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Abstract. Depth edges play an important role in depth image upsampling. Many recent upsampling methods
rely on the prior images of depth edges to preserve sharp depth edges in restored depth images. However,
recent depth edge detection methods are not robust against the noise in depth images. Some methods are
also too time-consuming. We propose a method to efficiently detect edges in depth images. The proposed
method is very simple but very robust against the noise in depth images. It is also fast and has near ¢(1) imple-
mentation. We apply the proposed method to the existing edge guided depth image upsampling. Experimental
results on both simulated and real data show the effectiveness of the proposed method. ©2016 SPIE and IS&T[DOI:
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1 Introduction

Acquisition of depth information of three-dimensional (3-D)
scenes is essential for many applications in computer vision
and graphics. Applications range from 3-D modeling to
3-DTV and augmented reality. A number of applications
require accurate and high-resolution depth images, for in-
stance, object reconstruction, robot navigation, and automo-
tive driver assistance. Recently, modern time-of-flight (ToF)
depth cameras such as SwissRanger SR4000 have shown
impressive results and become increasingly affordable. They
can obtain dense depth measurements at a high frame rate.
However, their depth images are usually quite noisy and suf-
fer from low resolution.

To facilitate the use of depth data, tremendous efforts have
been spent on upsampling depth images obtained by modern
depth cameras.' One of the most challenging issues in the
upsampling is to preserve depth edges in depth images. To
this end, many methods rely on the prior of depth edges.®!
These methods mainly focus on how to get a high-quality
depth edge map given a noisy low-resolution depth image
and an aligned color image (if the color image is available).
Here, depth edges mean abrupt depth changes in depth images
(also known as depth discontinuities in related papers®'?). To
get the depth edges, these methods can be mainly categorized
into three kinds: (1) detecting edges on both the depth image
and the aligned color image using traditional edge detectors
such as Canny detector."® The obtained edge maps are then
combined using certain rules.>*° (2) Detecting depth edges
only using depth images.® (3) Learning edge maps with an
external database.”!! The first kind of method is only suitable
to the situation where aligned color images are available. The
last two kinds of methods are suitable to the situation where
there are no color images. However, most of these methods are
not robust against the noise in depth images. Some of them®®
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can even introduce false depth edges. The learning-based
methods are also quite time-consuming. How to get high qual-
ity depth edge maps in a robust and fast way still remains a
challenging issue in edge guided depth upsampling.

In this paper, we propose a method for robust detection of
edges in noisy depth images which can be used to guide the
edge guided depth upsampling. While many previous meth-
ods are only tested on simulated depth images without any
noise which is not true for real depth images, we show our
method is robust enough and can work well on real data that
contain heavy noise. Moreover, we propose the near O(1)
implementation of the proposed method. This makes the pro-
posed method more practical for real applications. We apply
the proposed method to the existing edge guided depth
upsampling. Experimental results on both simulated and
real data show the promising performance of the proposed
method.

The rest of this paper is organized as follows: in Sec. 2,
we briefly present some recent methods that detect depth
edges. In Sec. 3, we show the proposed robust detection of
depth edges and its near O(1) implementation. Experimental
results of both simulated and real data are shown in Sec. 4.
We also discuss the parameters in the proposed method. We
draw the conclusion of this paper in Sec. 5.

2 Related Work

To detect edges in depth images, one way is to use a tradi-
tional edge detector such as the Canny detector."® Schwarz
et al.!” proposed to first detect edges in a depth image and the
corresponding aligned color image using the Canny detector.
Second, they combined these two edge maps to get the final
edge map. A similar method was also adopted by Camplani
et al.® and Liu et al” These methods have two problems:
(1) when the noise is too heavy in depth images, which is
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true for ToF depth images, the Canny detector may result in a
noisy depth edge map. (2) The final depth edge map has
many “false depth edges” that are in fact color edges.

Another way is detecting depth edges only in depth
images. Nguyen et al.'* proposed a depth dependent thresh-
old to detect depth edges in depth images. Hua et al.® pro-
posed to detect depth edges by thresholding the absolute
difference between the minimal value and the maximal
value within depth patches. These methods are only suitable
for noise free depth images or depth images containing little
outliers (e.g., Kinect depth images). When depth images con-
tain large outliers (e.g., ToF depth images), these methods do
not work well.

There are learning-based methods that detect depth edges.
Ferstl et al.” proposed to learn a dictionary of edge priors
from an external database of high- and low-resolution
examples. They used a sparse coding approach to precalcu-
late edge priors out of low resolution examples. Xie et al.!!
proposed to learn the high-resolution edge map from the
edge map of the upsampled low-resolution depth image
and an external database by solving a Markov random
field (MRF) framework. These methods need quite a long
time to get the final depth edge map. The method proposed
by Xie et al.'' is also not robust against the noise because
they used the Canny detector’ to detect edges in the
upsampled low-resolution depth image to initialize their
framework.

3 Proposed Method

3.1 Depth Edges Based on the Relative Smoothness

A better depth edge detector should be robust against the
noise and should be efficient to implement. It should also
not rely on color images that can introduce irrelevant false
depth edges (i.e., color edges). First, we should know the
unique property of depth images: Most regions in depth
images are quite smooth. Only object boundaries have
depth edges in depth images. These can make the detection
of edges in depth images in a different manner from that of
natural images which contain many textures. Another point
is that real depth images also contain large outliers.”> To
make use of the unique property of depth images and be
robust against the noise, we propose to measure the smooth-
ness of depth images as follows:

ZSENA (xmin)xs
> X

ZENA (xmax )

A«i: ,iEQ, (1)

where x;, and x,. are the minimal and maximal depth val-
ues within the given depth patch N(i), respectively, N(i) is a
square patch that has the radius of r, N, (x,) and N;(xpa.)
denote a small square patch of radius r; centered at the pixel
which has the value of x,;, and x,,,, and € represents the
coordinate set of the depth image. 4; is denoted as the “rel-
ative smoothness” of N (i) in this paper. If N(i) is located in a
homogeneous depth region, its relative smoothness 1; will be
close to 1. If N(i) contains a depth edge, its relative smooth-
ness 4; will be much smaller than 1. Note that Eq. (1) does
not depend on the depth range of the depth image since we
always have 4; € (0,1].

There are two aspects behind the intuition of Eq. (1):
(1) Since depth images are quite smooth except for depth
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edges, depth values inside a small patch are always very
close. (2) For a noisy depth image, the depth value of a single
pixel may be an outlier. However, if we use the sum of a set
of pixels that have the same “ground truth” depth value, then
the noise will be suppressed. This is approximated by using
the sum inside N;(xp,) and N,(xp5..) based on the first
intuition.

In fact, both x,;, and x,,,, will be noisy points since depth
images are noisy. We analyze the correctness of Eq. (1) given
Xmin and xp.. are noisy points. First, if the patch N(i) in
Eq. (1) locates on homogeneous regions, then no matter
whether x.,;, and x,,, are noisy or not, ZseNﬂ(xmm)xs will
always be close to Z,eNﬁ(xmx)x, based on the intuition
above. Then A; will be close to 1. This is what we suppose
it to be. Second, if the patch N (i) contains a depth edge, then
on average, depth values on one side of the edge are smaller
than that on the other side. In this case, x,,;, is more likely to
be located on the side with smaller depth values while x,,,, is
located on the other side. This is also what we suppose it to
be. There are also cases where both x;, and x,,,, are located
on one side or x;, is located on the side with larger depth
values while x,, is located on the other side. However, the
probability is quite small. Our experimental results in the
experimental part also validate this where depth edges are
properly detected.

In real applications, there may be the case where there is
more than one pixel that correspond to the minimal/maximal
value. In this case, we only choose one of them. For the pixel
located on the border area where only part of its neighbor
pixels are valid pixels in a depth image, we only use the
valid ones to compute the minimal/maximal value.

After we have made all these clear, we show how to mea-
sure the relative smoothness of the whole depth image. To
this end, we measure the relative smoothness of every
patch in the depth image. Then we get a relative smoothness
map A that has the same size as the depth image. Each
element in A is A; computed through Eq. (1). Then only a
small fraction of elements in A that correspond to depth
edges will have small values and the rest will be close to
1 and will correspond to homogeneous regions in depth
images.

To classify depth edges and homogeneous depth regions,
we simply threshold every element 4, in A. If the edge map is
denoted as E, then for each element E;(i € Q), it can be
obtained as

0, if2;>0
E—{L if 2,<0° @

In fact, Hua et al.® and Chan et al.'® proposed similar
methods to measure the smoothness of depth images.
They proposed to measure the smoothness of a local depth
patch by using the absolute difference between the minimal
value and the maximal value within the patch. That is A =
|¥min — *max| Where xn and xp,, are the same as those in
Eq. (1). Their work computes the depth difference based
on a single pixel. On the contrary, we use the sum of
pixel values within the patch. This patch is centered at the
pixel which has the minimal/maximal depth value. Our
method is more robust against noise. Usually, real depth
images are quite noisy, such as the ones captured by
SwissRanger SR4000. As a result, the difference between
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the minimum and maximum can be quite large even for a
smooth depth region. The first row of Fig. 1 shows a com-
parison between the smoothness map of a noisy depth image
obtained by the method of Hua et al.® and our method. For
convenience, both of the smoothness maps are normalized
into interval [0, 1]. The corresponding edge maps are shown
in the second row of Fig. 1. The edge map in Fig. 1(a2) is
obtained by thresholding the smoothness map in Fig. 1(al)
with 5% of the depth range, which is proposed by Hua et al.®
As shown in the figure, both the smoothness map in
Fig. 1(al) and the edge map in Fig. 1(a2) are much more
noisy than ours in Figs. 1(bl) and 1(b2).

3.2 From 6(r?) Computational Cost to Near 6(1)
Computational Cost

The main computational cost of our method is Eq. (1). The
bruteforce implementation of Eq. (1) has O(r*) computing
complexity, where r is the radius of N(i) in Eq. (1). In this
section, we show that Eq. (1) can be efficiently implemented
in near O(1) time. The computational cost of Eq. (1) has two
parts: the minimal/maximal value search inside N (i) and the
sum inside N, (xyin) and Ny (x .. ). We first explain the near
O(1) implementation of the minimal/maximal value search
inside N (i).

First, we decompose the min/max operation inside the
square support N(i) into a vertical min/max operation

(a2)

followed by a horizontal min/max operation. These two
operations can both be implemented within a one-dimen-
sional (1-D) data array as shown in Fig. 2(a). If the radius
of N(i) is r, then N(i) can be decomposed into 2r + 1 col-
umn vectors which have the length of 2r + 1. Weuse r = 3
for the illustration in Fig. 2(a). We then compute the mini-
mal/maximal value of these column vectors separately. We
denote this step as the vertical min/max operation. The out-
puts are denoted as x;l? /xﬁn_a?? xﬁjfn/xﬁ,f;x. Then these
2r + 1 values can again form a row vector that has a length
of 2r + 1: [xir;g)/xg;;), .. ,xgi)n/xﬁgx] as shown in Fig. 2(a).
We then compute the minimal/maximal value of this row
vector. The result are denoted as x;, and x,,, which are
the minimal and maximal value within N(i). We denote
this step as the “horizontal min/max operation”.

For a given depth image, we first perform the vertical min/
max operation along each column of the depth image. After
this step, we can obtain a column minimal/maximal map
which has the same size as the original depth image. Each
value on this map is the minimum/maximum along the col-
umn direction. Then we perform the horizontal min/max
operation along each row of this newly obtained column
minimal/maximal map. After this step, we obtain the mini-
mal/maximal value map which also has the same size as the
original depth image. Each value at pixel i on this map is the
minimal/maximal value within N (7). As both the vertical and
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Fig. 1 Smoothness map of (a1) the method of Hua et al.® and (b1) our method. (a2) The corresponding
edge map of (al1). (b2) The corresponding map of (b1).
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Fig. 2 (a) The min/max operation inside a square patch can be decomposed into a vertical min/max
operation followed by a horizontal min/max operation. (b) When the central pixels of two 1-D supports
are neighbors, most elements of these two supports are the same (the red ones). Only the green one and
the blue one on two sides are different. (c) The computational time of the bruteforce min/max implemen-

tation versus the proposed near 6(1) implementation.

horizontal min/max operation have ((r) computing com-
plexity, the computational cost of the minimal/maximal
value search in Eq. (1) decreases from O(r?) to O(r).
Second, due to the reason that the vertical or horizontal
min/max operation slides from one pixel to the next pixel,
there is a strong correlation between the minimal/maximal
values of different supports whose central pixels are neigh-
bors. As shown in Fig. 2(b), the 1-D support of radius r cen-
tered at i is denoted as N(i). The pixels in N(i) are denoted
as x_,,...,xb, ..., xL Then N(i) and N(i + 1) have many
. L _ D N (AR )
common pixels: x| = x>, 7/, ..., X = x,_;
Fig. 2(b). The only differences are x', in N(i) and xi*! in
N(i + 1). If the minimal value of N(i) is x/

- min’
imal value xﬁé of N(i + 1) can be computed as

as shown in

then the min-

i e i1 i i
» xmﬂ, if xr&i? < X and x!; #x.,
1l . 1 1 1t 1
min — § Xr ) ) if Xy <xmin
min{x=!,. .. xiF1} otherwise

X

3

The maximal value of N (i + 1) can be computed in a sim-
ilar way with the direction of inequality signs changed.
Equation (3) takes full advantage of the neighbor support.
For the first two cases in Eq. (3), the computational complex-
ity is O(1) which is independent of the patch size. According
to our experimental results, there are quite a few opportuni-
ties to encounter the third case in Eq. (3). In this way, we
further reduce the computational cost of the minimal/maxi-
mal value search in Eq. (1) from O(r) time to near O(1).
Figure 2(c) shows the computational cost of our proposed
method versus the bruteforce implementation. The experi-
ment is performed on noisy depth images of size 1088 X
1376 pixels. It is clear that the computational time of the pro-
posed near O(1) min/max implementation seldom increases
as the radius of the patch increases.

For the sum inside N, (x;,) and N (x,,, ), We can use the
summed-area tables technique'” which has exact O(1)
implementation complexity. The summed-area tables tech-
nique has inspired many variants for exact O(1) implemen-
tation in the field of computer vision.'® In our method, we
can first compute the sum inside every patch that has a radius
of r; using the summed-area tables technique. Then we
obtain a map that has the same size as the depth image.
Each element on this map corresponds to the sum inside
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the patch of radius r; that is centered at the corresponding
coordinate in the depth image. This map is denoted as S.
Then after the minimal/maximal value search is finished,
we can get the corresponding coordinates of the minimum
and maximum. According to the coordinates, we can find
that S(xp,) and S(xye) in S correspond to the sum inside
N (Xmin) and N, (xp.). At last, we compute the relative
smoothness according to Eq. (1). We summarize our method
in Algorithm 1.

As the minimal/maximal value search inside N(i) has
near (O(1) implementation and the sum inside Nj(x.,)
and N (xp.) has exact O(1) implementation, Eq. (1) thus
has near (1) implementation.

4 Experiments and Parameter Discussion

In this section, the proposed method is tested on noise-free
and noisy simulated ToF data and real ToF data that contain
heavy noise. We compare our method with the Canny

Algorithm 1 Robust near ©(1) depth edge map computing.

Input: D (depth map), r [radius of N(/)], r; [radius of Nj(xpn) and
Ny{(Xmin)], 0 (threshold).

Output: E (depth edge map)

1. Initialize minimal/maximal values of the first 2r 4+ 1 pixels in each
column of D.

2. Use the initialization in step 1 and Eq. (3) and perform vertical
min/max operation along each column of D. Output M.

3. Initialize minimal/maximal values of the first 2r 4 1 pixels in each
row of Mc.

4. Use the initialization in step 3 and Eq. (3) and perform horizontal
min/max operation along each row of D. Output M. M is the map
of minimal/maximal value inside each N(i).

5. Compute the sum in each square patch of radius r; in D using the
summed-area tables technique. Output S.

6. Compute relative smoothness map A using M and S based on
Eq. (1).

7. Compute edge map E using A and 6 based on Eq. (2).
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(b)

Fig. 3 Edge detection results of 2x upsampling. (a) The upsampled noise-free depth images. Edge maps
obtained by (b) Canny detector,'® (c) learning-based method proposed by Xie et al.," (d) the method

proposed by Hua et al.,? and (e) ours.

detector’ that only detects depth edges on the depth map, the
method proposed by Hua et al..® and the learning-based
method proposed by Xie et al.'' We show both visual com-
parisons and computational time comparisons. We first show
the comparison between depth edge maps obtained by differ-
ent methods. Then we use the obtained depth edge maps to
guide the upsampling process proposed by Xie et al.'! and
compare the upsampling results both qualitatively and quan-
titatively. Since the edge maps that guide the upsampling
process need to be of the same size as the upsampled
depth images, we thus first upsample input depth images
to the target size through bicubic interpolation and then per-
form edge detection. In this way, we can get depth edge maps
which have the same size as the upsampled depth images.
This strategy is also adopted by Xie et al.'' and Hua et al.3

Parameters of our method are set as follows: the radius r
of N(i) to measure the relative smoothness in Eq. (1) is set as
1 for noise-free simulated data and 4 for both noisy simulated
data and real data. The radius r; of N (xpin) and N (xp., ) in
Eq. (1) are set as 1 for noise-free simulated data and 5 for

both noisy simulated data and real data. The threshold 6 in
Eq. (2) is set as 0.98 for noise-free simulated data and 0.97
for both noisy simulated data and real data.

4.1 Experiments on Simulated and Real Data

We use the Middleburry dataset’! for noise-free simulated
ToF data test. Two upsampling factors are tested: 2X
and 4x. Figures 3 and 4 show the results. As shown in
the figures, all the compared methods have similar results.
Depth edges are well detected by these methods. Depth
edge maps obtained by using the ground truth are shown
in Fig. 8.

To further test the proposed method, we perform experi-
ments on the noisy simulated ToF data that are used by Yang
et al.”? Two upsampling factors are tested: 2x and 4x.
Results are shown in Figs. 5 and 6. We set the threshold
of the method proposed by Xie et al.'! a little higher than
their default threshold to make the results less noisy. As
shown in the figures, their results are quite noisy and

Fig. 4 Edge detection results of 4x upsampling. (a) The upsampled noise-free depth images. Edge maps
obtained by (b) Canny detector,'® (c) learning-based method proposed by Xie et al.,'" (d) the method
proposed by Hua et al.,® and (e) ours.
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Fig. 5 Edge detection results of 2x upsampling. (a) The upsampled noisy depth images. Edge maps
obtained by (b) Canny detector,'® (c) learning-based method proposed by Xie et al.,'" (d) the method
proposed by Hua et al.,® and (e) ours.

Fig. 6 Edge detection results of 4x upsampling. (a) The upsampled noisy depth images. Edge maps
obtained by (b) Canny detector,'® (¢c) learning-based method proposed by Xie et al.,'" (d) the method
proposed by Hua et al.,® and (e) ours.

™
LN

Fig. 7 Edge detection results of real data. (a) The upsampled noisy depth images. Edge maps obtained
by (b) Canny detector,® (c) leaming-based method proposed by Xie etal.,'" (d) the method proposed by
Hua et al..® and (e) ours.
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Fig. 8 Edge detection results on the ground truth of depth images in Figs. 3-7.

Table 1 Average computational time (in seconds) comparison of dif-
ferent methods on noise-free and noisy simulated data and real data.

Canny'® Xieetal" Huaetal® Ours
Noise-free data (s) 0.187 576.3 0.69 0.93
Noisy data (s) 0.187 2645.5 0.69 0.93
Real data (s) 0.057 311.9 0.096 0.12

some depth edges are still not detected. On the contrary, our
method can well detect depth edges and the results are also
quite clean. Depth edge maps obtained by using the ground
truth are shown in Fig. 8.

We also test our method on real data as shown in Fig. 7.
The depth image in the first row is from the Human 3.6 M
dataset.”> The depth image in the second row is from the
dataset published by Ferstl et al.'> As shown in the figure,
both these two real depth images contain heavy noise. As
a result, the results of the compared methods are quite noisy
while our results are much less noisy and depth edges are
also properly detected. Depth edge maps obtained by using
the ground truth are shown in Fig. 8.

To further validate the effectiveness of our method, we
show the computational time comparison in Table 1. The
simulated depth images have the size of 1088 X 1376 pixels.
The real depth image in the first row of Fig. 7 has the size of
480 x 640 pixels. The real depth image in the second row of
Fig. 7 has the size of 610 X 810 pixels. Computational time is
evaluated on the platform of Intel i5-4200M CPU with 8 GB
memory. For fair comparison, we also use the near O(1)
implementation proposed in Sec. 3.2 to accelerate the min-
imal/maximal value search in the method of Hua et al.® As
shown in the table, our method needs a little more time than

the Canny detector'® and the method of Hua et al.® However,
it is much faster than the method of Xie et al.'' As the
method of Xie et al.'! needs MRF inference using loop belief
propagation,”® their method is quite time-consuming.
Moreover, their computational time is sensitive to the noise
level which is different from the other methods. This is
because they used the results of the Canny detector to initial-
ize their MRF framework. High level noise makes the Canny
detector result in more noisy edge maps which make the
MRF inference more time-consuming.

We also use the obtained depth edge maps to perform the
edge guided depth image upsampling. We use the code pub-
lished by Xie et al.'"*> We perform the comparison by using
different depth edge maps to guide the depth upsampling
process proposed by Xie et al.!! Tables 2 and 3 show the
upsampling results of both simulated and real ToF data.
Results of simulated data are evaluated in terms of root of
mean square errors (RMSE) and percentage of error pixels
between the result and the ground truth. Results of real data
are evaluated in terms of mean absolute errors (MAE) which
is adopted by Ferstl et al.'> who published the data. As
shown in tables, our method outperforms the other two meth-
ods in most cases. Though results of Xie et al.!! are compa-
rable with ours, our method uses much less time than theirs
as shown in Table 1. Figures 9 and 10 also show visual com-
parisons. As illustrated in the highlighted region, our result is
less noisy than the others especially for the real data. Our
result is especially better than the result of Hua.® This is
due to the fact that our edge maps are much less noisy
than theirs.

4.2 Parameters Discussion

The key parameters in the proposed method are the r; in
Eq. (1) and the 0 in Eq. (2). r; is the radius of N;(xpi)
and N;(xp.). A larger r; makes the relative smoothness

Table 2 Experimental results on simulated data. Results are evaluated in terms of RMSE (left) and percentage of error pixels (right) between the

result and the ground truth. The best results are in bold.

Art Book Dolls

Laundry Moebius Reindeer

2% 4x 2% 4x 2%

2% 4x 2% 4x 2% 4x

Xie 1.58 16.37 1.08 5.06 0.89 14.57 0.56 2.6 0.88 15.6 0.54 2.16 1.05 13.12 0.72 5.55 0.87 14.39 0.55 3.17 1.26 15.49 0.86 2.94

etal."

Hua 1.55 17.19 1.08 8.37 0.91 15.3 0.58 4.21 0.91 16.36 0.56 4.9 1.04 13.6 0.71 6.01 0.89 15.07 0.55 4.61 1.27 16.28 0.83 5.23

etal®

Ours 154 16.7 1.04 5.94 0.88 14.5 0.53 2.49 0.87 15.53 0.52 3.24 1.02 12.62 0.68 4.64 0.86 14.33 0.51 3.24 1.25 15.64 0.79 3.35
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Table 3 Experimental results on real data. Results are evaluated in
terms of MAE between the result and the ground truth. The best
results are in bold.

Books Devil Shark Dragon
Xie et al.M 16.39 16.79 17.93 0.36
Hua et al.® 17.72 18.08 19.27 0.46
Qurs 16.26 16.75 17.8 0.33

A; in Eq. (1) more robust against the noise. 6 in Eq. (2) is the
threshold for the relative smoothness to decide whether there
is a depth edge in N(i)(i € Q) or not. In our experiments, we
find the size of the support N(i)(i € Q) can also affect the
final depth edge map. Thus, we also discuss the relationship
between its radius r and the final depth edge map.

Figure 11 shows visual comparison of depth edge maps
obtained with different r, and » when 6 is fixed (6 = 0.97).
There are two observations: (1) As r; becomes larger, the
final depth edge map is more robust against the noise.
However, the final depth edge map is more likely to lose
weak depth edges. When r; > 7, the tendency to lose weak

depth edges becomes even more severe. This is because
when r; becomes larger, N;(xpin) and N;(x.) are more
likely to overlap each other. Thus, 2 will be close to 1
and will be larger than the preset threshold . This results
in the corresponding element E; = (0 on the depth edge
map. For the case of the pixels around weak depth edges,
even when there is no overlap between N,(x.;,) and
Nj(Xmax)> 4 is close to 1 because the depth values on the
two sides of the weak depth edges are close to each other.
When there is overlap between N;(xpi,) and N;(xp.), 2
will be even closer to 1 and be larger than 6. Then the cor-
responding element E; on the depth edge map will be incor-
rectly assigned to 0. Based on the analysis above, the final
depth edge map more easily loses weak depth edges. (2) As r
becomes larger, more pixels around depth edges are classi-
fied as depth edges. Theoretically, all the pixels whose dis-
tances to the depth edge are within r should be classified as
elements of the depth edge. Thus, the number of pixels clas-
sified as depth edges is proportional to 7. The larger r is, the
more pixels are classified as depth edges. Based on the obser-
vation above, the choice of r and r; depend on the noise in
real application. The greater the noise is, the larger » and 7,
should be.

Figure 12 shows the visual comparison of depth edges
maps obtained with different # when both r; and r are fixed

Fig. 9 Upsampling results on simulated ToF data with 4x upsampling. (a) Ground truth depth image. The
result by (b) Xie," (c) Hua,® and (d) ours. The corresponding error maps are shown at the bottom from
(e)—(g). Region in red box is highlighted.
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Fig. 10 Upsampling results on real ToF data. (a) Ground truth depth image. The result by (b) Xie,"
(c) Hua® and (d) ours. The corresponding error maps are shown at the bottom from (e)—(g). Region
in red box is highlighted.

(r; = 5,r = 4). As shown in the figure, on the one hand, too well preserved. Based on our observations, we find that when
small an & may cause loss of weak depth edges, but the band- 6 = 0.95 ~0.98, it can produce satisfying results in most
width map is quite clean. On the other hand, too large # may situations. In real applications, when the noise level is
make the depth edge map noisy, but weak depth edges are high, a smaller @ is recommended.

7”,\:3 TA:E) 7‘)\:7

Fig. 11 Examples of the depth edge map obtained with different r;, and r.
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Fig. 12 Examples of the depth edge map obtained with threshold (a) 6 = 0.94, (b) 6 = 0.95, (c) ¢ = 0.96,
(d) 6 =0.97, () 8 = 0.98, and (f) 9 = 0.99.

5 Conclusion

In this paper, we propose a method to detect edges in noisy
depth images. It is very simple but very robust against the
noise in depth images, which is useful for real applications.
Moreover, we propose the near O(1) implementation of the
proposed method. Experimental results on both simulated
and real data show that the proposed method can yield sat-
isfying results within very short time.
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