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Abstract. We present a simple yet effective scene annotation framework based on a combination of bag-of-
visual words (BoVW), three-dimensional scene structure estimation, scene context, and cognitive theory. From a
macroperspective, the proposed cognition-based hybrid motivation framework divides the annotation problem
into empirical inference and real-time classification. Inspired by the inference ability of human beings, common
objects of indoor scenes are defined for experience-based inference, while in the real-time classification stage,
an improved BoVW-based multilayer abstract semantics labeling method is proposed by introducing abstract
semantic hierarchies to narrow the semantic gap and improve the performance of object categorization. The
proposed framework was evaluated on a variety of common data sets and experimental results proved its effec-
tiveness. © 2015 SPIE and IS&T [DOI: 10.1117/1.JEI.24.5.053013]
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1 Introduction
Scene annotation, as a primary goal of computer vision and
robotic techniques involving many subtasks, such as depth
estimation, saliency detection, and object annotation, has
been intensely studied during the past few decades.1 Within
this research field, Markov random field (MRF) is consid-
ered as a natural model for exploiting spatial priors.2,3

Recently, conditional random field4–6 has been widely uti-
lized and has brought significant improvement in MRF.
Another state-of-the-art method, max-margin Markov net-
works, effectively incorporates large margin mechanisms
into MRF.7–9 Although scene analysis has been studied
extensively during the past decade, improvement to it
remains a critical challenge,10 largely because existing mod-
els do not have sufficient variability to describe the variable
world, which restricts the application, field, and performance
of existing methods.

To solve this problem, based on traditional object classi-
fication method, we present a novel framework for scene
annotation by incorporating three-dimensional (3-D) scene
structure estimation, scene context, and cognitive theory.
Studies on scene structure estimation aim to recover spatial
information of a scene and estimate the position of objects.
Context in an image encapsulates rich information on
how natural scenes and objects relate to one another. Using
contextual information has become popular in object recog-
nition, as it enforces coherent scene interpretation and elim-
inates false positives to improve the accuracy of image
classification.11–14 Most approaches can be classified into
two general categories: (i) context inference based on statis-
tical summary of the scene (scene-based context models) and
(ii) context representation in terms of relationships among

objects in the image (object-based context). Cognition is
the brain faculty for processing information and applying
knowledge in humans.15 Existing research shows that
using biometric theory assists immensely in classification
tasks.16

In our work, we study how humans attempt to compre-
hend a scene from the perspective of cognitive psychology
and propose a flexible cognition-based hybrid motivation
(CHM) framework, encompassing reasonable experience
and assumption-based inference (EAI), and best-effort object
labeling (BEL). EAI describes the common object appearing
in an indoor scene, such as table, bed, and so on. In BEL,
other objects are modeled and categorized in an abstract and
hierarchical way, according to their context. A bag-of-visual
words (BoVW)-based multilayer abstract semantics labeling
(MASL) method is proposed to achieve this goal. Our
approach is highly modularized, with no restrictions on its
operation other than requiring the ability to train on data,
making our method easy to extend and applicable to many
other tasks with similar outputs.

The paper is organized as follows. Relative research
is concisely introduced in Sec. 2. Our CHM framework
and MASL classification method are proposed in Sec. 3.
Experimental results and analysis are provided in Sec. 4.
Finally, we summarized our current and future work in
Sec. 5.

2 Related Research
In general, object annotation is a process of learning to
answer the “what” question from given images, and includes
geometry recovery and object categorization. We will intro-
duce them separately.
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2.1 Room Geometry Recovery
A major challenge for indoor scene annotation is that most
indoor scenes are cluttered by furniture and decorations,
the appearances of which vary drastically across scenes. It
is hard to model this characteristic consistently. The
Manhattan world assumption states that there exist three dom-
inant vanishing points that are orthogonal;17 this assumption
has significantly reduced the difficulty of recovering space
layout, and has benefited research in overcoming the chal-
lenge of indoor scene annotation immensely. The commonly
used method is to recover the geometry of indoor scenes and
to estimate the position of each object. The input samples
include both single still image and video sequences.18–24

With the development of computer vision techniques,
RGB-D images captured by devices such as Kinect can greatly
reduce the difficulty and cost of generating 3-D scenes.
Understandably, research studies are showing increasing
interest in scanning and building 3-D scenes25–27 with
RGB-D cameras. We will utilize the object detection method
described by Hedau et al.28 to achieve the goal of object detec-
tion of an indoor scene. After this, the positions of most
objects are established and will be utilized as input to the
annotation method.

2.2 Object Classification
Object classification has been an intensively studied field in
computer vision for the past decades. Many outstanding
studies and corresponding improvements have been carried
out to solve this problem, such as k-nearest neighbors
(KNN), decision tree, Bayes model, support vector machine,
linear discriminant analysis, graph-based methods, and
multiple-instance-based learning methods.29–32

Among these methods, BoVW33 is one of the most widely
used methods due to its simplicity and effectiveness. In the
learning model of BoVW, visual words are first obtained by
k-means clustering local features. Then the image is repre-
sented by bag-of-features to train the classifier. However, it
has four major drawbacks: (i) the quality of visual vocabu-
lary is sensitive to data set size;34 (ii) spatial relationships
of image patches are ignored during the construction of
visual vocabulary;35 (iii) hard-assignment k-means clustering
affects the generation of semantically optimized visual
words;36 and (iv) performance of annotation is affected by
semantic gap.37

In the previous work, there are four types of strategies for
improving BoVW: segmentation, coding, ambiguity, and
semantic compression. Segmentation-based methods utilize
ROI to remove background that is irrelevant to visual word
generation.38 Improvements to coding strategy39 and the intro-
duction of ambiguity increase the descriptive ability of visual
words.40 Local information is introduced to effectively gener-
ate complementary features.41 Semantic compression is pro-
posed to improve efficiency and performance.42,43

Here, we target the semantic gap between visual features
and semantic concepts to improve the performance of BoVW
by dividing semantic concepts into several hierarchies to nar-
row semantic gaps. To train each concept classifier, visual
vocabularies are extracted from samples of each inherited
object class to train the abstract classes from bottom to
top, and the model runs from top to bottom for classification.
We will show this process in detail in Sec. 3.

3 CHM Scene Annotation Framework
One fascinating human characteristic is the ability to catego-
rize objects with only a few labeled training instances and to
infer the categories of an indoor scene despite its inner deco-
ration. Humans are born with the ability to perform adaptive
object categorization. Is it possible for a computer to achieve
this goal with the support of machine learning techniques?
To solve this problem, we will describe our framework in the
following subsections. The framework can be roughly di-
vided into two stages: first, the spatial layout of a scene
is estimated and objects in the scene are detected; then
the objects will be annotated by BoVW and the proposed
MASL classification methods, respectively, according to
the inference processes of humans.

3.1 Experience and Assumption-Based Inference
The commonly accepted inference process of humans is
shown in Fig. 1, according to the descriptions of cognitive
theory.44 Long-term memory (LTM) operates like a huge
knowledge warehouse serializing all kinds of information,
whereas short-term memory (STM) contains a much smaller
volatile storage space, and is the first point of handling of
short-term knowledge learned from environmental stimula-
tion. After knowledge in STM is serialized into LTM, key
information is extracted to form or update experience for
future use. If we encounter a novel object and cannot
come to a conclusion about it from STM, LTM will be
referred to if we do not immediately dismiss it. For example,
when we see a cat for the first time, we will remember its key
patterns and save them into both STM and LTM. Knowledge
of the cat in STM may be overwritten by other knowledge
since the space is limited. However, when we see a different
cat, we will refer to LTM and recall its category. This is a
very important ability in cognition.

Generalization is an inherited ability for humans, consist-
ing not only of the ability to extract patterns and learn from a
limited number of samples, but also the ability to store
common key information to ensure similar objects can be
recognized in the future. It is a highly advanced skill com-
pared with the ability of a computer; however, as we under-
stand it, the inference process of a modern computer vision
algorithm is a similar process as shown in Fig. 2. As dem-
onstrated by the results of image categorization contests such
as Pascal VOC challenge and the ImageNet large scale visual
recognition challenge, the performance of object recognition
algorithms has greatly improved in the last two decades of
development. In some circumstances, the performance is
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Fig. 1 The human comprehension process.
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good enough for practical purposes. However, compared
with the natural human inference process, most methods
in computer vision are STM-like, i.e., the LTM process is
ignored, meaning object categorization methods are nona-
daptive and inflexible. This is the main reason that humans,
despite having one brain, can effectively recall and recognize
many types of objects,44 while computers require training
and adjusting many times over with different testing samples.

In this paper, we propose a CHM object categorization
framework for adaptive scene classification. Inspired by
Porway et al.,45 we divide the problem of scene annotation
into two steps for simplification: EAI and BEL. EAI simu-
lates the experience-based inference ability of humans with
manually set rules. For example, given the concept of
“indoor scene,” despite the variation in detail of each indoor
image, there are common objects that appear in our mind,
such as wall, windows, tables, chairs, and so on, as shown
in Fig. 3. First, we detect and categorize objects using EAI.
The remaining objects are then detected and categorized by
BEL with reasonable context to achieve higher-level adapta-
tion. In EAI, objects are detected by Hedau et al.,28 then clas-
sified with BoVW. In BEL, the proposed MASL is adopted
for classification and the model is ready to be extended for
different situations. The introduction of EAI makes our
approach a two-step flexible inference process, differing
from other methods of indoor scene analysis.47–50

3.2 BEL Object Labeling
To deal with objects exceeding the empirical field of EAI,
inspired by Luo et al.,51 we propose a BoVW-based object
classification method for BEL, known as MASL, by intro-
ducing semantic hierarchies with different levels of abstrac-
tion. It is modularly designed according to the organization
of human memory,44 making it convenient to add knowledge

from different object categories without affecting existing
knowledge. The motivation for proposing the MASL
categorization method is that the real world is powered by
hierarchical structures, and relevant research has been proven
effective.52 The difference between the previous method and
MASL is the structure of abstraction. In MASL, the abstract
layers are expandable instead of being a fixed frame.
Furthermore, the abstraction techniques are introduced to
generate layers with different abstract levels to describe
the semantic concepts more clearly.

Semantic hierarchies are helpful for image classification
as they supply a hierarchical framework for image classifi-
cation and provide extra information in both learning and
representation.52 Three types of semantic hierarchy for
image annotation have been recently explored: (1) lan-
guage-based hierarchies based on textual information,53

(2) visual hierarchies based on low-level image features,54

and (3) semantic hierarchies based on both textual and visual
features.55 Here, we extend BoVW by introducing middle
and upper hierarchies of abstract semantics, which are con-
structed by semantics assigned visual words extracted from
concrete categories (CCs). The hierarchical structure of
BoVWand MASL is shown in Fig. 4. According to the prin-
ciple, levels of abstraction increase from bottom to top.
Consequently, descriptive ability increases while the differ-
ence between each CC is dimmed and common attributes are
preserved. From the figure, we can see that MASL is a super-
set of BoVW. If the abstract hierarchies are omitted, MASL
degrades into BoVW.

The whole process of MASL consists of two parts: bot-
tom-up semantic classifier learning and top-down classifica-
tion. In the learning process, each concrete classifier BoVWj
is first trained with concrete semantic visual vocabulary.
Then abstract semantic classifiers including U-SVM and
every M-SVMs will be trained. Learning is from bottom
to top because the abstraction level rises from bottom to
top. At the stage of classification, the inference of the cat-
egory of a testing image is from top to bottom, reflecting
the decrease in the level of abstraction.

Visual
sensors 

Conclusion
Learning

frameworks 
Pattern

extraction 

Fig. 2 Inference process of modern computer vision algorithms.

Fig. 3 A common structure of indoor scenes provided by Quattoni and Torralba.46 We can see that
although the decoration of each room is quite different, they share a similar structure and some common
objects, e.g., wall, table, chair, window, etc.
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3.2.1 Bottom-up semantic classifier learning

The purpose of bottom-up semantic learning is to train the
semantic classifiers with a semantic visual vocabulary of cor-
responding layers.56 This process can be divided into three
steps: first, each concrete classifier BoVWj in Fig. 4(b) is
trained by a visual semantic attribute (VSA) composed by
semantic visual words from semantic preserving BoW
(SPBoW).56 The input of BoVWj from the concrete layer
is images from data sets; then to train the middle abstract
classifier M-SVMi of middle abstract semantic category
(MASC), samples from every CC of the MASC are ran-
domly selected with equal probability to ensure every cat-
egory has the same chance of being selected to construct
a visual vocabulary to improve the descriptive ability. The
semantic visual vocabulary is generated from selected sam-
ples by SPBoW to train M-SVMi. The U-SVM classifier for
the upper abstract semantic category (UASC) is trained in the
same way to complete the learning process.

3.2.2 Top-down classification

Following completion of the bottom-up training stage, to
find the category of an input image, UASC u is first gener-
ated by U-SVM. Then the corresponding MASC m is calcu-
lated by M-SVMs. Finally, the CC c is concluded. The
processes of classification are described as

EQ-TARGET;temp:intralink-;e001;63;201u ¼ argmin ½DðFt; Fu
i Þ�; m ¼ argmin ½DðFt; Fm

j Þ�;
c ¼ argmin ½DðFt; FkÞ�;

(1)

where Fu
i and Fm

j are the visual attributes of the i’th upper
and j’th middle abstract categories, Fm

k is the visual vocabu-
lary, and D is the measurement function utilized by
classifiers. The visual semantic vocabulary is generated by
SPBoW.

Since the decision processes are sequential, if u was
incorrect, the remaining inference processes would be mean-
ingless. Thus, we adopt a two-step verification strategy to
decrease the dependence on upper layers and reduce error

rates. First, the testing image I is passed through U-SVM,
then before the final decision is made, I is passed to all
M-SVMs for further verification. Let the output values of
U-SVM and M-SVMs be PðuÞ and PðmÞ, respectively. The
middle abstract category of the corresponding layer is finally
decided by the following criterion:

EQ-TARGET;temp:intralink-;e002;326;419Cmiddle ¼
XU

i¼1

XM

j¼1

argmax½pðuÞ
i þ pðmÞ

j �; (2)

where U and M are the number of upper and middle clas-

sifiers, and pðuÞ
i and pðmÞ

j are the output values of i’th

U-SVM and j’th M-SVM, respectively, pðuÞ
i , pðmÞ

j ∈ ½−1;1�.
At last, the traditional strategy of BoVW is utilized to get n
outputs p1; p2; : : : ; pn, where n is the number of categories
under each classifier. Image I is classified according to the
following criterion:

EQ-TARGET;temp:intralink-;e003;326;282C ¼ argmax
t¼1;: : : ;n

ðptÞ: (3)

3.2.3 Summary of multilayer abstract semantics
labeling

Compared with original BoVW, the proposed model makes
its improvement from the perspective of abstraction by
introducing abstract semantic layers to narrow semantic
gaps. Semantic visual vocabulary is utilized as a training
feature and strategy to improve the performance of classi-
fiers. The proposed learning algorithm is described in
Algorithm 1, where k ¼ 1; : : : ; m, m is the size of the code-
book, CCk is short for k’th CC, MACj is the abbreviation of
the j’th middle abstract category, UACi is short for the i’th
upper abstract category, SVVS stands for semantic visual
vocabulary set, and m is the number of CC under j’th
MAC. Inh

j
k is the generated visual words by SPBoW

from CCk under MASCj.

Fig. 4 Structure of bag-of-visual words (BoVW) and multilayer abstract semantics labeling (MASL) mod-
els. (a) The flat structure of BoVW. (b) Hierarchical structure of MASL.
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3.3 Summary of the Proposed Cognition-Based
Hybrid Motivation Framework

We will summarize the general framework of CHM in Fig. 5
and Eq. (4). For every object in the scene, context informa-
tion13 is utilized to assist in classification. Emp-Obj and
NEmp-Obj represent the objects that frequently and infre-
quently occur in an indoor scene according to experience,
respectively. According to the mechanism of cognition
process described in Fig. 1, knowledge learned in EAI
will be added to BEL to simulate the human learning
process.

EQ-TARGET;temp:intralink-;e004;326;734

SceneAnnotation → Obj-Detection ∪ Obj-Classification

Obj-Classification → EAI ∪ BEL

EAI → INF-BY-BoVW

BEL → INF-BY-MASL

INF-BY-BoVW → ðEmp-Obj�1Þ ∪ ðEmp-Obj�2Þ ∪ · · ·

∪ ðEmp-Obj�nÞ
INF-BY-MASL → ðNEmp-Obj�1Þ ∪ ðNEmp-Obj�2Þ ∪ · · ·

∪ ðNEmp-Obj�mÞ: (4)

Here, we are using an asterisk in the expression, represent-
ing an arbitrary number of objects.
EQ-TARGET;temp:intralink-;e005;326;569

Object� → φjObjectjðObjectÞðObjectÞjðObjectÞðObjectÞ
× ðObjectÞ: : : : (5)

4 Experiments and Analysis
In this section, we will show the experimental results of
MASL and CHM in the following subsections, including
horizontal and vertical benchmarks, and semantic quantifica-
tion. MASL is first tested on multiple data sets, and then uti-
lized in CHM for indoor scene annotation.

4.1 Data Sets and Experimental Settings
The proposed framework is validated on four popular data
sets used in classification experiments. The details are listed
below:

The Caltech-101 data set57 contains 9197 images in 101
categories. The size of each image is roughly 300 ×
200 pixels. The outline of each object is carefully annotated.
For each category, at least 30 images are randomly selected for
the learning process as described by Wang et al.,58 and the
rest of the images are used as testing samples.

The PASCALVOC 2007 data set59 contains 9963 images
in 20 object categories. There is a bounding box for each
positive example of an object. Compared with Caltech-101,
the data set is more difficult since the number of instances in
an image is not always one. For Caltech-101 and PASCAL
VOC 2007, we randomly select additional 10 images from
each category to form a subset for vertical benchmarks
described in Sec. 4.2.

The Microsoft Research Cambridge (MSRC) data set60

contains 591 images in 23 object classes. Each image is

Algorithm 1 The learning process of MASL.

Input: Training image set and image I of unknown category.

Output: Category of I.

1: Preparation stage

2: For each CCk under MACj , generate SVVS, where vq and sq are
visual words and the corresponding semantic information.

3: The SVVS of MACj under UACi is constructed byMj ¼
Sz

k¼1 Inh
j
k

and M-Ai ¼
Sy

j¼1 Mj .

4: For each UACi , randomly select SVVS with equal probability from
each Inhjk . Let U-ABSi ¼

Sy
j¼1

Sz
k¼1 Inh

j
k , U-A ¼ Sx

i¼1 U-ABSi .

5: Training stage:

6: For every MACj , TRAINðBoVWj ; Inh
j
k Þ

7: For every UACi , TRAINðM-SVMi ;M-Ai Þ

8: TRAIN(U-SVM,U-A)

9: Categorization stage:

10: For an input image, calculate its upper and middle abstract
categories by Eq. (1). Then find the category c 0 that satisfies
Eq. (2) as the start for the next search.

11: Calculate category c of I with Eq. (3).

12: Return c.

Indoor scene

Annotated by BEL and
context inference 

Annotated by EAI

Pattern extraction 

Annotated scene

Scene geometry recovery 
and object detection 

Training 
classifiers of EAI 

Training classifiers 
of BEL

Update

MASL BoVW

Fig. 5 Learning and annotating processes of the proposed cognition-based hybrid motivation framework.
First, the objects are detected by the method proposed by Hedau et al.28 After the modules are trained,
images are labeled successively by experience- and assumption-based inference (EAI) and best-effort
object labeling (BEL). To simulate the human inference process, the newly learned knowledge of objects
in EAI will be added to BEL, including the category and corresponding classifiers.
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labeled by pixels. The resolution of images is roughly
320 × 240 pixels. Two categories, “horse” and “mountain,”
were removed from evaluation due to their small number of
positive samples, as suggested in the description page of the
data set. MSRC and Caltech-101 are used for horizontal
benchmarks described in Sec. 4.3. For MSRC, images are
equally divided for training and testing.

The MIT indoor is a data set of 15,620 images over 67
indoor scenes.46 There are at least 100 images per category.
Here, we follow the settings described by Quattoni and
Torralba.46 The percentage of training and testing images
of each category is 80% and 20%, respectively. All experi-
ments were carried out on a workstation with quad-core
2.13 GHz CPU and 12 GB memory.

4.2 Experiment I: Vertical Benchmarks
As mentioned in the previous research,36 the performance of
BoVW-based methods is affected by the size of visual
vocabulary. In vertical benchmarks, self-evaluation of MASI
and BoVW under different parameters is utilized to deter-
mine the optimized size of visual vocabularies. Testing
images are from Caltech-10157 and PASCAL VOC 2007,59

as shown in Fig. 6, with results given in Fig. 7. We can
see from the result that a larger size of codebook is actually
beneficial for reducing the error rate, but does not mean a
consistently better performance. Complex visual vocabulary
lowers the performance, and this is consistent with the pre-
vious research.61 Meanwhile, the larger the codebook, the
more computational cost is needed to build the visual
vocabulary. Since the underlying techniques utilized by
MASL are also based on BoVW, trends for both methods
are similar. Compared with BoVW, the introduction of
middle abstract layers in MASL leads to a better perfor-
mance. Here, the size of visual vocabulary is set to 6000.

4.3 Experiment II: Horizontal Benchmarks
In this section of the experiments, we will compare MASL
with other similar classification methods and then show the
results of semantic gap quantification.

4.3.1 Comparison on classification

As previously performed by Zhou et al.,62 several approac-
hes62–64 are evaluated on selected data sets.35,63,65,66 Results
are given in Fig. 8(a) and classification performances of indi-
vidual classes for MASL are reported in detail through con-
fusion tables in Figs. 8(b) and 8(c). Names of data sets are
abbreviated according to their providers.62 Since OT65 and
FP63 are part of the LS35 data set, we only give the confusion
table for LS and LF66 (similar to Zhou et al.62) to show how
the different categories are confused in Fig. 8.

We can see from Fig. 8 that MASL achieves the best per-
formance on all tests. This is because by introducing hierar-
chical semantics, the codebook generated by MASL is more
discriminative and effective in reducing the semantic loss
during codebook generation. From the confusion table
shown in Fig. 8, we can see that although considerable con-
fusion exists between man-made and natural scene catego-
ries (e.g., bedroom versus living room, kitchen versus
living room), our MASL still outperforms other methods,
including that of Zhou et al.,62 indicating the effectiveness
of the proposed MASL classification method.

4.3.2 Semantic gap quantification

Semantic gap measurement described by Tang et al.,67 is uti-
lized to quantify semantic gaps, which can be described as

Fig. 6 Sample images from PASCAL VOC 2007 and Caltech-101.
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Fig. 7 Performance of BoVW and MASL with different-sized visual
vocabularies.
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EQ-TARGET;temp:intralink-;e006;63;141Im-SGðxiÞ ¼
1

k

X

xj∈NðxiÞ
dis-simðxi; xjÞ; (6)

where NðxiÞ represents the set of the k nearest neighbors of
xi in the visual space. Semantic distance dis-simðxi; xjÞ
between xi and each of its neighbors xj is measured by
the cosine distance between the vectors of their tags. For
MASL, semantic gap is quantified as

EQ-TARGET;temp:intralink-;e007;326;178Im-SGðxiÞ ¼ M
I Im-SGðxiÞ þ U

MIm-SGðxiÞ; (7)

where M
I Im-SGðxiÞ represents the image semantic gap

between the concrete layer and MASC, and U
MIm-SGðxiÞ

denotes the image semantic gap between MASC and
UASC. To fully evaluate the semantic gaps of MASL, we
constructed multiple semantic hierarchies for MSRC60 and
Caltech-101,57 as shown in Figs. 9(a) and 9(b). Four abstract
categories were constructed by selected 14 CCs with
sufficient and unambiguous training/testing images.
Experimental results are provided in Figs. 9(c) and 9(d).
We can see that MASL was more effective in narrowing
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of MSRC. (b) The hierarchical structure of Caltech-101. (c) Semantic
gap quantization result of MSRC. (d) Semantic gap quantification
result of Caltech-101.

Journal of Electronic Imaging 053013-7 Sep∕Oct 2015 • Vol. 24(5)

Ye et al.: Cognition inspired framework for indoor scene annotation



the semantic gap between concepts and visual data. For
abstract categories with few CCs, the difference between
BoVW and MASL was not significant. The performance
of MASL was slightly better than that of BoVW. However,
for larger abstract categories such as animal on Caltech-101,
substantial improvement was observed (0.943 for BoVW
versus 0.552 for MASL on Caltech-101; 0.829 for BoVW
versus 0.773 for MASL on MSRC). This is because,
when constructing visual data, the introduction of upper
and middle abstract layers prevents interference from com-
pletely irrelevant categories. Conversely, when the scale of
abstract category is small, the disturbance between each
CC is relatively small, thus narrowing the semantic gap
between the two methods is approximately coincident.

4.4 Experiment III: Benchmarks on Scene Annotation
In this experiment, we fully evaluate the overall performance
of the proposed CHM framework on the MIT-indoor data set.
Here, we initially define three basic objects for the indoor
scene: table, chair, and bed, and the inference process is
given in

EQ-TARGET;temp:intralink-;e008;63;499 INF-BY-BoVW → ðtable�Þ ∪ ðchair�Þ ∪ ðbed�Þ : (8)

Similar to Quattoni and Torralba,46 the tests are divided into
four parts containing different categories. Sample images are
shown in Fig. 10.

The methods proposed by Hossein et al.68 and Gong
et al.69 are based on a convolutional neural network
(CNN). CNNs have become prominent in machine learning
during the past decade due to their highly effective perfor-
mance. Optimized parameters are set for each method,
and a CNN is implemented by EBLearn.70 To compare meth-
ods fairly across different applications, the performance of
all methods is evaluated by the precision of classification
on both manually labeled and automatically detected28

objects in the data set. The results of average performances
are given in Table 1. We can conclude that our CHM frame-
work achieves a comparable performance with other meth-
ods. Both EAI and contextual information play important

roles in boosting the performance of the framework and
CHM outperforms other annotation methods71–73 on all
tests. Although CHM does not outperform CNN-based
methods on the second and fourth tests, the performance
gaps between them are not remarkable. Meanwhile, CHM
outperforms the CNN-based methods on the first and
third tests, and the average performance of CHM is better
than all classification methods, proving its effectiveness,
as most samples contain objects that fit the category defini-
tion well, given by Eq. (8). In the second and fourth tests, two
CNN-based methods, respectively, achieved better perfor-
mance, as differences between categories are relatively
small, i.e., the testing sets are more confusing for other meth-
ods. The structural advantage of CNN, with multiple layers
and neurons, ensures that CNN-based methods achieve a bet-
ter performance in this situation.

A sample of the object detection and categorization
results is shown in Fig. 11. Figures 11(a)–11(d) show the
correct object detection and categorization results of indoor
scene categories. We can see from Figs. 11(b) and 11(d) that
the CHM framework deals with empirical and out-of-expe-
rience objects properly, showing self-adaption under the
above assumption; Figs. 11(a) and 11(c) show the detection
of the empirical objects we set; Fig. 11(b) shows the impor-
tance of environment context. When the empirical objects are
detected [a table in Fig. 11(b)], objects around it are consid-
ered as out-of-experience objects and will be categorized by
BEL. Figures 11(e) and 11(f) show the importance of EAI.
With a table first detected, the object above would then be
categorized as a chandelier according to context. All the
results prove that our framework is useful for scene
annotation.

Error examples are also shown. Figure 11(g) shows that
some objects are incorrectly classified; in this case, the chest
is classified as a chair. Figure 11(h) shows error detection
results from the detection module. The chair and chest are
detected with the table so that the whole object is classified
as a table. Figure 11(i) shows both misdetection and misclas-
sification. A shelf and table are detected as one object and
classified as a chest. From these incorrect results, we can

Fig. 10 Sample images fromMIT-indoor data set. As described by Quattoni and Torralba, the whole data
set is divided into four parts: (a) P1, (b) P2, (c) P3, and (d) P4.46

Journal of Electronic Imaging 053013-8 Sep∕Oct 2015 • Vol. 24(5)

Ye et al.: Cognition inspired framework for indoor scene annotation



conclude that current object detection methods28 remain
unable to precisely restore the original 3-D structure for
some situations, such as for low-resolution images with
indistinct 3-D structure, and this needs further investigation.
Additionally, much work still needs to be done to improve
the performance of MASL.

The purpose of our study was to simulate the scene anno-
tation process of humans to make the annotation process
more appropriate and human-like. Although the improve-
ment of the performance is not remarkable compared with
existing methods, our work provides yet another method
for indoor scene annotation, and a preliminary investigation
into knowledge-based scene understanding by means of rule
inference constructed from annotated objects. Differing from
traditional image annotation methods, our method is bio-
inspired, introducing cognitive models and inference rules
to simulate the annotating process of humans. Our proposed
CHM framework, as evidenced by the results shown in

Table 1, outperforms the methods proposed by Wang et
al.71, Tsai et al.,72 and Xie et al.73 on all tests. In general,
CHM performs better than CNN-based methods,68,69 which
are the state-of-the-art results. The performance of CHM is
influenced by existing classification algorithms. Object clas-
sification methods based on BoVW have achieved signifi-
cant improvement over the last few years; however, there
remains significant room for improvement. Compared with
the object detection and learning skills of humans, existing
algorithms in computer vision are still far from satisfactory.

The progressive experimental results of classification,
semantic gap quantification, and scene annotation have
proven the effectiveness of the proposed MASL classifica-
tion method and CHM scene annotation framework from
multiple perspectives. Although far from perfect, the CHM
annotation framework demonstrates the possibility of scene
annotation combining cognition theory and computer vision.
Finally, due to the modular design of our framework, its

Fig. 11 (a)–(i) Samples of the object detection and categorization results.

Table 1 Comparison of results between CHM and other methods on MIT-indoor data set.46 The data set is divided into four groups for detailed
tests.

Group 1 Group 2 Group 3 Group 4 Average

Wang et al.71 34.56� 0.8 31.27� 0.4 44.21� 0.4 63.46� 2.6 43.38� 1.05

Tsai et al.72 32.56� 0.5 32.31� 0.4 45.43� 0.7 63.78� 2.2 43.52� 0.95

Xie et al.73 31.15� 0.25 32.92� 0.48 47.9� 0.64 56.46� 1.92 42.11� 0.82

Hossein et al.68 33.42� 0.37 33.67� 0.34 46.16� 0.21 68.9� 1.8 45.54� 0.68

Gong et al.69 32.56� 0.5 34.38� 0.4 42.17� 0.67 67.52� 1.6 44.16� 0.79

CHM

Context 31.22� 1.3 26.54� 0.9 43.72� 0.8 64.78� 1.7 41.57� 1.18

EAI 34.14� 0.8 30.26� 0.4 44.24� 0.6 60.45� 1.1 42.27� 0.73

Context + EAI 36.63� 0.7 32.53� 0.3 48.17� 0.5 65.52� 1.3 45.71� 0.7
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performance will improve with the development of existing
object detection and recognition methods.

5 Conclusion
In this work, we address the scene annotation problem and
propose a framework to simulate the human cognitive proc-
ess. Compared with the previous works, our experimental
results have proven the effectiveness of our framework on
both narrowing semantic gaps and boosting the performance
of classification. However, limitations remain and, although
the performance of CHM is comparable with state-of-the-art
methods, improvement is still required. We believe that the
performance of CHM will improve with the development of
object classification algorithms, due to its modular design.
Following this preliminary study on indoor scene annotation,
future research will target the interpretation of an indoor
scene based on the annotated objects.
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