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Abstract. Segmentation and classification are prolific research topics in the image processing community, which
have been more and more used in the context of analysis of cementitious materials, on images acquired with Scanning
Electron Microscopes (SEM) . Indeed, there is a need to be able to detect and to quantify the materials present in
a cement paste in order to follow the chemical reactions occurring in the material even days after the solidification.
In this paper, we propose a new approach for segmentation and classification of cementitious materials based on the
denoising of the data with the Block Matching 3D (BM3D) algorithm, Binary Partition Tree (BPT) segmentation,
Support Vector Machines (SVM) classification, and the interactivity with the user. The BPT provides a hierarchical
representation of the spatial regions of the data, allowing a segmentation to be selected among the admissible partitions
of the image. SVMs are used to obtain a classification map of the image. This approach combines state-of-the-art
image processing tools with the interactivity with the user to allow a better segmentation to be performed, or to help
the classifier discriminate the classes better. We show that the proposed approach outperforms a previous method on
synthetic data and several real datasets coming from cement samples, both qualitatively with visual examination and
quantitatively with the comparison of experimental results with theoretical ones.
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1 Introduction

Digital Image Processing techniques have been extensively used in the past few decades for the

analysis of microscope images.1 Specifically, the analysis of Scanning Electron Microscopy (SEM)

images has been performed for various applications such as biology, physics and materials science.

Indeed, SEM allows the acquisition of high resolution images of the surface of a material using

different physical phenomena occuring after the sample of interest is excited by an electron beam.2

SEM images and image processing techniques can be used for the analysis of building materials.

One application is the analysis of the microstructure of cement paste in order to quantify the pro-

portions of some phases of interest in the sample (here and in all this paper, the word phase must
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be understood as a thermodynamic state where the physical properties of the cement are constant).

The ultimate goal is to be able to use this information to monitor the chemical hydration reactions

taking place in cementitious materials, by inferring the hydration degree of the components. These

reactions continue for months after the cement paste is formed. Monitoring them opens the path

to a better understanding of cement behavior over time. The cement industry is also willing to use

the monitoring of the chemical reactions in order to produce more durable and resistant materials,

and also to test new more environmentally-friendly cement compositions, as the cement industry

is an important source of CO2 emissions.

The identification of the components of the cement in SEM images can be rather accurately

performed visually by a specialist, but there is a need to automatize the procedure, or at least

reduce the contribution of an expert to a minimum. That is why image segmentation and classifi-

cation techniques have been used in order to be able to cluster the data in several similar regions

corresponding to specific cement phases, or to identify the components present in cement samples

in a supervised fashion. Frequently, only the Backscattered Electron image is used to discriminate

between the phases.3 However, the information present in this type of data often is insufficient to

classify accurately all phases since their gray levels ranges may overlap. Besides, some specific

compounds can make the task more difficult to solve: for instance, the so-called fly ashes, which

are a pozzolanic material resulting from the calcination of coal, have been more and more used in

the composition of cementitious materials due to their positive impact on the energy and natural

resources expenses required to produce cement. This type of mostly circular compounds can be

of various sizes, sometimes very small with respect to the resolution of SEM images (resulting in

sometimes only a few pixels for a single micronized fly ash), which makes the processing even

more difficult. Besides, they can be shallow, resulting in shadowing effects on the acquired images
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that are easy to interpret visually, but hard to process in an automatic way. All these aspects show

the need for new efficient image processing techniques for SEM images of cementitious materials,

specifically in the domains of image segmentation and classification.

In this paper, we propose an integrated processing pipeline for SEM image processing in order

to obtain automatic segmentation and classification maps, and especially allow easy and efficient

interaction with the user for both steps. The main contribution lies in the interactivity enabled by

the proposed framework, and in the assembly of the existing tools in a processing chain suited for

SEM image processing. The proposed method was first outlined in a conference paper,4 with much

less detail on the process and the validation.

The rest of this paper is organized as follows. Section 2 introduces the data we will work with

and the problem to solve. Section 3 briefly reviews the existing methods to tackle the problem.

Section 4 presents the solution we propose. Section 5 presents the results obtained using the

proposed approach in comparison with other existing techniques. Finally, section 6 provides some

concluding remarks and proposes a few leads for future work on the topic.

2 Presentation of the data and the problem

Here, we will describe and formalize the problem we are faced with and the data acquired and

used for this study. As stated in the introduction, the data is acquired with a Scanning Electron

Microscope2 on a prepared cement test sample. The preparation of the sample, a quite delicate task,

will not be detailed here, but a description of the process can be found in other works.5, 6 For this

application, as it has been the case in previous works, we will use the SEM Backscattered Electron

(BSE) image and also the X-ray diffraction images at carefully chosen excitation energies. Each

of these images taken individually is a gray-scale image. In the following, we will refer to one
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of these gray-scale images as a “band”, using the vocabulary of multispectral and hyperspectral

imaging. BSE images are high spatial resolution images (354 nm here) whose gray levels are

related to the density of the material at the pixel location, while X-ray images, once the excitation

energies are well tuned, can account for the presence of the corresponding chemical elements in the

sample. The most common elements present in cement samples have been selected in the context

of this study. It results in 14 X-ray bands for the following elements: Al, C, Ca, Cl, Fe, K, Mg,

Mn, Na, O, P, S, Si and Ti. Note that the BSE image provides a much higher spatial resolution

than the X-ray bands, and hence it can be seen as providing a better representation of the spatial

arrangement of the structures in the image, whereas the bundle of X-ray bands provide spectral

information, since they correspond to the same physical property observed at different excitation

energies.6 The resulting images can be seen together as one single data cube, with two dimensions

accounting for the spatial coordinates, and the last one for the “spectral” coordinates (although the

term is a bit misleading here since we have two different types of data, i.e. BSE and X-ray bands).

An example of an image obtained after the acquisition is shown in Fig. 1. Additionally, we will

have to deal with noise in the X-ray bands, as well as quantization effects occurring during the

acquisition process for the scarcest elements of the samples. This aspect will have to be accounted

for in the way we pre-process the data. We illustrate this quantization effect with an example given

in Fig. 2.

Our problem is to be able to identify the composition of the cement, for example by being able

to detect clusters of similar pixels, thus identifying meaningful regions. This is a segmentation

problem and it can be addressed in an unsupervised way. In the end, we want to quantify each

phase of the cement. To do so, we have to assign every pixel to a given pre-determined class

corresponding to one of the components present in the cement sample. For our application, a
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Figure 1 A SEM image of a cement sample. The X-ray bands were assigned a colormap for an easier identification
of the corresponding chemical elements (the more saturated the color, the higher the value). The first X-ray image
(green) accounts for the presence of Aluminium in the sample. The width of the images represents roughly 350 µm.

training set of a priori labelled pixels is used, making the problem a supervised classification

problem. The rationale of this approach is that it is quite fast to identify and label some pixels

of the image according to the phase they belong to, but it would be much too tedious to do this for

the whole image, let alone for batches of images of the same sample. On the other hand, training

a classifier on one image will allow to classify multiple images of the same sample. We show an

example of training samples in our case in Fig. 3. If we can obtain a classification map, we will

be able to get the percentages of every phase in the sample. Finally, using samples of the same

cement at different times, the monitoring of the chemical reactions in the cement paste becomes

possible, for example by computing the hydration degree of a phase (the unreacted fraction of the

phase, at a certain time after the solidification of the cement paste). In the next section, we will

review some existing methods for segmentation and classification.
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Figure 2 Two X-ray bands showing different configurations of noise and quantization in a 91 days-old cement sample.
On the left is a noisy X-ray interaction band corresponding to an abundant chemical element (Si), and on the right is a
heavily quantized band related to a scarce chemical element (Cl).

Figure 3 The training image consists in the BSE band with some colored pixels corresponding to the different classes.
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3 Existing techniques

Here, we present some existing segmentation and classification algorithms used in the cement

research community and also in the image processing community.

3.1 Image classification and segmentation for concrete and cement

Image analysis on SEM images is one of the techniques used to characterize the microstructure

of a cement paste. As the final goal is classification, none of the following methods are specifi-

cally designed for segmentation, which is only a temporary step to allow the classification to be

performed.

Most existing methods are based on thresholding or on the use of mathematical morphology

operators to segment the images. Some methods rely only on the BSE image to discriminate some

phases, such as porosity, which will be systematically associated to the low gray-levels in the BSE

image. Sometimes, techniques are specifically designed to process a given phase. An example

or a mathematical morphology-based algorithm aimed at detecting fly ashes and estimating their

hydration degree was introduced by Haha et al.3 These simple techniques can only be used for

some of the phases that can be found on cement paste because the only use the information of the

BSE image, which can provide too little information for some phases, such as fly ashes whose gray

levels in the BSE bands overlap with calcium sulfoaluminates. As the histograms of the acquired

bands of cement samples are often multimodal, some techniques perform a segmentation using

multiple thresholds. For instance, another work7 uses multiple thresholds the BSE image and the

X-ray bands, and then uses a priori information on the cement phases (described as low, medium or

high density for the BSE image, and low, medium or high concentration of the chemical elements

of interest for the X-ray images). A similar approach for different types of cement is presented by

7



Stutzman.8 In the work by Silva et al.,9 a segmentation and hydration degree estimation method is

proposed. It uses mathematical morphology operators to compute the gradient of the image. Then

the segmentation itself is based on the well-known watershed algorithm.10

A more recent approach6 is directly classification-oriented since it does not make use of any

segmentation map. It uses the Support Vector Machines (SVM11) classification technique to make

use of all the data provided by the BSE image and the X-ray bands. It is a supervised classification

technique, in the sense that some pixels are manually assigned a label corresponding to the class

they belong to thanks to the examination of the user. Then these pixels are used as training samples

for the SVM. The features used are simply the original bands of the image. SVMs are originally

binary classifiers which are well suited if the data are linearly separable in the feature space. How-

ever, even when they are not, the classifier is able to propose a linear border between the classes

minimizing the misclassifications. In any case, the idea is to find the hyperplane that best separates

the two classes defined by the training instances. Then the data are assigned to one of the classes

depending on the half-space they belong to. This binary classifier can be easily extended to the

multi-class case. However, if the data are not linearly separable in the feature space, we can use

the so-called kernel trick to map the data into a higher dimensional space in which, hopefully, the

data will be linearly separable. The resulting classification map is noisy since the SVM process

is a pixel-wise classifier and as such, it does not take into account the spatial correlation between

neighboring pixels. To tackle this, a spatial regularization technique uses Markov Random Fields

(MRF12) to smooth the SVM classification map, though this regularization comes at the price of a

loss of some spatial details in the edge pixels of the identified phases. Smaller components, such

as micronized fly ashes which can be only be a few pixels wide tend to disappear after the regular-

ization. This method, denoted here as SVM-MRF, will be used in section 5 for comparison with
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the results of the proposed approach.

3.2 Image classification and segmentation in the image processing community

Image segmentation is still one of the most active research topics in image processing. Over the

years, a plethora of methods have been developed to this end, be it for gray-scale, color or mul-

tivariate images. We will mention some of them in this section. Note that the list we give here

is far from being exhaustive. Other than the threshold and watershed based-methods, there ex-

ist multiple variants of region-based algorithms. We can cite for example the region-growing or

split-and-merge classes of algorithms.13 We can also mention the mean-shift algorithm,14 which

has been successfully applied to SEM images.15 Markov Random Fields have also been used for

image segmentation purposes.16Graph-based segmentation methods, as well as fuzzy logic based

segmentation have also been investigated17, 18 . Finally, a hierarchical segmentation framework was

more recently proposed. The ill-posedness of the segmentation problem leads to the absence of an

optimal segmentation for complex scenes. Based on this idea, the Binary Partition Tree (BPT) was

proposed.19 It provides a tree representation, in which every node represents a region of the image.

The idea is to combine nodes corresponding to similar regions in a pair-wise mode. The merging

of two regions will define the hierarchical relations of the tree. We show an example of the con-

struction of a BPT and its pruning in Fig. 4. This approach provides a multiscale representation

of the image, each level of the hierarchy corresponding to a possible segmentation, a partition of

the image in meaningful regions, i.e. homogeneous with respect to some pre-defined criterion. On

the lower levels of the hierarchy, the segmentation will be very fine (oversegmentation), and it will

become coarser and coarser as the level of hierarchy increases. The lowest level correspond to

a starting partition (it can be the whole image, in which case the initial regions are all the pixels
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of the image, or an initial segmentation computed by other means). The nodes of the tree corre-

sponding to the regions of the initial partition are called the leaves of the tree. The top levels will

be extremely coarse (undersegmentation), and the root of the tree is a region whose support is the

same as the whole image. For a practical application, however, a precise segmentation map has to

be extracted from the BPT, i.e. a well chosen partition among the admissible ones given the tree

structure. This step is called pruning the tree, since the goal is to keep only certain nodes of the tree

to define a partition of the image. The pruning is completely application-dependent (segmentation,

classification, object recognition...).20 The most simple pruning strategy is a cross-cut at a certain

height of the tree. The BPT is adapted to multi-band images, such as the ones we are dealing with.

Sections 4.2.1 and 4.2.2 provide a more thorough description of this technique. It has been re-

cently successfully used in the context of multivalued data in hyperspectral imaging.21, 22 Another

hierarchical segmentation approach was developed allowing the preservation of a certain criterion

in each region of the partition. The algorithm can be adapted for interactive video sequence seg-

mentation,23 using propagation of user defined markers.

Image segmentation is an ill-posed problem with no optimal solution, even for a specific applica-

tion, making it hard to assess the results in a quantitative way. Nevertheless, in the last decade,

some techniques to evaluate the quality of segmentation have surfaced, be it in a unsupervised

way,24 or by comparing the output of some algorithm to an available reference.25

As for classification techniques, then again, a wide range of methods have been developed.

We will focus here only classical methods for supervised classification, in which some a priori

information, i.e. training samples, are available. These training samples consist in a set of pixels

whose class (referred to as label) is identified before the processing. Among these approaches

are the nearest neighbor classifiers, decision trees26 (not to be mistaken with the BPT, which can
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Figure 4 An example of the construction of a BPT (left). Starting from an initial partition (the leaves, here nodes 1 to
5), the most similar regions are merged, creating a new node in the tree, and a new partition. This process is iterated
until only one region remains (the root of the tree). Two possible prunings of the BPT (right). We can only select
nodes that form a partition of the initial image.

also be used for classification purposes using particular pruning strategies21), or Support Vector

Machines (SVM). Refer to the book of Bishop27 for a review. Note the the idea of hierarchy can

also be considered for classification at different levels.28 SVMs have also successfully been used

in the hyperspectral imaging context.29 They have also been coupled with Markov Random Fields

(MRF) to provide a spatial regularization of the results of the SVM, that are always noisy since

they are a pixel-wise procedure.30 As stated before, MRFs have the disadvantage of destroying

some information on the edges of the regions and on small objects. In order to spatially regularize

the classification maps, SVMs can also be run on a segmentation of the image, such as a water-

shed segmentation or a superpixel generation algorithm.31 Finally, sparse representation based

algorithms have received more and more attention over the last decade.32, 33

4 Proposed approach

In this section, we present in detail the approach we propose to perform both segmentation and

classification of the cement multivalued images in an interactive way. Indeed, the user can inter-

vene at some points of the processing to improve the results of the automatic segmentation and

of the supervised classification. The flowchart of the proposed approach is given in Fig. 5. This

section is divided in three parts: first we present the pre-processing step we perform, namely the
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denoising of the X-ray bands. Then we introduce the proposed strategy to perform a segmentation

of the multivariate cement images, using BPTs, and how we allow the user to improve it. Finally,

we present the technique we use to get a classification map given some training samples, and once

again we explain how the user is able to improve the results by adjusting the training set, with the

help of the segmentation map computed during the previous step.

The contributions of the paper are the following:

• We propose an automatic processing chain (which combines several tools into a pipeline)

suited for SEM image processing, especially in case of low SNR and quantization of the

X-ray bands. This pipeline also provides all the necessary tools for user interaction.

• We lay out two strategies to improve the automatic results via user interaction: for segmen-

tation by exploring the hierarchical representation given by the BPT, and for classification

by introducing user decisions into the training set using a segmentation map.

• We introduce a novel pruning strategy for Binary Partition Tree (BPT) based image seg-

mentation using discontinuities in the attributes of the image regions along a branch of the

tree.

While many steps are involved in the process because of the challenging data used (very noisy,

subject to quantization effects, multimodal and multispectral, spatially complex), most of them

are fully automatic and help obtaining good automatic segmentation and classification maps. The

user interaction allows to easily improve significantly the classification and segmentation results

when necessary (as in this case with complex datasets), making the proposed method an global and

flexible processing pipeline.
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Figure 5 Flowchart of the proposed method. The blue boxes correspond to the segmentation part of the process, while
the red ones correspond to the classification part. Green circles show the parts where the process interacts with the
user, to improve the segmentation map or the training samples.

4.1 Data pre-processing

The first step of the proposed approach is the denoising of the data. Simple traditional approaches

such as the median or mean filters fail to significantly denoise the data without altering the spatial

structures of the images, especially when quantization effects occur. For our problem, we chose to

use the Block Matching 3D (BM3D) algorithm.34 It is based on the assumption that the noise is

i.i.d. Gaussian with zero mean, and processes gray-level images by dividing them into blocks of

size 8× 8. Algthough the noise in X-ray images can have very specific properties, we chose to use

this strategy because of the additional quantization effect of our images, which make denoising

all the more difficult. The BM3D algorithm is a two step procedure: first a basic estimate of

the denoised image is computed as follows: similar blocks are stacked in a 3D cube. The idea

behind this block matching is to use the spatial correlation of the image, as well as the correlation

between similar blocks. An example of the block matching procedure is shown in Fig. 6. Without

going into details, the 3D stacked blocks are projected in a transformed domain using wavelets and

Discrete Cosine transforms. In the transformed domain, the signal is sparsely represented in a few
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Figure 6 An example of the block matching procedure to find similar blocks in a gray-scale image.34 A reference
block (R) is shown in red, and the blue blocks (found here along an edge of a spatial structure of the image) were
identified as similar.

coefficients while the noise coefficients are dense. By hard thresholding, the noise contribution is

highly reduced. This provides a rough estimated of the denoised image. This estimate is then used

as a reference to perform a 3D Wiener filtering on the 3D blocks from the original image, yielding

the final denoised data.

The BM3D algorithm is applied individually to every band of the image, except the BSE image,

which does not exhibit a significant noise level. For each X-ray band, the variance of the noise has

to be provided to the algorithm as an input parameter. We estimate the noise standard deviation us-

ing the median absolute deviation (MAD), which after an appropriate scaling becomes a consistent

and robust estimator of the noise standard deviation.35 For the X-ray images that account for the

presence of scarce chemical elements in the sample, strong quantization effects may appear during

the acquisition process, making the noise power estimation using medians more difficult, since

only a few equally spaced gray levels are present in the histogram of the image. To improve the

estimation results, we add some variability to these kinds of bands by adding uniformly distributed

noise with a standard deviation that is equal to half the space between two consecutive gray levels.

An illustration of this step is shown in Fig. 7.

14



Figure 7 The histograms of a heavily quantized band, before and after addition of uniform noise for a better variance
estimation with MAD.

4.2 Interactive Segmentation using BPTs

Now that the image has been denoised band by band, we describe the segmentation process in this

section. We are using the BPT to provide a hierarchical representation of a multivariate image.

First, we detail the construction of the BPT. Then we explain how we obtain a segmentation map

from the hierarchical representation provided by the BPT, and after this how the user can interact

with the tree structure to improve the segmentation map.

4.2.1 BPT construction

To build a BPT, as mentioned in section 3, we have to start from an initial partition of the image.

If we choose to start from the original image, the leaves will be the pixels of the image. This

approach leads to heavy computations, so instead, we chose to start from an initial segmentation,

using a watershed algorithm. The gradient calculation was adapted to multi-valued images.36 As

the watershed algorithm tends to provide oversegmented partitions, it is well suited to form the

leaves of the tree.

Now, in order to build the BPT, we have to measure the similarity between the regions. To this

end, we have to define a region model, i.e. a descriptor for each region, and a merging criterion,
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Figure 8 Two distances suited for the region model of (1), i.e. θ = SAM(x, y), and ∆ = ||x − y||2, represented for
a 3 dimensional space.37

i.e. a distance between region models. For multispectral images, the simplest region model MRi

of the region Ri is given by the mean spectrum:

MRi
=

1

N

N∑
k=1

Ii(k) (1)

where N is the number of pixels in the region, and Ii(k) ∈ RL with L the number of bands of

the image is the (vector) value of the pixel k in the region i. MRi
is then just the mean vector of

the pixels of the region. This region model can be associated with any merging criterion based on

a dissimilarity measure between vectors, such as the Spectral Angle Mapper (SAM):

SAM(Ri, Rj) = arccos

(
MRi

·MRj

||MRi
||2 × ||MRj

||2

)
(2)

with · the dot product and || · ||2 the L2 norm. Another possibility is the Euclidean distance in

RL:

d2(Ri, Rj) = ||MRi
−MRj

||2 (3)

A simple geometrical interpretation of those two distances in a 3D space is provided in Fig. 8.

The region model of (1) is a first order parametric model that will be efficient if the regions are
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homogeneous. However, due to the intra-class variability in our problem (we can cite for example

the shadowing effects sometimes occurring for fly ashes), this assumption is not always justified.

Thus we chose to use a nonparametric statistical model based on the histograms of each band, as

it was proposed by Valero et al.22 If we denote byHl the histogram of the band l of the image, the

region model of the region Ri is the set of L histograms:

MRi
= {H1,H2, · · · ,HL} (4)

Since this model is nonparametric, it does not make any assumption on the regions properties.

As we use normalized histograms, ideally, the region model can be seen as the set of approximate

probability density functions (PDF) of the pixels for each band. With this in mind, we can use

as a merging criterion a measure of dissimilarity between PDFs, such as the Kullback-Leibler

divergence, or similar measures. However, these dissimilarity measures assume that the histograms

are aligned, i.e. each bin of one histogram is aligned with the corresponding bin in the other one.

Due to quantization and noise effects in our images, it cannot be guaranteed that our histograms

will be systematically aligned. Indeed, the region model used for the BPT construction is based

on the histograms of each band of the image. The bin by bin comparison of histograms can be

perturbed by quantization and noise. For instance, if we are to compare the histograms of one

region with itself, but with different noise realizations, some salient features of the histograms, e.g.

local maxima can be shifted by a few bins. Thus, the histograms will appear different for a bin

by bin distance, while the general shape more or less the same. This phenomenon is even more

important when quantization effects occur, since a small shift can be amplified by the quantization

process. To tackle this, we use a cross-bin distance between histograms, the so-called diffusion
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distance.38 This distance measures the dissimilarity of the histograms at different scales, simulating

a diffusion process along the histograms (viewed as temperature fields). The scale, indexed by k

below, corresponds to a different stage in the diffusion process, analogous for a point in time for

diffusion processes over time. The higher k, the smoother the histograms are since they underwent

k Gaussian filterings. We use this to measure the dissimilarities of our histograms at different

scales, which are the successive steps of the diffusion process. The distance is the sum of the

dissimilarities on all the scales.

More precisely, a being a vector in RNbins (Nbins is the number of bins used to compute the

histograms Hl), the diffusion process is computed by applying a Gaussian filter φσG(a) to the

difference between the two histograms dk(a) at the scale k (the two histograms of Ri and Rj for

the band l are denoted asHRi
l andHRj

l ):

d0(a) = HRi
l (a)−HRj

l (a)

dk(a) = [dk−1 ∗ φσG ]↓2(a),∀k ∈ [[1, K]]

(5)

where ↓2 denotes a downsampling of a factor 2, used to keep the same number of points at

each scale, ∗ is the convolution operator, and K is the total number of scales considered. σG is the

standard deviation (chosen constant) of the Gaussian filter φ. Using all the differences at all scales,

we can compute the distance Dl between two histograms for the band l as the sum of the L1 norms

of all K scales:

Dl(H
l
Ri
, H l

Rj
) =

K∑
k=0

Nbins∑
s=1

|dk(a)s| (6)

where dk(a)s is the sth component of the vector dk(a). Eventually, the diffusion distance
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between our two region models (our two sets of L histograms, where L is the number of bands) is

the sum of the contributions of each band :

D(Ri, Rj) =
L∑
l=1

Dk(H
l
Ri
, H l

Rj
) (7)

Finally, to avoid that too small regions with not really meaningful region models are merged

too late in the process, we choose to grant a priority at some iterations to regions whose size is

smaller than 15% of the mean size of all the regions at this point.21

To sum up, we build a BPT from an initial partition defined thanks to a watershed algorithm.

Our region model is a set of the L histograms of a region’s pixels, one per band. The merging crite-

rion used is the diffusion distance. At each iteration, the BPT construction algorithm searches the

two adjacent regions in the current partition which minimize this distance. A node corresponding

to the merging of these regions is created, and the process is repeated until there is only one region

left.

4.2.2 BPT pruning

Now that the BPT is built, we need to obtain a segmentation map from it. To do this, we have

to prune the tree. The simplest pruning strategies either perform a cross-cut of the tree at a given

height, or choose the partition obtained after a certain number of mergings (or equivalently, choose

to keep the partition corresponding to a certain number of regions left to merge). However, these

strategies will be suited if the tree accounts perfectly for the spatial characteristics of the image.

Additionally, the choice of the parameters (height, iteration number or number of regions) is not

easy. We propose here a pruning strategy to segment a multivariate image using a single parameter

that accounts for the segmentation’s global coarseness (and a parameter for the minimum size of
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Figure 9 The rationale behind a pruning strategy based on size discontinuity in a branch: the size of the regions often
present large discontinuities when they are merged with a region corresponding to a different phase. The leftmost part
shows the discontinuity in the size of the regions occurring along a branch of the tree. The height is the distance from
the leaf node to the node of interest. The rightmost part show the region (a fly ash) corresponding to the node situated
just before the discontinuity (see the black cross on the graph), displayed on a false color composition resulting from
the first three principal components.

the regions in the segmentation). It is based on the fact that meaningful properties of a node of the

tree (size, mean spectrum, ...) evolve as we go up a branch39 (the path from a leaf to the root of

the tree), corresponding to more and more regions being fused to the initial leaf. An abrupt change

is expected when a meaningful region merges with a very different other meaningful region (for

instance two different phases that are well identified in a node of the tree that end up merging at a

certain level). Then the idea will be to keep the nodes situated just before the discontinuity of the

examined property, since merging the corresponding regions makes no sense. We give an example

of the idea motivating this strategy in Fig. 9.

In this example, we examined the size along a branch, since it is the simplest criteria we can

use. It can be adapted in many cases since even if in a given branch, a large meaningful region

merges with a very different but also much smaller one, the discontinuity in size will still be present

in the branch starting from the small region. However, since regions are better described by their

intrinsic properties rather than only their relative sizes, there can be cases of undersegmentation
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occurring. For this reason, in the proposed pruning strategy, we look for changes in the mean

spectrum between the node in the branch and its sibling (the node it merges with in the tree) as we

go up a branch. For simplicity, we use the SAM to measure the dissimilarity between siblings.

When there is a discontinuity in the branch (a peak in the plot above a chosen threshold on

SAM), this means that two dissimilar regions (according to our threshold value) were merged.

Therefore, we keep the node just before the discontinuity (before it merges with its dissimilar

sibling). We also add a threshold on the the minimum size of the two regions we consider at each

SAM computation to avoid that too small regions with too few pixels for their mean spectrum to

be meaningful be kept in the final pruning. Obviously, the higher the threshold on the SAM, the

lower the number of regions will be in the final segmentation since we will keep nodes higher in

the branches because the penalty on SAM value is smaller. Besides, we will not recover regions

whose sizes are smaller than the size threshold.

In the experiments, based the minimum size of the objects of interest, the threshold on size was

set to 10 pixels, and based on empirical tests, the threshold on SAM was set to 0.15 rad ' 8.6◦.

Both thresholds were kept constant and do not need to be tuned by the user.

However, as we keep one node per branch, it is possible that the set of chosen nodes does not

define a partition of the image (i.e. the intersection of all the selected regions is non-empty). In this

case, we have to find a way to get a partition of the image. We chose to use the so-called max-tree

rule strategy: we choose to keep a node in the final partition only if all the nodes in its sub-tree (the

set of nodes below a given node, which define a smaller BPT) are not selected in the final partition.

Otherwise, we select the two nodes below and check if the max-tree rule holds at this level. We

give an example of the application of this rule in Fig. 10.

We provide an example of what happens in a branch when we apply this pruning strategy in
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Figure 10 An example of a node selection that does not provide a partition of the image (left) and the application of
the max-tree rule (right). The nodes of the tree have been colored: the root is in green, the leaves that have not been
kept in the pruning are in purple, and the nodes kept in the pruning are in red (or orange if they are also leaves).

Figure 11 Evolution of SAM between nodes at a certain height in a branch and their siblings, and the region kept in
the branch with the chosen pruning strategy, using a threshold on SAM of 0.15rad and a threshold on size of 10 pixels.
On the graph, the black crosses indicate (from left to right) either the leaf node, the node kept by the proposed pruning
strategy or the node kept considering only the size.

Fig. 11. If we used only the size criteria, we would keep nodes that are higher in this branch,

because the regions at the selected level, although different, would be too similar in terms of size.

The chosen strategy may be better suited in this case because we are able to discriminate better

small dissimilar regions. However, contrary to the size of the node, the chosen criterion is not

increasing when we go up the branch, which may somewhat complexify its interpretation.

The advantage of the chosen pruning strategy with respect to the simplest pruning strategies is

that the selected nodes can lie at different levels of the hierarchy defined by the tree, depending on

the branch we consider. In a way, we can say it provides a weight to the nodes of the tree, that is
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to say it provides a measure of the similarity between the two regions that form the parent node. It

is also easier to tune the threshold parameter on SAM and the minimum size rather than estimate

the height, number of iterations or regions required to get the best segmentation possible.

4.2.3 Interactive Correction

The pruning strategy presented in the previous section allows an automatic segmentation map to

be computed. However, it probably presents some imperfections to the eye of the user. Thus,

we propose to integrate the user in the segmentation process by allowing him to interact with the

segmentation map to correct some regions that are over or under segmented according to his visual

examination. To do this, a Graphical User Interface (GUI) was implemented to allow the user to

explore the tree, starting from the partition defined by the automatic pruning. The segmentation

map is showed to the user next to a representation of the image (a certain band, a false color

composition, ...). The user can display any region he selects and the region corresponding to the

node that is just above it in the branch. Then he can choose to perform the merging and update

the pruning accordingly. Similarly, he can also choose to visualize the two children of a node, and

to split the region if needed. The pruning is then updated. With this simple strategy, we can use

the hierarchy defined by the tree to improve the segmentation results. Plus, provided the automatic

segmentation is good enough, only a few corrections (which can be often be spotted only using

the BSE band) are necessary to improve significantly the segmentation map. The segmentation

interaction is described in the appendix and shown in Fig. 21.
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4.3 Interactive Classification using SVMs

So far, the focused was put on the computation of a good segmentation map using the BPT struc-

ture. Still, we have to keep in mind that another goal for our application is classification. In this

section, we present the approach we propose to first generate an automatic classification map, an

then to allow the user to interact with it to improve the classification results.

4.3.1 SVM classification

The first step of the classification process is to generate an automatic classification map using the

data and the training samples we have at our disposal. The classifier we used is the Support Vector

Machine (SVM), because it was successfully used in multi and hyperspectral imagery as well as

for applications to cement SEM images6, 29, 30 and it is able to provide good results even with a

limited training set, while remaining reasonable in terms of computational burden. For the study

of this paper, as we needed a multiclass classifier, we resorted to the so-called one against one

approach, i.e. we perform binary classifications for every possible pair of classes and choose the

winning class for each pixel through a voting process. Although another classifier, such as one of

those reviewed in Section 3, could have been used, but we chose to use SVM for its simplicity.

The objective is more to propose a framework for user interaction starting from a good enough

automatic result, rather than an optimal pipeline.

The main problem of the SVM classifier is that is does not take into account the spatial structure

of the images. That is why in the presence of noise, the pixelwise classification map is noisy as

well. In our case, we avoid this problem since we perform the classification on the denoised

data, considerably reducing the noisiness of the classification. Nevertheless, the classification map

is probably not perfect. The most critical parameter in the classification is the definition of the
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training samples: they have to be good representatives of the different classes and the training also

needs to be balanced in order to separate the classes as well as possible. That is why the approach

we propose deals with this issue by once again including the user in the process.

4.3.2 Regularization of the classification map on the segmentation map

The idea that motivates our approach is that the user is usually able to spot easily a few misclas-

sifications in a classification map. If the user could inform the program that a certain part of the

classification is wrong by correcting it, the program should be capable of learning from the correc-

tions and adjust the classification map. That is why we need a segmentation map to identify the

spatial regions of our image. We perform a regularization of the classification map on the segmen-

tation map we obtained, that is to say, we simply assign to every region of the segmentation map

the majoritary class among its pixels. This way, using a second GUI, a user will be able to select

the classified regions of the segmentation map.

4.3.3 Interactive correction of the training samples

The objective of this step is to use the visual examination from the user to improve the classi-

fication map. Using a GUI, the user can select every region on the reguralization of the SVM

results on the segmentation map. The user is asked to select the misclassified regions that he spots,

comparing the classification maps with a representation of the data (training image, false color

composition, ...), and to assign the corresponding pixels to the correct class. But instead of cor-

recting the classification map, we choose to use the information provided by the user to improve

the training samples, thus allowing the classfifier to learn from the corrections. To do so, a certain

percentage of the pixels of this region are randomly selected and added to the training set with a
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label that corresponds to the corrected class. The percentage has been set equal to 5% to allow the

corrections to impact the classifications without unbalancing the training. It is also possible for the

user to tune this parameter at every moment. By repeating this operation on a few misclassified

regions, we allow the training set to be more representative of the classes and to learn from its

previous mistakes. Then a new SVM classification map is generated from the new training set. If

the result still remains unsatisfactory for the user, it is possible to continue the corrections until

the classification gets accurate enough. It is also possible to reinitialize the corrections in case of

a mistake from the user or if the training becomes unbalanced after too many corrections. The

classification interaction is described in the appendix and shown in Fig. 22.

5 Validation of the method

In this section we show the results of the experiments performed on synthetic and real datasets to

validate the proposed approach.

5.1 Synthetic data

5.1.1 Data generation

We generated two synthetic datasets keeping in mind that they have to be close enough to a real

dataset for the results to be meaningful. To do so, in both cases (one dataset for segmentation

evaluation and one for classification evaluation) we selected an output classification map of the

proposed approach on a real dataset (the one of Fig. 3 in the case of classification), which we

considered to be the ground truth for the synthetic data. By assigning slow varying gray level values

to each region in one band, we generated a synthetic image with realistic geometrical structures.

To simulate the coarser spatial resolution of the X-ray bands, we applied a blurring gaussian filter
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Figure 12 Some bands of the synthetic dataset used for classification evaluation. A synthetic band mimicking the BSE
band (left), a normal X-ray band (middle) and a quantized X-ray band (right) are shown.

to these bands. We added a 10dB gaussian noise to some bands, and a 0dB noise to some others.

Indeed, we wanted to reproduce the quantization effects present in lower SNR bands. So, to

simulate the quantization effects present in certain bands, we also uniformly quantized the low

SNR X-ray bands so that they only comprise around 10 gray levels. We show the generated “BSE”

image and two “X-ray” bands in Fig. 12. In the classification results, the names of the real classes

are kept although their response in the synthetic X-ray bands do not always match the true ones (but

their shape and geometry do: e.g. Fly Ashes keep their round or crescent shape but are associated

with hypothetical chemical elements here). For the classification dataset, the training pixels used

are at the same locations as in the image of Fig. 1.

5.1.2 Segmentation evaluation

In this section, we compare the results of the automatic segmentation result provided by the BPT

pruning to the output of the segmentation from the mean shift algorithm.15 This is a flexible algo-

rithm which was successfully used in different contexts. The implementation we used could only

handle color images, so in order to use most of the information provided by the data, we ran this

algorithm on the first three principal components of the image. Besides, for a fair comparison, both

algorithms were run on the denoised data. We compared the outputs of the segmentation results
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to a ground truth obtained by converting the ground truth classification map into a segmentation

map, by labelling the connected components of this image. For the quantitative results, we used

three metrics, whose properties and implementations are discussed in the paper by Cardoso and

Corte-Real.25 The symmetric distance dsym(R,P ) between a candidate partition P and a reference

partition R, and the assymetric distances dasym(R,P ) and dasym(P,R) between a partition and a

reference. The symmetric distance can be defined as the number of pixels to be removed to the

support of the image so that the two partitions are identical (up to a permutation of the labels), pos-

sibly normalized by its maximum possible value for two partitions (N − 1, where N is the number

of pixels in the image), so that the measure values are between 0 and 1. This measure defines a

distance between partitions which we can use for comparing the outputs of different segmentation

algorithms when a reference is available, as in this case. The assymetric distance dasym(R,P ) (here

the order of the arguments matters) is defined as the number of pixels to remove to the support of

the image so that the partition P is a refinement of partition R, meaning that every region of P is

contained in a region of R. This distance enables us to compare two partitions, but without being

sensitive to oversegmentation. This means that the distance between a partition and a refinement

of it will always be zero. This measure is useful to our application if we keep in mind that region

corrections for the classification will be much more cumbersome in case of undersegmentation

than oversegmentation. We also provide the value of dasym(P,R), which defines a new measure

insensitive to undersegmentation.

The visual results of the segmentation algorithms are provided in Fig.13, and the quantitative re-

sults are gathered in Table. 1.

From the visual results, we can see that both tested algorithms recover more or less the shape of the

regions in the ground truth image. However, exact recovery is made difficult in both cases because
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hhhhhhhhhhhhhhhhhhhAlgorithm
Measure (normalized)

dsym(R,P ) dasym(R,P ) dasym(P,R)

Mean Shift 0.5931 0.0899 0.5802
Proposed 0.3294 0.1232 0.2980

Table 1 Quantitative results for the segmentation on a synthetic dataset.

of the coarser resolution of the images mimicking X-ray bands. It seems that overall the proposed

approach tends to undersegment the image slightly more than the mean shift output, though this

is not always true locally. Conversely, the mean shift output seems overall more oversegmented,

which is not critical in our application since the segmentation is a tool for the region correction in

the interactive classification process.

The quantitative results confirm these observations. The symmetric distance with the reference is

lower in the case of the proposed method (with the thresholds set to a fixed value so as not to be

tuned between datasets), meaning that the segmentation is overall closer to the reference. How-

ever, the assymmetric distance dasym(R,P ) (insensitive to oversegmentation) is slightly in favor

of the mean shift algorithm, meaning that without considering oversegmentation, the mean shift

segmentation is closer to the reference. On the contrary, finally, the distance dasym(P,R), insensi-

tive to undersegmentation, is better for the proposed approach. Note that even if oversegmentation

is not as critical as undersegmentation in our application, the proposed approach still has the ad-

vantage of being a hierarchial segmentation. This means that user corrections is possible and easy

in order to improve the segmentation in undersegmented regions, and also that the scale of the

regions in the results of the proposed approach can still be refined depending on the value of the

two thresholds for the pruning. These results show that the proposed approach is competitive with

other segmentation algorithms and that it is a satisfactory automatic result which is an instance of

a hierarchical segmentation process.
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Figure 13 Segmentation results on a synthetic dataset. From left to right: Color composition (PCA), Ground truth
segmentation, Results of the Mean Shift algorithm, and results of the proposed BPT pruning strategy.

XXXXXXXXXXXXMethod
Phase

Alite Belite Portlandite Hydrates Sulfoaluminates Inners Quartz Fly Ashes Porosity Overall

SVM-MRF 96.94 92.16 98.17 99.70 91.86 80.74 95.42 72.20 84.62 90.39
Proposed 90.33 92.37 95.63 99.51 94.04 85.57 97.44 93.31 90.58 94.19

Table 2 Quantitative results on the synthetic dataset.

5.1.3 Classification results

We ran the SVM-MRF algorithm and the proposed approach on the synthetic data. For the pro-

posed approach, 10 region corrections were performed. The visual results (Fig. 14) show that the

proposed approach misses less small structures, such as for Fly Ashes (whose phase percentages

are known to be underestimated by SVM-MRF due to their sometimes small size), and porosity.

The quantitative results, given in Table 2, show that the proposed approach significantly outper-

forms the SVM-MRF method, overall and on specific components. The main improvement comes

on the fly ashes, with a improvement of more than 20%. The only loss in some phases occur for

scarce or relatively scarce phases (Alite and Portlandite), or a slight loss on the hydrates, which

form the background of the images. Since corrections are performed on some phases, it is normal

that this adds a very small amount misclassifications in the background. All others classes are

better, or much better classified by the proposed approach, which tends to confirm the relevance of

the classification framework we propose.
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Figure 14 Classification results on a synthetic dataset. The true classification map is shown on the left, while the
results of SVM-MRF and the proposed approach are shown on the middle and on the right, respectively.

5.2 Real data

Here we describe the results of the proposed approach on a real dataset. First, we present the

results of the denoising step using the BM3D algorithm. Then we show the results of the automatic

segmentation using the BPT and the pruning strategy we developed for our application. Finally

we present the results of the classification using the SVM and the training correction GUI, and we

compare it both visually and quantitatively to the SVM-MRF method,6 with 3× 3 neigborhoods.

5.3 Denoising Results

Here we present the results of the BM3D denoising. The results on two different X-ray bands of

our data are shown in Fig. 15. We compare the denoising results with the ones obtained using a

3× 3 median filter. We can see that BM3D allows to reduce the noise much more importantly than

the median filter, without significantly altering the spatial structure of the image. Obtaining this

level of smoothness from a large median filter would be on the contrary highly detrimental to the

edges of the images. The results are particularly good visually on bands presenting quantization

effects such as the Cl band.

We can also visualize the results of the denoising on the training set: in Fig. 16 we show

a scatter plot of the training samples corresponding to Fig. 3, in a 3D space corresponding to
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Figure 15 Results of the denoising on two bands (leftmost column) using a 3 × 3 median filter (middle column) and
the BM3D algorithm (rightmost column) on small parts of two X-ray bands: Aluminium (top row) and Chlore (bottom
row) of a cement sample.

Figure 16 Scatter plots of the training set of Fig. 3 on the first 3 principal components before (left) and after (right)
the denoising steps.

the first 3 principal components of the set. We can see that the denoising allows a much better

separation of the classes than with the raw data, with which many classes overlap. However, the

fact that the training samples present less variability after the denoising may cause the training

set to become less informative in itself. In case this happens, the problem will be solved anyway

during the training correction step, during which it will be possible to add new training instances.
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Figure 17 Segmentation results on the real dataset. A false color composition (PCA) is shown on the left. The
automatic segmentation map obtained by the proposed approach is shown on the right (Every region is represented by
its mean color).

5.4 Segmentation Results

Now we present the results of the automatic segmentation described in section 4.2.2. The visual

results can be seen in Fig. 17. We represented as a reference the false color composition corre-

sponding to the first three principal components of a PCA performed on the denoised multispectral

image. We can see that the vast majority of salient spatial elements are correctly recovered by our

segmentation map. Even the smallest circular regions, corresponding to micronized fly ashes are

present in the BPT structure and in most cases correctly detected by the proposed pruning strategy.

Only some of the smallest regions are merged with small surrounding regions, probably because

they were not separated in the first place by the watershed algorithm. The latter is still extremely

useful to limit the computation time. Besides, it has to be kept in mind that the segmentation

map can be corrected and improved by the user, provided the BPT’s structure allows the desired

merging or splitting.
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5.5 Classification Results

The results of the classification process after the interaction with the user are presented in this

section. First we show the classification maps, in comparison with those obtained by a basic SVM

classification with no denoising and the SVM-MRF method. Then we will present quantitative

results based on the comparison of the phase percentages of 1 day-old cement paste computed

using the classification maps and the reference percentages coming from the knowledge of the

cement composition.

5.5.1 Visual results

We present in Fig. 18 the BSE image used for the experiment, with the training pixels displayed

in color (see Fig. 3 for the information on the classes), as well as the results of the segmentation

coming from SVM (without the denoising step), SVM-MRF and the proposed approach. Note that

contrary to the images tested for the quantitative results part, this image depicts a 91-old cement

paste, in which the different components have started the hydration reactions.

We can see that the classification results obtained with the proposed approach respect the spatial

structure of the original image, seen in the BSE band. The classification method we propose

allows to beneficiate from the conservation of the spatial features provided by the SVM without

the drawback of getting noisy classification maps, as the pixelwise classifier obtains in for noisy

data. It also allows us to reach the smoothness shown in the SVM-MRF result, but without losing

the information on the edges, and it is able to recover even the smallest particles in the classification

map. The reasons for this are twofold: the denoising step smoothes the result provided by the SVM

and the training correction using the segmentation map allows to include the smallest particles and

the originally misclassified regions in the training set. In particular, a close look to the images
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Figure 18 Classification maps of the proposed method in comparison with SVM and SVM-MRF. For the information
on the classes, see Fig. 3. On the top row are displayed the training image and the SVM classifation map on the raw
data (without denoising). On the bottom row we show the results of SVM-MRF (left) and of the proposed approach
(right), after the integration of a dozen misclassified regions in the training set.
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shows that we are able to detect much more small micronized fly ashes than with the SVM-MRF

or even the SVM method.

5.5.2 Quantitative Results

In this part, we present a way to quantitatively assess the results of the classification method we pro-

pose. It is based on the processing of cement samples one day after the solidification of the paste.

At this point, we can consider that some of the additives (fly ashes, limestone fillers, pozzolana

and slag for instance) have not begun to react in the paste. Knowing the percentage accounted for

each of these components in several cement pastes, it becomes possible to have a reference for

the comparison with the experimental phase percentages, i.e. the percentage of the image pixels

for each class. A complete SEM acquisition from a cement sample represents at least 30 tiles of

the same size as the images we have presented throughout this paper (1024 × 768 × 15). The

training and the interactive part are only performed on one of them, so that the corrected training

can be used to perform automatic SVM classifications on all tiles, after the denoising step. Then

we have to average the percentages found for each tile. To make sure the obtained percentages are

statistically meaningful, we plotted in Fig. 19 the relative variation of the accumulated means of

the phase percentages every time a new tile is processed, for a sample comprising around 40 image

tiles. This means a point in the plot for a given class corresponds to the relative variation between

the mean phase percentages of this class when n and n + 1 tiles have been processed. We can see

in this plot that for each class, the relative variation quickly decreases to small values when the

processed part of the complete sample becomes larger. After 25 images, the variations are almost

never larger than a few points. From this, it seems that having at least 30 tiles at our disposal is

enough to get statistically meaningful results.
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Figure 19 Relative variation between the accumulated mean phase percentages of each class of the image of Fig. 3
throughout the processing of a full sample.

The comparison of the average phase percentages of each phase of interest has been performed

for several cement systems. We computed the phase percentages of the classes corresponding to

meaningful groups (for instance, there can be several types of fly ashes defined in the training set

that we group in one single class) whose quantity put a priori in the cement is known. These groups

can be, depending on the samples: fly ashes, slag, limestone filler, or several of those if they are

present together in the sample. These compounds are not supposed to have reacted after one day.

Finally, we can plot the experimental values against the theoretical ones, where each symbol in

the plot accounts for the results concerning one of the aforementioned groups, after the processing

of one full sample (from 25 to 50 images). This has been done in Fig. 20 , with the results from

the proposed method (in black) and the SVM-MRF method (in color). We also plotted the first

bisector as a reference. We also show the same results in Table 3.

From the plot, we can see that our method performs better than the SVM-MRF method pro-
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Figure 20 Experimental phase percentage values of cement components 1 day after solidification plotted against
theoretical values for several cement systems (represented by different symbols). The optimal values lie on the first
bisector. FA: Fly Ashes, SL: Slag, PZN: Puzzolana, LM: Limestone Filler, OPC: Ordinary Portland Cement. The
black symbols correspond to the proposed approach (BPT) and the colored symbols to SVM-MRF.

vided the corrections of the training are reasonably carried out. We can see that the BPT approach

performs better than SVM-MRF in 3 cases out of 7, comparably in 3 cases out of 7, and worse

in only one case. The main improvement can be seen on two cases: FA in a ternary OPC-FA-LF

mixture, and PZN in an OPC-PZN mixture (which corresponds to the arrows in Fig 7). The small

size of the FA and the complexity of the mixture in the first case and the presence of clay in the

second are better handled by the proposed approach. Micronized fly ashes were better identified

XXXXXXXXXXXXMethod
Phase FA in

OPC-FA-LF
SL in

OPC-FA-SL
SL in

OPC-FA-SL
FA in

OPC-FA-SL
FA in

OPC-FA-SL
PZN in

OPC-PZN
FA in

OPC-FA
BPT 13.22 3.70 5.00 15.88 19.97 8.25 32.84

SVM-MRF 16.40 3.27 6.45 12.05 19.95 12.70 31.00
Theory 13.90 3.97 5.84 13.92 19.10 7.49 31.87

Absolute difference with theory (BPT) 0.68 0.27 0.84 1.96 0.87 0.76 0.97
Absolute difference with theory (SVM-MRF) 2.50 0.70 0.61 1.87 0.85 5.21 0.87

Table 3 Phase percentages obtained by the proposed approach (BPT) confronted to those of SVM-MRF. OPC: Or-
dinary Portland Cement, FA: Fly Ashes, PZ: Pozzolan, SL: Slag, LF: Limestone Fillers. In the first two rows, bold
values indicate the best result. In the last two rows, bold and italic values indicate better performance for the proposed
approach, the italic value correspond to a better performance for SVM-MRF, and in the columns without bold or italic
values, both algorithms perform similarly (absolute difference between the two differing by 0.1 or less).
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by the proposed method, especially in the ternary OPC-FA-LF mixture, which confirms the visual

results. This suggests the potential of the interactive BPT approach as a robust technique for the

classification of complex mixtures.

Finally, we give some information regarding the computational burden of both methods. For

an image similar to the ones showed in this paper, and whose training has to be improved interac-

tively, computing the segmentation and classification maps (without considering the few minutes

necessary for corrections) with the proposed approach takes roughly the same time (around 10

min) than computing a classification map with the SVM-MRF method. However, the proposed

method is computationally more efficient when automatically classifying a batch of images of the

same cement sample, once the training has been corrected. Indeed, for such images, only classifi-

cation maps have to be computed, which require 2 or 3 min per image, while 10 are necesserary

for SVM-MRF. The computation time for segmentation is indicative since the it also depends on

the spatial complexity of the images.

6 Conclusion

In this paper, we presented a new method for the segmentation and classification of multispectral

SEM images of cementitious materials using an interactive process. The proposed method is a

pipeline involving severa image processing tools in order to provide automatic segmentation and

classification maps, as well as defining a framework in which the user can easily improve the results

with a few interactions with the program. We were first able to denoise efficiently the data. For the

segmentation part, we used a hierarchical region based representation of the image using Binary

Partition Trees. We developed a pruning strategy to recover an automatic segmentation from the

BPT. Then we developed a process in a GUI with which the user can explore the tree starting from
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the automatic segmentation to improve the results. The automatic segmentations recovered by the

algorithm seem to account correctly for the spatial structure of the data, based on visual exami-

nation. The classification part is carried out using Support Vector Machines. Once again, once a

supervised classification map has been computed using some training sample define by an expert,

the user can use a regularization of the classification map on the segmentation result to integrate

initially misclassified pixels to the training set, thus improving its robustness and representativity

of the classes. The classification maps obtained after the interactive part of the process are practi-

cally noiseless and seem to preserve the spatial information of the data as well as detecting even

the smallest particles, which is a significant improvement with respect to the SVM-MRF method

whose results were compared with ours. On a more quantitative point of view, we were able to

compare the accuracy of the segmentation and classification maps we obtained on synthetic data,

and on real data for unreacted components of some cement samples. Once again, the proposed ap-

proach gives results that are close to the theoretical values and outfperorms the SVM-MRF method.

The relevance of the method we propose makes it a good and flexible solution to estimate phase

percentages of the same cement sample over time, and consequently compute hydration degrees of

the components.

Even though the proposed method seem to be relevant to tackle the cementitious material SEM

images segmentation and classification problem, we can think of future developments for this

work. First, we saw that the training samples are the most sensitive parameter of every supervised

classification technique, so it should be interesting to study how we should select the training

samples, i.e. how to choose the ones who are the most informative and allow us to separate the data

in an optimal way. This process, called Active Learning, is currently receiving a lot of attention in

the domain of Machine Learning, and could be an alternative to the interactivity with the user in
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the proposed approach. Finally, we could explore the potential of the hierarchical representation

provided by BPTs to try to get better segmentation maps: the idea would be to interact with the

user in a first step and then try to infer rules from his decisions and propagating them to other parts

of the tree. Then we could think of developing new pruning strategies for segmentation that match

better the visual interpretation. New pruning strategies specifically dedicated to classification could

also be investigated as another line of attack or to be combined with the interactive classification

process proposed in this paper.

Appendix

In this appendix are presented the two GUIs used for the improvement of the correction and clas-

sification parts of the process (Figs. 21 and 22). The image of Fig. 21 shows the segmentation

interface. On the left can be shown several images of interest: the different bands, a false color

composition of the first three principal components, the initial segmentation map... When the user

left clicks a region on the right, the corresponding region is displayed, as well as the sibling node.

The user can merge the two regions or leave them as is. With a right click, the two children regions

of a node are shown, and the user can split the region into its two children. In the case of Fig. 21,

the user left clicked a round region (fly ash) and was proposed to merge it with the large region in

blue, which is not a good choice in this case.

The classification interface is shown in the image of Fig. 22. On the left is displayed an image

of interest (band, color composition, original SVM classification...). On the right is shown the

regularization of the SVM classification on the segmentation map. The user can click any region

on the left image, or any part of the left image to display the corresponding region. Then using

the boxes at the bottom left corner, he can choose the label corresponding to the right class, which
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Figure 21 The segmentation GUI.

will change its color on the right image and add a certain percentage of the pixels of this region to

the training set (5 by default). When the user has finished his corrections, he can generate a new

classification map. He can then (if more corrections are needed) update the interface with new re-

sults (and generate a new regularized classification) in order to continue the training improvement.

Here the clicked region should be changed to class 11 (White fly ashes).
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pared to state-of-the-art superpixel methods,” Pattern Analysis and Machine Intelligence,

IEEE Transactions on 34, 2274–2282 (2012).

32 M. Qiu, Z. Li, H. Zhang, C. Xie, and J. Zhang, “Joint sparsity matrix learning for multi-

class classification applied to face recognition,” Journal of Electronic Imaging 23(3), 033007

(2014).

46



33 Y. Chen, N. Nasrabadi, and T. Tran, “Hyperspectral image classification using dictionary-

based sparse representation,” Geoscience and Remote Sensing, IEEE Transactions on 49,

3973–3985 (2011).

34 K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D

transform-domain collaborative filtering,” IEEE Transactions on Image Processing 16

(2007).

35 D. Hoaglin, F. Mosteller, and J. Tukey, Understanding robust and exploratory data analysis,

vol. 3, Wiley New York (1983).

36 Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, “Segmentation and classification of

hyperspectral images using watershed transformation,” Pattern Recognition 43, 2367–2379

(2010).

37 N. Keshava, “Distance metrics and band selection in hyperspectral processing with applica-

tions to material identification and spectral libraries,” IEEE Transactions on Geoscience and

Remote Sensing 42, 1552,1565 (2004).

38 H. Ling and K. Okada, “Diffusion distance for histogram comparison,” Computer Vision and

Pattern Recognition, 2006 IEEE Computer Society Conference 1, 246–253 (2006).
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List of Figures

1 A SEM image of a cement sample. The X-ray bands were assigned a colormap for

an easier identification of the corresponding chemical elements (the more saturated

the color, the higher the value). The first X-ray image (green) accounts for the

presence of Aluminium in the sample. The width of the images represents roughly

350 µm.

2 Two X-ray bands showing different configurations of noise and quantization in a 91

days-old cement sample. On the left is a noisy X-ray interaction band correspond-

ing to an abundant chemical element (Si), and on the right is a heavily quantized

band related to a scarce chemical element (Cl).

3 The training image consists in the BSE band with some colored pixels correspond-

ing to the different classes.
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4 An example of the construction of a BPT (left). Starting from an initial partition

(the leaves, here nodes 1 to 5), the most similar regions are merged, creating a new

node in the tree, and a new partition. This process is iterated until only one region

remains (the root of the tree). Two possible prunings of the BPT (right). We can

only select nodes that form a partition of the initial image.

5 Flowchart of the proposed method. The blue boxes correspond to the segmentation

part of the process, while the red ones correspond to the classification part. Green

circles show the parts where the process interacts with the user, to improve the

segmentation map or the training samples.

6 An example of the block matching procedure to find similar blocks in a gray-scale

image.34 A reference block (R) is shown in red, and the blue blocks (found here

along an edge of a spatial structure of the image) were identified as similar.

7 The histograms of a heavily quantized band, before and after addition of uniform

noise for a better variance estimation with MAD.

8 Two distances suited for the region model of (1), i.e. θ = SAM(x, y), and ∆ =

||x− y||2, represented for a 3 dimensional space.37
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9 The rationale behind a pruning strategy based on size discontinuity in a branch:

the size of the regions often present large discontinuities when they are merged

with a region corresponding to a different phase. The leftmost part shows the

discontinuity in the size of the regions occurring along a branch of the tree. The

height is the distance from the leaf node to the node of interest. The rightmost

part show the region (a fly ash) corresponding to the node situated just before

the discontinuity (see the black cross on the graph), displayed on a false color

composition resulting from the first three principal components.

10 An example of a node selection that does not provide a partition of the image (left)

and the application of the max-tree rule (right). The nodes of the tree have been

colored: the root is in green, the leaves that have not been kept in the pruning are

in purple, and the nodes kept in the pruning are in red (or orange if they are also

leaves).

11 Evolution of SAM between nodes at a certain height in a branch and their siblings,

and the region kept in the branch with the chosen pruning strategy, using a thresh-

old on SAM of 0.15rad and a threshold on size of 10 pixels. On the graph, the

black crosses indicate (from left to right) either the leaf node, the node kept by the

proposed pruning strategy or the node kept considering only the size.

12 Some bands of the synthetic dataset used for classification evaluation. A synthetic

band mimicking the BSE band (left), a normal X-ray band (middle) and a quantized

X-ray band (right) are shown.

51



13 Segmentation results on a synthetic dataset. From left to right: Color composi-

tion (PCA), Ground truth segmentation, Results of the Mean Shift algorithm, and

results of the proposed BPT pruning strategy.

14 Classification results on a synthetic dataset. The true classification map is shown

on the left, while the results of SVM-MRF and the proposed approach are shown

on the middle and on the right, respectively.

15 Results of the denoising on two bands (leftmost column) using a 3 × 3 median

filter (middle column) and the BM3D algorithm (rightmost column) on small parts

of two X-ray bands: Aluminium (top row) and Chlore (bottom row) of a cement

sample.

16 Scatter plots of the training set of Fig. 3 on the first 3 principal components before

(left) and after (right) the denoising steps.

17 Segmentation results on the real dataset. A false color composition (PCA) is shown

on the left. The automatic segmentation map obtained by the proposed approach is

shown on the right (Every region is represented by its mean color).

18 Classification maps of the proposed method in comparison with SVM and SVM-

MRF. For the information on the classes, see Fig. 3. On the top row are displayed

the training image and the SVM classifation map on the raw data (without de-

noising). On the bottom row we show the results of SVM-MRF (left) and of the

proposed approach (right), after the integration of a dozen misclassified regions in

the training set.

19 Relative variation between the accumulated mean phase percentages of each class

of the image of Fig. 3 throughout the processing of a full sample.
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20 Experimental phase percentage values of cement components 1 day after solidifi-

cation plotted against theoretical values for several cement systems (represented by

different symbols). The optimal values lie on the first bisector. FA: Fly Ashes, SL:

Slag, PZN: Puzzolana, LM: Limestone Filler, OPC: Ordinary Portland Cement.

The black symbols correspond to the proposed approach (BPT) and the colored

symbols to SVM-MRF.

21 The segmentation GUI.

22 The classification GUI.
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1 Quantitative results for the segmentation on a synthetic dataset.

2 Quantitative results on the synthetic dataset.

3 Phase percentages obtained by the proposed approach (BPT) confronted to those

of SVM-MRF. OPC: Ordinary Portland Cement, FA: Fly Ashes, PZ: Pozzolan, SL:

Slag, LF: Limestone Fillers. In the first two rows, bold values indicate the best re-

sult. In the last two rows, bold and italic values indicate better performance for the

proposed approach, the italic value correspond to a better performance for SVM-

MRF, and in the columns without bold or italic values, both algorithms perform

similarly (absolute difference between the two differing by 0.1% or less).
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