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Abstract. Most of the tracking methods try to build up feature spaces to represent the appearance of the target. 

However, limited by the complex structure of the distribution of features, the feature spaces constructed in a linear 

manner cannot characterize the nonlinear structure well. We propose an appearance model based on kernel ridge 

regression for visual tracking. Dense sampling is fulfilled around the target image patches to collect the training 

samples. In order to obtain a kernel space in favor of describing the target appearance, multiple kernel learning is 

introduced into the selection of kernels. Under the framework, instead of a single kernel, a linear combination of 

kernels is learned from the training samples to create a kernel space. Resorting to the circulant property of kernel 

matrix, a fast interpolate iterative algorithm is developed to seek coefficients that are assigned to these kernels so as 

to give an optimal combination. After the regression function is learned, all candidate image patches gathered are 

taken as the input of the function, and the candidate with the maximal response is regarded as the object image patch. 

Extensive experimental results demonstrate that the proposed method outperforms over other state-of-the-art 

tracking methods. 

 
Keywords: visual tracking, kernel ridge regression, multiple kernel learning, fast interpolate iterative algorithm. 

 
Address all correspondence to: Changzhou Institute of Technology, College of Computer and Information 

Engineering, Tongjiang South Road No. 299, Changzhou City, China, 213002; E-mail: qc_hz@163.com  

 

1 Introduction 

As one of the fundamental tasks in computer vision field, visual tracking obtains comprehensive 

applications such as automatic surveillance, robot navigation and human computer interaction. 

Although much work has been dedicated to it in recent years, the accurate tracking of a generic 
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target in complex environments remains a challenging problem due to the factors including 

illumination changes, camera motion, occlusion and background clutter. 

A regular approach to tackling the problem is to establish an appearance model based on the 

observations of the target in the previous frames.
1
 The appearance model assimilates the features 

characterizing the target and the background, and then the likelihood of an image patch as an 

object image region is estimated. A distance metric over the features often directly serves as the 

measurement of the likelihood. Hence, it is obvious that features extracted from the image 

patches play the important role in the determination of the object image patches. At present, the 

appearance models can grossly fall into two categories.
2,3

 One is the generative appearance 

model, while the other is called the discriminative appearance model. The generative appearance 

model typically employs the features from the target occurring in the latest frames to predict the 

most likely appearance of the target in the future. For this type of models, the accuracy of 

predictions depends on the cohesion of features from the target. As for the discriminative 

appearance models, they focus on the distinction between the features from the target and from 

the background. The maximal margin between features is pursued by these models. It will have a 

great impact on the accuracy of the subsequent classification over the image patches. No matter 

which type of the appearance model the tracking methods use, the distribution of the features has 

the significant influence on the tracking results. Thus, this requires that an appropriate feature 

space be constructed available for the successive distance metric, further enhancing the 

representative ability of the appearance model. 

Revolving around the construction of the feature space, a large number of tracking methods 

take advantage of all kinds of classic features to depict the target and the background. 

Considering the motion smoothness, it often holds that the features extracted from the target are 
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coherent in a short time. However, in company with tracking, the appearance of the target also 

evolves. As for the two object image patches sampled at the different frames over a significant 

time interval, more often than not, there exists a significant difference in the features 

corresponding to them. Consequently, this leads to a phenomenon that, in a short time interval, 

the cohesion of the features can be observed. Once the time span is stretched, it is evident that 

the distribution of the features gradually exhibits its own disorder.
4
 Currently, numerous 

appearance models alleviate the problem through online learning. They replace the previous 

training samples with the incoming samples, and try to use latest samples to construct a local 

linear feature space. In fact, the distribution of features is often multi-modal in the feature space, 

but most of the appearance models deal with the features in a linear manner, which leads to that 

the distance metric in the feature space becomes invalid. This is one of the main reasons that the 

tracking failure happens. 

It is difficult to depict the multi-modal structure of the feature distribution with a linear vector 

space. Compared with an explicit linear vector space, the nonlinear representation for the 

structure, such as manifold, kernel space and so on, achieves higher generality to the description 

of this likes of distribution. Li et al. characterize the target appearance with the covariance matrix 

descriptors, and learn a Riemannian manifold based on them in an incremental fashion.
5,6

 Khan 

et al. assume that the image vectors representing the target lie on a Grassmann manifold.
7
 

However, the manifold learning is sensitive to outliers, which tends to introduce the errors into 

the description of the structure. Another approach to representing the multi-modal structure is to 

introduce the kernel space into the representation of the feature distribution. Recently, Henriques 

et al. accomplish tracking with the kernelized correlation filters.
8
 The usage of the dense 

sampling strategy ensures sufficient training samples. Linear regression is implemented in the 
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kernel space of the features. This tracking method shows competitive performances in both the 

efficiency and the tracking accuracy. Danelljan et al. adjust the update theme for the kernelized 

correlation filters and incorporate a subspace into the appearance model, which gets promising 

results.
9
 For both of the kernelized correlation filters-based tracking methods, the selection of the 

kernels has great influence on the performance. Faced with different scenarios, these methods 

need to empirically construct different kernels. 

To address the problem of choosing kernels, we substitute multiple kernels for single kernel 

under the kernel ridge regression framework, and assign these kernels with optimal coefficients. 

In this way, the distribution structure is expected to be captured in a proper kernel space. The 

contribution of our work can be summarized in three aspects: (1) We give a proof that a linear 

combination of circulant Gram matrices still satisfies circulant property. This lemma lays the 

foundation for the subsequent speedup multiple kernel ridge regression. (2) A group of 

coefficients, which measure the contributions of all the kernels, are learned under the multiple 

kernel learning framework. A fast interpolate iterative algorithm is created for accelerating the 

learning. (3) A tracking method based on multiple kernel ridge regression is proposed in this 

paper. It strikes a balance between the efficiency of learning and the accuracy of tracking. 

The remainder of the paper is organized as followings. A brief review of the related works is 

given in section 2. The detailed description of our method is presented in section 3. The 

experimental results are offered and discussed in section 4. Finally, the paper is concluded in 

section 5. 

2 Related Work 

There is numerous literature reporting the tracking results based on different features. Most of 

these methods are confronted with the problem how to refine the features. A promising strategy 
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is to find a feature space, regardless of either low-dimensional subspace or high-dimensional 

kernel space, where all features are embedded into. It is expected that the original feature 

distribution can be transformed into a distribution that is in favor of discrimination or 

high-quality matching. 

Among the tracking methods based on the embedding space, the subspace leaning-based 

tracking methods seek a compact representation for the raw pixel values. This type of the 

appearance models try to accommodate as many observations of the target appearance as 

possible. Black et al. propose an eigenspace representation for the target appearance to address 

the appearance variation problem resulting from the viewpoint changes.
10

 Ross et al. devise a 

low-dimensional subspace over the image patches resorting to incremental principal component 

analysis.
11

 The reconstruction error of each image patch is taken as the distance metric. Hu et al. 

construct a tensor subspace as the description of the target appearance, where the mean and the 

eigenbasis of tensors can be updated online.
12

 Nevertheless, the update theme for the holistic 

template makes these methods less effective in coping with occlusions. 

Recently, the applications of sparse representation in visual tracking have gradually attracted 

significant attention. For the tracking methods, all image patches can be considered as a sparse 

linear combination of a set of templates. Consequently, these templates constitute an 

over-complete dictionary, and the corresponding feature space is thus spanned by them. Mei et al. 

utilize the object image patches and trivial templates to construct a dictionary.
13,14

 The 

reconstruction error of a candidate in the target template subspace is taken as the distance metric. 

Based on L1 tracker, Bao et al. make use of the accelerated proximal gradient approach to reduce 

the computational load for L1 minimization.
15

 Instead of the object image patches as the basis 

vectors of the dictionary, Wang et al. integrate the PCA-based representation into the 
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construction of the dictionary,
16

 which facilitates the online update of the dictionary. Jia et al. 

develop a structural local sparse appearance model that uses the alignment-pooling technique 

over the local patches to search the target.
17

 Zhong et al. combine a sparsity-based classifier over 

holistic image patches and sparsity-based generative model over local image patches,
18

 and this 

method is able to achieve the tracking in the case of occlusion. For the sparse 

representation-based tracking methods, the sparsity constraint enforced on the coefficients is 

helpful for the selection of the basis vectors of the dictionary. In this manner, the subspace 

spanned by the basis vectors selected effectively represents the variations that both occur in the 

target and the background. It is obvious that the new feature space is only relevant to the 

construction of the dictionary. 

Considering the multi-modal structure of the distribution, the kernel methods bring the 

nonlinearity of the structure into the decision of the object image patches via mapping the 

features into the high-dimensional kernel space. This makes it feasible to handle the kernelized 

features in a linear fashion. Avidan uses support vector machine (SVM) under the optical flow 

framework to distinguish the object image patch from the background.
19

 Subsequently, Hare et al. 

introduce a structured output SVM into the design of the appearance model.
20

 Through setting up 

a joint kernel map for the features and the position translations, the possible position of the target 

in the new frame is predicted under the large-margin framework. Gao et al. exploit the graph 

structure of the features in the Hilbert space to devise a discriminative tracker.
21

 Wang et al. 

extend sparse representation to kernel space, and evaluate the similarity between a candidate and 

the template with residual error.
22

 Yang et al. build up a group of SVMs over different feature, 

and combine them under the boosting framework so as to get a strong discriminative tracker.
23

 

For these methods, the forms of kernels, including the kernel types and the parameters for the 
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kernels, rely on whether the kernel space established is suitable for representing the structure of 

the distribution. 

As an effective solution to the selection of kernels, the multiple kernel learning algorithms 

pursue an optimal combination of kernels for classification tasks.
24,25

 According to it, we attempt 

to exploit multiple kernel learning to server the purpose of building up a kernel space. The key 

problem concerning the assignment of coefficients for the base kernels is addressed through 

exerting the norm constraints on the coefficients.
26-28

 With L1 norm constraint, the sparse 

coefficients can be obtained, but the correlation among the base kernels is discarded, which 

degrades the generalization performance. In contrast to L1 norm constraint, L2 norm constraint 

takes the contribution of every kernel into account,
29

 and it is proven to resist against noises 

occurring in the data. Motivated by the characteristic of L2 norm constraint, we exploit it to seek 

a combination of kernel functions that creates a feature space most suitable for the identification 

of the object image patch. 

3 Visual Tracking based on Multiple Kernel Ridge Regression 

3.1  Preliminaries 

Given a vector 𝐱 ∈ ℝ𝑛×1  ( 𝐱 = [𝑥1, 𝑥2 ⋯ , 𝑥𝑛]𝑇 ), the corresponding circulant matrix 𝐗 

generated from 𝐱 is expressed as following. 

𝐗 = C(𝐱) =

[
 
 
 
 

𝑥1

𝑥𝑛
𝑥𝑛−1

⋮
𝑥2

𝑥2

𝑥1
𝑥𝑛

⋮
𝑥3

𝑥3

𝑥2
𝑥1

⋮
𝑥4

⋯
⋯
⋯
⋮
⋯

𝑥𝑛

𝑥𝑛−1
𝑥𝑛−2

⋮
𝑥1 ]

 
 
 
 

                     (1) 



8 

C(∙) denotes a cyclic shift operator. It can be seen that each row of 𝐗 is obtained through 

shifting the vector 𝐱. Furthermore, the shift of the vector 𝐱 can be illustrated with the product 

between 𝐱 and a permutation matrix 𝐏. 

𝐏 =

[
 
 
 
 
0
1
0
⋮
0

0
0
1
⋮
0

0
0
0
⋮
0

⋯
⋯
⋯
⋮
⋯

1
0
0
⋮
0]
 
 
 
 

                           (2) 

Subsequently the circulant matrix 𝐗 can be denoted with respect to 𝐱 and 𝐏. 

𝐗 = [𝐱, 𝐏𝐱, 𝐏2𝐱,⋯ , 𝐏𝑛−1𝐱]𝑇                        (3) 

It is noted that each entry 𝐗𝑖,𝑗 of the circulant matrix can be derived in the form of 𝐗𝑖,𝑗 =

(𝐏(𝑖−1)𝐱)𝑗
𝑇 = 𝐗1,mod(𝑛+𝑗−𝑖+1,𝑛) (Here, mod(∙,∙) denotes the modular operator). As a result, 

there exits an attractive characteristic for the circulant matrix. Using Discrete Fourier Transform 

(DFT), the circulant matrix can be diagonalized as follows. 

𝐗 = (𝐅∗)𝑇 ∙ diag(𝐱̂) ∙ 𝐅                          (4) 

Where 𝐅  denotes the DFT coefficient matrix that is a constant matrix, and 𝐅∗  is the 

complex-conjugate of 𝐅. diag(𝐱̂) is a diagonal matrix with the vector 𝐱̂ aligned along the 

diagonal line. 𝐱̂ is the DFT result corresponding to the vector 𝐱. The outstanding speed 

achieved by the kernelized correlation filters-based tracking method
8
 is largely attributed to this 

transformation in Eq. (4). 

3.2  Kernel ridge regression with single kernel 

For visual tracking, in general, there exists a unique object image region in each frame. Other 

than the object image region, the rest of the image patches that are sampled at arbitrary locations 

are all taken as the background image patches. In fact, in the proximity of the object image 

region, the image patches are immersed with less background pixels than the image patches far 
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from the target. Babenko et al. state that the hard labels for these image patches tend to augment 

the tracking drift due to the errors of target locations.
30

 Hence it is reasonable to assign an image 

patch with a real value label instead of a binary label. Kernel ridge regression is capable of 

meeting the requirement of the assignment of real values labels. 

When the features are mapped into a kernel space, considering the linear structure of the 

feature distribution in this space, a regression function describing the structure can be expressed 

as. 

𝑦 = 𝛃𝜑(𝐱)                                (5) 

Where 𝜑(∙) defines a function that accomplishes the mapping of a feature vector 𝐱. For kernel 

learning-based methods, in practice, the feature mapping is implicitly defined by the kernel 

function as an inner product 𝑘(𝐱𝑖, 𝐱𝑗) = 〈𝜑(𝐱𝑖), 𝜑(𝐱𝑗)〉. 𝑦 is a real value, and can be also 

deemed as a soft label. 𝛃 is a weight vector that needs to be learned from the training samples. 

For the kernel ridge regression, 𝛃 can be derived via minimizing an objective function. 

𝛃 = argmin𝛃 ∑ ‖𝑦𝑖 − 𝛃𝜑(𝐱𝑖)‖
2 + 𝜆𝑁

𝑖=1 ‖𝛃‖2                   (6) 

Where 𝜆 > 0 is a tradeoff parameter. With 𝑁 training samples and their corresponding soft 

labels {(𝐱1, 𝑦1), (𝐱2, 𝑦2),⋯ , (𝐱𝑁, 𝑦𝑁)}, the solution to the above objective function is get as 

follows. 

𝛃 = 𝛟(𝐱)𝑇(𝛟(𝐱)𝛟(𝐱)𝑇 + 𝜆𝐈)−1𝐲                      (7) 

Where 𝛟(𝐱) = [𝜑(𝐱1), 𝜑(𝐱2),⋯ , 𝜑(𝐱𝑁)]𝑇. 𝐲 is a real value vector, 𝐲 = [𝑦1, 𝑦2, ⋯ , 𝑦𝑁]𝑇. Let 

𝛂 = (𝛟(𝐱)𝛟(𝐱)𝑇 + 𝜆𝐈)−1𝐲, and then the solution can be formulated as follows. 

𝛃 = 𝛟(𝐱)𝑇𝛂 = ∑ 𝛼𝑖𝜑(𝐱𝑖)
𝑁
𝑖=1                         (8) 
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From Eq. (8), it is noted that, with the fixed mapping function 𝜑(∙), 𝛃 only associates to 𝛂. 

Once that 𝛂 is derived, 𝛃 can be determined directly. For the minimization problem in Eq. (6), 

a dual form with respect to 𝛂 is explored to give the solution. 

𝛂∗ = argmax𝛂(−𝜆 𝛂𝑇𝛂 − 𝛂𝑇𝐊𝛂 + 2𝛂𝑇𝐲)                  (9) 

In the case of single kernel, 𝐊 is a Gram matrix (𝐊 = 𝛟(𝐱)𝛟(𝐱)𝑇). The solution to this 

optimization problem in Eq. (9) is expressed as. 

𝛂 = (𝐊 + 𝜆𝐈)−1𝐲                            (10) 

It can be seen that the calculation of 𝛂 is involved in the computation of the inverse matrix, and 

it inhibits the application of kernel ridge regression in real-time visual tracking. However, under 

the assumption that the training samples [𝐱1, 𝐱2, ⋯ , 𝐱𝑁] are generated by the cyclic shifts of a 

base vector 𝐱, namely 𝐱𝑖 = 𝐏(𝑖−1)𝐱, when the kernel function 𝑘(∙,∙) satisfies the property 

𝑘(𝐱𝑖, 𝐱𝑗) = 𝑘(𝐏𝑝𝐱𝑖, 𝐏
𝑝𝐱𝑗) for all entries of the Gram matrix 𝐊, 𝐊 is actually a circulant matrix. 

In this case, Henriques et al. give an excellent approach to accelerating its calculation 

remarkably.
8
 Resorting to Eq. (4), the DFT vector 𝛂̂ corresponding to 𝛂 can be acquired in the 

Fourier form. 

𝛂̂ = 𝐲̂ (𝐤̂ + 𝜆𝟏)⁄                             (11) 

Where 𝐲̂ denotes DFT vector of 𝐲, and 𝐤̂ is the DFT vector of the first row from the Gram 

matrix 𝐊. 𝟏 denotes a vector [1,1,⋯ ,1]𝑇. 𝛂̂ is the DFT vector that can yield 𝛂 through 

inverse DFT. 

3.3  Fast kernel ridge regression based on multiple kernel learning 

Since that kernel ridge regression is upset by the issue in the selection of a most suitable kernel, 

we bring multiple kernel learning into the solution to the problem. Under the multiple kernel 
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learning framework, the kernel space is created by a linear combination of kernels. Then the 

Gram matrix 𝐊 is made up of a set of Gram matrices corresponding to different kernel functions. 

𝐊 = ∑ 𝜃𝑖𝐊𝑖
𝑚
𝑖=1                               (12) 

Where 𝜃𝑖  is the 𝑖-th coefficient (𝑖 = 1,2,⋯ ,𝑚). 𝐊𝑖 is 𝑖-th Gram matrix represented by a 

specific type of kernel function. As a result, the regression function in Eq. (8) can be expressed 

in terms of multiple kernels as follows. 

𝑦 = ∑ 𝛼𝑖 ∑ 𝜃𝑙
𝑚
𝑙=1 𝜑𝑙(𝐱𝑖)

𝑁
𝑖 ∙ 𝜑𝑙(𝐱)                     (13) 

Substitute Eq. (12) for 𝐊 in Eq. (9), and the objective function can be rewritten as follows. 

argmin𝚯 argmax𝛂 −𝜆 𝛂𝑇𝛂 − ∑ 𝜃𝑖𝛂
𝑇𝐊𝑖

𝑚
𝑖=1 𝛂 + 2𝛂𝑇𝐲             (14) 

In that the coefficient vector 𝚯 = [𝜃1, 𝜃2, ⋯ , 𝜃𝑚]𝑇 is not given in advance, the optimization 

problem in Eq. (14) not only depends on 𝛂 but also is related to 𝚯. With the L2-norm 

constraint on 𝚯,
29

 the coefficient vector 𝚯 can be restricted to a part of the sphere centered 

around a positive mean. 

 {𝚯|𝚯 ≥ 0, ‖𝚯 − 𝚯0‖
2 ≤ 𝛾2 }                       (15) 

Where 𝚯0  is an initial vector of 𝚯 , and 𝛾 > 0  defines the radius of the sphere. The 

optimization problem turns out to a convex optimization problem with respect to 𝛂 and 𝚯. 

Since the close-form solution for Eq. (14) does not exist, an interpolate iterative algorithm is 

developed to compute 𝛂 and 𝚯. This algorithm is outlined in Algorithm 1. 

Algorithm 1: Interpolate iterative algorithm 

1: Input: A group of Gram matrices {𝐊1, 𝐊2, ⋯ , 𝐊𝑚}, and the coefficient vector 𝚯 with each 

coefficient 𝜃𝑖 = 1 𝑚⁄ . Given 𝐲, the initial value for 𝛂 is (∑ 𝜃𝑖𝐊𝑖
𝑚
𝑖=1 + 𝜆𝐈)−1𝐲. 

2: do 

3:   𝛂′ = 𝛂. 

4:   𝐯 = [𝛂𝑇𝐊1𝛂, 𝛂𝑇𝐊2𝛂,⋯ , 𝛂𝑇𝐊𝑚𝛂]𝑇. 
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5:   𝚯 = 𝚯0 +  𝛾 ∙ 𝐯/‖𝐯‖. 

6:   𝛂 = 𝜂𝛂′ + (1 − 𝜂)(∑ 𝜃𝑖𝐊𝑖
𝑚
𝑖=1 + 𝜆𝐈)−1𝐲. (𝜂 ∈ (0,1) is an interpolated parameter) 

7: while ‖𝛂 − 𝛂′‖ > ε (ε > 0 is a threshold) 

8: Output: 𝛂 and the coefficient vector 𝚯. 

In order to facilitate the real-time application of this algorithm in multiple kernel learning, we 

also seek an efficient way to get the solutions to 𝛂 and 𝚯. Assuming that the selection of the 

kernels only ranges over the Gram matrices with circulant structures, a fast solution can be 

derived. At first, aiming at multiple kernel learning, a proof is given that the linear combination 

of Gram matrices still satisfies the circulant property. 

Theorem 1. Given a base vectors 𝐱 ∈ ℝ𝑀×1, a group of Gram matrices {𝐊1, 𝐊2, ⋯ , 𝐊𝑄} are generated from a set of 

kernel functions {𝑘1(∙,∙), 𝑘2(∙,∙),⋯ , 𝑘𝑄(∙,∙)} . An entry of 𝑙 -th Gram matrix is 𝐊𝑖,𝑗
𝑙 = 𝑘𝑙(𝐏

𝑖−1𝐱, 𝐏𝑗−1𝐱) ( 𝑙 =

1,2,⋯ , 𝑄). If the set of kernel functions all satisfy 𝑘𝑙(𝐱, 𝐱′) = 𝑘𝑙(𝐏
𝑝𝐱, 𝐏𝑝𝐱′) (Here, 𝑝 is an integer), any linear 

combination of the Gram matrices ∑ 𝜃𝑞𝐊𝑞
𝑄
𝑞=1  is still a circulant matrix (𝜃𝑞 denotes 𝑞-th coefficient). 

Proof: In that each entry of the Gram matrix satisfies 𝐊𝑖,𝑗
𝑙 = 𝑘𝑙(𝐏

𝑖−1𝐱, 𝐏𝑗−1𝐱) = 𝑘𝑙(𝐱, 𝐏mod(𝑀+(𝑗−𝑖),𝑀)𝐱′) =

𝐊1,mod(𝑀+𝑗−𝑖+1,𝑀)
𝑙 , 𝐊𝑖,𝑗

𝑙  is a circulant matrix. Let 𝐊 = ∑ 𝜃𝑞𝐊𝑞
𝑄
𝑞=1 . An entry of 𝐊 can be expressed with the 

entries from the Gram matrices, 𝐊𝑖,𝑗 = ∑ 𝜃𝑞𝐊𝑖,𝑗
𝑞𝑄

𝑞=1 = ∑ 𝜃𝑞𝑘𝑞(𝐏
𝑖−1𝐱, 𝐏𝑗−1𝐱)𝑄

𝑞=1 . 

With the property for the kernel function, 𝑘(𝐱, 𝐱′) = 𝑘(𝐏𝑝𝐱, 𝐏𝑝𝐱′), then the entry of 𝐊 is equivalent to 

𝐊𝑖,𝑗 = ∑ 𝜃𝑞𝑘𝑞(𝐏
(−𝑖+1)𝐏(𝑖−1)𝐱, 𝐏(−𝑖+1)𝐏(𝑗−1)𝐱)𝑄

𝑞=1 . Considering the circulant property of 𝐏, 𝐊𝑖,𝑗  also satisfies 

𝐊𝑖,𝑗 = ∑ 𝜃𝑞𝑘𝑞(𝐱, 𝐏mod(𝑀+(𝑗−𝑖),𝑀)𝐱)𝑄
𝑞=1 = 𝐊1,mod(𝑀+𝑗−𝑖+1,𝑀). It can be seen that 𝐊𝑖,𝑗 is only relevant to mod(𝑀 +

𝑗 − 𝑖, 𝑀). This meets the criteria of the circulant matrix that, if all entries of the matrix is only related to mod(𝑀 +

𝑗 − 𝑖, 𝑀), then the matrix is a circulant matrix. 

After the conclusion of theorem 1 is reached, we are able to improve the efficiency of 

interpolate iterative algorithm by means of the diagonalization trick for the circulant matrix in Eq. 

(4). Suppose that all of the Gram matrices are circulant matrices, in Algorithm 1, the calculation 

of 𝐯 can be rewritten as. 
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𝐯 = [𝛂𝑇(𝐅∗)𝑇 ∙ diag(𝐤̂1) ∙ 𝐅𝛂, 𝛂𝑇(𝐅∗)𝑇 ∙ diag(𝐤̂2) ∙ 𝐅𝛂,⋯ , 𝛂𝑇(𝐅∗)𝑇 ∙ diag(𝐤̂𝑚) ∙ 𝐅𝛂]
𝑇
 (16) 

Where 𝐤̂𝑖 is the DFT of the first row of the Gram matrix 𝐊𝑖. As the DFT result of 𝛂, 𝛂̂ = 𝐅𝛂. 

Additionally, the product between a vector and a diagonal matrix is an element-wise product, 

then the calculation of 𝐯 can be simplified as following. 

𝐯 = [𝛂̂⨀𝐤̂1 ∙ 𝛂̂𝑇 , 𝛂̂⨀𝐤̂2 ∙ 𝛂̂𝑇 , ⋯ , 𝛂̂⨀𝐤̂1 ∙ 𝛂̂𝑇]
𝑇
                  (17) 

For the time-consuming step in Algorithm 1, we update 𝛂 in the Fourier domain. 

𝐅𝛂 = 𝜂𝐅𝛂 + (1 − 𝜂)𝐅(∑ 𝜃𝑖(𝐅
∗)𝑇 ∙ diag(𝐤̂𝑖) ∙ 𝐅𝑚

𝑖=1 + 𝜆𝐈)−1𝐲           (18) 

Subsequently, the Fourier form of 𝛂 is obtained. 

𝛂̂ = 𝜂𝛂̂ + (1 − 𝜂) 𝐲̂ (∑ 𝜃𝑖
𝑚
𝑖=1 𝐤̂𝑖 + 𝜆 ∙ 𝟏)⁄                     (19) 

Based on the DFT result, 𝛂 can be derived through inverse DFT. For the task of visual tracking, 

it is straightforward to fulfill the kernel ridge regression with 𝛂̂. Therefore, here, the DFT result 

is preserved for the successive calculation of confidence of a candidate. The fast interpolate 

iterative algorithm is summarized in Algorithm 2. 

Algorithm 2: Fast interpolate iterative algorithm 

1: Input: A group of Gram matrices {𝐊1, 𝐊2, ⋯ , 𝐊𝑚}, and the coefficient vector 𝚯 with each 

coefficient 𝜃𝑖 = 1 𝑚⁄ . Given 𝐲, the Fourier form of 𝛂 is 𝛂̂ = 𝐲̂ (∑ 𝜃𝑖
𝑚
𝑖=1 𝐤̂𝑖 + 𝜆 ∙ 𝟏)⁄ . 

2: do 

3:   𝛂′̂ = 𝛂̂. 

3:   𝐯 = [𝛂̂⨀𝐤̂1 ∙ 𝛂̂𝑇 , 𝛂̂⨀𝐤̂2 ∙ 𝛂̂𝑇 , ⋯ , 𝛂̂⨀𝐤̂1 ∙ 𝛂̂𝑇]
𝑇
. 

4:   𝚯 = 𝚯0 +  𝛾 ∙ 𝐯/‖𝐯‖. 

5:   𝛂̂ = 𝜂𝛂′̂ + (1 − 𝜂) 𝐲̂ (∑ 𝜃𝑖
𝑚
𝑖=1 𝐤̂𝑖 + 𝜆 ∙ 𝟏)⁄ .  

6: while ‖𝛂̂ − 𝛂′̂‖ > ε 

7: Output: 𝛂̂ and 𝚯.  
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3.4  Detection of the target via kernel ridge regression 

As for the establishment of the regression function, it is learned from a group of training samples. 

This requires that there be s features gathered as the training samples. In addition, the tracking 

task is regarded as the detection of the target based on the features. It can be achieved by 

evaluating the confidence of an image patch as the object image patch. This also requires that a 

large number of image patches be sampled as the candidates. In our tracking method, the strategy 

of dense sampling is adopted to collect the image patches. 

 

Fig. 1 The collection of the training samples by the cyclic shifts of the base image 

The features are extracted from the image patches, and they act as the training samples that are 

characteristic of the image patches. The object image patches and background image patches are 

all generated by the cyclic shift of a base image patch. Resorting to the translation, both the 

object image patch and background image patches are collected. The collection is illustrated in 

Fig.1. “CT” in Fig.1 is the abbreviation of “cyclic shift”. 𝐱(𝑢, 𝑣) is used to denote a feature 

extracted from an image patch (𝑢 and 𝑣 denote the horizontal shift and vertical shift of the 

CT 

object image patch background image patch 

base image patch 

horizontal shift by +50 

horizontal shift by -50 

vertical shift by +50 

vertical shift by -50 
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current image patch from the center of the base image patch respectively). When both 𝑢 and 𝑣 

are equal to 0, 𝐱(0, 0) represents the feature that is from the base image patch, and it is also the 

feature extracted from the target. When either 𝑢  or 𝑣  is non-zero, the feature 𝐱(𝑢, 𝑣) 

characterizes the mixture of the object region and the background region. 

When learning the kernel regression function, an amount of training samples and soft labels 

are in demand. The training samples originate from the HOG features that are extracted from the 

image patches.
31

 As for the soft labels, a Gaussian function 𝑓(𝑢, 𝑣) with respect to the shifts 𝑢 

and 𝑣 serves as the label assignment function that generates the soft labels for the training 

samples. In fact, 𝑢 and 𝑣 reflects how far away the target is from the center of the image patch. 

The label assignment function 𝑓(𝑢, 𝑣) follows the intuition that the further the image patch is 

away from the center, the less likely the image patch is to be the object image patch. 

The candidates are also sampled via the cyclic shifts of a base image patch that is centered at 

the location of the target in the previous frame. As a result, the responses of the decision function 

to all the candidate image patches should be checked. 

𝐲 = 𝐊𝑇 𝛂                               (20) 

Considering that 𝐊 = ∑ 𝜃𝑗
𝑚
𝑗=1 𝐊𝑗 is a linear combination of the circulant matrices with respect 

to a feature 𝐳(𝑢, 𝑣) with an unknown soft label, it can be computed in Fourier domain. 

𝐲̂ = (∑ 𝜃𝑙
𝑚
𝑙=𝑙 𝐤̂𝑙)

∗⨀𝛂̂                         (21) 

The inverse DFT of 𝐲̂  gives the responses of all candidates. The response reflects the 

confidence of a candidate as the object image patch. 

conf(𝐳𝑖(𝑢, 𝑣)) = 𝑦𝑖                          (22) 

Finally, the candidate with the maximal response is taken as the object image patch. As Eq. (23) 

shows, the translation can be induced from the shifts of the object image patch. 
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(𝑢, 𝑣) = argmax𝑢,𝑣( conf(𝐳(𝑢, 𝑣)))                     (23) 

  In the method, every target image patch is denoted with a rectangular bounding box. With the 

horizontal shift 𝑢 and the vertical shift 𝑣, the location of the target bounding box at the current 

frame can be estimated based on the center of the bounding box at the previous frame. Suppose 

that the central coordinate of the target bounding box at the previous frame is (𝐿𝑋𝑡−1,𝐿𝑌𝑡−1) 

(  𝐿𝑋𝑡−1  and 𝐿𝑌𝑡−1  denote the horizontal coordinate and vertical coordinate of the target 

bounding box at the (𝑡 − 1)-th frame respective), with the translation, the central coordinate of 

the target bounding box at the current frame is (𝐿𝑋𝑡 = 𝐿𝑋𝑡−1 + 𝑢, 𝐿𝑌𝑡 = 𝐿𝑌𝑡−1 + 𝑣). 

After that the location of the object image patch is identified, the training samples are 

collected again in order to update the detector online. The parameters involved in the regression 

function in Eq. (21) are updated based on the HOG descriptors extracted from the cyclic versions 

of the image patch. The updating for the regression function is fulfilled as Algorithm 2 illustrates. 

It lays the foundation for the determination of the object image patch in the next frame. 

4 Experiment and Discussion 

In order to evaluate the performance of our tracking method, the experiments are conducted on 

the publicly available video sequences covering the scenarios such as cluttered background, fast 

motion, illumination variation, partial occlusion and viewpoint change. Our method is evaluated 

compared with other state-of-the-art tracking methods including CNT,
9
 KCF,

8
 LOT,

32
 MEEM,

33
 

PMT,
34

 SCM,
18

 STC,
35

 Struck
20

 and TLD
36

 over 30 video clips. 

4.1  Experiment setup 

Instead of the intensities of the raw pixels, we choose the histogram of oriented gradients (HOG) 

descriptors as the features representing the image patches. In the view of the tradeoff between the 
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tracking accuracy and the efficiency,
37

 we adopt the same setting of the cell size of 4×4 pixels as 

KCF.
8
 Since that the HOG descriptor closely associates to the spatial layout of the pixels, when 

the cyclic shift happens to an image patch, the cyclic shift also occurs in the HOG descriptor. 

Hence the theorem of speedup multiple kernel ridge regression still holds for HOG. HOG feature 

is adequate to the low-level feature in our method. Our goal lies in the validation of the 

application of multiple kernel learning in visual tracking. Without loss of generality, eleven 

kernels are combined to create a kernel space. Among them, there is one linear kernel, five 

polynomial kernels and five Gaussian kernels, each of which satisfies the circulant property. For 

the polynomial kernel 𝑘(𝐱𝑖, 𝐱𝑗) = (𝐱𝑖
𝑇𝐱𝑗 + 𝑎)𝑏, the parameter 𝑎 is set to 0.2, 0.7, 1.2 , 1.7, 2.2 

for the five kernels respectively, and 𝑏 is set to 7, 8, 9, 10, 11. For the Gaussian kernel 

𝑘(𝐱𝑖, 𝐱𝑗) = exp (−‖𝐱𝑖 − 𝐱𝑗‖
2
/𝜎2), the parameter 𝜎 is set to 0.1, 0.4, 0.7, 1, 1.3 for the five 

Gaussian kernels. The search region is often set to be three times larger than the size of the 

object image patch. The tradeoff parameter 𝜆  is fixed to 0.0001 for all sequences. The 

distribution of the soft label 𝑦 satisfies the two-dimensional Gaussian distribution with the 

coordinate of the center location as the mean as well as the variance of the Gaussian distribution 

is set to 0.1. All the tracking methods take the bounding box labelled manually in the first frame 

as the initial input. 

Table 1 All groups of the sequences covering various scenarios
a
 

Dominant Factor Video Sequences 

Background Clutter (BC) Car11, Dollar, Stone, Tiger1 

Fast Motion (FM) Ball, Deer, Juice, Jumping 

Illumination Variation (IV) Car4, Davidface, Shaking, Skating1, Sylvester 

Viewpoint Change (VC) Couple, Cup on table, Dog1, Girl, Person 

Non-rigid Deformation (NRD) Basketball, Bolt, Gym, Mountain-bike 

Partial Occlusion (PO) Davidoutdoor, Faceocc1, Person partial occluded, Woman 

Heavy Occlusion (HO) Coke, Faceocc2, Soccer, Suv 

                                                 
a https://sites.google.com/site/trackerbenchmark/benchmarks/v10 
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As for the dataset, considering the factors that affect the tracking performance, the video 

sequences can be categorized into several groups. All groups of the sequences are summarized in 

Table 1. For a sequence, the task of tracking a target is usually confronted with several 

challenges simultaneously. To facilitate the evaluations of the tracking performances when 

facing different challenges, all factors are independently analyzed according to the scenarios. 

Therefore, only one dominant factor is taken into consideration for a sequence when the 

experiments are carried out. These video sequences cover most of the challenges that a tracker 

may come cross. 

4.2  Qualitative comparison 

 

 

 

(a) Car11 

(b) Dollar 

(c) Stone 
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Fig. 2 Screen shots of tracking results under the situations of cluttered background. 

Background Clutter: In the cluttered background, the objects with the same appearances to the 

specific target, more often than not, arise in the company of the target. Some trackers are prone 

to be distracted from these objects. In Fig. 2(a), the complex background impairs the descriptive 

power of the color information characterizing the car. In Fig. 2(b), after a pile of dollars are 

divided into two piles, both of them look like each other. In Fig. 2(c), there are several stones 

with the similar shapes and color, which are stacked up in the proximity of the stone tracked. 

According to the tracking results, it seems that LOT and PMT struggle to resist against the 

distractors occurring in the cluttered background. For these two methods, the image regions of 

interest are diverted to the image patches with similar appearances in the four sequences shown 

in Fig. 2. In addition, it can be seen that TLD and SCM are also readily interrupted by distractors. 

When the object image patch is immersed with the background pixels, the matching of these 

background pixels also inhibits object tracking to some extent. In Fig. 2(d), while most of the 

tracking methods lose the toy due to the influence of the background, our method can still follow 

the target stably. 

CNT KCF LOT MEEM PMT

SCM STC Struck TLD Ours

(d) Tiger1 
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Fig. 3 Screen shots of tracking results under the situations of fast motion. 

Fast Motion: For the tracking methods, fast motion means that the search region needs to be 

expanded for the identification of the target. In general, this expansion will result in the heavy 

computational burden, which makes it impractical for the tracking methods with the complicate 

appearance model to accomplish tracking. In all of the sequences shown in Fig. 3, our method, 

(a) Ball 

(b) Deer 

(c) Juice 

(d) Jumping 

CNT KCF LOT MEEM PMT

SCM STC Struck TLD Ours
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KCF, MEEM and TLD are able to acquire the robust tracking results. It is noted that these 

methods all learn the detectors from a set of training samples, and rely on the detector to track 

the target. Once the detector is trained, the rapid detection will enhance the efficiency of tracking. 

The expansion of the search region also benefits from this enhancement of the efficiency. 

 

 

 

 

 

Fig. 4 Screen shots of tracking results under the situations of illumination variation. 

(a) Davidface 

(b) Shaking 

(c) Skating1 

(d) Sylvester 

CNT KCF LOT MEEM PMT

SCM STC Struck TLD Ours
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Illumination Variation: The image intensity of the target tends to vary with the change of the 

illumination condition. Hence, the raw color information is not adequate to the role of a robust 

feature. In Fig. 4(a), the face varies from bright to dark. It can be seen that, in this sequence, 

PMT, CNT, LOT, SCM and Struck all produce drifts. In Fig. 4(b), the head of the man is 

immersed into the glow while shaking. After the glow fades out, our method, MEEM, SCM and 

STC recover the tracking. In Fig. 4(c), the illumination condition of the environment causes the 

significant changes in the intensity contrast for both the environment and the target. There are 

two methods including our method and KCF that can still keep tracking of the target. In Fig. 4(d), 

the toy undergoes different lighting. Most of the methods perform well in this type of 

illumination variation case. The results demonstrate the stable tracking performance of our 

method. This is largely attributed to that the HOG is adopted as the feature that can overcome the 

effect brought by the illumination variation. 

 

 

(a) Couple 

(b) Cup on table 
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Fig. 5 Screen shots of tracking results under the situations of viewpoint changes 

Viewpoint Change: When the viewpoint changes, the appearance of the target usually does not 

keep still, and the consistence of the appearances among the consecutive frames will be violated. 

For this type of the tracking task, the stability of tracking largely depends on the flexibility of the 

appearance model. In Fig. 5(a) and (b), when the cameras move, different side views of the 

targets are exhibited. Benefiting from the efficient updating for the detectors, our method and 

MEEM both perform better than others. In Fig. 5(c) and (d), it can be seen that the pose change 

produces entirely different views for the same objects. Due to that all these methods are equipped 

with the ability to update the appearance model online, in the case of smooth variation, they are 

still capable of catching the target even though there exist drift errors. 

(c) Girl 

(d) Person 

CNT KCF LOT MEEM PMT

SCM STC Struck TLD Ours
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Fig. 6 Screen shots of tracking results under the situations of non-rigid deformation. 

Non-rigid Deformation: When the target is deformable, the spatial layout of the pixels inside 

the object image patch is not fixed. Except for the statistical color information, the spatial 

information like shape is hard to be utilized by this type of tracking tasks. In Fig. 6, it can be 

seen that our method, MEEM, KCF and LOT cope with these tasks well. As for our method, it is 

(a) Basketball 

(b) Bolt 

(c) Gym 

(d) Mountain-bike 

CNT KCF LOT MEEM PMT

SCM STC Struck TLD Ours
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obvious that the usage of the dense sampling strategy and the HOG feature mitigates the negative 

effect on tracking exerted by the disorder of the pixels positions, and yields stable tracking 

results. 

 

 

 

 

 

Fig. 7 Screen shots of tracking results under the situations of partial occlusion 

(a) Davidoutdoor 

(b) Faceocc1 

(c) Person partial occluded 

(d) Woman 

CNT KCF LOT MEEM PMT

SCM STC Struck TLD Ours
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Partial Occlusion: Partial occlusion is a classic problem for tracking. It produces an incomplete 

appearance of the target. While some parts of the target are visible, the rest of the parts are 

covered by other objects. Aimed at this problem, the part based appearance models provide 

reliable parts for tracking. In Fig. 7(a), the man is occluded by a tree while walking. TLD is get 

trapped into the rear of the car. In Fig. 7(b), when some of the face of the woman is covered by a 

book, only parts of the face offer the local cue for tracking. PMT gives a poorer performance 

than other methods. In Fig. 7(c), the camera motion leads to the partial occlusion happening in 

the man. Most of the methods can locate the man even under the condition of occlusion. In Fig. 

7(d), when the woman bypasses the car, there remains the half part of the woman that is visible. 

It is observed that our method, STC, MEEM, KCF, SCM still work well. PMT can only provide 

an object image patch containing much background, while other methods even lose the target. In 

our method, due to that the HOG features are extracted from the cells representing image blocks, 

in fact, the detection of the target is also implemented on the local parts of the target. 

 

 

(a) Coke 

(b) Faceocc2 
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Fig. 8 Screen shots of tracking results under the situations of heavy occlusion. 

Heavy Occlusion: In the case of heavy occlusion, the large part of the target and even the entire 

appearance is invisible. After the target recurs, it requires that the tracker be able to recover 

tracking. In Fig. 8(a), the can hides behind the leaves. Once that the can appears, the trackers 

such as MEEM, SCM, STC, KCF and our method still find it. In Fig. 8(b), only a small part of 

the face is exposed to the camera, which makes the tracking difficult. CNT and LOT drift away 

from the face. In Fig. 8(c), in the combination of full occlusion and viewpoint change, the face of 

the player is hard to be distinguished from the background. The kernel space and dense sampling 

endow our method and CNT with the ability to detect the player. In Fig. 8(d), the car is 

overlapped with the tree while moving along the road. Benefiting from the detection mechanism, 

our method, MEEM, TLD and KCF achieve satisfactory results for the sequence. 

(c) Soccer 

(d) Suv 

CNT KCF LOT MEEM PMT

SCM STC Struck TLD Ours
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4.3  Quantitative Evaluation 

Despite of either the target image patch identified by our method or the ground truth, they are 

both located with bounding boxes in all frames. To investigate the tracking performance 

quantitatively, first of all, the center location error is employed to measure the tracking accuracy. 

The Euclidean distance is calculated between the center of the bounding boxe given by our 

method and the ground truth at each frame. The average errors of all tracking methods over the 

sequences are reported in Table 2. 

Table 2 Center location errors of all tracking methods over the video clips 

Algo. CNT KCF LOT MEEM PMT SCM STC Struck TLD Ours 

BC 4.49 2.87 39.16 3.65 16.89 12.09 9.82 13.40 19.64 2.66 

FM 66.31 2.80 13.52 5.40 43.35 6.47 600.43 5.95 4.06 2.22 

IV 8.62 10.66 46.23 7.07 13.18 16.56 9.52 12.84 7.64 8.16 

VC 8.88 4.29 6.41 4.53 22.18 5.11 34.93 5.08 7.59 4.96 

NRD 47.21 47.53 19.74 5.27 74.06 104.08 65.79 78.70 44.38 8.39 

PO 46.70 7.33 37.08 6.80 10.26 73.18 59.34 5.85 19.77 6.48 

HO 34.56 16.17 22.46 15.77 44.91 80.18 54.23 24.04 6.88 5.79 

Aver 26.20 13.67 25.61 7.00 29.92 39.50 83.91 19.38 14.41 5.85 

Among the methods listed, it is noted that our method performs best in the scenes including 

background clutter, fast motion and heavy occlusion. As for the target undergoing the non-rigid 

deformation or partial occlusion, the performances of our method are inferior to MEEM and 

Struck resepectively. Under the condition of illumination variation and viewpoint change, 

MEEM, KCF and TLD achieve better results than other methods. 

It is worth noting that, in terms of center location error, KCF obtains the most accurate result 

under the situation of viewpoint change. It is mainly attributed to two aspects: 1) According to 

the validation experiments on the performances of multiple kernel learning,
37

 the learned 

combination of kernels cannot consistently perform better than the best single kernel in an 

arbitrary classification task. Once that the cyclic version of a base image patch cannot provide 

enough training samples to identify strong kernels, it is possible for our method to be inferior to 
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the method based on the single best performing kernel. 2) The fine-tuning parameters. The 

tracking performances of the kernelized correlation filters-based methods not only depend on the 

selection of a kernel function but also are affected by other factors such as the size of the base 

image patch, the tradeoff parameter 𝜆 and so on. In terms of the center location error, the setting 

of small size is in favor of the decrease in the error. While KCF sets the size to be 1.5 times 

larger than the size of the target image patch, our method sets it to be 3 times in order to 

generalize the tracker to as many scenes as possible. In some cases, compared with our method, 

this setting of small size enables KCF to incur less center location error. Nevertheless, in terms 

of all criteria, overall, our method outperforms KCF. 

Table 3 Overlap ratios of all tracking methods over the video clips 

Algo. CNT KCF LOT MEEM PMT SCM STC Struck TLD Ours 

BC 0.754 0.763 0.478 0.761 0.461 0.728 0.723 0.716 0.668 0.757 

FM 0.496 0.696 0.737 0.601 0.513 0.716 0.471 0.594 0.645 0.693 

IV 0.544 0.536 0.475 0.597 0.550 0.600 0.547 0.543 0.616 0.524 

VC 0.623 0.651 0.692 0.643 0.487 0.739 0.499 0.660 0.663 0.668 

NRD 0.621 0.664 0.630 0.661 0.277 0.602 0.567 0.567 0.585 0.675 

PO 0.771 0.776 0.541 0.729 0.582 0.765 0.764 0.759 0.599 0.777 

HO 0.673 0.727 0.547 0.744 0.406 0.680 0.724 0.684 0.689 0.752 

Aver 0.645 0.672 0.586 0.670 0.474 0.687 0.601 0.642 0.638 0.678 

Along with the center location error, the average overlap ratio over the valid sequences is also 

provided for the evaluation of the tracking performance. Given the tracked bounding box ROI𝑇 

and the ground truth bounding box ROI𝐺 , the corresponding overlap ratio can be derived, and it 

is defined as: 

overlap ratio =
|ROI𝑇⋂ROI𝐺|

|ROI𝑇⋃ROI𝐺|
                        (24) 

Where ROI𝑇 and ROI𝐺  represent the areas of the bounding boxes of the tracking result and the 

ground truth bounding box respectively. The symbols ⋂ and ⋃ denote the intersection and 

union of two bounding boxes respectively. Besides it, in the definition of overlap ratio, |⋅| 

denotes the number of pixels that the corresponding area contains. 
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In Table 3, it can be seen that SCM possesses the highest overlap ratio. It is ascribed to that 

SCM establishes a motion model under the particle filter framework, and takes the rotation and 

scale into consideration. This is helpful for the acquirement of the large intersection part between 

the tracked box and the ground truth. Our method ranks the second place. Finally, the success 

rate and the precision plot are introduced into the overall evaluation. Combining all kinds of 

criteria, our method totally performs better than SCM. 

As the more effective criteria for the evaluation of the overall tracking performance over 30 

video sequences, the success rate plot and the precision plot with respect to the thresholds are 

provided in Fig. 9. 

For the tracking result at a frame, when the corresponding overlap ratio is larger than a given 

overlap threshold, it is considered as a success. The number of successful frames is counted, and 

then the ratio of the number of successful frames to the total number of frames in the video clip 

is defined as success rate. When the overlap threshold varies from 0 to 1, the success rate also 

changes. The changes can be reflected with a two-dimensional plot in Fig. 9(a). 

The precision plot is largely based on the center location error. The frame, at which the center 

location error is less than a given distance threshold, is deemed as the successful frames. 

Subsequently, the ratio of the number of the successful frames to the total number of frames is 

defined as the precision. When the distance threshold varies from 0 pixel to 50 pixels, the 

precision also changes. This variation is shown in Fig. 9(b). 

As Fig. 9(a) shows, in terms of success rate, our method is close to MEEM and outperforms 

other methods. However, as the threshold decreases, the success rate of KCF gradually surpasses 

our method and MEEM. In addition, in view of the precision shown in Fig. 9(b), when the 

threshold varies from 0 to 10 pixels, KCF achieves the most accurate results compared with other 
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methods. Once the threshold reaches up to 10 and continues to increase, the tracking errors of 

our method and MEEM are dramatically less than other methods. Both the success rate and the 

precision demonstrate that our method is competent to handle general challenges that most 

trackers are often confronted with. 

 
Fig. 9 The success rate plot and the precision plot for all the tracking methods. 

4.4 Comparison of speeds 

To investigate the efficiency of the proposed method, the average runtimes of the methods are 

compared. All of the trackers proposed by these methods are implemented on a PC with a 

2.53GHz Intel Core i3 CPU and 4 GB memory. The speed is measured in the number of frames 

tackled by a tracker in one second (fps). An overall efficiency comparison is exhibited in Table 4. 

In addition, the proposed tracking methods based on Algorithm 1 and Algorithm 2 are 

investigated. Among the trackers, “Ours1” denotes the method based on Algorithm 1, and 

“Ours2” stands for the method based on Algorithm 2. 

Table 4 The speeds of all methods running over 30 video clips (measured in fps) 

Algo. CNT KCF LOT MEEM PMT SCM STC Struck TLD Ours1 Ours2 

Speed(fps) 34.85 43.96 0.21 6.65 0.20 0.31 104.32 0.07 9.18 1.3×10
-3

 6.76 

From Table 4, it can be seen that our method ranks in the middle of these methods. STC 

achieves the highest speed. It largely benefits from the simplified appearance model and the 

 

 

0 0.2 0.4 0.6 0.8 
0 

0.2 

0.4 

0.6 

0.8 

1 

S
u

cc
es

s 
ra

te
 

1 

CNT 
KCF 
LOT 

MEEM 
PMT 
SCM 
STC 
Struck 
TLD 
Ours 

Overlap threshold 
 

 

0 10 20 30 40 50 
0 

0.2 

0.4 

0.6 

0.8 

Location error threshold 
P

re
ci

si
o

n
 

1 

CNT 
KCF 
LOT 

MEEM 
PMT 
SCM 
STC 

Struck 
TLD 
Ours 

(a) Success rate plot (b) Precision plot 



32 

location model. Besides the simple models, it uses FFT to accelerate the implementation of the 

algorithm. KCF and CNT both exploit the correlation filters to devise trackers. However, due to 

that the tracker developed by CNT constructs the low-dimensional color feature to take the place 

of the HOG feature, it acquires a more efficient tracking performance than KCF. Compared with 

KCF, our method not only needs to seek an optimal relation among a set of kernels but also 

needs to speed up the implementation of the tracking. Hence, in terms of speed, it is reasonable 

that our method is slower than KCF. Thanks to the real-time detection mechanism, TLD also 

runs faster than our method. Nevertheless, while there does not exist a wide gap in the speed, our 

method can obtain a better tracking accuracy than TLD. Other than these methods mentioned, 

our method is more efficient than the remainder of the methods. Moreover, our method is able to 

maintain a better tracking performance. 

According to the resultant comparison, it is evident that the tracking method based on 

Algorithm 2 runs faster than Algorithm 1. Since that Algorithm 1 is involved in the product and 

inversion of the matrices, these operations consume much time. In terms of the computational 

complexity, while the cost of Algorithm 1 is at least 𝑂(𝑛3), the cost of Algorithm 2 based on the 

element-wise products and DFT of the vectors is 𝑂(𝑛logn). In contrast to Algorithm 1, 

Algorithm 2 is only involved in the element-wise operation, which avoids the time-consuming 

operations. Hence, our method based on fast interpolate iterative algorithm is more efficient than 

the traditional interpolate iterative algorithm that is illustrated in Algorithm 1. 

4.5 Tracking performances versus the selection of kernels 

In the proposed method, the tracking accuracy concerns with the selection of the kernel functions. 

The type of kernel function plays the important role in the speedup algorithm. Through the proof 

of Theorem 1, it can be seen that whether the Theorem 1 holds relies on the circulant property of 
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single kernel function. Only under the assumption that each kernel function satisfies circulant 

property, we can reach the conclusion that the linear combination of the Gram matrices is still a 

circulant matrix. The kernels such as Gaussian kernel, linear kernel and polynomial kernel all 

satisfy this requirement.
38

 To realize the acceleration presented in Algorithm 2, the selection of 

the kernel function must be constrained to this likes of kernel functions. 

 

Fig. 10 Tracking performances versus the number of kernels. 

Aside from the type of the kernel function, the influence of the number of kernels on the 

tracking performance is also investigated. Due to that the cyclic version of a base image patch 

only produces a finite number of features as the training samples, it is necessary that the 

sufficient kernels be maintained for the improvement on the discriminative power of the 

regression function.
37

 We examine the tracking performance of our method with the increasing 

number of different kernels. Since that the linear kernel does not involve parameters, the linear 

combination of kernels incorporates at most one linear kernel. Hence, the linear kernel is 

excluded from the investigation. Rather than the linear kernel, we focus on the numbers of the 

polynomial kernels and the Gaussian kernels. Two linear combinations of kernels are constructed 

for the examination, one of which consists of the polynomial kernels while the other is made up 
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of the Gaussian kernels. In addition, the parameters of each kernel are different from each other. 

The examination is implemented on 30 video clips listed in Table1. 

In Fig. 10, the tracking performances including center location error and overlap ratio are 

summarized as the number of kernels increases. As Fig. 10(a) shows, when the number of 

polynomial kernels is small, the center location error diminishes. But, once that the number of 

the polynomial kernels exceeds 6, the error increases and then stays at the level. In Fig. 10(b), it 

is noted that, for the polynomial kernels, the overlap ratio drops a litter and then keeps still as the 

number increases. However, for the Gaussian kernels, regardless of the center location error and 

the overlap ratio, they are still consistent even though more and more Gaussian kernels are 

combined. 

According to the observations, when the number of polynomial kernels is small, the tracking 

performance can be improved through adding the polynomial kernels. Nevertheless, more 

polynomial kernels cannot bring more enhancements in the performance. As for the Gaussian 

kernels, it is obvious that the number of kernels does not have influence on the tracking 

performance. 

Table 5 Tracking performances versus types of kernels  

(OR: Overlap Ratio, CLE: Center Location Error, L: Linear kernel, P: Polynomial kernel, G: Gaussian kernel) 

Kernel Linear(L) Polynomial(P) Gaussian(G) L + P L + G P + G L + P + G 

OR 0.631 0.637 0.633 0.639 0.641 0.637 0.641 

CLE 15.41 14.49 14.92 14.46 14.22 14.46 14.17 

  In order to investigate the influence of the kernel type on the tracking performance, three 

kernels are selected from the set of the eleven kernels above, which consist of a linear kernel, a 

polynomial kernel (the parameters 𝑎 = 1.2, 𝑏 = 9) and a Gaussian kernel (the parameter 

𝜎 = 1). The tracking performances, including the center location error and the overlap ratio, over 
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all possible combinations of the three kernels are checked. The corresponding results are listed in 

Table 5. 

In terms of a single kernel, the tracker based on the polynomial kernel outperforms other two 

kernels. The Gaussian kernel is inferior to the polynomial kernel. The linear kernel is weakest 

among them. As for the combination of two kernels, the tracker based on the combination of the 

polynomial kernel and the Gaussian kernel performs best. In addition, it is noted that a tracker 

based on any combination of a pair of different kernels obtains more accurate tracking results 

than an arbitrary single kernel. When the three kernels are combined, compared with a single 

kernel or a pair of kernels, the performance is enhanced. According to the comparisons, the 

combination of different kernels is able to improve on the tracking performance to some extent. 

4.6 Nonlinear combination of kernel functions 

The appearance model based on the regression function is relevant to the linear structure of the 

feature distribution. However, it is usually difficult to depict the feature distribution with a linear 

structure. Thanks to the kernel trick, all features can be mapped into a kernel space implicitly, 

where the distribution of the features mapped can be approximated with a linear structure. The 

key problem turns out to be how to establish an appropriate kernel space that meets the 

requirement. 

Instead of a single kernel, under the framework of multiple kernel learning, we seek a linear 

combination of kernel functions to construct the kernel space. Every kernel selected from a 

group of kernels gives its own measurement of the similarity between a pair of features. While 

some of the kernels are in favor of the discrimination between features, the other may cripple the 

discrimination. It is expected that the former kernels are selected while the latter kernels are 

suppressed. Through assigning different coefficients to the kernels, an optimal combination of 
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the kernels can be determined. Eventually, a kernel space with a proper similarity measurement 

is given. 

  Aiming at the inherent nonlinear relation of a group of kernels, the nonlinear combination of 

kernels has been proposed.
39

 But the nonlinear combination of kernels has to face the 

non-convex optimization problem that will significantly reduce down the computational 

efficiency. It contradicts to the attempt to improve on the efficiency of visual tracking. 

Conclusion 

In this paper, we propose a method for visual tracking based on kernel ridge regression. A kernel 

regression function is learned from the image patches with the soft labels representing the 

likelihoods of the target. Multiple kernel learning is introduced into the selection of kernels. A 

linear combination of different kernels is employed to create a kernel space for the features 

extracted from the image patches. With interpolate iterative algorithm, the coefficients are 

determined for the combination of kernels. In order to enhance the efficiency in learning 

coefficients, the circulant property of the Gram matrix is exploited to develop a fast version of 

interpolate iterative algorithm. It is integrated into the framework of kernel ridge regression, 

which further accelerates the computation of the confidence of an image patch as the object 

image patch. Both qualitative and quantitative evaluations over the challenging sequences 

demonstrate the competitive performance of our method. 
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Caption List 

Fig. 1 The collection of the training samples by the cyclic shifts of the base image. 

Fig. 2 Screen shots of tracking results under the situations of cluttered background: (a) Car11, (b) 

Dollar, (c) Stone and (d) Tiger1. 
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Fig. 3 Screen shots of tracking results under the situations of fast motion: (a) Ball, (b) Deer, 

(c)Juice and (d) Jumping. 

Fig. 4 Screen shots of tracking results under the situations of illumination variation: (a) 

Davidface, (b) Shaking, (c) Skating1 and (d) Sylvester. 

Fig. 5 Screen shots of tracking results under the situations of viewpoint changes: (a) Couple, (b) 

Cup on table, (c) Girl and (d) Person. 

Fig. 6 Screen shots of tracking results under the situations of non-rigid deformation: (a) 

Basketball, (b) Bolt, (c) Gym and (d) Mountain-bike. 

Fig. 7 Screen shots of tracking results under the situations of partial occlusion: (a) Davidoutdoor, 

(b) Faceocc1, (c) Person partial occluded and (d) Woman. 

Fig. 8 Screen shots of tracking results under the situations of heavy occlusion: (a) Coke, (b) 

Faceocc2, (c) Soccer and (d) Suv. 

Fig. 9 The success plot and the precision plot for all the tracking methods. (a) Success rate plot 

and (b) Precision plot. 

Fig. 10 Tracking performances versus the number of kernels. 

Table 1 All groups of the sequences covering various scenarios. 

Table 2 Center location errors of all tracking methods over the video clips. 

Table 3 Overlap ratios of all tracking methods over the video clips. 

Table 4 The speeds of all methods running over 30 video clips (measured in fps). 


