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Abstract. Image matching has been one of the most fundamental issues in computer vision over the decades.
We propose a method based on utilizing feature lines in order to achieve more robust image matching, which
includes feature line detection, feature vector description and matching, and the devised rotation invariant fea-
ture line transform. The feature vectors have the properties of rotation and scaling invariance. Experimental
results demonstrate the effectiveness and efficiency of the proposed method. Compared with the famous power-
ful algorithm scale invariant feature transform, the proposed method is more insensitive to noise, and the
selected distinctive locations of features are more disperse. For a certain sequence of images, which contain
strong lines, the proposed method is more efficient. Using the feature lines obtained by our method, it is possible
to match two scene images with different rotation angles, scales, and light distortion, and the steps of matching
are simpler. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or repro-
duction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.23.5
.053002]
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1 Introduction
The task of finding correspondences between two images of
the same scene or object, taken from different times of a day
or year, different sensors, and different viewing geometries
under different circumstances, is an important and difficult
part of many computer vision applications. In order to match
differing images, researchers have been focusing on scale
and image rotation invariant detectors and descriptors.

The most widely used detector probably is the Harris
corner detector, which has been proposed in 1988; Harris
corners are robust to changes in rotation and intensity but
are very sensitive to changes in scale, so they do not provide
a good basis for matching images of different sizes.
Mikolajczyk and Schmid1 used a Harris–Laplace detector to
detect the feature points in scale-space by the Laplacian-of-
Gaussian operator, thus feature points are invariant to rota-
tion and scale changes. Lowe2 used a scale-invariant detector
that localizes points at local scale-space maxima of the
difference-of-Gaussian (DoG) in 1999, and in 2004, he
presented a method called scale invariant feature transform
(SIFT) for extracting distinctive invariant features from
images that can be used to perform reliable matching
between images.3 This approach transforms an image into
a large collection of local feature vectors, each of which
is invariant to image translation, scaling, rotation, and parti-
ally invariant to illumination changes and affine or three
dimensional (3-D) projection. SIFT has been proven by
Mikolajczyk and Schmid1 in 2003 to be the most robust
among the local invariant feature descriptors with respect
to different geometrical changes.

SIFT detects feature points by searching over all scales
and image locations. It is implemented efficiently by
using a DoG function pyramid to identify potential interest
points that are invariant to scale. By rejecting the candidate
feature points that have low contrast or that are poorly local-
ized along an edge, the dominant orientation is assigned to
each feature point based on local image gradient directions.
The feature descriptor is created with 4 × 4 arrays of histo-
grams in the neighboring region around the point, each of
which has eight orientation bins, or 128 elements in sum.
The matching is often based on the distance between the vec-
tors, e.g., the Mahalanobis or Euclidean distance. Because
the dimension of the descriptor and the number of the can-
didate key points for matching directly contribute to the
time the algorithm takes, there are algorithms4–8 that can
accelerate the process by increasing the performance of
descriptor of the robust features, such as speed up robust
features, proposed by Bay et al.9,10

All above descriptors are distinctive and invariant to some
image transformations. The feature-based matching algo-
rithms can be divided into three main steps. First, feature
detection—for example of feature point, the interest points
with the property of high repeatability are selected at distinc-
tive locations in the image. Second, feature points descrip-
tion—the neighborhood of every interest point is represented
by a feature vector, and there are lots of possible descriptors
that emphasize a diverse set of image properties such as pixel
intensity, gradient, color, texture, contour, edge, and so on.
Furthermore, the descriptor has to be distinctive and robust to
noise. Finally, the descriptor vectors are matched between
different images. A fewer number of dimensions are there-
fore desirable.9 But the matched number of the key points
cannot be too few or too many. A lack of matched key points
will decrease the accuracy of matching, whereas too many*Address all correspondence to: Zhang Ye, E-mail: zhangye@ciomp.ac.cn
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will cost computational time. Because of these facts, one
has to strike a balance between the above requirements,
for example, by reducing the descriptor’s dimension and
complexity, while keeping it sufficiently distinctive.

Figure 1 shows the SIFT matching result. There are 129
pairs of key points being matched correctly, as is shown by
Fig. 1(a). However, when we add Gaussian noise with σ ¼
0.03 to the image on the left, the number of the correct
matching pairs is reduced to 26, which implies that the
SIFT is somewhat sensitive to noise. In addition, the loca-
tions of the key points are concentrated.

This paper proposes a method for image matching based
on feature lines rather than feature points. Kostadin et al.11

has proposed a novel image denoising strategy based on
an enhanced sparse representation in transform domain, by
grouping similar two-dimensional image fragments into
3-D data arrays; his algorithm adapts for natural scenes.
A strong similarity between small image blocks at different
spatial locations is indeed very common in natural images,
but our method adapts for artifices, which always contain
abundant lines and clear boundaries. This paper is organized
as follows: Sec. 2 describes the scheme of feature lines
detection, in which distinctive feature lines with specific ori-
entations can be detected; Sec. 3 explains polar transform of
the neighborhood region of the feature lines, and a new rota-
tion/scale invariant descriptor is also presented. Section 4
describes the matching work. Section 5 presents the exper-
imental results, and Sec. 6 concludes the paper.

2 Feature Lines Detection
Human vision system (HVS) includes human eyes system
and human visual cortex filter system. The former can be
modeled as log-polar transform, and the latter can be viewed
as a range of spot and bar filters. The elementary processing
method of HVS is the collected image by the human eyes
system goes through the human cortex cells. These cells
are not sensitive to the light of the image, but are sensitive
to certain oriented structure. Thus, they are also called ori-
entation harmonious cells, whose function, simply put, is
filtering. Just like a range of spot and bar filters, some of
the cortex cells respond strongly to oriented structure and
weakly to other patterns. Hubel and Wiesel reason that
these cortex cells function on the basis of lines or edges.10

By analogy with the human visual cortex, it is common to
use at least one spot filter and a collection of oriented bar
filters at different orientations, scales, and phases. After
filtering, the HVS synthesizes the information resulted from
all the cortex cells to make the final decision.

This work was inspired by the HVS. A new method
for scene matching based on feature lines orientations,

description, and matching is presented in this paper. We filter
the image utilizing oriented linear Gaussian filter banks
convolution to imitate the function of the cortex cells. The
Gaussian filter bank has been shown in Fig. 2. Mid-grey
level is represented by zero, with brighter values being pos-
itive and darker values being negative.

It is still unknown how many filters are “best” for useful
texture algorithms. Perona listed the number of scales and ori-
entation used in a variety of systems, ranging from 4 to 11
scales and from 2 to 18 orientations. The number of orienta-
tions varies from application to application and does not seem
to make a big difference, as long as there are at least
six orientations. Typically, the “spot” filters are Gaussians,
and the “bar” filters are obtained by differentiating oriented
Gaussians.12 Using more filters leads to more details, but
we must also convolve the image with more filters, which can
be more expensive.

In this article, we utilize a range of six oriented filters; the
orientations are 0, 30, 60, 90, 120, and 150 deg. There are six
versions of these bars, each of which is a rotated version of
a horizontal bar.

The Gaussians in the horizontal bar have weights −1, 2,
and −1. They have different σ in the x and y directions; the σx
values are all 2, and the σy values are all 1. The centers are
offset along the y axis, lying at points (0, 1), (0, 0), and
ð0;−1Þ. This filters’ bank has been used by Malik and
Perona in 1990.12

The results after applying each of the filters in Figs. 2 to 3(a)
are shown in Fig. 3(b) as absolute values of the output. Brighter
pixels represent stronger responses, and the images are laid out
in correspondence with each of the filter position in Fig. 2.

After the image is convolution filtered by the oriented
linear filters, there is a strong response when the image

Fig. 1 Scale invariant feature transform (SIFT) matching result.

Fig. 2 Oriented Gaussian filters bank.

Journal of Electronic Imaging 053002-2 Sep∕Oct 2014 • Vol. 23(5)

Ye and Hongsong: Rotation invariant feature lines transform for image matching



pattern in a neighborhood looks similar to the filter kernel
and a weak response when it does not, as shown in Fig. 3,
and it can be hardly affected by the noise, as shown in
Fig. 3(c). The advantage of this approach is that it is easy
to search simple pattern elements, bars, by filtering an
image. The brightness of pixels expresses responses. Then,
we threshold13 to extract the light feature lines. The threshold
value can be automatically computed by analyzing the image
histogram, by obtaining the entire information contained in
the histogram, the light lines with certain orientation can be
extracted. Figure 4 shows the thresholding results.

After automatically thresholding,13,14 we can get six pic-
tures with extracted feature lines by six oriented linear filters,
as shown in Fig. 4.15

The number of the Oriented Gaussian filters can also be 4
as Fig. 5 shows and the extracted features lines showed in
Fig. 6. One image has a range of four or six pictures of
feature lines; take the feature lines in one picture as one
group. If we find the correspondingly oriented pictures of
the other image, the matching work will be simpler and
more credible. In other words, if the approximate rotation
angle of the two images could be estimated first, or one
group of feature lines has been matched to another image,
the matching order will be definite.

One way to estimate the approximate rotation angle of
two images is using Fourier–Mellin transform (FMT).

Consider two images f1ðx; yÞ and f2ðx; yÞ, f2ðx; yÞ is
a rotated, scaled, and translated replica of f1ðx; yÞ:

Fig. 3 (a) Original image, (b) the responses of the filters of Fig. 2, (c) the responses of the filters under
noise.
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f2ðx; yÞ ¼ f1½σðx cos αþ y sin αÞ − x0;

σð−x sin αþ y cos αÞ − y0�; (1)

where α is the rotation angle, σ is the uniform scale factor,
and x0 and y0 are the translational offsets.

The Fourier transforms F1ðu; vÞ and F2ðu; vÞ of f1ðx; yÞ
and f2ðx; yÞ are related by

jF2ðu; vÞj ¼ σ−2jF1½σ−1ðu cos αþ v sin αÞ;
σ−1ð−u sin αþ v cos αÞ�j; (2)

where j�j presents the spectral magnitude. Equation (3)
shows that the image rotates the spectral magnitude by the
same angle. This method is called Fourier–Mellin invariant
descriptor. Moreover, we can use the log-polar transforms of
the two spectral magnitude images to compute the rotation
angle α and the scaled factor σ. Let

ln ρ ¼ lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Þ; θ ¼ arctanðv∕uÞ:

Then the relation can be written as follows:

F2ðθ; log ρÞ ¼ F1ðθ − α; log ρ − log σÞ: (3)

In this log-polar representation, both rotation and scaling
are reduced to translations, as proposed by Pratt16 and
Schalkoff.17 By Fourier transform, the log-polar representa-
tions, the rotation, and scaling appear as phase shifts. The
log-polar mapping of the spectral magnitude corresponds
to physical realizations of the FMT.18 Human visual systems
appear to have some similarity with this log-polar mapping.

Fig. 4 Extract feature lines by oriented linear Gaussian filter.

Fig. 5 Four oriented Gaussian filters bank. Fig. 6 Extract feature lines by less linear Gaussian filter.
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The phase correlation matrix of the two transformed images
is computed by

F1ðu; vÞF�
2ðu; vÞ

jF1ðu; vÞF�
2ðu; vÞj

¼ ejðux0þvy0Þ; (4)

where x0 and y0 are the amount of horizontal and vertical
translations between the two transformed images. Computing
the inverse Fourier transform of the phase correlation matrix,
the location of a sharp correlation peak identifies the trans-
lation, which represents the rotation and scaling between
the two images. Figure 7 shows an example.

According to this method, we can approximately esti-
mate the rotation angle of the two images, and the direc-
tional pictures of feature lines can be correspondingly
assigned. Then, the matching work will be simpler and
more credible.

But FMT is not effective for two images with big range
of zooming, rotation, and transformation because FMT is
a method that needs to use the whole information contained
in the images. Difference in contents of two images will
lead to the erroneous matching result, as is shown in
Fig. 8, in which the Dirac peak has been submerged in
the noises. In this condition, we should match all the six
or four oriented ranges without the information of matching
order.

3 Feature Line Descriptor
Polar transform representations play an important role in
image processing and analysis. In the spatial domain, log-
polar schemes have been used to model the strongly inho-
mogeneous sampling of the retinal image by the HVS.19

Polar transform has two principal advantages: rotation invari-
ance and scale invariance. Lines through the center of the
image will be mapped into horizontal lines in the polar
image and the concentric circle into vertical lines. Thus, the
target rotation results in vertical translation, and the change
of the target size results in horizontal translation. In other
words, translating the polar image with a near edge causes
the rotation of the original image. Therefore, we can trans-
form the rotation variation to translational variation.

In order to describe the feature lines in an invariance way,
we take each feature line orientation θðx; yÞ as 0 deg, estab-
lish polar coordinate to transform the neighboring region
of the feature line to polar image, take the feature line center
as the center of the circle, and make two-thirds of the length
of the feature line rðx; yÞ as the radius, as shown in Fig. 9.

For each feature line, the orientation θ and length r can be
computed as follows:

θ ¼ tan−1½ðy1 − y2Þ∕ðx1 − x2Þ�

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy2 − y1Þ2 þ ðx2 − x1Þ2

q
;

(5)

Fig. 7 Utilize Fourier–Mellin transform (FMT) to roughly estimate the rotation angle of the two images.

Fig. 8 FMT cannot estimate approximate rotation angles for images with big changes.
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where ðx1; y1Þ and ðx2; y2Þ are extreme points of the fea-
ture line.

Because the polar coordinate takes the line orientation
as the base, the polar transform is invariance to rotation
angles. As the neighboring region takes the line’s length
as the base, it is invariance to scaling as well. Then the
circle neighboring region image is utilized to create a
vector to describe the feature line. The formulas of polar
transform are

ρ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Þ θ ¼ arctanðv∕uÞ: (6)

Figure 10 shows the transformed polar images of the fea-
ture lines. Although the pair of feature lines has different
orientations and scales, the normalized transformed polar
images are almost the same.

4 Local Polar Image Descriptor
The next step is to compute a descriptor for the local polar
image region that is highly distinctive. One obvious approach
would be to describe local polar images in a coarse-to-fine
iterative strategy (pyramid approach) and to match them
using a normalized correlation measure. By casting the polar
image into a multiresolution framework, most of the itera-
tions are carried out at the coarsest level, where the amount
of data is greatly reduced.20 This results in a considerable
saving of computational time. However, simple correlation
of image patches is highly sensitive to changes that may
cause wrong registration of samples, such as affine or 3-D
viewpoint change or nonrigid deformations.1,21

In this article, a feature line descriptor is created by
first computing the gradient magnitude and orientation
at each polar image. Then, the sample points are accumu-
lated into orientation histograms, as shown in Fig. 11. The

Fig. 9 Establish polar coordinate for each feature line.

Fig. 10 Four pairs of feature lines neighborhood transform.
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length of each arrow corresponds to the sum of the
gradient magnitudes approximating that direction within
the region.

There are three parameters that can be chosen to vary the
complexity of the descriptor: the number of orientations, r, in
the histograms, the width, w, and the height h of the w × h
array of orientation histograms. The size of the resulting
descriptor vector is r × w × h. As the complexity of the
descriptor grows, it will be able to discriminate better in
a large database but will also be more sensitive to shape
distortions and occlusion. We can use a 4 × 8 × 4 ¼ 128
element feature vector for each feature lines, as shown in
Fig. 11. As the region of the image near the center is over-
sampled by polar transform, there is no more information
that can be used to match the left row vector that can be
deleted. The eventually used number of the feature vector
elements is 4 × 7 × 4 ¼ 112.

5 Feature Line Matching
The best candidate match for each feature line is found by
identifying its nearest neighbor in the database of feature
lines from training images. The matching work is similar
to SIFT, an effective measure is obtained by comparing
the distance of the closest neighbor to that of the second-
closest neighbor. Suppose there are multiple training images
of the same object, the second-closest neighbor is defined as
being the closest neighbor that is known to come from a dif-
ferent object than the first, such as by only using images
known to contain different objects. This measure performs
well because correct matches need to have the closest neigh-
bor significantly closer than the closest incorrect match to
achieve reliable matching. For false matches, there will likely
be a number of other false matches within similar distances
because of the high dimensionality of the feature space. We
can consider the second-closest match as providing an esti-
mate of the density of false matches within this portion of

the feature space and at the same time identifying specific
instances of feature ambiguity.1

6 Experiment Results and Algorithms Analysis

6.1 Experiment Results
We coined the proposed method rotation invariant feature-
line transform (RIFLT). Figure 12 shows the matching result.
Figure 12(a) is the SIFT matching result, and Fig. 12(b) is
the RIFLT matching result. We can see that the quantities of
correct matching pairs are almost the same, but the RIFLT
has two benefits: first, the RIFLT matched pairs are lines,
not points; it is obvious that one line contains quite a few
points; the RIFLT will contain more information. Second,
because the matched feature points by SIFT are too con-
centrated, it is not good for image matching to compute
the translation of the two images; the RIFLT feature lines
are more disperse. Why the SIFT key points are so concen-
trated and compared with RIFLT? Does the Gaussian noise
make it? Fig. 13 shows the location of the RIFLT feature
lines are also disperse, compared with SIFT.

We present an experiment of two simple figures, as
shown in Fig. 14, one figure contains a small rectangle,
and another is its rotated replica. If SIFT is utilized to
match the two figures, there is only one key point, the
location of the key point is in the rectangle’s center. By
contrast, if RIFLT is utilized to match the two figures,
there are four feature lines, the locations of the feature
lines are on the edge of the rectangle. SIFT finds key points
inside the change of gradients, but RIFLT find feature lines
on the change of gradients, and the latter selects features
that will be more disperse.

Fig. 11 Feature lines descriptor.

Fig. 12 Experiment results (a) utilize SIFT algorithm and (b) utilize
rotation invariant feature line transform (RIFLT) algorithm proposed
in this paper.
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If the rectangle has been drew larger, SIFTwill find more
key points; the key points are under different scale spaces,
but the key points are all selected by the surrounding gradient
changes—the four lines. Although the quantities of the
selected key points are more than the feature lines, it will
make a mistake if the gradient changes are similar, as shown
in Fig. 15.

6.2 Complexity Analysis
RIFLT includes four steps: (1) feature line extraction, (2) fea-
ture line description, (3) polar image description, and (4) fea-
ture line matching. There are three benefits of utilizing
feature lines to match images. First, lines are always strong
features, i.e., they are insensitive to noise; second, lines

contain size and orientation information, and the line
description steps may be simpler; third, the matched number
of the feature lines can be fewer compared with the method
based on key points, but the feature lines can be more effec-
tive because they are composed of numerous points. What
we do is describing each line and its neighborhood by a rota-
tion and scaling invariant feature vector. If we match two
images according to key lines, each line contains orientation
and scale information. We need not to match too many pairs
of lines. If the candidate lines are too many, we can threshold
the length of the lines and reduce the short lines and the lines
too long. For the picture “cameraman,” SIFT may match 129
pairs of key points, but RIFLT may only match 13 key lines
of the picture. The estimating of the transform between the
two images by both the methods is almost the same.

Fig. 13 Experiment results (a) utilize SIFT algorithm and (b) utilize RIFLT algorithm proposed by
this paper.
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7 Conclusions
In this paper, we present a feature line detection and
description method for image matching, The feature lines
have been shown to be invariant to image rotation and
scale, and robust across a substantial range of affine dis-
tortion, addition of noise, and change in illumination.
According to the position of the feature lines, the parame-
ters that represent rotation angle, scaling quantity, and
the transformation value can be computed. Following are
the major stages of computation used to generate the set of
image features:

1. Feature line detection—utilize oriented bar filters;

2. Feature line descriptor computation—utilize polar
transform and local gradient histogram;

3. Feature line vectors matching—utilize the information
of closest and second closest matching;

4. Estimate image transform—utilize the locations of
the feature lines.

Future work will aim at optimizing the line descriptor
computation work for speed up, uniting feature points and
feature lines for more robust image matching, and imitating
HVS.
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