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Abstract. The quest for optimal representations is considered a challenging goal in the field of image process-
ing. This consists of reducing the processing’s complexity while ensuring an efficient reconstruction. An optimal
representation should conserve the properties of the image pertaining to smooth content and contours. The
multiscale geometric decompositions (MGD) were designed to reach this finality. They were used in many fields
and for different purposes, such as feature extraction, detail enhancing, and change detection. A state-of-art of
these decompositions is proposed in this paper. We present their theoretical definitions and how they capture the
feature of the objects within an image. An overview table is elaborated where we summarize the methods, the
data and the different criteria of assessment used in the studied cases. We are interested, particularly, in the use
of MGD in a remote sensing (RS) context. Thus, some examples of their applications on RS images are studied.
A discussion is presented based on the analyzed cases. © 2016 SPIE and IS&T [DOI: 10.1117/1.JEI.25.6.061617]

Keywords: wavelet; curvelet; contourlet; bandlet; remote sensing.

Paper 16378SSP received May 3, 2016; accepted for publication Nov. 7, 2016; published online Dec. 2, 2016.

1 Introduction
Since 25 years ago, the definition of the wavelet has led to
revolutionary achievements in the development of efficient
encoding of piecewise regular signals. Their ability to detect
singularities much more efficiently than Fourier transform1

has contributed to their remarkable success. The wavelet pro-
vides an optimal sparse approximation of a wide set of sig-
nals and digitalizes the continuous domain transform
through the fast algorithmic implementation.

Nevertheless, this latter fails when dealing with singular-
ities along curves, i.e., C2 functions, since reconstructing
images with these anisotropic features could produce unde-
sirable artifacts. A wavelet has only diagonal, vertical, and
horizontal directions, and this limited directionality sensitiv-
ity leads to inaccurate results when dealing with multidimen-
sional data. To overcome this drawback, some forms of
directionalities have been introduced, such as the steerable
pyramid,2 the directional filter banks (DFBs),3 and the
two-dimensional (2-D) directional wavelet.4 A complexi-
fyied version of wavelet was also proposed in Ref. 5 to tackle
the directionality limitation by adding more precision to C2

functions. In fact, complex wavelet offers shift-invariance
and yields, at each scale, six directional sub-bands oriented
at þ15 and −15 deg, þ45 and −45 deg, þ75 and −75 deg
(indiscriminately by ordinary wavelet).

However, it was proven through several applications that
these aforementioned methods cannot represent effectively
the image singularities and its anisotropic features. A real
transition occurred once Candès and Donoho6 introduced
the second generation of curvelet (CT) in 2004. Since
then, other multiscale geometric decompositions (MGD)
were introduced to counteract the CT’s weakness, namely
redundancy. In this work, we study some of these MGD

and represent the characteristics behind their success. We
are also interested in their application in the field of remote
sensing (RS).

This field has drawn a great interest with the development
of multiple types of sensors, leading to a huge heterogeneous
amount of data. To overcome the curse of dimensionality
while providing a powerful tool for environment monitoring,
planning, and decision-making, several techniques have
been employed. Convolutional neural network or the deep
learning7–9 represents a tendency in this field thanks to its
ability to automatically discover relevant contextual features
in image categorization problems.10 In the same context,
sparse representation (SR),11–13 total variation,14,15 and
machine learning16,17 techniques, to name a few, are also
investigated for different purposes, such as enhancing spatial
resolution, generating explanations, and extracting knowl-
edge from the images. MGD, the scope of our paper,
have been extensively used in several domains, namely pat-
tern recognition18,19 and computer vision.20,21 Their use was
also extended to the RS field, where we need to locate edges
of roads, building, rivers, and forest to detect a potential
change. Adding to that, MGD provide an analytical treat-
ment of a scene by decomposing it in high frequencies
and low frequencies. This essentially helps in fusing infor-
mation from different sensors and in revealing hidden char-
acteristics indiscriminately using only one sensor image.
Therefore, we aim, in this work, at drawing attention to the
MGD importance and contributions in the RS field. To the
authors’ knowledge, several reviews were elaborated to
describe MGD, but few of them focused on their particular
use in RS.

This paper is organized as follows: we present, in the
first section, an overview of MGD. Then we describe their
characteristics and how they have been used in the field
of RS. We conclude this paper with a discussion and a
conclusion.*Address all correspondence to: Mariem Zaouali, E-mail: zaouali.meriam@

gmail.com

Journal of Electronic Imaging 061617-1 Nov∕Dec 2016 • Vol. 25(6)

Journal of Electronic Imaging 25(6), 061617 (Nov∕Dec 2016) REVIEW

http://dx.doi.org/10.1117/1.JEI.25.6.061617
http://dx.doi.org/10.1117/1.JEI.25.6.061617
http://dx.doi.org/10.1117/1.JEI.25.6.061617
http://dx.doi.org/10.1117/1.JEI.25.6.061617
http://dx.doi.org/10.1117/1.JEI.25.6.061617
http://dx.doi.org/10.1117/1.JEI.25.6.061617
mailto:zaouali.meriam@gmail.com
mailto:zaouali.meriam@gmail.com
mailto:zaouali.meriam@gmail.com
mailto:zaouali.meriam@gmail.com


2 Overview of Multiscale Geometric
Decompositions

The notion of scales was introduced before wavelet emer-
gence to better localize objects in the image observation.
Methods like windowing or scale introduction in Fourier
transform,22,23 Laplacian pyramid (LP), and derivatives of
Gaussian (DoG) were the cornerstones of ideas a few
years later. The definition of the continuous wavelet was
a kind of generalization of previous works in scale incorpo-
ration since the newborn transform has offered a localization
in time and frequency.

For numerical computation needs, the wavelet was discre-
tized using multiresolution analysis (MRA). The MRA con-
sists of projecting a signal successively onto subspaces Vj
(as j ∈ Z increases, the approximation becomes coarser)
and yielding both approximation and detail information
(detail information is calculated from two successive approx-
imations). Otherwise, MRA stipulates that any signal, in our
case an image, could be constructed iteratively by exhibiting
different characteristics in every scale. Figure 1 shows how
smooth regions are emphasized in finest scale while contours
are more likely to be salient in the coarsest ones. Taking ad-
vantage of the MRA, wavelet transform can address point-
like singularities and offer less redundant information in
scales, compared to LP and DoG. Besides, wavelet is char-
acterized by being separable, which means that its 2-D func-
tion atoms could be written as the product of two other 1-D
functions. Precisely, a wavelet’s atom ψðxÞ ¼ 2−jψkð2−jx −
nÞ is obtained by three tensor products 2-D wavelets as
follows:

• ψVðxÞ ¼ ψðx1Þϕðx2Þ
• ψHðxÞ ¼ ϕðx1Þψðx2Þ
• ψDðxÞ ¼ ψðx1Þψðx2Þ

where x ¼ ðx1; x2Þ ∈ R2 refers to spatial coordinates of a
given point x, 2−j refers to dyadic scalings, j ∈ Z refers
to scale, n ∈ N is translation factor, ϕ is 1-D orthogonal scal-
ing (acts like low-pass filter), ψ is wavelet function (acts like
band-pass filter), and k stands for the only three directions
supported by wavelets (horizontal, vertical, and diagonal).

The MGD were introduced to further improve the aspect
of directionality limitation, whether by using the wavelet
itself combined with other treatments or by defining rules
for wavelet functions. These methods can be divided into
two different families:

• adaptive family, which follows a Lagrangian approach,
such as bandlet and

• nonadaptive family, which follows the Eurelian
approach, such as CT.

The first family proposes to build an adapted structure of
the data. For example, in order to locate singularities, the
bandlet decomposes the image using wavelets combined
with dyadic decompositions. Each square of the resulted seg-
mentation contains one direction, i.e., a unique piecewise
singularity. However, the second family tries to ameliorate
wavelet by defining additive mathematical rules on the wave-
let functions. This brings more accuracy to detect image con-
tent. A debate was settled on the strength of those families
and their abilities in image understanding: smooth regions,
contours, and texture. According to Ref. 24, the best repre-
sentation is left an open question since it is data dependent.

In this section, we represent some of the MGD
and describe their main characteristics and differences.
Particularly, in this paper, we are interested in some MGD
that are applied in the RS field. Figure 2 illustrates a map
of MGD elaborated based on Ref. 24. In fact, we have writ-
ten the names of methods that will be discussed in bold, so
that the reader can have a clear vision of what is treated in the
coming sub/sections.

2.1 Curvelet Transform
The first generation of CT was proposed by Donoho and
Duncan.25 By that definition, this transform extended the
ridgelets (built on the ground of 1-D wavelets to detect seg-
ment singularity)26 to switch from a global scale analysis to
fine scale analysis. The idea was to decompose the image
into a set of subimages and perform ridgelet transform on
each one of them.

This CT transform has not shown great results because of
the failure of ridgelets in diagnosing the C2 edges. The sec-
ond generation of CT is then proposed and was less redun-
dant and faster compared to its first generation.27 Given a
function f ∈ L2ðR2Þ, the coefficients Cðj; l; kÞ of the con-
tinuous CT transform are defined by Eq. (1):

EQ-TARGET;temp:intralink-;e001;326;308Cðj; l; kÞ ¼ hf;φj;l;ki ¼
Z
R2

fðxÞφj;l;kðxÞdx; (1)

where φj;l;k is a CT atom, at scale j, θl the angle of the ori-
entation l, and position k ¼ ðk1; k2Þ ∈ R2. In the frequency

Fig. 1 (a) Smooth region revealed in finest scale (b) while contours/edges revealed in coarsest scale.
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domain, CT coefficients are represented at discrete intervals
formed by sampling the continuous curvelet transform at
dyadic intervals Ij ¼ 2−j, θl ¼ 2π2

−j
2 l, in an equispaced

rotated anisotropic grid, as shown in Fig. 3.
CT’s atoms are defined by a combination of a translation

xðj;lÞk and a rotation Rθl of an angle θl of an atom φj;l;kðxÞ:

EQ-TARGET;temp:intralink-;e002;63;374φj;l;kðxÞ ¼ φj½Rθlðx − xðj;lÞk Þ�: (2)

The rotation with an angle θl is defined as in Eq. (3):

EQ-TARGET;temp:intralink-;e003;326;433Rθl ¼
�

cos θl sin θl
− sin θl cos θl

�
et R−1

θl
¼ ðR−θlÞ: (3)

The atom of CT φj is defined in the frequency domain by
the mean of its Fourier transform dφjðωÞ ¼ Ujðr; θÞ, which
is written in polar coordinates as follows:

Fig. 2 MGD map locating methods discussed in this paper.

Fig. 3 CT frequency space tiling: to get a discrete representation, the rotated tiling is transformed into
squared tiling. (a) Radial tiling, (b) angular tiling, and (c) the resulting frequency tiling of CT.
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EQ-TARGET;temp:intralink-;e004;63;752Ujðr; θÞ ¼ 2
−3j
4 Wjð2−jrÞVj

�
2
�−j
2

�
θ

�
; (4)

whereWj is the radial window and Vj is the angular window
at a given scale j.

To discretize the CT, the authors of this transform propose
to switch from rotated tiling to angular tiling and from
concentric circles to concentric squares, as illustrated in
Fig. 3.

2.2 Contourlet Transform
Contourlet is considered as the extension of Candes and
Donoho’s work to improve the isotropic criterion of wavelet
representation.28 This transform aims at obtaining the same
frequency space tiling as the CT, without the need to move
from continuous to discrete domain. To do so, the authors
propose a nonseparable decomposition scheme by applying
a DFB, combined with LP [as shown in Fig. 4(a)] and they
also propose to decrease the high redundancy information in
its sub-bands.

The DFB is designed to capture anisotropic features in the
high frequencies of the image by allowing different numbers
of direction at each scale while the low frequencies are proc-
essed by LP. In fact, as presented in Ref. 28, LP is defined
based on orthogonal filters and downsampling by 2 in each
iteration, similar to wavelet. The low-pass synthesis filter G,
used for LP processing, defines a unique scaling function
ϕðtÞ ∈ L2ðR2Þ, t ∈ Z that satisfies Eq. (5):
EQ-TARGET;temp:intralink-;e005;63;437

ϕðtÞ ¼ 2
X
n∈Z2

g½n�ϕð2t − nÞ and Let∶ϕj;n

¼ 2−jϕ
t − 2jn
2j

; (5)

where j ∈ Z is the bandpass number, n ∈ N2 is the coordi-
nates of a given point, and ϕj;n is a member of the family
fϕj;ngn∈Z2 , which is an orthonormal basis for an approxima-
tion subspace Vj at the scale 2j. fVjgj∈Z is a sequence of
multiresolution nested subspaces.

Otherwise, the DFB offers localization and directionality
properties due to the family, defined in Eq. (6):

EQ-TARGET;temp:intralink-;e006;63;288fdðlÞk ½n − SðlÞk m�g 0 ≤ k < 2l; m ∈ Z2; (6)

which are obtained by translating the impulse responses of
the equivalent synthesis filters dðlÞk over the sampling lattices
by Slk as follows:

EQ-TARGET;temp:intralink-;sec2.2;326;752Slk ¼
�
diagð2l−1; 2Þ for 0 ≤ k < 2l−1

diagð2; 2l−1Þ for 2l−1 < k ≤ 2l
;

where Slk corresponds to the mostly horizontal and mostly
vertical sets of directions, respectively, and l refers to
level tree-structured DFB, which yields 2l real wedge-shaped
frequency bands (l ¼ 3; 23 ¼ 8 real wedge frequency
bands). The frequency tiling of this transform is shown in
Fig. 4(b). The contourlet has preserved and improved the
characteristics of CT. Besides, better than wavelet, the con-
tourlet can represent edges and singularities along curves.
However, the latter transform suffers from pseudo-Gibbs
effect due to downsampling and upsampling. To overcome
its weakness, a modified version, built on the ground of con-
tourlet conception, was designed. The nonsubsampled con-
tourlet transform (NSCT)29 discards the sampling step and is
characterized by being shift-invariant and by preserving mul-
tiresolution criteria.

2.3 Shearlet Transform
Shearlets30 provide a rich mathematical structure and are
optimally sparse in representing the edges within an
image thanks to the fact that they form a tight Parseval frame
at various scales and directions. They are distinguished from
CTs by being directly constructed in discrete domain, which
gives them the ability to provide a more efficient multireso-
lution representation of the geometry.31 Besides, shearlet out-
performs contourlet by substituting the directional filter with
shear filter, which helps in breaking the limitation of direc-
tionalities. In the continuous domain, in dimension 2, a
shearlet represents an affine system with composite dilations
in Eq. (7):

EQ-TARGET;temp:intralink-;e007;326;391φj;s;kðxÞ ¼ a
−3
4 φ½U−1

s V−1
a ðx − kÞ�; (7)

where φj;s;k is a shearlet atom, j refers to the scale, s refers
to the shear direction, and k to the translation parameter,

where Va ¼
�
a 0

a
ffiffiffi
a

p
�

is the anisotropic dilation matrix

(controls the support of the shearlet function) and

Us ¼
�
1 1

0 1

�
is the shear matrix (controls the orientation).

As is presented in Ref. 32, the discrete collection of
shearlet transform could be defined by two window
functions localized on a pair of trapezoids, as illustrated in
Fig. 5(a).

In fact, for a given point in the frequency domain

ξ ¼ ðξ1; ξ2Þ ∈ cR2, j ≥ 0, and l ¼ −2j; : : : ; 2j − 1, let

EQ-TARGET;temp:intralink-;sec2.3;326;204Wð0Þ
j;l ðξÞ

¼

8>><
>>:
cψ2

�
2j ξ2ξ1

−l
	
χD0ðξÞþcψ2

�
2j ξ1ξ2

−lþ1
	
χD1ðξÞ if l¼−2jcψ2

�
2j ξ2ξ1

−l
	
χD0ðξÞþcψ2

�
2j ξ1ξ2

−l−1
	
χD1ðξÞ if l¼2j−1cψ2

�
2j ξ2ξ1

−l
	

otherwise;

and

Fig. 4 (a) Contourlet filter bank, the first treatment is to decompose
image in multiscale sub-bands coefficients due to LP. Second, a
directional decomposition filter will be applied on these coefficients.
(b) Contourlet frequency space tiling.28
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EQ-TARGET;temp:intralink-;sec2.3;63;514Wð1Þ
j;l ðξÞ

¼

8>><
>>:
cψ2

�
2j ξ2ξ1

−lþ1
	
χD0ðξÞþcψ2

�
2j ξ1ξ2

−l
	
χD1ðξÞ if l¼−2jcψ2

�
2j ξ2ξ1

−l−1
	
χD0ðξÞþcψ2

�
2j ξ1ξ2

−l
	
χD1ðξÞ if l¼2j−1cψ2

�
2j ξ2ξ1

−l
	

otherwise;

where Wð0Þ
j;l ðξÞ and Wð1Þ

j;l ðξÞ are the mathematical definitions
of vertical and horizontal cones, respectively, ψ2 is a function
satisfying properties in Ref. 32, and χD0 and χD1 are,
respectively, truncated vertical and horizontal cones. The
authors of this transform have also proposed a fast algorith-
mic implementation and a filter bank architecture which is
similar to the one of contourlet transform as shown in
Fig. 5(c)].

2.4 Wedgelet Transform
Wedgelet is proposed by Donoho et al.34 This transform
decomposes the image iteratively into piecewise constant
functions (class of horizon functions). The first step consists
of a dyadic recursive decomposition. In each quadtree leaf,
wedgelet will search for an “edgel” in order to forward the
leaf dyadic decomposition. Figure 6(a) represents a wedgelet

decomposition of “cameraman” image and its dyadic
decomposition.

The intuitive evolution of this transform is to switch the
constant horizon functions by polynomial functions in order
to catch more irregular singularities. In fact, this was pro-
posed with the surflet.36 Figure 6(b) illustrates how the
dyadic decomposition is influenced when polynomial func-
tions are used instead of piecewise constant functions.

2.5 Bandlet Transform
The first generation of the Bandlet transform was proposed
by Le Pennec and Mallat.37 The main idea was to explore the
wavelet transform and overcome its failure in detecting
anisotropic regularities, such as C2 curvatures. According
to Ref. 37, Bandlet first performs the grassfire algorithm38

to detect edge regions and then they perform a deformation
to let it fit wavelet orientations (horizontal, vertical, or diago-
nal). This version was redundant and failed to ensure good
results, mainly in compression applications.35

Thus, the second generation of bandlet is proposed.
Respecting the same adaptive approach, this version is con-
sidered as an anisotropic wavelet wrapped along the geom-
etry flows.39 This version differs from its previous version by
being based on quadtree segmentation algorithm. The idea is

Fig. 5 The structure of the frequency tiling by the shearlet: (a) the tiling of the frequency plane induced by
the shearlets. (b) The size of the frequency support of a shearlets. (c) Shearlets conception using filters:
LP combined with directional filter (shear filter).33

Fig. 6 (a) The wedgelet segmentation process. (b) (i) Decomposition based on piecewise constant
function (Wedgelet) and (ii) Decomposition based on polynomial function (Surflet).35
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first to estimate irregularities in the image as a vector field,
generated using the edge polynomial function estimation. A
wavelet transform is then applied, after that a dyadic segmen-
tation is performed in wavelet domain. This way, wavelet
coefficients are calculated along the optimally found direc-
tion in each square. The bandlet could also be seen as a poly-
nomial approximation in an orthogonal Alpert basis. Alpert
transform is simply a wrapped wavelet transform adapted to
a given irregular form, as illustrated in Fig. 7. The coeffi-
cients of the bandlet are calculated by following Eq. (8):

EQ-TARGET;temp:intralink-;e008;63;481bkj;l;n ¼
X
p

al;n½p�ψk
j;pðxÞ; (8)

where al;n½p� is an Alpert coefficient of a given point
p ∈ R2, ψk

j;p is the wavelet mother function at p, j refers
to the scale, and l refers to the factor defining the elongation
of the bandlet function. Thus, bandlet coefficients are

generated by inner products hf; bkj;l;ni of the image f with
bandlet function bkj;l;n.

3 Characteristics of the Multiscale Geometric
Decompositions

There is no doubt that wavelet was a genuine processing tool
that has led to major advances in natural image representa-
tion and understanding. Since then, many transformations
have been defined to overcome the shortage of wavelet
capacities by adding directions, shift invariance criteria,
and so on. In Table 1, we summarized the characteristics
of different transforms mentioned in this review. We have
separated the MGD into two families. Their differences
reside on the fact that the adaptive family constructs a special
data decomposition that can fit each dataset rather than using
a predefined system like the nonadaptive families. However,
this adaptive form is very intensive in terms of numerical
computation.1

Fig. 7 (a) The original image I, (b) wavelet coefficients of I, and (c) zoom on wavelet coefficients in a
square S including edge and wrapping operation w of the geometric flow to align it horizontally or
vertically.40

Table 1 MGD characteristics.

Nonadaptive family

Name Authors Description Conception

CT6,25 Emmanuel Candes and
David Donoho

Can characterize C2 curvature Evolution of ridgelet transform

Cannot characterize oscillating textures
directionality sensitive

Redundant

Contourlet28 Minh N. Do and Martin
Vetterli

Evolution of isotropic wavelet transform Use of nonseparable filters

Can characterize C2 curvature

Cannot characterize oscillating textures
directionality sensitive sampling discards low
frequencies information

Filter banks-based transform

Shearlet30 Demetrio Labate, Wang-Q
Lim, and Glenn Easley

Evolution of CT more directionalities than the CT
cannot characterize oscillating textures

Substituting the rotation and
anisotropic stretch with anisotropic
shears

Adaptive family

Wedgelet34 David Donoho Use a wavelet quadtree segmentation and grassfire
algorithm to detect geometric singularities

A leaf of quadtree supports only
horizon function

Bandlet37,41 Peyre, Le Pennec and
Mallat

Extends the isotropic wavelets quadtree
segmentation

Wrapping wavelet coefficients along
geometric flows

The second generation is less redundant than the
first generation
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But, in general, all these transforms exhibit interesting
parameters, which helps to bring attention to different details
within an image.

• Scale: MGD locates, in each scale, a specific feature
(edge in the coarsest scale, smooth content in the fin-
est). Keeping some scales while withdrawing others
could help remove undesirable information. Indeed,
discarding disturbance that could be part of the finest
scales helps in providing a better representation of
the image

• Direction: Likewise, directions reveal features in the
image. We can detect, thanks to this parameter, the main
axes by locating the accumulation of strong coefficients
magnitude. Consequently, we can enhance some image
structures. Figure 8 illustrates a rendering of the content
of scales and supported directions of some MGD.

• Magnitude: In transformation domain, the greatest
magnitude values could be interpreted as an influent
part in the processed image. This is why the magnitude
is useful for feature extraction applications. In fact,
since the MGD allow the zooming in and out, the con-
tent of the image, especially texture, will not be
affected by the size of the neighborhood. Several first-
order and second-order statistics could be calculated:
mean, standard deviation (SD), energy, entropy, con-
trast, sum of mean, variance, and so on. Consequently,
several descriptors could be extracted and could be
dimensionally reduced without affecting the discrimi-
native power.42 Another interesting use of magnitude is
detecting spatiotemporal directions as in Ref. 43.

• Frames: CT, shearlet, and contourlet are a set of func-
tions forming a tight frame. This means that for a given

sequence ðφiÞi∈I in Hilbert space H, where I is a
countable indexing set, i is an element of I, and for
all x in H, there are two constants 0 < A ≤ B:

EQ-TARGET;temp:intralink-;e009;326;719Akxk2 ≤
X
i∈I

jhx;φiij2 ≤ Bkxk2: (9)

When A ¼ B, this is called a tight-frame, and if
A ¼ B ¼ 1 this is called a Parseval frame. The advan-
tage of having such a function system is to be able to
represent a signal as a linear combination of the vectors
within the frame in several ways and to reconstruct it
by the use of inner products [Eq. (10)]. Let S ¼ T�T,
where T is the analysis operator and T� is the synthesis
operator of a given frame. T and T� will be explained in
“sparsity” paragraph:

EQ-TARGET;temp:intralink-;e010;326;583S∶H → H x ↦
X
i∈I

hx;φiiφi: (10)

The authors of bandlet have also proposed its tight frame
version, which is called grouplet.44 For further details on
this frame version, we refer the interested reader to Ref. 45.

• Redundancy/overcompleteness: Although the ortho-
normal/orthogonal bases has interesting properties,
they have several weaknesses. They are translation
and rotation sensitive, especially when it comes to
dealing with multidimensional data. That is why the
MGD, such as curvelets, shearlets, and contourlets,
are redundant. This means that the vectors of their
basis are linearly dependent and exceeded the number
of their space dimension. Thus, a given vector in this
kind of space would have an infinite set of representa-
tions. In fact, the authors of these transforms want to

Fig. 8 Reconstructing images keeping only some scales. (a and b) Second and fourth scale of the CT.
(c and d) Second and fourth scale of the contourlet. (e and f) Second and fourth scale of the shearlet.
(g and h) Second and fourth scale of the bandlet first generation.
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move “cautiously” to overcompleteness without losing
the interesting features of the orthonormal/orthogonal
basis.

• Sparsity: The aforementioned MGD have two main
operators: the analysis T and the synthesis T�. Given
a signal x, MGD analyze x by decomposing it in a set
of coefficients:

EQ-TARGET;temp:intralink-;e011;63;385T∶H → l2ðIÞ x ↦ ðhx;φiiÞi∈I: (11)

The dual operator, the synthesis, helps in recover-
ing a given x:

EQ-TARGET;temp:intralink-;e012;63;324T�∶l2ðIÞ → H ½ðciÞi∈I� ↦
X
i∈I

ciφi: (12)

Curvelets, contourlets and shearlets use fast algo-
rithms to resolve Eq. (11). A suitable choice of a rep-
resentation system enables a SR which means that a
given signal x could be expressed in a low-dimen-
sional space. This representation is widely used in
several approaches such as compressed sensing.46

Figure 9 shows the huge difference between repre-
senting an image using histograms of a gray level and
representing it sparsely using curvelets (as an exam-
ple of the effect of the use of MGD).

4 Use of Multiscale Geometric Decompositions in
Remote Sensing Field

RS images represent an efficient tool to analyze climate
change and dynamics of land cover. In the last decades, a
great number of new satellites has been launched, allowing
a tremendous data availability with improved spatial and
spectral resolutions. This has helped in enhancing our

understanding and control of our surroundings. Throughout
the various RS applications (image fusion, enhancement,
super resolution, and so on), we are capable of monitoring
the earth’s surface, predicting changes, and preventing
disasters.

Whereas, the management of RS images represents a
challenging task. As the amount of data is incredibly grow-
ing, it is getting more complex to extract knowledge from
this type of images. RS data are not only different but also
have a rapid velocity and generally need several complicated
corrections. That is why researchers seek new approaches to
replace the traditional data processing algorithms.

MGD were used in an attempt to solve some of the afore-
mentioned problems. In fact, being able to represent the data-
sets in a sparse way while describing accurately, the objects
in the image make the MGD an inspirational tool to be
exploited in RS field. In this section, we are interested espe-
cially in the use of wavelet, CT, contourlet, shearlet, and
bandlet.

4.1 Classification
The classification aims at recognizing the class label of a
given study area with the aid of ground truth data.
Conventional classification algorithms exploit essentially
the spectral information of the images.48 Nevertheless, it
has been proven that incorporating spatial information in
the classification process, i.e., taking the contextual informa-
tion into account, helps significantly in boosting the obtained
accuracies. The spectral–spatial combination is possible
using MGD, which not only provide a frequency represen-
tation but also help in establishing correlations between
neighbors in the spatial domain.

From the studied cases, we can separate the MGD use in
classification in two categories:

Fig. 9 Histogram of an image in (left) the original (pixel) domain and the CT domain (right).47
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• Decomposing the whole image and using its frequency
details for classification

• Combining the MGD frequency details with other fea-
tures obtained using other methods.

We have studied the Ref. 49 where wavelet has been used
for a feature extraction purpose. Combined with fuzzy
hybridization, the wavelet coefficients are exploited for clas-
sification. The three multispectral (MS) RS images, two from
Indian remote sensing and one from SPOT, are decomposed
band-by-band. This technique has essentially helped in
accounting for contextual information. The overall classifi-
cation accuracy (Mean ¼ 79.15%) using ground truth of the
three images has shown that the biorthogonal wavelet
exceeded the other wavelet functions.

In Ref. 50, the authors proposed a CT-based approach to
extract features from SAR images that can effectively iden-
tify the dynamic ice from the consolidated one. The repre-
sentation of the dynamic ice contains curves in different
locations with different widths and lengths and is considered
larger than those of consolidated ice representation. The pro-
posed approach consists of extracting patches from the trans-
form domain sub-bands according to a specific size. This
later increases according to the CT’s scale in order to capture
more information about the curves. Once the size of patches
is computed, a feature vector is calculated by Eq. (13):

EQ-TARGET;temp:intralink-;e013;63;466FðPLÞ ¼
1

θi

Xθi
j¼1

ðFi;jÞ; (13)

where PL is the patch with a size L, Fi;j denotes the mean of
CT coefficients at scale i, and θi ∈ N is the total number of
orientations at scale i.

Using SVM along with different features, the obtained
experimentation results proved that the CT-based feature
extraction is effective for classification since the dynamic
ice area is more accurately classified. In fact, thanks to
the probability density function (PDF), we can see clearly
that the component representing the different types of ice
could be distinguished and thus separated (Fig. 10).

Nevertheless, this quality of recognition loses its preci-
sion in CT’s finer scale.

The contourlet is used in Ref. 48, where a performance
comparison between wavelet and contourlet is discussed.
Based on the fact that wavelet suffers from its shortage of
directionality and the fact that contourlet provides directions
only in high frequency coefficients, a wavelet-based contour-
let transform (WBCT) is proposed and is applied on linear
imaging self-scanner (LISS) II, III, and IV. Figure 11 illus-
trates the proposed transform.

After decomposing the image using the WBCT, wavelet,
and contourlet, PCA is applied to the obtained features in
order to reduce their dimensionality while removing redun-
dancy and preserving the most discriminant ones. Then a
mean vector and a covariance matrix are calculated. Finally,
the Gaussian kernel fuzzy C-means classifier is applied, and
the obtained overall classification accuracy proves that the
proposed decomposition (overall accuracy of LISS IV ¼
89.57%) is better than the wavelet-based (overall accuracy
of LISS IV ¼ 87.62%) and contourlet-based feature extrac-
tion methods (overall accuracy of LISS IV ¼ 88.38%).

Fig. 10 Estimated PDF for different features: (a) the PDF of SD, (b) gray-level co-occurrence matrix, and
(c) CT-based method. The extracted features overlap a lot, which means they will be less effective in
classification except for the PDF of CT-based method, which shows that the different types of ices could
be distinguished in classification.50

Fig. 11 Filter bank of wavelet-based contourlet transform proposed in
Ref. 48.
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As we mentioned earlier, the second category combines
MGD sub-bands as features describing edges or textures,
with features obtained using other methods. For example,
the authors of Ref. 51 suggest to use CT jointly with mor-
phological component analysis (MCA) and to improve RS
classification using hyperspectral AVIRIS and AirSAR
images. The idea is about separating a given image into
two components (14):

EQ-TARGET;temp:intralink-;e014;63;664y ¼ ys þ yt þ n; (14)

where ys is the smooth component, yt is the texture compo-
nent, and n is the noise. Here, the CT is used to construct a
dictionary As representing the smooth component and a
Gabor wavelet is used to construct a dictionary At represent-
ing the texture component. The authors propose to estimate
the component ys and yt by solving Eq. (15) using SunSAL
algorithm.52

EQ-TARGET;temp:intralink-;e015;63;556

hbys; byti ¼ argminys;yt
1

2
ky − ys − ytk22 þ λ1kTsysk

þ λ2kT tytk; (15)

where Ts ¼ ðTT
s AsÞ−1AT

s and T t ¼ ðTT
t AtÞ−1AT

t are the pseu-
doinverse of As and At, respectively.

This approach was extended in Ref. 53, where the authors
combined several methods such as Gabor wavelet and hori-
zontal filters to construct an MCA kernel for feature extrac-
tion. The use of such a composite kernel has given better
results (overall accuracy of AVIRIS Indian pines ¼ 93.54%)
in characterizing image content compared to minimum noise
fraction (MNF) components and helped in enhancing the
characterization of the image’s content. This is explained
by the fact that the proposed approach combines several
methods, such as wavelet and CT.

In a similar fashion, the authors of Ref. 54 proposed to
combine multiple features pertaining to spectral, texture, and
shape, and proposed a multiple feature combining (MFC)
framework, as shown in Fig. 12. The spectral feature of a
given pixel is elaborated by arranging its digital number
in all of the l bands. The texture feature is obtained by apply-
ing 2-D Gabor wavelet filter and the shape feature is con-
structed due by the pixel shape index method.55 To calculate
the feature vectors using the MFC framework, a single fea-
ture-based dimensionality reduction technique is conducted
in order to generate the alignment matrix. Then a Lagrangian
function is calculated in order to determine the low-dimen-
sional feature space Y (16):

EQ-TARGET;temp:intralink-;e016;63;223Lðω; λÞ ¼ Σm
i¼1ω

r
i trðYMðiÞYTÞ − λðΣm

i¼1 − 1Þ; (16)

where M ∈ RN×N is the alignment matrix of input samples,
m is the number of features (in this case 3) and ωi is a relax-
ation factor with r > 1. After that, Y is linearized using an
explicit linear projection matrix. This method outperformed
several others like principal component analysis (PCA),
MNF, locally linear embedding, local tangent space
alignment, Laplacian eigenmaps, and achieved the optimal
classification performance on HYDICE HI and ROSIS
hyperspectral datasets. The criteria of assessment used in
this classification were the computation of overall accuracy
and the kappa index.

4.2 Change Detection
The detection of a change in land cover or in the Earth’s sur-
face is considered as one of the most important applications
in RS. In fact, it helps in disaster management, vegetation
development, deforestation detection, and urban growth
tracking. This application needs a set of multitemporal sat-
ellite images. Throughout the studied cases in this section,
MGD were extensively used to ensure an accurate detection
of affected regions in multitemporal images by enhancing the
image’s details, especially the difference images (DIs),
where noise information can easily be interfered.

In Ref. 56, the contourlet is used to denoise the images of
interest in order to enhance the change detection process.
First, it is applied to each single temporal SAR image to pre-
serve its features and edges. The authors also proposed to
reduce speckle noise by performing hard thresholding on
its high frequency sub-bands using Eq. (17):

EQ-TARGET;temp:intralink-;e017;326;232TðmÞ ¼ δ2fi;jðmÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lgLðmÞ

p
; (17)

where δ2fi;jðmÞ is the variance magnitude, LðmÞ is the number
of the decomposition coefficients at the scalem, g is the mag-
nitude value of the pixel, and l refers to the direction. Then
the best decomposition scale is calculated by finding the
minimum of the local variance of river courses magnitude.
Figure 13 illustrates how the river courses are represented in
SAR images and their rendering after applying contourlet.

After that, markers are extracted from the contourlet
domain in order to find the potential course rivers and elimi-
nate the false alarms (content detected as river courses while
it is not). After being processed, the SAR images become
smoother than the ones before applying the noise and the

Fig. 12 Multiple features of the airborne data over the mall in
Washington DC dataset. (a–c) Spectral feature images in band 36,
52, and 65. (d–f) Gabor texture feature images, with direction ¼ 1
and scale ¼ 1, 3, and 5, respectively. (g–i) Shape feature images
in direction 1, direction 8, and direction 16, respectively.54
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speckle reduction. In contrast, the edges are preserved and
become more visible. That is why the authors affirmed that
this contourlet-based method can achieve higher accuracy of
river courses detection.

In Ref. 57, the CT is used jointly with MCA and is applied
to a high-resolution airbone SAR image to detect changes in
urban areas acquisition. The MCA decomposes the image
into K different components, as specified in Eq. (18):

EQ-TARGET;temp:intralink-;e018;63;490min
α1: : : K

XK
k¼1

kαkk11 s:t:





y −XK
k¼1

ψkαk






2

< σ; (18)

where ψk is a transform function, αk is the matrix coefficients
of the image y in the transformed domain, and σ is the
error (fidelity to data). In this work, the authors propose
an approach using CT and wavelet-based MCA. The idea
is to calculate two DIs. The first DI is obtained by computing
the difference between the two SAR images. The second one
is obtained by downsampling the first one. This technique is
usually considered as the simplest noise suppression mecha-
nism to use in a change detector. Then the two DIs are elab-
orated thanks to wavelet and CT-based MCA components as
shown in Eq. (19):

EQ-TARGET;temp:intralink-;e019;63;321

DIMCA ¼ ψ curveletαcurvelet þ ψ swt−db4αswt−db4;

DId−MCA ¼ ψ curveletα
d
curvelet þ ψ swt−db8α

d
swt−db8; (19)

where the first component of DIMCA is ψ curvelet

αcurveletcalculated using CT, ψ curvelet is the CT function,
and αcurvelet is the set of coefficients in CT domain. The sec-
ond component of DIMCA is calculated using wavelet, where
ψ swt−db4 is the Daubechies wavelet function and αswt−db4 are
the coefficients in wavelet domain. The DId−MCA corre-
sponds to the downsampled DI by factor L and it is also
built using CT and wavelet-based MCA component, but
this time using a different vanishing moment for the wavelet.

To suppress the undesirable information, the authors
applied a soft-threshold on the CT and wavelet coefficients.
Then they calculated the change map, as illustrated by
Eq. (20):

EQ-TARGET;temp:intralink-;e020;63;128G ¼ F and FCurv; (20)

where F corresponds to a binary map obtained by Eq. (21):

EQ-TARGET;temp:intralink-;e021;326;752

F ¼ F1 and F2 ¼ ðjDIMCAj ≤ T1Þ and

ðjDId−MCAj ↑ LÞ ≤ T1Þ; (21)

and FCurv corresponds to the CT component, as given in
Eq. (22):

EQ-TARGET;temp:intralink-;e022;326;689Fcurv ¼ ðjψ curvαcurvj ≤ T1Þ and ðjψ curvα
d
curvj ↑ LÞ ≤ T1:

(22)

The CT component, Fcurv, is used to characterize the geom-
etry of contours and edges. It also contains noise due to
speckle. This noise is reduced due to the threshold T1, as
is mentioned in Eq. (22). By calculating the change map
of DI illustrated in Eq. (20), the authors aimed at obtaining
a change map free of speckle noise, while conserving the
contours. The experimentations show that this method can
withdraw the undesirable noise without removing the cars
and buildings edges. But only the geometry that has less
than 8 deg of incidence angle could be maintained.

In Ref. 58, the authors detected anomaly in hyperspectral
images by, first, using the shearlet to decompose the images
into several directional sub-bands at multiple scales. Then, in
each sub-band, the background signal is reduced and the
fourth-order partial differential equation is applied to
brighten up the anomaly. Experimental results with HYDICE
HI data show that the presented algorithm can suppress the
background, detect the anomaly signal effectively, and out-
perform the original RX algorithm.59

Another approach is proposed using a detail-enhancing
approach using NSCT Ref. 60, where the authors suggested
to detect change from multitemporal optical images using a
detail-enhancing approach. To do so, they studied and ana-
lyzed two change detection methods. The first61 is based on
combining PCA and K-means, which was efficient in terms
of computational time, but since the PCA does not consider
multiscale processing, when fusing data, this has yielded
false detections. The second method was proposed by
Ref. 62 and introduces a multiscale framework for change
detection in multitemporal SAR images. This method
decomposes a DI into S scales by the undecimated discrete
wavelet transform (DWT). Based on this decomposition, the
authors extracted a feature vector by first computing the
intrascale features (sampling local neighborhood using
two methods) in each sub-band in a given scale, and then
by computing the interscale features, which regroup all
the intrascale vectors together.

The same authors improved this work in Ref. 63 by pro-
posing the use of CT-DWT (complex wavelet) to capture fur-
ther directions. The authors also used the Bayesian inference
to calculate a threshold to decide whether the details to fuse
correspond to changed or unchanged pixels.

In Ref. 60, both works Refs. 61 and 62, were discussed.
The authors estimated that the use of K-means algorithm, in
Ref. 61, can stick to local optima, which can produce false
detections, especially when choosing an inappropriate initial
centroid. Moreover, they also affirmed that the use of wave-
let, in Ref. 62, failed to characterize the geometric details of
the DI efficiently. To overcome this weakness, instead of
wavelet, the authors used the NSCT to decompose the DI
into S scales. Each scale yielded one low pass approximation
sub-band DA

S and L high-pass directional sub-bands
DH

1;1: : : D
H
S;L. The details are extracted from directional

Fig. 13 The river course in an SAR images: (a) original image and
(b) after denoising.
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sub-bands. The high-pass directional sub-bands serve to
extract the details and are thresholded to decrease the amount
of noise. The intrascale fusion is performed using max rule,
as shown in Eq. (23):

EQ-TARGET;temp:intralink-;e023;63;708DDetail
s ði; jÞ ¼ max fabs½DH;T

s;l ði; jÞ�gLl¼1
; (23)

where T is a threshold, s is the scale, l is a specific orientation
of L obtained directions from the NSCT filter bank, and H
corresponds to high-pass. Then the interscale fusion is
applied using the max rule fusion, as well in Eq. (24):

EQ-TARGET;temp:intralink-;e024;63;635DDetailði; jÞ ¼ max fabs½DDetail
s ði; jÞ�gSs¼1: (24)

Then an enhanced DI is calculated [Eq. (25)]:

EQ-TARGET;temp:intralink-;e025;63;592DEnhanced ¼ DBase þ βDDetail; (25)

where DBase is obtained from the finest scale approximation
from NSCT decomposition and β is a weight to balance the
emphasis between the base image and the detail image. Then
the authors extract patches fromDEnhanced, transform the patch
into vector via lexicographic ordering and use PCA to produce
principal components. Finally, a PCA-guided K-means64 is
performed to calculate the change map. Compared to
approaches based on EM, on Bayesian, on PCA, or on multi-
scale, the proposed approach gives better results since it con-
serves the geometric details due to the NSCT. The results of
experimentations are illustrated in Fig. 14.

In Ref. 65, the proposed method applies wavelet on MS
imagery in an anisotropic diffusion aggregation. The pro-
posed approach is composed of three steps. We only cite,
in depth, the steps where wavelet is used:

• A band selection is first conducted to choose where
the texture is best captured. Then, 2-D DWT for

multiscale-multidirectional texture extraction is
applied.

• Textural and spectral segmentation are performed by
anisotropic diffusion in order to reduce noise without
blurring inter-region edges as well as creating the
desired multiscale low-level primitives.

• Change detection is then performed in two steps:

- classification of the image into forest/nonforest
thematic maps through thresholding

- comparison of the classification map, obtained
from the previous step, using logical modeling
in order to identify changes

The experiments are conducted on Landsat TM and
Landsat ETM+ datasets dated 1986 and 2001, respectively.
The criteria of assessment used in this work are the trans-
formed divergence measure which statistically determines
the adequate wavelet levels to keep, overall accuracy
and kappa.

In Ref. 66, a CT-based change detection algorithm is pro-
posed between two co-registered SAR images for natural dis-
aster mapping. After applying the CT on the two images, the
coefficients are weighted to suppress noise-like structures
using the mathematical relation [Eq. (26)]:

EQ-TARGET;temp:intralink-;e026;326;473Lx;y ¼ Σn
i¼1Ci:ki; (26)

where Lx;y is the amplitude found at position ðx; yÞ in the
SAR image, Ci are the sum of CT coefficients, n is the num-
ber of CTs coefficients, and ki is a complex coefficient vary-
ing according to the image content. Finally, the change in
radar amplitude Dx;y is calculated by Eq. (27):

EQ-TARGET;temp:intralink-;e027;326;388Dx;y ¼ L2x;y
− L1x;y

: (27)

Fig. 14 Qualitative change detection results by using different change detection methods. (a) Ground
truth change detection map created by manually analyzing the corresponding input images, (b) EM-
based approach, (c) Bayesian-based approach, (d) PCA-based approach, (e) multiscale-based
approach, and (f) proposed method.60
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4.3 Fusion
Image fusion represents one of the most important RS appli-
cations. It aims at combining two or more images to create
another one with enhanced features. This increases the pos-
sibility of taking advantage of multisensors images and
opens the door for several uses. Generally speaking, fusion
can be categorized into four families based on when the
fusion rule is applied: fusion at signal level, at pixel level,
feature level, and decision level. The MGD belong to the fea-
ture level family. In fact, in order to conduct a fusion process
with these latter decompositions, we should first convert the
intrinsic image properties and get the frequency coefficients.
Fusion techniques, based on MGD, suggest several injection
models but tend basically to extract the spatial detail infor-
mation from high spatial resolution images to inject them in
the low spatial resolution ones. Compared to the largely used
methods like intensity hue saturation (IHS) and PCA, MGD
enhance the spatial characteristics of fused images. Thus,
they look very clear, have sharp edges, and are free of spec-
tral distortion.67 MGD-based fusion are applied abundantly
in pansharpening techniques, multisensor fusion, and spatial
enhancement.

In Ref. 68, the authors propose a technique to fuse MS
satellite images (high spectral and low spatial resolution)
with a panchromatic (PAN) satellite image with low spectral
and high spatial resolutions. They introduced an improved
method of image fusion based on the ARSIS concept
using the CT transform. The ARSIS is a French abbreviation
for enhancing spatial resolution by injecting structures. CT-
based image fusion has been used to merge a Landsat
enhanced thematic mapper plus, PAN and MS images.
Based on experimental results using indicators of bias, the
CT-based method provides better visual and quantitative
results for RS fusion. The indicators are

• SD which indicates the dispersion degree between the
gray values and the gray mean values,

• correlation coefficients (CCs) which indicate the
degree of correlation between two images,

• the relative average spectral error characterizes the
average performance of a method in the considered
spectral bands,

• relative global dimensional synthesis error (ERGAS)
which measures the spectral distortion between the
reference image and the fused one.

Shearlet and nonsubsampled shearlet transform (NSST)
are also used in this regard. In Ref. 69, the authors propose
in the first step to register two RS images. Then the shearlet
transform is applied. The number of directions is set to 6 and
scales to 5. The low frequency coefficients are selected based
on the average rule while the high frequency coefficients are
chosen using the maximum absolute value rule as mentioned
in Eq. (28):

EQ-TARGET;temp:intralink-;e028;63;151Fði; jÞ ¼
�
Aði; jÞ DAði; jÞ ≥ DBði; jÞ
Bði; jÞ DAði; jÞ ≤ DBði; jÞ ; (28)

where DXði; jÞ ¼
P

i≤M;j≤N jYXði; jÞj, X ¼ A; B is the abso-
lute value of high frequency coefficients in the neighborhood
of a pixel value YX at a location ði; jÞ.M and N are equal to 3
and correspond to the size of the neighborhood window. X

denotes the two source images. To enhance the fusion rule
for high frequencies, a decision map is produced by affecting
1 if DAði; jÞ ≥ DBði; jÞ and 0 otherwise. If some coefficients
come from an image A while all its neighbors are from B,
then the pixel will be extracted from B. The fusion results
are illustrated in Figs. 15(a) and 15(b), which are two RS
images with different band characteristics. Those two images
have different physical properties of the sensor. Figures 15
(c)–15(i) represent the fused images with other methods.
Using shearlet, the authors assert that the obtained fusion
image has clearly preserved characteristics of the surface.
They found also that fusion result using contourlet has higher
sharpness and entropy values than shearlet.

In Ref. 70, the authors have used NSST.32 They have
involved the SR71 paradigm in pansharpening application.72

The idea is about fusion the intensity component (I) of the
MS image (the hue and saturation components are not
used) with the PAN image. First, the authors decompose
the images using NSST into low frequencies fLI; LPANg
and high frequencies fHðs;dÞ

I ; Hðs;dÞ
PANg, where s corresponds

to scale and d to direction. For the low frequency coefficients,
they propose to construct vectors using patches from both LI
and LPAN. Those vectors are represented sparsely using a
learned dictionary with K-SVD73 as mentioned in Eq. (29).

EQ-TARGET;temp:intralink-;e029;326;485αi ¼ argminαkαk0 subject to kvi −Dαk22 ≤ ϵ; ϵ≥ 0; (29)

where vi is the i’th vector patch. The D corresponds to the
dictionary obtained by different ways: DCT, NSSTand trained
by K-SVD algorithm and α is the sparse vector. The “absolute
max” fusion rule is adopted to obtain a fused sparse coeffi-
cients (30):

EQ-TARGET;temp:intralink-;e030;326;398αiF ¼
�

αiI if jαiIj ≥ jαiPANj
αiPAN otherwise

: (30)

Then the new fused vector patch viF is reconstructed using
the dictionary D and the fused sparse coefficients are
obtained as follows (31):

EQ-TARGET;temp:intralink-;e031;326;320viF ¼ DαiF. (31)

Otherwise, the high frequency coefficients are fused
according to large local energy rule. This means that the
energy of each scale s and direction d in the shearlet trans-
form is calculated, as mentioned in Eq. (32) and then fused:

EQ-TARGET;temp:intralink-;e032;326;244Hðs;dÞ
F ði; jÞ ¼

�
Hðs;dÞ

I ði; jÞ if LE
ðs;dÞ
I ði; jÞ ≥ Hðs;dÞ

PANði; jÞ
Hðs;dÞ

PANði; jÞ otherwise
:

(32)

The experimental results show that the proposed method
conserves better spatial and spectral information and is able
to enhance the fused image better than Refs. 74 and 75. The
render result is illustrated in Fig. 16. We can notice how well
preserved the spatial details and color information are. Fused
images have better visual accuracy compared to existing
methods: AIHS,76 AWLP,75 SVT,74 and ATWT.77

The contourlets were also used78 in the same context to
merge SPOT and ALSAT-2A images. The authors advanced
a conception of a new fusion scheme by combining the PCA
and the NSCT in order to overcome the spectral distortion

Journal of Electronic Imaging 061617-13 Nov∕Dec 2016 • Vol. 25(6)

Zaouali, Bouzidi, and Zagrouba: Review of multiscale geometric decompositions in a remote sensing context



caused by the PCA. The aim of this work was to find a com-
promise between enhancing the spatial resolution and pre-
serving the spectral information at the same time. After
decomposing the MS using PCA, a histogram matching is
applied to adapt the contrast between PAN and the resulting
components. Then the obtained components and PAN image
are decomposed using NSCT into approximation coefficients
app and details coefficients det. The fusion rules applied to
this approach are represented by both Eqs. (33) and (34),
where authors extract the approximation coefficients of
the fused image reconstim from the PAN image and the detail
coefficients from the MS image.

EQ-TARGET;temp:intralink-;e033;63;186Imapp ¼ apppan; (33)

EQ-TARGET;temp:intralink-;e034;63;155Imdet ¼ detpc: (34)

The resulting image is obtained using Eq. (35):

EQ-TARGET;temp:intralink-;e035;63;117reconstim ¼ Imapp ∪ Imdet: (35)

Then the inverse of NSCT is calculated. The fused image
obtained due to the proposed method, represented edges,

contours of roads and buildings, and any structure shapes
on the ground, better than other method, namely intensity
hue saturation (IHS), PCA-IHS, and high pass filter (HPF).
Moreover, the proposed method conserves the spectral infor-
mation as well. Compared to PCA-NSCT based method, the
resulting fusion image was not blurred.

Another injection model in pansharpening application is
proposed in Ref. 79. Authors worked on QuickBird and
IKONOS-2 imagery. The injection model is built on an adap-
tive cross gain, i.e., a ratio of local SD. Both images are
decomposed using curvelets and then merged together by
applying interband structure model. Compared to IHS,
ATWT, and HPF, the proposed method exceeds them since
it has the best rate according to the indicators: ERGAS, spec-
tral angle mapper, and Q4. The resulted fused image is vis-
ually superior and succeeds in producing a tradeoff between
different sensors.

The authors of Ref. 80 propose an approach for multisen-
sor image fusion, based on beyond the wavelet transform
domain (CT, bandlet, contourlet, and wedgelet). The
approach consisted of the following steps: first, the authors
decomposed the images into coefficients using beyond
wavelet transform. Second, they selected from the two

Fig. 15 Comparing shearlet fusion algorithm with other methods.69 (a) Eight-band RS image, (b) three-
band RS image, (c) shearlet, (d) contourlet, (e) Haar, (f) Daubechies, (g) LP, (h) average, and (i) PCA.
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images the low frequency coefficients using maximum local
energy (MLE) rule. It is calculated in a local 3 × 3 sliding
window as shown in Eq. (36):

EQ-TARGET;temp:intralink-;e036;63;391LBEl;k
ξ ¼ E1 � fð0Þ2ξ þ E2 � fð0Þ2ξ þ : : : EN � fð0Þ2ξ ; (36)

where fð0Þξ is the beyond wavelet low frequency coefficients,
E1; E2; : : : ; Ek are the filter operators in different directions,
and l and k, respectively, are the scale and direction of the
transform. They obtain the fused high-frequency coefficients
using the sum modified Laplacian (SML) method [Eq. (37)]:

EQ-TARGET;temp:intralink-;e037;63;301

SMLl;k
x ¼

XM
i¼−M

XN
j¼−N

∇2
MLfðiþ p; jþ qÞ

for ∇2
MLfði; jÞ ≥ T; (37)

where ∇2
ML is the modified Laplacian, x ∈ A or B are the

source images, l and k are the scale and the direction of trans-
form, respectively, and finally, M and N determine size of
the chosen window. p and q are variables and T is a thresh-
old. Finally, the fused image is obtained by performing
an inverse beyond wavelet transform. Through a large num-
ber of experiments, they concluded that the fused images are
best processed when using MLE-contourlet transform (the
type of images was not mentioned).

The use of several transforms in an approach could
increase the quality of fusion. Works like Zhong et al.81

and Zhanga et al.82 combined wavelet and curvelet together,
to enhance wavelets’ abilities.

Neural networks have been also investigated in RS fusion.
MGD were combined with this powerful tool in order to pro-
vide more directionalities. In fact, in Ref. 83, a fusion
method of SAR images based on pulse couple neural

Fig. 16 Reference and fused images of IKONOS. (a) Original MS (R, G, and B) image; (b) original PAN
image; and (c–h) the fused image using the AIHS, AWLP, SVT, ATWT, SR, and proposed method,
respectively.70

Fig. 17 PCNN and Shearlets framework for image classification.83
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network (PCNN)84 is proposed. The highlight of this algo-
rithm is to use the global feature of source images and cal-
culate the gradient information of them after being
decomposed into several directions. Then wavelet is applied
to decompose the images further while the high frequency
coefficients are selected to be the input of PCNN to get a fire
map. The max rule is applied to get the final fused image.
The framework of the proposed method is detailed in Fig. 17.

PCNN was also used in Ref. 87. The idea is to use the
contourlet hidden Markov tree (CHMT) model88 to describe
the statistical characteristics of contourlet coefficients of RS
images. Besides, PCNN is used in this work in order to select
the high-frequency directional sub-bands. First, contourlet
transform is performed on the registered multisource SAR
images and then the contourlet coefficients are trained by
expectation maximization algorithm to calculate their edge
PDFs. The highest magnitude in low-frequency sub-bands
is selected. The high-frequency directional coefficients are
updated by multiplying it by its edge PDF. Finally, a new
clarity saliency measure is defined and used to fuse the
high-frequency sub-bands. This method is compared to
others: wavelets hidden Markov trees + PCNN and CT +
PCNN. The results show that CHMT-PCNN can capture
more directional information. Moreover, it needs less train-
ing time even with images abundant in textures. The criteria
of assessment used in this work were the mutual information,
weighted fusion (evaluates the visual effect), edge-dependent
fusion quality index proposed by Ref. 89 (describes edge
information in the image), and common information (repre-
sents the gradient information) proposed in Ref. 90.

4.4 Inpainting
The inpainting technique consists of determining the missed
area. Since the RS images are sensitive to weather condi-
tions, the inpainting technique helps in correcting images
corrupted by clouds.

Indeed, the bandlet is used in Ref. 85 for regenerating a
contaminated RS image by cloud. This technique is spatially
based, which means that we rely only on the spatial
correlation of the corrupted data in SPOT, Landsat, BDOrtho
images. The paper presents a geometric reconstruction
method based on the geometric data from outside the
cloud-contaminated region to fill in the contaminated one.
The idea is to detect the boundary points of the inpainting
region and try to converge to singularity points according
to a specific trajectory. This trajectory follows the geometric
flow calculated due to bandlet transform of Eq. (38). The

Cðtnþ1Þ is the value of the nearest pixel in the border of
the inpainting zone and it is calculated with respect to the
direction of the bandlet geometric flow:

EQ-TARGET;temp:intralink-;e038;326;550Cðtnþ1Þ ¼ CðtnÞ þ Δt:C 0ðtnÞ; (38)

where t represents time,Δt is the Euclidean distance between
Cðtnþ1Þ and CðtnÞ. C 0ðtnÞ is the directional derivative of C
with respect to the geometric flow of bandlet. The proposed
approach is able to perform long region connections. This is
due to the fact that bandlet not only pays attention to the geo-
metric flow of the studied region but also to the regularity in
contours and edges, which enhance the quality of the con-
structed image. The render of these results is presented
in Fig. 18.

In Ref. 91, the authors suggest to conduct an inpainting
procedure on QuickBird images. They propose to remove
clouds first from low spatial resolution (LR) MS and high
spatial resolution (HR) PAN, then to apply mask dodging
to extract background image and compute a weight matrix.
After that, they process the LR MS image by an adaptive
PCA algorithm, where they choose the most representative
components based on the CCs. The forward shearlet is then
applied on the selected components and the HR PAN image.
The shearlets were applied in this case, to enhance details
and keep the edges’ information. The low frequencies of
the new PAN NewLowPANði; jÞ are calculated due to the
low frequencies of the selected components resulted from
the adaptive PCA processed on LR MS. The high frequency
coefficients of the new PAN are calculated by enhancing the
resulted high frequency of shearlet coefficients, as exhibited
in Eq. (39):
EQ-TARGET;temp:intralink-;e039;326;233

NewHighPANði; jÞ ¼ HighPANði; jÞ þ HighPANði; jÞ
×WPANði; jÞ ×WMSði; jÞ; (39)

where WPANði; jÞ and WMSði; jÞ are weight matrices. Given
the NewHighPANði; jÞ and NewLowPANði; jÞ, the inverse of
shearlet transform is applied and then a new pan sharpened
image is obtained free of thin clouds. This approach is com-
pared to wavelet-PCA and NSCT-PCA. The authors affirm
that NSCT-PCA has better results in terms of preserving
spectral properties.

5 Discussions
The use of MGD leads to interesting results in the field of
RS. We summarized the studied works in Table 2, where we

Fig. 18 Bandlet cloud removal: (a) image contaminated with clouds shadow, (b) mask of the area to be
reconstructed, (c) proposed method,85 and (d) method Li et al.86

Journal of Electronic Imaging 061617-16 Nov∕Dec 2016 • Vol. 25(6)

Zaouali, Bouzidi, and Zagrouba: Review of multiscale geometric decompositions in a remote sensing context



present the methods, the data, and the criteria of assessment.
To analyze all these studied cases, we propose to focus on
three main axes:

• Features of used images
• Frequently used MGD
• The limits

For the first axis, the images used in the analyzed cases
were very diverse. But, some types of images are more likely
to be treated by MGD than others due to their rich content. In
fact, MGD are often exploited with high spatial resolution data
images like IKONOS, Quickbird, and SAR Images,50,80,91 to
name a few. Otherwise, they are infrequently used with coarse

spatial resolution like MODIS images, where pixels are not
pure and edges of regions are not sharp. However, SAR
images are largely used because they are high spatial resolu-
tion images and are weather and illumination independent.
Nevertheless, RS data, in general, need to be geometrically
corrected due to sensors’ different ground displacements
and need also to be denoised from different types of pertur-
bations using tools such as total variation.15

In the second axis, we present the most used MGD in RS.
For instance, we have noticed that the wavelet is still largely
used, despite the fact that they failed in representing C2

edges. This is explained by its high capability in representing
textures and extracting spectral-based features. Besides, we
found that although the shearlet is built to overcome the

Table 2 Overview of the methods, data and the criteria of assessment of the studied approaches in the field of remote sensing.

Methods and data Criteria of assessment

Classification CT on SAR50 Overall accuracy

WBCT used on LISS II, III, and IV48 Overall accuracy, kappa, silhouette coefficient, Davis and Bouldin

MCA + CT on AVIRIS and AIRSAR51,53 Overall accuracy, average accuracy and kappa

Wavelet + fuzzy classifier on Indian remote
sensing and SPOT49

β index and Xie-Beni index

Wavelet used on HYDICE HI and SPOT54 Overall accuracy and kappa coefficient

Change detection Contourlet on SAR56 Overall accuracy and false-positive rate

MCA + CT on SAR57 Not mentioned

Shearlet on HYDICE HI58 Not mentioned

Contourlet on SAR60 PSNR, false-positives index, false-negative index

Wavelet on Landsat ETM+ and TM66 Overall accuracy and kappa coefficient

CT on SAR65 Not mentioned

Fusion CT on Landsat68 Bias, SD, CC, relative average spectral error and RMSE

CT, BT, ConT, and WT used on high-spatial
resolution80

PSNR, MSE, weighted fusion quality index, edge-dependent
fusion quality index and SSIM

Shearlet on IKONOS70 RMSE, ERGAS, Q4 and spectral angle mapper

Contourlet on SPOT and ALSAT-2A78 High-pass CC, RMSE, and canny edge correspondence

Shearlet on high spatial resolution69 EN, STD, MSE, PSNR and SSIM

CT on Quickbird, IKONOS-279 ERGAS, spectral angle mapper, Q4

Wavelet + CT on SAR81,82 CC and entropy

Wavelet/contourlet+PCNN on SAR83,87 Common information, mutual information, weighted fusion
quality index, edge-dependent fusion quality index

Inpainting Bandlet on SPOT, Landsat and BDOrth85 Mean error, root mean square error

Shearlet on Quickbird PAN and MS91 CC, ERGAS, spectral angle mapper, and entropy
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weakness of CT and contourlet, the experimentation results
using contourlet, for example, outperformed, in some cases,
the use of shearlets like in Ref. 91. Moreover, the bandlet was
not widely used according to our search, as is the case of the
other transforms, due to its high computational time and the
high dimension of RS data. It was especially investigated in
the context of inpainting since it can draw the geometric flow
to follow, to fill in the missed area. The use of MGD in 3-D
space is barely absent. This can be explained by the fact that
it is difficult to acquire data with high spatial and temporal
resolutions, simultaneously, as is the case for the video.43

The third axis is dedicated to treat the limits of MGD.
Since MGD are redundant, it was noticed that in some
works, the authors have used techniques of dimensionality
reduction as in Ref. 91 to reduce the high number of
extracted features. The bright side was the fact that this is
done without affecting the discriminative power or yielding
undesirable spectral distortions which is an important point
to take into account when dealing with RS images. In fact,
works like Ref. 49 are proposing a time consuming algo-
rithm, which needs to be optimized. Another MGD limit
is to find the adequate number of scales decomposition.
To ensure the extraction of enough spatial resolution details,
the decomposition level must not be too high. In Ref. 92, it
was proven that a wide decomposition level affects the
processing of high frequencies details. Thus, the resulted
image will be sensitive to noise. Taking into consideration
the characteristics of MGD subbands, the accuracy of the
reconstructed image could be deteriorated if inefficient
fusion rules are selected. In fact, we have noticed that in
some works such as Miao et al.,69 fusing the low frequency
of the transform domain using the average law was ineffi-
cient. This causes, as a matter of fact, a large detail loss,
since the low frequency in the MGD domain contains
most of the energy, resulting in decreasing the contrast of
the fused image after reconstructing it with the inverse trans-
form of the MGD.93

6 Conclusion
In this paper, a review of MGD and some of their applica-
tions in the RS field are presented. We described how they
are useful to preserve object contours and edges and to
extract feature content from images. Their common charac-
teristic was to highlight directional analysis and adaptability
to the geometry within the image. The resulted basis from
these MGD were sometimes redundant in order to provide
a robust representation of a given signal without losing
the orthogonal/orthonormal basis properties. Nevertheless,
researchers are interested in searching beyond orthogonal
bases. Some works propose to learn them, some others sug-
gest to design a hybrid basis, combining the learned basis
with the predefined ones.

Throughout the state-of-art elaborated from different
applications in the RS fields, we have noticed that the
MGD confirmed their success by being used in several appli-
cations, such as change detection between temporal high
spatial resolution data. In addition, they were abundantly
used to preserve edges of buildings, rivers, and vehicles,
given that they are more likely to enhance details of contours
in the image. They are applied as well to reduce noise by
extracting high frequencies from the finest scales. The
MGD are exploited in fusion applications, too, in order to

reconcile between different types of data. Another important
side of MGD, when combined with dimensionality reduction
methods like PCA, is their capability to keep their discrimi-
native power. This is an interesting point in the case of RS
field, where it is crucial to find a compromise between fidel-
ity to data, performance, and dimensionality.
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