting signals of r1 and r2.
Hence, the incoherence of matrix S can be changed in
two ways. If the detecting signals are fixed according to
the transmitted signals, which means Sðr; tÞ is determined,
then s�1s

T
2 is only related to the distance between r1 and

r2. The bigger grid cell results in longer distance between
grid cells, which leads to higher incoherence of S and
lower condðSÞ. On the other side, if the grid or the distance
between grid cells is fixed, which means the difference
between r1 and r2 is fixed, then s�1s

T
2 is only related to

the spatial independence of the detecting signals. As men-
tioned earlier, the time-space-independent characteristic of
detecting signals is mainly related to the time-independence
of the transmitted signals. Herein, the transmitted signals are
noise signals. Then, noise signals with larger bandwidth gen-
erate the transmitted signals of higher time-independence,
leading to detecting signals with better spatial independence.

Therefore, the incoherence of the matrix S is related to
two factors: the grid and the noise bandwidth. Hence, to
reduce either the grid-cell size or the bandwidth, one can
degrade the matrix incoherence and decrease condðSÞ. We
give an example to illustrate the wave front of RCI when
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Fig. 3 Example of the detecting signals. (a) Wave front produced by LFM signal. (b) Wave front of RCI.
(c) Wave front of RCI when the grid cell is reduced. (d) Spatial correlation of the wave front produced by
LFM signal. (e) Spatial correlation of the RCI wave front. (f) Spatial correlation of the RCI wave front when
the grid cell is reduced.
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the grid-cell size is decreased to 5 cm, as shown in Fig. 3.
The matrix S remains nonsingular, but condðSÞ is increased
to 955. Likewise, condðSÞ will rise when the noise band is
decreased.

In conclusion, target images will be uniquely recovered as
long as the detecting signals ensure a full-rank matrix S.

After the analysis above, we now summarize the imaging
scheme as follows:

Step 1: Estimate the target center.
Step 2: Discretize the imaging area to form I ¼ frlgLl¼1.
Step 3: Compute the reference signal fSðrl; tÞgLl¼1.
Step 4: Draw out L samples from fSðrl; tÞgLl¼1 in time

domain to form SL×L.
Step 5: Draw out L samples from SrðtÞ at the same sample

points to form Sr.
Step 6: Solve the equation Sr ¼ S · σ.

3 Image Reconstruction in the Presence
of the Target-Motion-Induced Error

Based on the analysis above, the image reconstruction is
accomplished via solving the imaging equation Sr ¼
S · σ. Since the detecting signals generally ensure a nonsin-
gular S, a target image often can be uniquely recovered using
the LS method. However, the imaging equation is based on
the assumption that the targets are stationary during the data
acquisition time. Thus, errors will be induced to the signal
model of moving target imaging because of the neglected
motions.

Before analyzing the target-motion-induced errors, we
first emphasize a difference between the received signal
and the detecting signal. The former is actually derived
via the target scattering in practice. The latter is precomputed
artificially, which should be referred to as the computational
detecting signal in a more exact manner. In terms of station-
ary targets, the imaging plane is fixed and its relative posi-
tions with respect to antennas are constants. Thus, the
computational detecting signal will be accordant with the
actual signals in the imaging area and can exactly express
the received signal as SrðtÞ ¼ P

σlSðrl; tÞ. In other
words, the computational detecting signal matches the

received signal in this case. On the other side, for moving
targets, the imaging area will move synchronously and the
position vectors of antennas will also be time-varying, as
shown in Fig. 4. Then, the actual signals in the imaging
plane will certainly move with the target area, which should
be computed according to the time-varying positions. Thus,
the computational detecting signal, which is obtained by
replacing the time-varying RrðtÞ and RnðtÞ with the con-
stants Rr and Rn, will be different from the actual signal.
As a result, the superposition of SIðr; tÞ in Eq. (9) cannot
accurately express the received signal, i.e., the computational
detecting signal mismatches the received signal.

3.1 Analysis of the Target-Motion-Induced Error
First, in the signal model without errors, the true reference
signal and the received signal should be rewritten as

Sðr; tÞ ¼ SI

�
r; t −

jr − RrðtÞj
c

�

¼
XN
n¼1

Stn

�
t −

jr − RnðtÞj þ jr − RrðtÞj
c

�
; (15)

SrðtÞ ¼
XL
l¼1

σlSI

�
rl; t −

jrl − Rrj
c

�

¼
XL
l¼1

XN
n¼1

σlStn

�
t −

jrl − RnðtÞj þ jrl − RrðtÞj
c

�
:

(16)

We decompose the reference signal into two parts.

Sðr; tÞ ¼ Ŝðr; tÞ þ ΔSðr; tÞ

Ŝðr; tÞ ¼
XN
n¼1

Stn

�
t −

jr − RnðtrefÞj þ jr − RrðtrefÞj
c

�
; (17)

where ΔSðr; tÞ ¼ Sðr; tÞ − Ŝðr; tÞ. Finally, the true coinci-
dence imaging equation can be decomposed as follows:

O

Y

X

O

Y

X

1( )ktR 2 ( )ktR ( )r ktR

... ...

1 kt t⇒

1 1( )tR 2 1( )tR 1( )r tR

Fig. 4 The imaging area of moving targets.
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Sr ¼ S · σ ¼ ðŜþ ΔSÞ · σ; (18)

where Ŝ ¼ ½Ŝðrl; tkÞ�L×L, ΔS ¼ ½ΔSðrl; tkÞ�L×L. Herein, ΔS
is the error of the reference matrix caused by target motions.
Because of the stationary assumption, S ≈ Ŝ. Therefore,
under this assumption, the coincidence imaging equation
actually employed in practice is

Sr ¼ Ŝ · σ̂ ¼ ðS − ΔSÞ · ðσ − εσÞ: (19)

In contrast with the error-free equation Sr ¼ S · σ,
Eq. (19) is the estimated coincidence imaging equation,
where σ̂ ¼ σ − εσ is the estimated scattering coefficient vec-
tor. Thus, εσ is the estimation error of the target scattering
coefficient vector, i.e., the image recovery error, which is
caused by the target motion. Hereafter, εσ is referred as
the target motion error.

Substituting Eq. (18) in Eq. (19), we have

ðS − ΔSÞ · εσ ¼ −ΔS · σ: (20)

Given that S is invertible, and during the very short im-
aging time, the difference ΔS is small enough that
kΔSk · kS−1k < 1; then I − S−1 · ΔS is invertible and the
inequality kðI − S−1 · ΔSÞ−1k ≤ 1∕ð1 − kS−1k · kΔSkÞ
holds.12 Since both S and I − S−1 · ΔS are invertible,
Eq. (20) turns to SðI − S−1ΔSÞ · εσ ¼ −ΔS · σ. Then, εσ
can be explicitly given as

εσ ¼ −S−1 · ðI − S−1 · ΔSÞ−1 · ΔS · σ: (21)

Taking norms in Eq. (21) according to the matrix norm
consistent and the inequality above, we have

kεσk ≤
kS−1k · kΔSk · kσk
1 − kS−1k · kΔSk ¼

kSk · kS−1k · kΔSkkSk
1 − kSk · kS−1k · kΔSkkSk

· kσk:

(22)

Using the expression of kSk · kS−1k ≡ condðSÞ, Eq. (22)
is finally written as

kεσk ≤
condðSÞ · kΔSkkSk

1 − condðSÞ · kΔSkkSk
· kσk: (23)

The right side of Eq. (23) is a boundary of the target-
motion-induced error, which is an indication to analyze
the influence factors. Obviously, there are three key factors
of the motion-induced error, i.e., kΔSk∕kSk, condðSÞ,
and kσk.

First, kΔSk∕kSk represents the relative difference
between Ŝ and S caused by the target motion. Certainly, a
lower speed will generate smaller variation of the target posi-
tion during the imaging time, resulting in a minor difference
between Ŝ and S. Second, condðSÞ is generally viewed as the
amplification factor of kΔSk∕kSk. As shown in Eq. (23), a
small condition number will weaken the impact of ΔS, and
contrarily, a large one will enhance this impact. The condi-
tion number is the measure of the dependencies for a matrix.
The higher the condition number, the weaker independent
degree the row/column vectors of the matrix present. In
the RCI method, condðSÞmeasures the incoherency property

of the reference signal matrix S, which essentially represents
the time-space independence of the detecting signal. Finally,
the target scattering coefficient vector is another key factor
for moving target imaging. If a target consists of just several
scattering centers, then only a minority of the σ elements are
nonzero, resulting in a very small kσk to reduce kεσk. By
contrast, a large kσk cannot decrease the effect of the tar-
get-motion-induced error.

Therefore, we summarize the three factors of the target-
motion-induced error as follows.

1. Target motion velocity: A lower velocity will generate
a minor difference between Sðr; tÞ and Ŝðr; tÞ, result-
ing in a smaller ΔS or kΔSk∕kSk to decrease the tar-
get-motion-induced error.

2. Time-space independence of detecting signals: The
detecting signals of higher time-space independent
degree lead to a more incoherent matrix S, resulting
in a smaller condðSÞ to decrease the target-motion-
induced error.

3. Target scattering coefficient: The target with a small
scattering coefficient vector can decrease the target-
motion-induced error.

3.2 Image Reconstruction
Based on the LS principle, target images can be uniquely
recovered according to the imaging equation Sr ¼ Ŝ · σ̂
(Ŝ is a full-rank square). As is well-known, various algo-
rithms based on the LS principle can solve this inverse prob-
lem via the optimization to minimize the objective function
of kSr − Ŝ · σ̂k2. Since Ŝ is invertible, Sr − Ŝ · σ̂ ¼ 0 is
equivalent to σ − σ̂ − εσ ¼ 0. Therefore, for simplicity, the
σ̂ recovered based on the LS principle can be expressed as

σ̂ ¼ argmin
σ̃
kσ − σ̃ − εσk2: (24)

In comparison with the optimal estimation of σopt ¼
argmin

σ̃
kσ − σ̃k2, the target-motion-induced error obviously

disturbs the optimization process expressed in Eq. (24).
However, the LS methods are basically driven by the cri-
terion of kSr − Ŝ · σ̂k2 minimization. Once the objective
function is perturbed by the motion-induced error, the
error will be directly presented in the solution. Especially
when the motion-induced error goes to a high value, the esti-
mated result might deviate from the true value out of control.
Unfortunately, the targets with large kσk and/or rapid
motions generally exist in practice. Additionally, the time-
space-independent degree of detecting signals is also limited
by radar system conditions. That is to say, a severe motion-
induced error εσ is impossible to be avoided. Therefore, the
sensitivity of the LS method to the motion-induced error
would make the image reconstruction unstable to give an
effective scattering coefficient vector for moving targets.

Considering the aforementioned reasons, other criteria are
expected to be added into the optimization of the recovery.
Then the weight of the kSr − Ŝ · σ̂k2 minimization will be
reduced, and the impact of its target-motion-induced error
will be decreased as well. Certainly, the criteria based on
some prior information would be a reasonable choice.
Therefore, the CS reconstruction algorithms are concerned
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here, which utilizes not only the coincidence imaging equi-
tation, but also the information of target sparsity.13,14 The
applicability of the CS method on RCI and its potential
advantages will be discussed in the following paragraphs.

Herein, the CS theory is reviewed briefly. Consider an
unknown K-sparse vector x, denoted as ½x0;x1; : : : ;xN−1�T .
We have M < N measurements of x that can be expressed
in matrix notation as y ¼ Φx, where y¼½y0;y1; : : : ;yM−1�T
and Φ is the M × N measurement matrix. Since M < N,
recovery of the signal x from the measurement y is ill-
posed in general. However, the CS theory demonstrates
that when the matrix Φ has the restricted isometry property
(RIP),15 it is possible to recover x from M ¼
O½K logðN∕KÞ� measurements of y. The RIP is closely
related to an incoherency property of Φ. It is proved that
random or incoherent matrix performs well.15 In other words,
an incoherent or random measurement matrix would be
powerful for the CS reconstruction. When the RIP holds,
the signal x can be recovered exactly from y by solving
an l1 minimization problem.

x̂ ¼ argminkxk1 subject to y ¼ Φx: (25)

The utilization of CS reconstruction algorithms for RCI
relies on two key observations.17 First, the scattering coeffi-
cient vector σ should be often sparse or compressible.
Second, the measurement matrix, which corresponds to
the reference signal matrix in RCI, is expected to be a ran-
dom one. Fortunately, the two observations are both satis-
fied. For the former requirement, the grid-cell number is
generally much larger than the scattering-center number,
which means only a minority of grid cells involves the target
scattering centers. Thus, the scattering coefficient vector
actually consists of a great majority of zero elements, result-
ing in a sparse σ. In terms of the latter requirement, the inde-
pendence of the row/column vectors in the matrix S has been
ensured by the time-space-independent detecting signals.
Thus, a random measurement matrix is also satisfied in
the coincidence imaging equation. By combining the two
observations, we can rebuild the target images using CS prin-
ciples. Based on the model that takes noise into account,16

the estimation σcs recovered using the CS principles can be
described as

σcs ¼ argmin
σ̃

kσ̃k1 subject to kSr 0 − Ŝ 0 · σ̃k2 < ε; (26)

where ε is the noise level, and Sr 0 and Ŝ 0 consist of
part of samples in Sr and Ŝ. Without loss of generality,
we use M seriate samples for simplicity; then Sr 0 ¼
½Srðt1Þ; Srðt2Þ; : : : ; SrðtMÞ�T , and Ŝ 0 ¼ ½α1;α2; : : : ;αM�T ,
where αk is the k’th row vector of Ŝ. Thus, for a K-sparse
scattering coefficient vector, only M ¼ O½K logðL∕KÞ�
rather than L samples are utilized.

The CS reconstruction algorithms can certainly further
decrease the required number of the received signal samples
SrðkÞ than that in the LS method, resulting in a shorter im-
aging time. Furthermore, the key contribution of employing
the CS method consists in that its optimization process uti-
lizes both the equation Sr ¼ Ŝ · σ̂ and the sparsity of the
scattering coefficient vector for image recovery. Therefore,
the weight of the kSr − Ŝ · σ̂k2 minimization that has
been disturbed by the target-motion-induced error is bal-
anced with the l1 minimization of σ̂. As a result, the error
effect will be weakened in the image reconstruction. It is pos-
sible to infer that the CS method enhances the stability of the
image reconstruction in the presence of the target-motion-
induced error.

4 Results and Discussion
In this section, a set of examples will be shown to illustrate
RCI in the presence of the target-motion-induced errors. The
antenna number and signal parameters of RCI keep the same
with the example of Fig. 3. The target area and antenna
arrangement are shown in Fig. 5. The targets in the following
examples have translational and rotational motions. Then Ω
and V denote the rotation and translation vectors, respec-
tively, and the orientations are shown in Fig. 5.

The target area, which is large enough to cover the entire
region emitted by the radar beam, generally has a consider-
ably large size. The big target area along with the small grid
cell means a big grid-cell number, leading to an imaging
equation of a quite high dimension. The high dimension
increases the computation complexity and might make it
too complex to solve the equation. As is well-known,
space targets generally account for a fraction of the large
beam range. If we can estimate these subareas that actually

...1m

(0,-5000) (4,-5000)

The uniform antenna 
array of 6 elements

(5,-5000)
Transmitters Receiver

X

Y

Ω

V
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Radar system(0,-5000)

target 2

target 1

target 3

Fig. 5 The imaging scene and the linear antenna array.
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contain targets, then the size of the target area dealt with in
the parameterized method will be reduced. Therefore, we
concern employing the correlation method to first estimate
the subareas where the targets exist. As mentioned earlier,
correlation method has a low resolution but can roughly esti-
mate the target range. This process is stated in detail in the
following steps:

1. Based on the initial large target area I0, set a large grid-
cell size, according to which I0 is divided to L0 grid
cells, i.e., I0 ¼ fr0l gL0

l¼1. The initial target scattering
coefficient vector is σ ¼ ½r01; r02; : : : ; r0L0

�.
2. Recover σ via the correlation method based on I0. The

initial image is labeled as D0.
3. Based onD0, select P small subareas, which gives dis-

tinct response because of including targets, labeled
as fIpgPp¼1

.
4. Reset the grid cell to a desired small size, according to

which redivide fIpgPp¼1
, i.e., Ip ¼ frpl g

Lp

l¼1.
5. Thus, the grid cells that need to be processed in the

imaging equation can be denoted as Isub ¼
fr11; : : : ; r1L1

; r21; : : : ; r
2
L2
; : : : ; rp1 ; : : : ; r

p
Lp
g. Then the

grid-cell number is decreased from L to Lsub ¼P
P
p¼1 Lp, and the scattering coefficient vector to be

solved becomes σsub ¼ ½σr�Lsub×1, r ∈ Isub.
6. Recover σsub via the parameterized method. Then,

obtain the subimages corresponding to fIpgPp¼1
,

which are denoted as fDpgPp¼1
.

7. Obtain the final target image via combining D0

and fDpgPp¼1
.

According to the seven steps above, we give an
example where the initial target area is 1000 m × 1000 m.

Herein, three targets dispersedly exist in the initial target
area, as shown in Fig. 5. They are target 1 located at (0,0);
target 2 located at (300, 300); and target 3 located at
(−300, −250).

At the first step, the grid cell is set to 5 m × 5 m.
Figure 6(a) gives the initial image recovered via the corre-
lation method based on the 5 m × 5 m grid cell. There are
three distinct pixels in Fig. 6(a). The positions corresponding
to three pixel centers are derived: (0,0), (300, 300), and
(−300, −250). It denotes that targets are included in the
three square areas of 5 m × 5 m size. To be prudent, we
expand the size to 20 m × 20 m. That is, the new subareas
are three square areas of 20 m × 20 m, whose centers are
(0,0), (300, 300), and (−300,−250), respectively. Then,
the grid cell is reset to 0.5 m × 0.5 m, based on which the
new three subareas are redivided. Then, target scattering
coefficients can be recovered via the parameterized method
with respect to the three subareas, as shown in Figs. 6(b)
and 6(c). In this case, the grid-cell number needed to be con-
sidered in the parameterized method is decreased from
4 × 106 to 4800 (herein, 4 × 106 is the grid-cell number
for a 1000 m × 1000 m target area when we keep a 0.5 m ×
0.5 m grid cell), which greatly reduces the complexity bur-
den. For the sake of simplicity, the following examples
directly show the imaging results after selecting the target
subareas.

4.1 Comparison Between the Radar Coincidence
Imaging Method and the Range-Doppler
Algorithm

This example concerns the comparison between the RCI and
the RD algorithm (RDA). We employ a simple four-point
target model, shown as target 1 in Fig. 5. The positions
of the four target scattering centers are (−1.5, −0.4), (1.5,
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Fig. 6 RCI example for a target area with large size. (a) Reconstructed image of the initial target area.
(b) Subimage of target 2. (c) Subimage of target 3. (d) Subimage of target 1.
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−0.4), (−1.5, 0.4), and (1.5, 0.4), respectively. The example
will be implemented in three different scenarios, i.e., (1) the
target is stationary; (2) the target has a uniform rotation
velocity,Ω ¼ 2t; (3) the target has a noncooperative rotation,
Ω ¼ 2tþ 20t2 þ 20t3 (the rotations are all referred in angle
measurement). Since RCI employs a six-antenna array, the
RD imaging will also be implemented based on a six-antenna
radar array. Moreover, the multitransmitting RD results
herein are derived under the optimal conditions.3 The imag-
ing results are shown in Fig. 7.

As shown in Fig. 7(a), the scattering centers in the same
range bin cannot be resolved for the stationary target. It indi-
cates that high azimuth resolution of RD imaging cannot be
achieved because of the absence of relative rotation between
the target and antennas. By contrast, all scattering centers in
Fig. 7(d) can be resolved because RCI does not depend on
Doppler gradient for resolution. Moreover, Figs. 7(c) and
7(f) demonstrate that RCI is superior in processing nonco-
operative targets because of its quite short imaging time.
The comparison between Figs. 7(e) and 7(f) shows that
the RCI method is hardly affected by the noncooperative
components in target motions.

The target in this example is simple and the rotational
velocity is relatively low. In this simple imaging scenario,
the RCI technique can obtain target images with high
imagery quality. In comparison with the results of stationary
targets in Fig. 7(d), however, the imaging blur caused by the
target-motion-induced error is clearly visible. Then the fol-
lowing examples will concern the image reconstruction in
the presence of the target-motion-induced error in detail.

4.2 Three Factors of the Target-Motion-Induced Error
The following example concerns how the three factors of the
target-motion-induced error affect the imagery quality. The
imaging experiment will be performed in the scenarios where
targets have different velocities or have different scattering

coefficient vectors, or where the detecting signals have dif-
ferent time-space-independent degrees.

The first example is to investigate the impact of target
velocity. The rotational velocity and acceleration of the target
are labeled as ω and ωa, respectively. Figure 8 shows the
imaging results when the target has different rotation
velocities.

As shown in Fig. 8(b), the image of the stationary target
has no imaging error. Then the target remains recognizable in
Figs. 8(c) and 8(d) despite the visible imaging blurs.
However, the target image is difficult to be distinguished
in Figs. 8(e) and 8(f). It indicates that the reconstruction qual-
ity of the LS method gets worse when the growing velocity
increases the target-motion-induced error.

It should be noticed that the imaging errors mainly occur
at several determinate cross-range bins (herein, the cross-
range bin is defined as the grid cells that have the same
x-axis positions) for all the imaging results in Fig. 8. The
imaging errors are concentrated at some special grid cells.
It is possible to infer that the errors of different grid cells
have considerable differences. The imaging error is not uni-
form among all the grid cells. Thus, we need to analyze the
imaging error of every individual grid cell, i.e., εσðlÞ, so as to
explain why the imaging blur concentrates in the special
locations of Fig. 8.

According to Eq. (20), we have Ŝ · εσ ¼ ΔS · σ. Since
ΔS and σ are both unknown, the equation can be simplified
as

Ŝ · εσ ¼ ε̃; (27)

where ε̃ ¼ ΔS · σ. Given that Ŝ is a full-rank square, Ŝ can be
expressed as Ŝ ¼ UH · diagðλ1; λ2 · · · ; λLÞ · V, where λl is
the singular value of Ŝ, and U and V are the unitary matrixes.
Thus, we have the following expression:
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Fig. 7 Comparison between RCI and range-Doppler algorithm (RDA). (a) RDA and scene 1. (b) RDA and
scene 2. (c) RDA and scene 3. (d) RCI and scene 1. (e) RCI and scene 2. (f) RCI and scene 3. Herein,
“RCI and scene 1” denotes the imaging result of scene 1 derived via the RCI method.
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εσ ¼ VH · diag

�
1

λ1
;
1

λ2
; · · · ;

1

λL

�
· U · ε̃

¼ VH ·

�
1

λ1
u1;

1

λ2
u2; · · · ;

1

λL
uL

�
T
· ε̃

¼
�
1

λ1
VHu1ε̃;

1

λ2
VHu2ε̃; · · · ;

1

λL
VHuLε̃

�
T
;

(28)

where ul is the row vector of U, i.e., U ¼ ½u1; u2; · · · ; uL�T .
Obviously, the imaging error of every individual grid cell is

εσðlÞ ¼
VHulε̃
λl

: (29)

Taking norms in Eq. (29) according to the matrix norm
consistent, we have

kεσðlÞk ¼
���� 1

λl
VHulε̃

���� ≤
���� 1λl

���� · kVHk · kulk · kε̃k

¼
���� 1λl

���� · kVHk · kε̃k: (30)

Thus, the boundary given in the right side of Eq. (30) can be
analyzed as the indication of the imaging error of every indi-
vidual gird cell. Obviously, for different grid cells, the error
boundary kεσðlÞk have equal kVHk and equal kε̃k but differ-
ent j1∕λlj. It indicates that the differences of kεσðlÞk are highly
related to the differences of jλlj. λl is the singular value cor-
responding to the l’th column vector of Ŝ. Here we denote the
l’th column vector of Ŝ as ŝl, i.e., Ŝ ¼ ½ŝ1; ŝ2; : : : ; ŝL�. High λl
indicates high linear independence between ŝl and the other

columns.19 Low λl indicates the low linear independence for
ŝl. In addition, ŝl consists of the samples of reference signal of
the l’th grid cell. Hence, the linear dependence between ŝl and
the other column vectors basically presents the spatial inde-
pendence between Sðrl; tÞ and the reference signals of the
other grid cells. Therefore, if the reference signal of the
l’th grid cell shows higher independence with the other
grid cells, then ŝl exhibits better linear independence with
the other column vectors, finally resulting in a larger λl and a
smaller kεσðlÞk. Then, we need to look into the spatial inde-
pendence of the reference signal for every individual grid cell.

For the sake of simplicity, we consider a single radar
antenna with the position of ðxa; yaÞ, as shown in Fig. 9.
We depict a range bin (herein, the range bin is defined as
the grid cells that have the same y-axis positions). The dis-
tance between two adjacent grid cells isΔx. The l’th grid cell
center position is ðxl; ylÞ; then the range difference between
the two adjacent grid cells can be expressed as

ΔR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxl − xaÞ2 þ ðyl − yaÞ2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxl − xa þ ΔxÞ2 þ ðyl − yaÞ2

q

¼ ðyl − yaÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

xl − xa
yl − ya

�
2

þ 1

s

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
xl − xa þ Δx

yl − ya

�
2

þ 1

s �
: (31)

Using the first-order Taylor approximation, we have

ΔR ¼ Δx ·
x − xa
y − ya

þOðΔx2Þ: (32)
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Fig. 8 Target images of different rotation velocities. (a) Target model. (b) Result for a stationary target.
(c) Result for ω ¼ 10 deg ∕s, ωa ¼ 20 deg ∕s2. (d) Result for ω ¼ 45 deg ∕s, ωa ¼ 20 deg ∕s2.
(e) Result for ω ¼ 360 deg ∕s, ωa ¼ 20 deg ∕s2. (f) Result for ω ¼ 1440 deg ∕s, ωa ¼ 20 deg ∕s2.
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Then, the correlation function of the reference signals
between the two grid cells is

Rref ¼
Z

Sðrl; tÞS�ðrlþ1; tÞdt

¼
Z

St

�
t −

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxl − xaÞ2 þ ðyl − yaÞ2

p
c

�
St�

×
�
t −

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxl − xaÞ2 þ ðyl − yaÞ2

p
þ ΔR

�
c

	
dt

¼ RTran

�
2ΔR
c

�
: (33)

As shown in Eq. (33), the independence of the reference
signal between two grid cells is basically determined by the
autocorrelation of the transmitted signals and the range dif-
ference ΔR. Obviously, bigger ΔR leads to better independ-
ence between Sðrl; tÞ and Sðrlþ1; tÞ. It should be noticed that
ΔR is not equal for the grid cells in the imaging region. As
expressed in Eq. (32), when y is determinate in the same
range bin, bigger jx − xaj produces larger ΔR. Thus,
ΔR2 > ΔR1, as shown in Fig. 9. That is, the grid cells
that are farther from the vertical line of the radar antennas
have bigger range difference. In this example, the x-axis
positions of the antennas are from 0 to 5. Then, we label
region Q as the red shadow in Fig. 9, which corresponds
to the vertical region of the antennas. Thus, the grid cells
in region Q have smaller ΔR, and their reference signals
Sðrl; tÞ accordingly present weaker spatial independence,
and the column vectors ŝl corresponding to these grid
cells have smaller singular value λl. As a result, due to the
inverse 1∕λl in Eq. (30), the imaging errors of the grid cells in
region Q are more serious than that of the other grid cells.

In the next example, we examine the imaging quality of
the LS method when targets have different scattering coef-
ficient vectors. For the sake of simplicity, we let all of the
target scattering coefficients be 1 in the following examples.
Thus, kσk is simply equal to the scattering-center number.
The targets to be imaged have the same motion velocity,
i.e., ω ¼ 20 deg ∕s, ωa ¼ 20 deg ∕s2. Figure 10 gives the
imaging results.

The two-point target is well rebuilt almost without blurs,
as shown in Fig. 10(e). The four-point and 10-point targets
could be recognized, but their images are blurred to different
degrees. However, the image of the 77-point target in

Fig. 10(h) is almost totally overwhelmed by the imaging
error. It indicates that the reconstruction quality using the
LS method gets degraded while the target scattering centers
increase. Especially for the 77-point plane model, the imag-
ing result is considerably blurred beyond recognition.

As shown in the previous example of Fig. 10(h), imaging
the target with a high kσk is a great problem for the LS
method. Focusing on this plane model in Fig. 10(d), the fol-
lowing example concerns the recovery performance of the
LS method when the detecting signal has different time-
space-independent degrees. The target model to be imaged
is shown in Fig. 10(d) and has the rotation velocity of
ω ¼ 20 deg ∕s, ωa ¼ 20 deg ∕s2. The independent degree
of detecting signal is measured by the condition number
of S. The imaging results are given in Fig. 11.

From Figs. 11(a) to 11(d) the imaging errors markedly
decline while the condition number gets smaller. The
detecting signal with high independent degree can produce
quite excellent imaging quality, as shown in Fig. 11(d).
However, such a time-space-independent degree is difficult
to be accomplished, which mainly depends on the time-in-
dependent degree of the transmitted signal. Herein, we mea-
sure the time-independent degree of the transmitted signal
with the correlation time τ0, which is defined as jRStðτ0Þj ≤
0.05 · max½RStðτÞ�, and RStðτÞ is the autocorrelation function
of the transmitted signal.18 Then, for instance, the imaging
quality as shown in Fig. 11(c) requires the detecting signal
to have a condition number of 6.11 dB, which is produced by
the transmitted signal with the correlation time τ0 of 3.6 ns.
Obviously, it is a rigorous condition to be realized for radar
systems despite the fine imaging quality it provides.

The imaging results above have shown the impact of the
three factors on the recovery performance of the LS method.
To quantitatively depict the sensitivity of the LS method to
the target-motion-induced error, Fig. 12 illustrates the curves
of the actual imaging error against the three factors. Herein,
the actual imaging error is defined as follows:

εa ¼
1

X × Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXX
x¼1

XY
y¼1

�
exp½daðx; yÞ� − exp½dðx; yÞ�

exp½dðx; yÞ�
	

2

vuut ;

(34)

where daðx; yÞ is the pixel value of the recovered image with
coordinates ðx; yÞ, dðx; yÞ denotes the error-free target
image, and X × Y is the image range [expð·Þ is used to
avoid the zero pixel being reciprocal]. For the sake of
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Fig. 9 The imaging error is nonuniform in the target area.
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comparison, Fig. 12 also depicts the two-norm of another
two types of errors, i.e., the target-motion-induced error
εσ denoted in Eq. (21) and its boundary denoted in Eq. (23).

As shown in Fig. 12, the curves of the target-motion-
induced error and the error boundary have the similar vary-
ing trend. They are both increased when target velocity gets

higher, or the scattering-center number grows, or the condi-
tion number rises. Furthermore, the actual imaging error of
the LS method is almost identical to the target-motion-
induced error. It implies that the imaging error of the LS
method is determined by the target-motion-induced error,
or its imaging quality is sensitive to this error.
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Fig. 10 Target images of different scattering maps. (a) 2-point target model. (b) 4-point target model.
(c) 10-point target model. (d) 77-point target model. (e) Result of the 2-point target. (f) Result of the
4-point target. (g) Result of the 10-point target. (h) Result of the 77-point target.
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Fig. 11 Target images for different detecting signals. (a) condðSÞ ¼ 7.10 ðdBÞ. (b) condðSÞ ¼ 6.86 ðdBÞ.
(c) condðSÞ ¼ 6.11 ðdBÞ. (d) condðSÞ ¼ 4.69 ðdBÞ.
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4.3 Comparison Between the Image Reconstruction
Using the CS Algorithm and the LS Method

The LS method is sensitive to the target-motion-induced
error, as shown in the examples above. Especially for the
plane model with a high kσk in Fig. 10(d), the motion-
induced error degrades the imaging results of the LS method
beyond recognition. Thus, with respect to this target model,
the following example employs the CS algorithm for
the image reconstruction of RCI. The example compares the
CS and LS methods in four different scenes, where the
detecting signal has different time-space-independent
degrees. Herein, the time-space independence of the
detecting signals in the four scenes is still measured by
the condition number, as shown in Table 1. The target
model is given in Fig. 10(d), where the sparsity of the scat-
tering coefficient vector is ς ¼ K∕L ¼ 77∕4096 ¼ 0.019
(the target scattering-center number is 77, and the grid-
cell number is 64 × 64 ¼ 4096). The rotation velocity and
acceleration is ω ¼ 20 deg ∕s and ωa ¼ 20 deg ∕s2, respec-
tively. The translational velocity and acceleration is v ¼
10 m∕s and va ¼ 10 m∕s2, respectively. The imaging results

are given in Fig. 13, and the imaging errors are provided in
Table 1.

The condition number considerably grows from scene 1
to 4, which greatly increases the target-motion-induced error,
as shown in Table 1. Both the data in Table 1 and Figs. 13(a)
to 13(d) illustrate that the imaging error of the LS method is
markedly raised along with the increasing motion-induced
error. By contrast, the imaging error of the CS algorithm
remains at a considerably low level. Figures 13(e) to 13(h)
also show that the target images are well rebuilt via the CS
method despite the nonideal conditions.

In addition, we should note that the imaging result of the
CS method almost correctly gives all the scatterer positions.
Actually, the imaging results could provide effective target
definition if the scatterer positions are well estimated despite
wrong scattering coefficients. The recovery of scatterer posi-
tions might attract more attention by comparison with scat-
tering intensity. Then, we define an error especially for the
scatterer-position estimation so as to measure the imaging
results in another side.

εp ¼ 1

X × Y

XX
x¼1

XY
y¼1

jδ½daðx; yÞ� − δ½dðx; yÞ�j: (35)

Obviously, δ½daðx; yÞ� normalizes the image, where the
scattering coefficient is 1 or 0. It wipes away the effect of
scattering coefficients. δ½daðx; yÞ� − δ½dðx; yÞ� will be 0
when the imaging result gives a point where a scatterer
indeed exists, and will be 1 when it gives a point at a
wrong position or does not show a point at the right position.
Thus, εp only concerns the scatterer positions and ignores the
scattering intensity. The position errors of the target images
in Fig. 13 are given in Table 1.

The position errors in Table 1 further indicate that the CS
algorithm can recover moving-target images with high qual-
ity even though the detecting signals have weak time-space
independence. Therefore, this example suggests that the CS
algorithm combining the sparse restriction and the coinci-
dence imaging equation can considerably diminish the
adverse influence of the target-motion-induced error.
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Fig. 12 Imagery quality and the motion-induced error factors. (a) Errors versus the target rotation veloc-
ity. (b) Errors versus the target scattering-center number. (c) Errors versus the condition number.

Table 1 The condition number and the errors in the image
reconstruction.

Scene 1 Scene 2 Scene 3 Scene 4

Condition number (dB) 7.0998 9.4872 13.6096 14.2642

Target-motion-induced 2.4075 4.4517 8.4806 9.4282

Imaging error of
least-square (LS)

2.4075 4.4517 8.4806 9.4282

Imaging error of
compressive sensing
(CS)

−2.2963 −1.7365 −1.4920 0.4064

Position error of LS 0.17 0.28 0.33 0.68

Position error of CS 0 0 0 0
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As previously stated, the RIP is a condition of great sig-
nificance for the CS recovery. Then the imaging qualities
will be compared when Ŝ has different RIP conditions in
the following example. The RIP is highly related to the inco-
herent property of the reference matrix Ŝ, which can be mea-
sured by the condition number. Hence, the condition number
of Ŝ is employed to represent the RIP condition. The condi-
tion number and the imaging performance of the CS recovery
varying with the grid-cell size are depicted in Fig. 14. When
the grid cell gets smaller, the spatial independence of the
detecting signals between adjacent cells will be decreased.
Consequently, the incoherence of Ŝ gets weaker, as shown
in Fig. 14(a), resulting in a worse RIP condition. Because
the decreasing grid-cell size causes the violation of the

RIP condition, the imaging error and the position error
are increased and the CS recovery is no longer reliable, as
shown in Figs. 14(b) and 14(c).

The results in Figs. 13 and 14 imply that if the reference
signal matrix Ŝ satisfies the RIP condition, the target image
could be correctly recovered despite the motion-induced
error existing in the imaging equation. However, it can be
inferred that the tolerance of the CS method for the
motion-induced error will not be infinite even though it is
markedly larger than the one of the LS method. There-
fore, the following example concerns the reconstruction
quality of the CS method when the motion-induced error
is further increased by the growing velocity. In this example,
target translational velocity v increases from 200 to
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Fig. 13 Comparison between least-square (LS) and compressive sensing (CS) recovery. (a) LS and
scene 1. (b) LS and scene 2. (c) LS and scene 3. (d) LS and scene 4. (e) CS and scene 1. (f) CS
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600 m∕s. The other motion parameters are ω ¼ 30 deg ∕s,
ωa ¼ 30 deg ∕s2, and va ¼ 40 m∕s2. Figures 15(a) to 15(c)
give the imaging results using the CS method in cases of
different v. The imaging qualities remain excellent when
v is 200 and 400 m∕s, as shown in Figs. 15(a) and 15(b).
However, the target image in Fig. 15(c) is degraded when
the velocity goes to 600 m∕s. It suggests that a high enough
velocity will make the motion-induced error reach such a
high level that the CS method will be no longer applicable
to the image reconstruction.

A possible approach to solve the problem is to update the
computational detecting signal (or the imaging plane) in
accordance with the target motion parameters. That is, the
radar position vectors RnðtÞ and RrðtÞ should be computed
based on an estimated velocity instead of being regarded as
constants. Then the mismatch degree between computational
Sðr; tÞ and the true received signal will be reduced. Even
though the approach needs motion parameter estimation,
the estimation complexity is reduced. First, only the first-
order velocity is required to be estimated because the CS
method presents fine robustness to high-order motion
terms, as shown in Fig. 15(a). Second, the estimation preci-
sion of the motion parameters is relatively low. Take the
experiment of Fig. 15, for example. A high-quality target
image can be obtained as far as the parameter estimation
error is <400 m∕s. In summary, the CS algorithms provide
an enhancement in processing high-speed targets for the
image recovery of RCI.

The experiments above demonstrate the improvement of
the CS algorithm for RCI in the presence of the target-
motion-induced error. Certainly a coincidence imaging equa-
tion without errors will give a correct target scattering coef-
ficient vector (provided that S is nonsingular). Once errors
exist, the correctness of the target image recovery is deter-
mined by whether the errors are below the tolerance level
of the reconstruction algorithms chosen to solve the imaging
equation. The imaging results above illustrate that the error
tolerance level of LS method is lower than that of the CS
algorithm. The CS method can well recover images of the
moving targets even on the condition of a big scattering
coefficient vector or the detecting signals with weak
independence.

5 Conclusions
As an instantaneous imaging method, RCI does not depend
on target relative motion. Because of the quite short imaging
time, this method employs an assumption that targets are sta-
tionary with respect to the radar system during the data

acquisition time. Consequently, the target-motion-induced
error arises in the scenario of moving targets, which might
seriously degrade imagery quality. This paper looks into the
image recovery of RCI in the presence of the target-motion-
induced errors.

Three key factors of the target-motion-induced errors are
target velocity, target scattering map, and the independence
of detecting signals. These factors in practical scenes might
produce a high target-motion-induced error. However, the
LS algorithm is so sensitive to the error that its recovered
images are often blurred beyond recognition. Thus, we
employ the CS method, which can reduce the error effect
on image reconstruction via utilizing the sparsity restriction.
Numeric simulations have shown that the CS recovery algo-
rithms can obtain high-quality images even when the target
moves with a high velocity or has a large scattering coeffi-
cient vector, or when the detecting signals have weak time-
space independence.

There still exist several unsolved issues that are worthy of
further consideration. First, to give an explicit resolution of
RCI is our ongoing work. In addition, it has been demon-
strated that the CS algorithms could achieve the super-reso-
lution in optical coincidence imaging.20 Then, the potential
resolution enhancement provided by the CS methods in RCI
is worth to be investigated in the future work.

Furthermore, we should notice the computation complex-
ity of RCI. The target area might have large size and leads to
thousands of grid cells. For instance, if the grid cell is
0.1 m × 0.1 m and the target area is 10 m × 10 m, then
the grid-cell number is 104. That is, we need to recover the
target image via solving a 104-dimensional equation.
Obviously, it is a great computational burden. Thus, a fast
algorithm design is needed for RCI and will be a special sub-
ject of our further work.
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