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Multimodal image registration technique based on
improved local feature descriptors
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Abstract. Multimodal image registration has received significant research attention over the past decade, and
the majority of the techniques are global in nature. Although local techniques are widely used for general image
registration, there are only limited studies on them for multimodal image registration. Scale invariant feature
transform (SIFT) is a well-known general image registration technique. However, SIFT descriptors are not invari-
ant to multimodality. We propose a SIFT-based technique that is modality invariant and still retains the strengths
of local techniques. Moreover, our proposed histogram weighting strategies also improve the accuracy of
descriptor matching, which is an important image registration step. As a result, our proposed strategies can
not only improve the multimodal registration accuracy but also have the potential to improve the performance
of all SIFT-based applications, e.g., general image registration and object recognition. © 2015 SPIE and IS&T [DOI:

10.1117/1.JE1.24.1.013013]
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1 Introduction

Image registration is a process of aligning two images which
may be acquired in different imaging conditions. A good
image registration technique should be able to correctly iden-
tify the corresponding regions and determine the appropriate
geometric transformation required to map the target image
onto the reference image, despite the presence of varying
imaging conditions.

1.1 Image Registration and Image Description

In order to register two images, it is necessary to measure the
amount of dissimilarity, misalignment, or lack of correspon-
dence between the two input images. The lower the dissimi-
larity, the better is the alignment. To make this comparison
possible, different registration techniques employ different
sorts of descriptors. Descriptors may be broadly categorized
into two types: global and local. Global descriptors describe
the entire image as a whole and, therefore, there would usu-
ally be only one descriptor per image. Local descriptors,
on the other hand, represent prominent and stable parts of
an image. Thus, a single image may have more than one
local descriptor—each describing one of the stable parts
(or key regions) in the image.

1.2 Multimodal Image Registration

Two or more images are called multimodal if each of them is
captured by a different sensor (imaging device or modality).
Images of the same object captured using different sensing
devices may have different combinations of colors or inten-
sities. Of course, this may happen in addition to having other
variations in imaging conditions (such as difference in time,

*Address all correspondence to: Shyh Wei Teng, E-mail: shyh.wei.teng@
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scale, viewpoint, or noise). Therefore, multimodal image
registration is far more complicated and challenging com-
pared with basic registration problems.

1.2.1 Global versus local multimodal registration
techniques

There are a large number of global techniquesl“6 found in
the literature that can be used for multimodal registration. All
these techniques are generally based on some statistical mea-
sures. Mutual Information (MInfo) is so far the most widely
used global technique for multimodal image registration and
it has received the most research attention. MInfo was first
introduced by Viola and Wells® in the mid-1990s and is an
entropy-based measure which actually stemmed from infor-
mation theory and was later applied as a tool for image regis-
tration. Since then, it has gained extensive attention and wide
applications.

Entropy is basically a way to quantify the amount of infor-
mation contained within a signal, message, or in this case
an image. Among several classical approaches to compute
entropy, Shannon’s entropy’ has widely been used for
MInfo. The following is one of the standard mathematical
definitions for MInfo:

Minfo(X, Y) = H(X) + H(Y) — H(X, Y). 1)

In the above definition of MInfo, H(X) and H(Y) are
the individual entropies and H(X,Y) is the joint entropy.
When two similar images are perfectly aligned, the joint
entropy H(X, Y) attains the least value and as a result MInfo
reaches its maximum value. Thus, when MInfo reaches
its maximum, we say that the two images are registered.
This is the core principle of MlInfo-based registration
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techniques. Pluim et al.' presented an extensive survey on
different MInfo approaches to image registration and their
applications to medical imaging. However, the main problem
with MInfo-based registration techniques is their high-
computational complexity. The process generally requires
one to solve an optimization problem, where the search
space could be too large to explore. Moreover, these tech-
niques are highly affected by truncation and outliers. A num-
ber of them®™" require an initial estimation to be provided
manually in order to narrow down the search space. Again,
these techniques can even fail if the initial estimation is not
close enough to the correct values. Further discussion about
the limitations of MInfo can be found in Sec. 5.2.

In this article, we focus on local description techniques as
they are more invariant to affine transformations and are less
affected by the presence of outliers, occlusion, clutter, trun-
cation, and low overlap of images.'*'> Despite the strengths
of using local description techniques, very few's?" have
been studied for multimodal registration so far. In this article,
we concentrate on developing a new local description tech-
nique which improves over a widely used local description
technique—scale invariant feature transform (SIFT).!> The
proposed technique has been adapted to be used for multi-
modal image registration.

1.2.2 Applications

Multimodal image registration has its applications in a wide
range of domains including remote sensing, robot navigation,
areal imagery analysis, and medical imaging. Computed
tomography (CT), « magnetic resonance imaging (MRI),
CT « positron emission tomography (PET), CT < single-
photon emission computed tomography (SPECT), PET «
MRI, T1 «& T2 MRI, PET < ultrasound (US), and electro-
optical (EO) < near-infrared (NIR) are just a few examples
of multimodal medical image registration problems.*?! The
capability of registering multimodal images efficiently and
correctly is important in the medical field as it aids in better
and faster diagnosis of diseases and can also help in the
optimal planning of complex radio therapeutical and neuro-
surgical procedures.

1.3 Contribution

In this article, we first identify the issues associated with
multimodal image registration. Then, we propose a new
local technique which is invariant to multimodality. In addi-
tion, we also employ a modified approach for building
orientation histograms that make the descriptors even more
discriminative. All these together not only raise key-point
matching accuracy, but also significantly increase the num-
ber of true matches identified. We also show that our
proposed technique outperforms a recently prooposed local
multimodal technique named symmetric-SIFT.!

The rest of the article is organized as follows. Section 2
describes some interesting properties of multimodal images
that influence the design of our proposed technique.
Section 3 discusses some relevant techniques and highlights
their problems. Next, in Sec. 4, we outline our proposed sol-
ution. Section 5 presents our experimental results. Finally,
Sec. 6 concludes this article.

Journal of Electronic Imaging

013013-2

2 Properties of Multimodal Images

2.1 Intensity Variations

The same portion of an object may be represented by differ-
ent intensities in images captured from different modalities.'
This is because different sensors may have different levels of
sensitivity to a particular part of an object. Again, portions of
an object may remain invisible to some sensors and visible to
others as some sensors cannot realize their presence whereas
others can. Variation in intensities has two possible conse-
quences, which are introduced in the following section.

2.2 Gradient Reversal and Region Reversal

It is very common in multimodal images that the gradients of
corresponding parts of the images will change their direc-
tions (see Fig. 1) by exactly 180 deg.'** We call this property
“Gradient Reversal” for future reference. Gradient reversal is
one of the main reasons that causes many conventional local
registration techniques, such as SIFT, to fail with multimodal
images.

Gradient reversal may also cause inaccuracies in the rota-
tion normalization of regions. We shall see in Sec. 3.1.1 that
the rotation normalization is done by aligning the regions
based on the directions of their dominant orientations. How-
ever, the presence of gradient reversal also reverses the direc-
tion of the dominant orientation. Therefore, even if two
visually similar regions are rotation normalized, they can still
remain totally out of phase—which we denote as “Region
Reversal.” As a result, descriptors built on these regions
will not match. Both Gradient Reversal and Region Reversal
are illustrated in Fig. 2.

(a)

Fig. 1 (a) T1- and (b) T2-weighted brain MR image samples taken
from our test dataset. The arrows in the insets show how gradient
direction may change with modality.

Gradient reversal Region reversal
(a-) (a-ii) (b-i) (b-ii)

>
Dominant orientation  Dominant orientation

Fig. 2 (a-)) and (a-ii) Two example regions of the same object
assumed to have been captured by different sensing devices. The
arrows indicate the direction of gradients. See how the gradients
reverse their directions due to change in modality. (b-i) and (b-ii)
The same sample regions rotation-normalized based on their domi-
nant orientations. However, if we look into the actual shape of the
object being represented, we will notice that they still remain out of
phase by 180 deg even after rotation normalization.
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3 Related Techniques

3.1 Scale Invariant Feature Transform: A Key-Point-
Based Image Descriptor

3.1.1 Overview

Both SIFT and symmetric-SIFT are basically key-point-
based image description techniques. Most key-point-based
image description techniques can be decomposed into the
following five phases: key-point detection, description and
matching, followed by estimation of transformation param-
eters and image transformation. Figure 3 outlines the first
three phases as found in SIFT-based techniques.

Key-points are the points in an image that can survive
a wide range of geometric and photometric transformations.
The purpose of the detection phase is to identify such stable
points from a given image. In the description phase, each
identified key-point is described numerically for them to
be used for comparison in the matching phase. The next
phase is to compute the similarity of the descriptors from
the two images. The set of matched descriptors indicates
the corresponding parts between the images. This informa-
tion is used for deriving a transformation function that maps
one image onto the other which becomes the final phase of
registration. The accuracy of registration, therefore, depends
on the accuracy of the matching set.

As both SIFT and symmetric-SIFT are the key-point-
based image description techniques and are very closely
related to each other, we first describe how SIFT works.

SIFT, originally introduced by Lowe,' is a widely used
key-point description technique in both image registration
and retrieval. In order to identify the key-points, SIFT applies
a variable-scale Gaussian and produces the scale space.
Adjacent images within the scale space are then subtracted
to get another stack of images which are called the difference
of Gaussian (DoG). Finally, all the maxima and minima
found in the DoG space are considered to be key-points,
where the scale of each key-point is indicated by the
scale at which the key-point is found. Once the key-points
are identified, the dominant orientation O of the gradients is
computed within a region R around each key-point.
Dominant orientation is the direction in which most of the
gradients of a particular key-region are oriented. The size
of R is determined based on the associated scale of the
key-point. This makes the final descriptor invariant to scale
change. Rotation invariance, on the other hand, is achieved

by building the descriptor relative to the identified dominant
orientation O. To find the dominant orientation O, a 36-bin
orientation histogram covering the 360-deg range of orien-
tations is built by analyzing the direction and magnitude of
gradients at each pixel within R. The highest peak of this
histogram becomes the primary dominant orientation and
any other local peak that falls within 80% of the primary
peak is considered to be a secondary dominant orientation.
SIFT creates separate key-points for each of the primary and
secondary (if any) dominant orientations and builds separate
descriptors for them. The secondary dominant orientations
are used to increase the stability of key-point matching as
varying imaging conditions and noise might cause a different
orientation to have the maximum bin height. Yet in most
such cases, the actual dominant orientation still usually has
a bin height that is at least 80% of the highest peak. The final
descriptor is built on a 4-by-4 spatial grid, where each cell in
the grid consists of its own orientation histogram. These ori-
entation histograms, however, consist of 8 bins only. All gra-
dients within a cell are quantized into one of these 8 bins.
Thus, a SIFT descriptor has 128 (i.e., 4 X 4 X 8) dimensions.
Descriptors from a given image pair are then analyzed to
derive the key-point matching set.

3.1.2 Problems

The main problem with SIFT when applied to multimodal
images is that it neither caters for gradient reversal nor for
region reversal. Therefore, if the given image pair has any
of these properties, SIFT will build totally dissimilar descrip-
tors at corresponding key-points because of gradient inver-
sion and as a result it will fail to find the correct matching
points. In Fig. 4, we show an example scenario where SIFT
identifies only a single match and even that is wrong.

Fig. 4 Aninverted image pair, where SIFT fails to identify any correct
matches.

i e e PR =
Detection ﬁmnems%giggﬂom Matching
Rotate to align
e D?ﬁ:‘f a local For eaf:h each key-region Build SIFT Check for matches
Detect inter ghbourhood key-region, = : :
. 4 s d with respect to descriptor between descriptors
points region around §—>} identify the §F— identified for each buitt on the given
(Method: DoG) each key-point dominant the identifie ontheg
. . dominant key-region images
based on scale orientation X .
& orientation - ?
' ’ o o \ A} \
A ‘ e e \ \
K 7 1« This is done by computing A \ Yl ¥
! ¢ . an orientation histogramon | ¥ \
L R TR S e 1 alocal neighbourhood . i ¥ T et
! Thescaleof ! This ! | surrounding each key-point | 7" 77 77T §07TTTTTTTT777) [ The match-setcan
| eachkey-point ' ' ensures | . * Thehistogramhas 36 bins : : This ensures | | The length of i 1 then be used for 3
. is also identified ' scale . 1 covering 360 degrees.i.e. ! : rotation ¢ 1 the SIFT | 1 registering the given :
1 at this step » + invariance | . Eachbinis 10 degrees wide ' ! invariance X descriptor is 128 | | images ;

Fig. 3 Steps in the key-point detection, description, and matching phases of SIFT.
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We have seen in Sec. 3.1.1 that the final SIFT descriptor is
basically a combination of 16 orientation histograms. By
taking a closer look at how these orientation histograms are
built, we identify another problem with this technique. This
particular problem is not limited only to multimodal images,
rather it exists in all descriptors that evolved from SIFT and
uses the same approach to build orientation histograms.
Below, we explain this problem with further detail.

By now, we know that the SIFT descriptors are built on a
4-by-4 spatial grid surrounding the key-points and each cell
of this grid has its own orientation histogram. The orientation
histogram captures and summarizes the overall distribution
of gradients within a particular cell. To be more specific, the
histogram is built based on gradient directions and magni-
tudes. Figure 5 shows the key elements used in the process.

As we can see in Fig. 5, the direction and magnitude
values are determined based on the intensities of the hori-
zontally and vertically opposing pixels around every pixel
within a cell. In SIFT, the orientation histogram consists of
8 orientation bins which divide the entire range [0,2r)
into eight equal ranges. Whenever a pixel is examined,
the direction of gradient at that point is used to determine

mr2

0.5

SHE
]
o

Gy, = V(dx? +dy?)
Gy = tani(dy / dx) 3R
(b) (c)

Fig. 5 (a) The horizontal and vertical derivative kernels used to com-
pute dy and dy, respectively. (b) shows how the derivatives are used
to derive the gradient's magnitude and direction. (c) shows a sample
orientation histogram with 8 bins each having a range of 45 deg.
When a gradient is observed, its direction is used to decide which
of the 8 bins should be incremented. The magnitude of the observed
gradient, on the other hand, is used to decide the amount by which the
bin should be incremented.

the appropriate orientation bin. The value of this bin is incre-
mented by the magnitude of the associated gradient.

However, considering gradient magnitudes while building
the orientation histograms has two possible negative conse-
quences. In Sec. 2.1, we have seen that the intensity of the
corresponding pixels may vary dramatically if the imaging
modality changes. This is mainly because, generally, no
two different imaging devices are equally sensitive to a
given object or color. Due to this fact, an object captured
on different modalities may appear brighter, darker, or even
nonexistent with respect to its surroundings. For the same
reason, the gradient at a particular location may become
stronger or weaker when the modality varies. Therefore, con-
sidering gradient magnitude information may not be suitable
in a modality-invariant key-point descriptor. In other words,
if the imaging modality changes, corresponding key-point
descriptors may fail to match as the gradient magnitudes
used to build the orientation histograms of the descriptors
may also have changed significantly.

Conversely, it is usual to get very similar histograms from
two image regions having very different visual appearances.
Figure 6 illustrates this problem with an example. As both
images have changes in the horizontal direction only, only
one bin in their corresponding orientation histograms will
be populated. As the summation of all gradient magnitudes
is the same in both images, the associated orientation histo-
grams will also be identical leading to the false conclusion
that the corresponding image regions are similar. In Sec. 4.1,
we will describe what we proposed to solve this problem.

3.2 Symmetric-Scale Invariant Feature Transform
3.2.1 Overview

Symmetric-SIFT'® addresses the gradient reversal problem
by limiting all the gradients within the range [0,7). We
denote this intermediate descriptor as “Gradient symmet-
ric-SIFT” (or GS-SIFT) for future reference. As gradient
reversal may not always happen, the existence of region
reversal is also unknown. Symmetric-SIFT, therefore, ini-
tially builds two intermediate GS-SIFT descriptors—one
assumes the presence of region reversal and the other does
not. In fact, these two GS-SIFT descriptors are out of phase

AAAAAAAD
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Fig. 6 (a) and (b) The two example image regions. (c) and (d) Their corresponding gradient maps.
(e) and (f) The corresponding horizontal derivative (magnitude) maps.
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(a) (b) (c)

Fig. 7 (a) and (b) The histogram arrangement in D and D,, respectively. (c) The final merged descriptor.

from each other by 180 deg. Let D be the original GS-SIFT
descriptor and D, be the GS-SIFT descriptor that assumes
region reversal. Figure 7 shows a generic representation
of D and D, and also illustrates how the arrangement of
the 16 orientation histograms changes their positions within
the 4-by-4 spatial grid.

In order to derive a final descriptor that is invariant to
region reversal, symmetric-SIFT applies the following func-
tion to merge D and D,:
f(D)=[D*+D¢ D'~Di], @
where D* and D are the upper halves of D and D,, respec-
tively, and D! and D! are the lower halves of D and D,,
respectively. The ~ symbol represents the Absolute
Difference operation. Figure 7(c) shows the final descriptor
as a result of merging D and D, from Figs. 7(a) and 7(b),
respectively.

3.2.2 Problems

The mapping as shown in Eq. (2) is used in an attempt to
achieve invariance to multimodality in symmetric-SIFT.
Ideally, this mapping should have satisfied both of the fol-
lowing constraints:

and
f(D)# f(D'), V¥ D'#D,D,. C)

However, it can be shown that the merging function of
Eq. (2) does not satisfy the second constraint [Eq. (4)] as
there exists D’ # D,D, for which f(D) = f(D'). Such
D’s include all instances of D where one or more (but
not all) histograms from the upper half of the GS-SIFT
descriptor swap positions with their lower half counterparts
(e.g., hy; swapping its position with hyy or, hy4 SWapping its
position with /3,). Figure 8 uses two sets of simplified 4-by-
4 GS-SIFT descriptors to illustrate an example scenario
where f(D) = f(D'), even though D’ # D, D,.

The merging process of symmetric-SIFT is, therefore,
ambiguous and as a result symmetric-SIFT is prone to gen-
erate too many false positives, restricting it from attaining
higher key-point matching as well as registration accuracy.

Again, symmetric-SIFT builds orientation histograms in
the same way as original SIFT does. Therefore, symmetric-
SIFT also has the same problem as stated in Sec. 3.1.2.

Apart from the already mentioned differences between
SIFT and symmetric-SIFT, Chen and Tian have suggested
an alternate approach to identifying dominant orientations
in symmetric-SIFT by computing averaging squared gra-
dients. Their proposed approach always brings the dominant
orientations within the range [0,7) which is, in fact, not
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Fig. 8 (a) An example symmetric-SIFT descriptor, f(D), derived from
the initial GS-SIFT descriptor, D. (b) Another instance of GS-SIFT
descriptor, D’ such that, D’ # D, D, also results in the same final
symmetric-SIFT descriptor.

necessary at all as reversed GS-SIFT descriptors are already
being used later on during the descriptor merging process to
cater for region reversal. In other words, it can be shown
that the symmetric-SIFT technique produces the same
final descriptors even if we do not restrict the dominant ori-
entations to stay within the range [0, 7). Moreover, we have
found that the alternate approach is also not stable for higher
rotational differences, making it impractical for use in many
applications.

3.3 MI-Scale Invariant Feature Transform

MI-SIFT is a mirror and inversion invariant generalization
for the SIFT descriptor recently proposed by Ma et al.'®
The term “inversion” has been used with the same meaning
as “gradient reversal” in this article. MI-SIFT has been
designed to work for both multimodal as well as mirror-
like images. However, this technique also principally
involves exactly the same merging functions as that of sym-
metric-SIFT in order to acquire flip and inversion invariance.
Therefore, MI-SIFT has the same merging issue that we have
identified for symmetric-SIFT in Sec. 3.2.2. In fact, it can be
shown that the amount of ambiguity incurred by MI-SIFT’s
merging function is even much higher than that of symmet-
ric-SIFT mainly because it tries to cater for mirroring and
gradient inversion at the same time.

The authors in Ref. 18 also proposed two separate tech-
niques—M-SIFT and I-SIFT—suitable for mirror-like and
inversion-like images, respectively. Inversion-like images
have closer similarity to multimodal images and, therefore,
we will include I-SIFT in our comparative study. The results
will be presented in Sec. 5.3.
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4 Proposed Technique

In order to overcome the problems mentioned in Sec. 3, we
propose a new way of building modality-invariant descriptors.
The proposed technique can be divided into three steps. The
first step deals with building key-point descriptors. The sec-
ond step estimates the overall orientation difference between
the given images by analyzing an initial key-point matching
set. This estimated value is then used in the third step to
rotationally normalize the descriptors. Such normalization
does not result in region reversal. As a result, our technique
does not have the merging problem as identified in symmet-
ric-SIFT. We also use a different approach for building the
orientation histograms. All these together enable our tech-
nique to attain a much higher registration accuracy.

4.1 Step I: Building the Initial Set of Descriptors

Our first step starts by identifying key-points and building
GS-SIFT descriptors on them in a similar way as symmet-
ric-SIFT does (see Sec. 3.1.1). However, there are a couple of
major differences in doing so, as explained below.

4.1.1 Identifying the dominant orientations

In our proposed technique, we identify the dominant orien-
tations in the same way as is done in original SIFT. We do not
use the alternate approach as proposed in symmetric-SIFT
because of the problems identified in Sec. 3.2.2. More-
over, restricting the dominant orientations within [0, z) may
also lead to an incorrect estimation in Step IL

Table 1 Comparison of different steps in relevant techniques.

Key-point Rotation estimation and
detection Dominant orientation identification Descriptor merging descriptor rebuilding
SIFT DoG Orientation histogram technique Not done Not done
Symmetric-SIFT DoG Averaging squared gradients technique = Done using symmetric-SIFT’s merging Not done
function [Eq. (2)]
Symmetric-SIFT DoG Orientation histogram technique Done using Symmetric-SIFT’s merging Not done
function [Eq. (2)]
I-SIFT DoG Orientation histogram technique Done using I-SIFT’s merging function'® Not done
Proposed DoG Orientation histogram technique Only using Symmetric-SIFT’s merging Done

function

Fig. 9 (a) T1 versus T2 weighted transverse brain MR images. (b) T1 versus T2 weighted coronal brain
MR images. (c)—(f) Near-infrared (NIR) versus EO image pairs.
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4.1.2 Using alternate weighting strategies to populate
histogram bins

We know that the SIFT descriptors are collections of orien-
tation histograms. In Sec. 3.1.2, we have highlighted that
adding magnitudes to the orientation histograms of SIFT
may not appropriately correspond to the actual visual appear-
ance of an image region. To address this issue, we propose
the following two strategies for incrementing the orientation
histogram bins:

1. Increment by 1. The presence of a gradient actually
indicates the presence of a possible edge. Gradient
magnitude, on the other hand, indicates how sharp
or strong the associated edge is. Based on our obser-
vation in Sec. 3.2.2, the overall strength of the edges in
a certain direction is not a modality-invariant measure.
According to the proposed strategy, we propose
instead to increment the bins by 1. An orientation
histogram built in this way would essentially represent
the frequency of gradients observed in each direction.
Clearly, such a histogram is invariant to change in gra-
dient magnitude and is, therefore, better suited for use
in multimodal image registration.

2. Increment by average of squared difference (ASD) of
magnitudes. This strategy falls somewhere in between
the two extremes—one extreme is to add the magni-
tudes directly and the other is to totally discard them.
The term ASD is explained as follows.

Let H be the orientation histogram having bins b,,, where
n=1273,...,8. Let G, be the i’th gradient sample

Fig. 12 (a) Target image. (b) Reference image. (c) The ground truth
registration, where the target image is overlaid on the reference
image. (d) Result from NMinfo. (e) Result from our proposed tech-
nique. The green lines indicate matching key-point pairs.

Fig. 11 (a) Targetimage. (b) Reference image. (c) The ground truth registration, where the target image
is overlaid on the reference image. (d) Result from NMinfo. (e) and (f) Results from our proposed tech-
nique. The green lines indicate matching key-point pairs. In (f), the target image was even further rotated

by 30 deg and scaled by a factor of 2.
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encountered in bin b, and M,; be its corresponding magni-
tude where i = 1,2,3,..., N, assuming N is the total num-
ber of gradients encountered in that bin. Rather than adding
each M,; to bin b,, we propose to add the ASD of these
magnitudes about their mean. Mathematically,

Table 2 Comparison of execution time between NMinfo and pro-
posed technique.

Initialization parameters Avg. execution

ASD, = " [M,; — Avg(M,)]*/N, ®)

where ASD,, is the ASD of bin b,,, and Avg(M,,) is the arith-
metic mean of all magnitudes encountered in bin b,. In
Sec. 5.3, we present our experimental results which show
that, in most cases, both of the proposed strategies provide
better results as compared with the original method of build-
ing orientation histograms.

We would like to reemphasize that the proposed weight-
ing strategies should not be confused with the Gaussian
weighting of the orientation histograms mentioned in

Ground truth (NMinfo only) time (s) Sec. 3.1.2. The purpose of using the Gaussian weighting
Sranslalion Fiotafion:disns: Transiaiian is to put more emphasis on the center of the key-regions

Rotation  [(x, y) [start:step:er?d steps Proposed compared with pixels away from their centers. Therefore,

(deg) pixel] (deg)] (pixel)  NMinfo technique like SIFT and symmetric-SIFT, we also apply the same

Gaussian weighting on the orientation histograms.

45 (130,130) 30:3:60 3 566.60 17.53

30 (115,115) 15:3:45 3 44391 17.07 4.2 Step ll: Identifying the Phase Difference

15 (67,67) 0:3:30 3 154.86 15.39 Once the initial descriptors are built by merging the proposed

GS-SIFT descriptors, we match the key-points and start

Table 3 Comparison of average matching accuracy in the presence of rotational difference.

Average matching accuracy (%)

Type of image pair Technique a=10 deg ap =25 deg a =45 deg a =60 deg a =190 deg a =135 deg
Transverse, T1-T2 Symmetric-SIFT 90.90 79.12 49.72 24.23 0.00 58.89
Symmetric-SIFT’ 91.37 89.51 89.20 88.75 87.87 88.69
I-SIFT 91.37 89.51 89.20 88.75 87.87 88.69
Proposednag 95.94 96.45 95.67 95.71 94.85 90.68
Proposed; 96.74 97.30 96.35 96.45 95.70 91.24
Proposedasp 96.26 96.78 96.21 95.94 94.96 91.02
Coronal, T1-T2 Symmetric-SIFT 91.44 75.78 55.69 23.81 0.00 61.61
Symmetric-SIFT’ 91.82 91.04 89.33 88.65 87.50 89.01
I-SIFT 91.82 91.04 89.33 88.65 87.50 89.01
Proposednag 96.69 96.64 96.18 96.40 95.39 91.08
Proposed; 96.93 97.17 97.20 96.73 95.59 92.04
Proposedasp 96.70 97.09 96.63 96.61 95.52 91.45
NIR-EO images Symmetric-SIFT 96.09 95.63 93.87 87.50 19.05 81.22
Symmetric-SIFT’ 96.11 95.98 94.77 92.39 90.80 92.68
I-SIFT 96.11 95.98 94.77 92.39 90.80 92.68
Proposednag 98.26 98.56 98.16 97.82 96.93 90.94
Proposed; 99.02 99.26 98.46 98.53 97.75 91.84
Proposedasp 98.61 98.94 98.20 97.98 97.55 91.83
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analyzing the matching set. Note that the dominant orienta- be the dominant orientations of {D;, D5, D33, . .., D;, } and
tions in our proposed technique can be of any angle between {6/1,605,053,...,0 ny be the dominant orientations of
[0,27) and within a given matching key-point pair, they can {Dj1,Dj5,Dj3,..., D jn}- Now assuming the difference in
be exactly opposite due to gradient reversal. When analyzing rotation between I1 and 12 is a, we could say

the matching set, we compare the difference in dominant

orientations of all matching key-points in order to estimate 0;—0;=m—a>0 when; >0,

the rotational difference between the given images. The
estimated rotational difference will be used in the next
step to align the regions, thereby eliminating the need for and
rotation normalization based on the dominant orientations.
As a result, any potential region reversal problem will be
eliminated.

Now suppose that we have two multimodal images /1 and Alternatively, we can say,
I2 with a rotational difference of a degrees between them.
Now, let the initial matching set be {D;; = Dj;,Dy = Dj,
Di3 > Dj,...,D;, = Dj,}, where i and j denote the indi-
ces of the key-points from 1 and /2, respectively, and n is
the total number of matches found. Let {6y, 655,033, - .., 0in} and

0;—0;=-rn—a<0 when6;<0;.

a=n—-0;+0; when8;-0;>0,

Table 4 Comparison of average error in transformation parameters in the presence of rotational difference.

Average transformation error

a=45 deg a =135 deg
Type of image pair Technique Eqy Eq Eypy E, Eqy Eq Eo Ey
Transverse, T1-T2 Symmetric-SIFT 3.43 2.71 2.71 3.43 3.94 3.06 3.06 3.94
Symmetric-SIFT’ 1.85 1.26 1.26 1.85 1.93 1.47 1.47 1.93
I-SIFT 1.85 1.26 1.26 1.85 1.93 1.47 1.47 1.93
Proposednag 0.75 0.46 0.46 0.75 0.74 0.76 0.76 0.74
Proposed; 0.36 0.38 0.38 0.36 0.53 0.47 0.47 0.53
Proposedasp 0.48 0.43 0.43 0.48 0.61 0.68 0.68 0.61
Coronal, T1-T2 Symmetric-SIFT 1.78 1.96 1.96 1.78 1.94 1.67 1.67 1.94
Symmetric-SIFT’ 1.29 0.94 0.94 1.29 1.43 1.09 1.09 1.43
I-SIFT 1.29 0.94 0.94 1.29 1.43 1.09 1.09 1.43
Proposednmag 0.30 0.20 0.20 0.30 0.41 0.34 0.34 0.41
Proposed; 0.11 0.14 0.14 0.11 0.18 0.15 0.15 0.18
Proposedagp 0.18 0.24 0.24 0.18 0.50 0.13 0.13 0.50
NIR-EO images Symmetric-SIFT 0.68 0.74 0.74 0.68 2.87 2.05 2.05 2.87
Symmetric-SIFT’ 0.47 0.51 0.51 0.47 0.72 0.48 0.48 0.72
I-SIFT 0.47 0.51 0.51 0.47 0.72 0.48 0.48 0.72
Proposedmag 0.08 0.10 0.10 0.08 0.37 0.08 0.08 0.37
Proposed; 0.04 0.04 0.04 0.04 0.03 0.05 0.05 0.03
Proposedasp 0.05 0.04 0.04 0.05 0.06 0.06 0.06 0.06
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a=-n—-0;+6; whent;-6;<0.

Using the above-mentioned relationships, we estimate the
rotation a; (where k = 1,2, ..., n) from the dominant orien-
tations of each of the n matched key-point pairs. However, as
in a real scenario, the a; values tend to vary, therefore, we
propose to compute median(a;) and consider it to be the
phase difference ap between the two given images /1 and
I2. We have also conducted experiments using mean(a;)
and mode(a;). As all three measures produce comparable
results, in this article, we choose to present results based
on median only.

4.3 Step lll: Rebuilding the Descriptors

In this step, we first build GS-SIFT descriptors for 71. We do
the same for /2 except that the regions in this case are rotated
by ap before any descriptor can be built. It is important to
note that, instead of using dominant orientations, we simply
use ap, to align the regions. As this approach does not require

Transverse T1-T2: @ =45deg

—&A— Proposed,
—%— Proposed,,,
—&— Proposed,s,

081 © — Symmetric-SIFT

— B - Symmetric-SIFT '
- + —|-SIFT

0 0.2 0.4 0.6 0.8
1-precision
(a)
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0.4
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Fig. 13 Recall versus 1-Precision curves for 45-deg and 60-deg rotational differences.
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rotation normalization via dominant orientation, the region
reversal problem becomes irrelevant and the GS-SIFT merg-
ing process is no longer required here. This enables us to
compute unambiguous descriptors by avoiding the merging
issue as described in Sec. 3.2.2. Also, orientation histograms
are always built in our proposed approach described in
Sec. 4.1.2. Once all the descriptors are rebuilt, we do the
final matching.

Reduced number of descriptors in Step III: In Sec. 3.1.1,
we have seen that for any given key-point, SIFT uses its pri-
mary and all secondary dominant orientations to create sep-
arate key-points and descriptors. However, as in Step III of
our proposed technique, we utilize the derived rotational dif-
ference (ap), and we need only one descriptor per key-point
location and scale. This is why far fewer numbers of descrip-
tors need to be built in Step III as compared with that in
Step L.

Table 1 compares the similarities and differences between
our proposed technique, symmetric-SIFT, symmetric-SIFT’,

Transverse T1-T2: & = 60 deg

0.8

0.4 0.6
1-precision
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I-SIFT, and SIFT. Note that the only difference between sym-
metric-SIFT and symmetric-SIFT’ is in the way dominant ori-
entations is computed. We give symmetric-SIFT’ a different
name, so that it can be differentiated from the original sym-
metric-SIFT and conveniently referred to later as required.

5 Performance Study

In our experiments, we have used 101 pairs of 71 — T2 coro-
nal brain MR images and 87 pairs of 71— T2 transverse
brain MR images collected from McConnell Brain Imaging
Centre’s online brain image data store.”> We have also used
another 18 NIR versus EO image pairs from different
sources.'7?*2% Examples of some test image pairs are pre-
sented in Fig. 9.

5.1 Evaluation Measures

The accuracy of a registration technique highly depends on
the accuracy of the key-point matching set. The higher the

proportion of the identified true matches, the better is the
chance of achieving higher registration accuracy. There-
fore, we evaluate our results based on the accuracy of the
matching set, where

number of true matches
A = X 100% 6
ceuracy number of total matches 7 ©

and a maximum of 4-pixel error is considered to be accepted
as a true match which is consistent with existing literature.”’

We also evaluate our technique in terms of overall regis-
tration error. We do this by comparing the transformation
parameters derived by our proposed technique with that of
the ground truth. As key-point-based local descriptors are
independent of two-dimensional translation, we discard
the translation coefficients from the model of affine transfor-
mation to simply the standard affine transformation equation
into the following equation:

Table 5 Comparison of average matching accuracy in the presence of rotational difference and uniform scaling.

Average matching accuracy (%)

a =30 deg a =30 deg a =30 deg
Type of image pair Technique ox=0y=15 ox=0,=20 ox=0y,=25
Transverse, T1-T2 Symmetric-SIFT 71.84 69.69 71.01
Symmetric-SIFT’ 89.44 88.98 83.13
I-SIFT 89.44 88.98 83.13
Proposednag 94.50 93.24 89.79
Proposed; 95.56 93.92 92.02
Proposedasp 95.22 93.46 90.34
Coronal, T1-T2 Symmetric-SIFT 72.97 72.86 71.11
Symmetric-SIFT’ 89.67 88.71 83.10
I-SIFT 89.67 88.71 83.10
Proposednag 95.59 92.90 89.34
Proposed; 96.12 93.87 90.85
Proposedasp 95.82 93.63 89.79
NIR-EO images Symmetric-SIFT 94.24 93.91 93.47
Symmetric-SIFT’ 94.99 94.46 93.93
I-SIFT 94.99 94.46 93.93
Proposednag 98.56 97.66 96.60
Proposed; 99.09 98.26 96.87
Proposedasp 98.67 97.86 96.80
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App

7
Ary (O]

X,] _ [Au Xl]
Y, Azl Y,
In our results, we present the registration error in terms of
the following four transformation error values:

Eyy = Abs(A; — Ajy), (®)
Ej, = Abs(Ajp — ADy), ©)
Ey = Abs(Az — A7), (10)
Ep = Abs(Ap — Aj), amn

where A;; are the elements of the ground truth transformation
matrix and A;; are the elements of the transformation matrix
that we get using the proposed technique.

Finally, we evaluate our technique with Recall versus
1-Precision curves,” where

number of true matches identified

Recall = , 12
eca number of total matches in ground truth 12

and

|-Precision — number of false matches identified (13)

number of total matches identified

A Recall versus 1-Precision curve provides a visual rep-
resentation of a technique’s ability in increasing the number
of correct positives while minimizing the number of false
positives. Basically, a curve, which is further away from
the origin of the two axes, shows that the technique it rep-
resents performs better than another technique whose curve
is closer from the origin.

Table 6 Comparison of average error in transformation parameters in the presence of rotation difference and uniform scaling.

Average transformation error

a =30 deg;ox =0, =1.5

a =30 deg;ox =0, =20 a =30 deg;ox =0, =25

Type of image pair Technique Eq4 Eq E», Es Eq4 Eq Eyq Es Eq4 Eqo E» Eyy
Transverse, T1-T2 ~ Symmetric-SIFT 139 121 121 139 114 106 106 114 117 089 089 1.17
Symmetric-SIFT’ 087 050 050 087 075 068 068 075 070 049 049 070
I-SIFT 087 050 050 087 075 068 068 075 070 049 049 070
Proposedmag 042 021 021 042 029 028 028 029 021 013 013 021
Proposed, 018 011 011 018 012 008 008 012 012 009 009 0.2
Proposedagp 038 018 018 038 028 023 023 028 017 014 014 047
Coronal, T1-T2 Symmetric-SIFT ~ 1.01 078 078 101 067 050 050 067 054 055 055 054
Symmetric-SIFT’  0.65 042 042 065 051 040 040 051 038 035 035 038
I-SIFT 065 042 042 065 051 040 040 051 038 035 035 038
Proposednmag 023 021 021 023 023 02 026 023 014 013 013 0.14
Proposed; 005 005 005 005 005 004 004 005 004 004 004 004
Proposedagp 016 024 024 016 012 014 014 012 007 006 006 007
NIR-EO images Symmetric-SIFT 171 039 039 171 050 030 030 050 037 037 037 037
Symmetric-SIFT’ 058 031 031 058 049 020 020 049 032 018 0.18 032
I-SIFT 058 031 031 058 049 020 020 049 032 018 018 032
Proposednag 015 015 015 015 044 078 078 044 009 007 007 009
Proposed; 007 004 004 007 002 001 001 002 003 001 001 003
Proposedasp 015 008 008 015 005 003 003 005 004 001 001 004
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5.2 Performance Comparison Between Minfo-Based
Techniques and the Proposed Technique

We have already discussed about the limitations of MInfo-
based registration techniques in Sec. 1.2.1. In this section, we
shall present some of the problems with examples and exper-
imental results. We have used the brain MR image pair as
shown in Fig. 10 to carry out a couple of basic experiments.

In Fig. 11, we applied Normalized-MInfo (NMInfo)*® to
register the images [The source code for NMInfo used in our
experiments was provided by Kateryna Artyushkova and
collected from MATLAB Central*®]. We have used a cropped
version of Fig. 10(a) in this experiment. NMInfo was initial-
ized with a 30-deg search space centered at the ground truth.
The step sizes to be used during the optimization had been
set to 3 deg for rotation and 3 pixels for translation. Though
we believe the initialization parameters have been chosen in
favor of the technique, NMInfo still failed to register the
given images. It can, however, successfully register the
images if the step sizes are initialized at 1 deg for rotation

Transverse T1-T2: @=30 deg; o,= 0,=1.5
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Fig. 14 Recall versus 1-Precision curves for rotation and uniform scale transformations.
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and 1 pixel for translation. But that requires over 1 h and
33 min to get the result.

In Fig. 12, we demonstrate another example scenario
where the input images have a very low overlap. In this
case, NMInfo could not register the pair of images even
after setting the step sizes to 1 deg for rotation and
1 pixel for translation. Not only did it fail, but also it took
2 h and 55 s to come up with the result. Our proposed
technique, on the other hand, could perform satisfactorily
in both the cases by identifying matching key-points with
a high level of accuracy in less than 20 s.

Besides having the necessity of better initialization,
MiInfo-based techniques also impose a restriction on the
size of the input images. The target image can never be
smaller than the reference image. Also, in the problem
shown in Fig. 12(b), we had to intentionally leave sufficient
blank space at the left part of the target image so that the
reference image can have the chance to fit in the ground
truth position.
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Our proposed technique is not optimized for better com-
putation time. Yet, a comparative study of the average exe-
cution time is summarized in Table 2, which shows the clear
superiority of our proposed technique in terms of timing.
It may be noted that, in our test setting, the search space
for the NMlInfo technique only considers translation and
rotation. It can easily be seen that NMInfo could be far
more computationally expensive should a scaling factor be
included into the search space.

5.3 Results

In order to understand the impact of using the proposed
strategies in weighting the orientation histograms, we have
considered the following three variations of our proposed
technique in all our comparisons.

* Proposed;,s. In this case, we do not apply any of our
proposed weighting strategies (as defined in Sec. 4.1.2)
and use the original SIFT’s approach of building ori-
entation histograms. In other words, gradient magni-
tudes are used in this case to increase orientation bins.

* Proposed,. In this case, for each observed gradient, we
increment the corresponding histogram bin by 1, i.e.,
the orientation histogram will represent the number of
occurrences of gradients in different directions.

¢ Proposed,gp. In this case, we increment the histogram
bin corresponding to each observed gradient by ASD.

mean unequal scaling in horizontal and vertical directions.
Particularly, we rotate the images by 15 deg and 30 deg and
apply different nonuniform scaling factors. Tables 7, 8, and
Fig. 15 compare our proposed technique with symmetric-
SIFT in terms of average matching accuracy, average
transformation error, and Recall versus 1-Precision curves,
respectively.

An overall observation on our experimental results reveals
that all the different variations of our proposed technique out-
perform symmetric-SIFT in almost all of our test cases and
the results are consistent throughout. This is mainly achieved
by avoiding GS-SIFT merging and making use of the esti-
mated rotational difference. Therefore, if we look into the
performance of different variants of the proposed technique,
we will see that Proposed,,,, is almost consistently better
than symmetric-SIFT. Proposed,, on the other hand, per-
forms the best among all the proposed variants as this
version, in addition, applies a better approach to building

Table 7 Comparison of average matching accuracy in the presence
of rotational difference and nonuniform scaling.

Average matching
accuracy (%)

a =230 deg; a=15 deg;

; . . oy = 1.25; oy =1.5;
. . Type of image pair Technique o, =1.0 o, =1.0
In the following few sections, we present the performance 4 y
of our proposed technique in the presence of different image Transverse, T1-T2  Symmetric-SIFT 40.16 22.35
transformations.
Symmetric-SIFT’ 89.38 71.27
5.3.1 Transformation: rotation only I-SIFT 89.38 71.97
In this section, we rotate the images in our test dataset so that
each pair of images to be registered has a certain rotational Proposednag 94.71 76.99
difference a. Table 3 compares the average matching accu-
racy between the proposed and other relevant techniques for Proposed; 96.02 79.57
a range of rotational differences. Table 4, on the other hand, B g
shows the average error in the four transformation parame- roposetaso 94.59 71.40
ters for symmetric-SIFT as well as th.e pr.oposed variations. Coronal, T1-T2 Symmetric-SIFT .68 o
The Recall versus 1-Precision curves in Fig. 13 also demon-
strate the superiority of our proposed tc;chnmue. Symmetric-SIFT’ 89.59 68.12
The Recall versus 1-Precision curves in Fig. 13 also prove
that our proposed technique performs significantly better I-SIFT 89.59 68.12
than symmetric-SIFT and I-SIFT.
Proposedmag 95.34 68.48
5.3.2 Transformation: rotation with uniform scaling
. . . . Proposed; 95.65 76.63
Next, we rotate and apply uniform scaling on the images in
our test dataset. By uniform scaling, we mean equal scaling Proposedasp 95.50 69.24
in both horizontal and vertical directions. Particularly, we )
rotate the images by 30 deg and apply different uniform scal- NIR-EO images  gymmetric-SIFT 83.87 75.00
ing factors. Tables 5, 6, and Fig. 14 evaluate the performance
of our proposed technique in terms of average matching Symmetric-SIFT’ 94.07 86.68
accuracy, average transformation error, and Recall versus
1-Precision curves, respectively. I-SIFT 94.07 86.68
. . . i Proposedmag 98.05 92.05
5.3.3 Transformation: rotation with nonuniform
scaling Proposed; 99.18 96.91
Lastly, we rotate and apply nonumfoqn scalmg. on the Proposedasp 98.33 93.21
images in our test dataset. By nonuniform scaling, we
Journal of Electronic Imaging 013013-14 Jan/Feb 2015 « Vol. 24(1)
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Table 8 Comparison of average error in transformation parameters in the presence of rotational difference and nonuniform scaling.

Average transformation error

a =30 deg;ox =1.25;6, = 1.0

a =15 deg;ox = 1.5;0, = 1.0

Type of image pair Technique Eqy Eq E»y Eo Eq4 Eqp Ey Es
Transverse, T1-T2 Symmetric-SIFT 3.03 2.08 2.05 2.99 3.02 3.03 3.02 2.99
Symmetric-SIFT’ 1.1 0.97 0.99 1.03 2.49 1.63 1.57 1.86
I-SIFT 1.11 0.97 0.99 1.03 2.49 1.63 157 1.86
Proposedmag 0.64 0.55 0.47 0.51 2.01 1.27 1.22 1.84
Proposed; 0.41 0.29 0.20 0.26 1.59 0.72 0.67 1.34
Proposedasp 0.75 0.38 0.30 0.60 1.93 1.37 1.33 1.7
Coronal, T1-T2 Symmetric-SIFT 1.40 1.36 1.38 1.29 117 1.15 117 0.96
Symmetric-SIFT’ 0.92 0.85 0.86 0.78 1.03 0.97 1.01 0.96
I-SIFT 0.92 0.85 0.86 078 1.03 0.97 1.01 0.96
Proposedmag 0.49 0.37 0.32 0.36 0.84 0.43 0.41 0.69
Proposed; 0.23 0.15 0.12 0.17 0.46 0.33 0.31 0.32
Proposedasp 0.30 0.27 0.23 0.20 0.56 0.36 0.35 0.35
NIR-EO images Symmetric-SIFT 0.83 0.43 0.44 0.72 1.02 0.63 0.63 0.85
Symmetric-SIFT’ 0.79 0.30 0.33 0.55 0.94 0.63 0.61 0.84
I-SIFT 0.79 0.30 0.33 055 0.94 0.63 0.61 0.84
Proposedmag 0.35 0.23 0.22 0.31 0.88 0.60 0.63 0.87
Proposed; 0.12 0.06 0.08 0.10 0.32 0.35 0.36 0.34
Proposedasp 0.14 0.05 0.08 0.13 0.50 0.10 0.10 0.41

orientation histograms that, in our opinion, is a better way of
representing the actual visual content. The performance of
Proposed,sp remains in between.

It is interesting to note the similarity in results for sym-
metric-SIFT’ and I-SIFT. The only difference between these
two techniques is in their respective descriptor merging func-
tions. Though the merging functions have difference in their
mathematical formulation, fundamentally they are identical.
This is why symmetric-SIFT’ and I-SIFT perform exactly
the same in all test scenarios.

We would also like to emphasize that our proposed tech-
nique has a significant impact on the number of true matches
identified. Figure 16 demonstrates this trend of improvement
for coronal MR image pairs having 60 deg of rotational dif-
ference. The image pair IDs at the x-axis show images going
from the back to the front of the head. Although we present a
randomly picked case for demonstration, the trend of getting
an increased number of true matches is alike over all our test
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cases. You can also observe that the number of true matches
is very low between image pair IDs 0 and 10, as well as
90 and 100. This is because the T1T2 image slices used in
our experiments are ordered according to their positions in
the original three-dimensional stacks. Image slices obtained
from the middle of the stack contain more brain tissue as
compared with those on either end of the stack. This is
why the number of true matches is lower at both ends of
the graph.

6 Conclusion and Discussion

Key-point matching accuracy is vital in the performance of
image registration. According to our experimental results, our
proposed technique can significantly increase the average
matching accuracy as well as the number of true key-
point matches. Although we have used our technique in con-
junction with symmetric-SIFT, the concept can also fit into
other appropriate local description techniques. Moreover,
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Fig. 15 Recall versus 1-Precision curves for rotation and nonuniform scale transformations.
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Fig. 16 Comparison between different techniques in terms of the
number of true matches identified.
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the proposed histogram weighting strategies alone have
shown clear positive impact on the accuracy of key-point
matching set and final registration. The applicability of the
proposed strategies is not limited to multimodal registration
only. They have the potential to bring similar improvements
to any SIFT-like technique for general image registration and
other computer vision applications.
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