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Abstract

High-speed cameras explore more details than normal cameras in the time sequence, while the 

conventional video sampling suffers from the trade-off between temporal and spatial resolutions 

due to the sensor’s physical limitation. Compressive sensing overcomes this obstacle by 

combining the sampling and compression procedures together. A single-pixel-based real-time 

video acquisition is proposed to record dynamic scenes, and a fast nonconvex algorithm for the 

nonconvex sorted ℓ1 regularization is applied to reconstruct frame differences using few numbers 

of measurements. Then, an edge-detection-based denoising method is employed to reduce the 

error in the frame difference image. The experimental results show that the proposed algorithm 

together with the single-pixel imaging system makes compressive video cameras available.
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1 Introduction

Video acquisition captures time-dependent natural scenes and brings real-time images 

directly to screens for immediate observation. It not only serves for the live television (TV) 

production, but also for security, military, and industrial operations including professional 

video cameras, camcorders, closed circuit TV, webcams, camera phones, and special camera 
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systems. In traditional video acquisition, e.g., H.261, H.265, and MPEG series, the sampling 

and compression procedures are implemented in sequential order. The Nyquist–Shannon 

sampling theorem requires the sampling rate to be at least twice that of the signal frequency 

for guaranteed exact recovery. The compression procedure is implemented by video 

compression chipsets1 or separate software.2

Although state-of-the-art video cameras can record most nature scenes, they do not work for 

very high-resolution images or high fps videos because the growth in data storage, 

communication, and processing is far behind the growth in data generation. In space 

exploration, an image of the shuttle discovery flight deck could be 2.74 gigapixels,3 and a 

bubble dynamics research needs a 500-fps video microscopy.4 More importantly, 

commercialized high-performance video cameras are extremely expensive, e.g., the price of 

a basic model with 7500 fps, one-megapixel resolution, and 12-bit color depth (FASTCAM 

SA5 from Photron) is around $100,000.

The limitation comes from weak light irradiation and the readout bandwidth when capturing 

high-speed objects at a high resolution. As shown in Fig. 1 and Eq. (1), the reflected 

illumination is collected by sensor arrays in a limited space–time volume

J = 1015 F−2tIsrcRqΔ2 . (1)

The number of electrons (J) accumulated on each pixel is reversely proportional to the 

square of the ratio of the focal length to the aperture of the lens (F), but proportional to 

exposure time (t), incident illumination (Isrc), scene reflectivity (R), quantum efficiency (q), 

and the pixel size (Δ2).5 In video sensing, the exposure time (t) corresponds to the temporal 

resolution and the pixel size (Δ2) is related to the spatial resolution. In other words, the 

temporal and spatial resolutions are mutual restraint in conventional video cameras due to 

the imaging sensors’ requirement on the minimum number of accumulated electrons and the 

fixed number of total electrons. The spatial resolution will decrease when the temporal 

resolution increases. Another limitation is the sensor’s readout speed. The readout timing 

includes an analog-to-digital conversion, clear charge from the parallel register, and shutter 

delay, e.g., a one-megapixel, 1000 fps, and 16-bit color camera will need a 4-GB/s readout 

circuit.

To obtain high-resolution images and high fps videos, the sampling rate has to be reduced, 

and compressive sensing technique can be applied. Compressive sensing6 allows combining 

both sampling and compression procedures together. This paradigm directly samples the 

signal in a compressed form such that the sampling rate can be significantly reduced. 

Compressive sensing has attracted extreme interest in imaging,7 geophysical data analysis,8 

control and robotics,9 communication,10 and medical imaging processing.11

Compressive sensing has been applied in compressive video sensing since 2006, when the 

single-pixel camera setup was first used for video sampling.12 In this first approach, the 

three-dimensional (3-D) video was reconstructed with all the measurements together using 
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3-D wavelets as a sparse representation. This method cannot be used for real-time video 

streaming without incurring latency and delay because all the measurements have to be 

obtained before the reconstruction starts. Since then, in order to reconstruct the frames one 

by one for the purpose of real-time streaming, most approaches reconstruct or sample 

reference frames with more measurements and find the differences between two consecutive 

frames with fewer measurements. There are mainly two types of strategies: sampling the 

frame and sampling the difference between frames. In the first sampling method, in order to 

obtain a continuous video, motion estimation techniques are applied to recover frames from 

reference frames. For example, the evolution of dynamic textured scenes was modeled as a 

linear dynamical system.13 A multiframe motion estimation algorithm was proposed.14 The 

latest compressive video sensing research learned a linear mapping between video sequences 

and corresponding measured frames.15 In addition, the correlation between consecutive 

frames in the frequency domain16 and other transform domains17 was also used.

There are also several approaches in sampling the difference between two frames. For 

example, Stankovic et al.18 split the video frame into nonoverlapping blocks of equal size, 

and compressive sampling was performed on sparse blocks determined by predicting 

sparsities based on previous reference frames, which were sampled conventionally. The 

remaining blocks were sampled fully. It would be time-consuming to determine the sparse 

blocks because every block has to be tested. In addition, directly sampling the difference 

between two consecutive frames was employed19 to save the sampling time.

Though compressive sensing techniques are used in video sensing, most of the approaches 

use the convex ℓ1 minimization to approximate the nonconvex ℓ0 minimization, which is a 

nondeterministic polynomial-time (NP)-hard and difficult to solve. The compressive sensing 

theorem can reduce the number of measurements using the ℓ1 minimization. However, with 

nonconvex regularizations, it can reduce the number of measurements and thus the sampling 

rate further so as to achieve real-time video capturing. Recently, there are many nonconvex 

regularizations proposed to obtain better performance than the ℓ1 norm in compressive 

sensing.20,21,22

In this paper, a single-pixel compressive video sensing framework based on the nonconvex 

sorted ℓ1 regularization is proposed for fast and super resolution video. In this framework, we 

sample reference frames using the spatial sparsity (individual image sparsity) and the 

difference between two frames using the temporal sparsity. In Sec. 2, we first give a short 

review about compressive sensing and nonconvex solvers. Then, we propose our nonconvex 

compressive video sensing framework. The experimental results are depicted in Sec. 3.

2 Compressive Video Sensing

2.1 Compressive Sensing

The core of compressive sensing is recovering the sparse vector x ∈ ℝn from a small number 

of linear measurements y = Φx, where Φ ∈ ℝm×n is the measurement matrix (m ≪ n). There 

are many solutions for the underdetermined linear system if y is in the range of Φ, and we 

are interested in finding the sparsest one among all the solutions. However, finding the 

sparsest solution is NP-hard. Therefore, instead of solving the NP-hard problem, people are 
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looking into alternative approaches. Convex approaches are of great interest because there 

are lots of algorithms for solving these convex problems and it is easy to analyze the 

solutions of the convex problems. If x is sparse and Φ satisfies some conditions such as the 

null space property,23 the incoherence condition,24 and the restricted isometry property,25 

the following problem is equivalent for finding the sparest solution:

x∼ = arg min
x

‖x‖1 subject to Φx = y . (2)

When there is noise in the measurements, i.e., Φx + n = y with n being the white Gaussian 

noise, we solve the following problem instead:

x∼ = arg min
x

‖x‖1 + λ
2‖Φx − y‖2, (3)

where λ is a parameter for balancing the data fitting term and the regularization term. In 

order to solve these convex ℓ1 problems, many algorithms are proposed.26,27

Although the ℓ1 minimization is fully understood and stable with theoretical guarantee, the 

number of required measurements is still high, and the performance is not good in many 

applications with a small number of measurements. For example, radiologists want to reduce 

more projections and thus radiation than that required for ℓ1 minimization in computed 

tomography. For the difference between two frames in a video, we want to decrease the 

number of measurements further such that it can realize higher fps videos than current 

cameras can produce. In order to recover signals from even fewer measurements, nonconvex 

regularizations are applied, and a short review will be given in Sec. 2.2.

2.2 Nonconvex Optimization Problems for Compressive Sensing

In this section, we review several nonconvex regularizations for compressive sensing and 

their corresponding algorithms. Denote x = (x1, x2, …, xn) ∈ ℝn, the truth sparse signal as 

x0, and xl as the l’th iteration.

The ℓp (0 ≤ p ≤ 1) term is commonly used,28 and it has ℓ0 and ℓ1 as special cases. Because of 

the nonconvexity, it recovers sparse signals with even fewer measurements than the convex 

counterpart, ℓ1. To solve the nonconvex problems, there are several approaches. We describe 

three of them on both the noise-free and noisy cases. First, two reweighted algorithms for 

the following noise-free case are presented:

x∼ = arg min
x

‖x‖p subject to Φx = y . (4)

The iteratively reweighted ℓ1 minimization (IRL1)20 replaces the ℓp term using a weighted ℓ1 

term with the weights depending on the previous iteration. The iteration is expressed as
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xl + 1 = arg min
x

∑
i = 1

n 1
∣ xi

l ∣ + ε 1 − p ∣ xi ∣ subject to Φx = y . (5)

For every iteration, a weighted ℓ1 minimization problem has to be solved and iterative 

algorithms are applied.

Similarly, the iteratively reweighted least squares21,22 replace the ℓp term using a weighted 

least squares term with the weights depending on the previous iteration. The iteration is 

expressed as

xl + 1 = arg min
x

∑
i = 1

n 1
∣ xi

l ∣2 + ε
1 − p/2 ∣ xi ∣2 subject to Φx = y . (6)

In this case, there is an analytical solution for the weighted ℓ2 minimization problem, since it 

is equivalent to a least squares problem.

Except for these two reweighted algorithms for solving ℓp minimization problems, some 

algorithms for solving convex optimization problems are applied to solve nonconvex 

problems with general nonconvex regularizations.29 One example is the forward–backward 

iteration. In each forward–backward iteration, for solving

x∼ = arg min
x

r(x) + λ
2‖Φx − y‖2, (7)

where r(x) is a nonconvex regularization term including ||x||p and the following mentioned 

nonconvex sorted ℓ1 as special cases, a proximal mapping of the nonconvex regularization 

term follows a gradient descent on the data fidelity term, i.e.,

xl + 1 = arg min
x

τr(x) + 1
2‖x − (xl − τλΦT(Φxl − y)‖2 . (8)

However, for ℓp minimization, there are only analytical solutions when p = 0, 132, 233, and 

1.30

The success of ℓp minimization and both iterative algorithms for solving ℓp minimization 

problems depicts that it is better to assign small weights for components with large absolute 

values and large weights for zero components and components with small absolute values. A 

nonconvex sorted ℓ1 that assigns weights based on the ranking of absolute values was 
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developed by Huang et al.31 Let the coefficients {ωi}i = 1
n  be a nondecreasing sequence of 

nonnegative real numbers, i.e., 0 = ω1 ≤ ⋯ ≤ ωn ≠ 0. The nonconvex sorted ℓ1 regularization 

is defined as

rω(x1, x2, …, xn) = ω1 ∣ x[1] ∣ + ω2 ∣ x[2] ∣ + ⋯ + ωn ∣ x[n] ∣ , (9)

where |x[1]| ≥ ⋯ ≥ |x[n]| are the absolute values of the components in x ranked in decreasing 

order. Two special cases of nonconvex sorted ℓ1 are 2-level ℓ1 with w1 = w2 = ⋯ = wk = a1 < 

1 = wk+1 = ⋯ = wn and iterative support detection (ISD) with w1 = w2 = ⋯ = wk = 0 < 1 = 

wk+1 = ⋯ = wn. In addition, Huang et al. suggested a way for adaptively changing the 

weights during the iteration instead of having a fixed set of weights for better performance. 

The proposed update rule is

ωi
l =

1, if i > Kl,

e−r(Kl − i)/Kl
, otherwise,

(10)

where r controls the rate of decreasing ωi from 1 to 0 and Kl is the smallest i such that 

∣ x[i + 1]
l − x[i]

l ∣ > ‖xl‖∞/β with some positive β.32

2.3 Video Compressive Sampling

A video can be considered as a series of images, as shown in Fig. 2 (left), where the 

coordinate space (x, y, t) consists both the spatial domain (x, y) and the temporal domain (t). 
Each frame could be realized as a static natural image that is redundant because natural 

images are intrinsically sparse in a specific domain.24,33 Another redundancy happens 

between similar frames in the temporal domain. As shown in Fig. 3, more than 85% of the 

pixels have no significant changes. Therefore, difference coding34 in MPEG and H.265 

series reuses existing frames and updates only the pixels with significant changes.

As discussed in Sec. 1, the objective of compressive video sensing is to combine both 

compression and sampling procedures to achieve the signal compression in hardware. In our 

proposed compressive video sensing, there are two types of image frames: intraframes (I-

frames in H.264 or reference frames) and interframes (P-frames in H.264), shown in Fig. 4. 

The compressive sampling is applied on both I-frames and P-frames, where P-frames are 

reconstructed by the difference between P-frames and their previous frames.

Since I-frames are considered as static images and the image compressive sampling has 

already been studied for single-pixel cameras,7,35 a total variation algorithm36 is applied to 

recover intraframes from the I-frame sampling. For the P-frames, because the difference 

between similar frames is sparse, a nonconvex regularization is adopted to reduce the 

number of samples and thus increase the compression ratio. We compare the performance of 

four different nonconvex regularizations numerically and choose the best in the experiment. 
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The four regularizations are: ℓp with IRL1, ISD, 2-level, and the nonconvex sorted ℓ1 (m-

level). In IRL1, the weights are updated by

ωi
l = 1

∣ xi ∣ + max (0.5l − 1, 0.88)
. (11)

For 2-level, we choose a = 0.6. For m-level, we choose β = 7 and r = 0.1.

We compare the runtimes, root-mean-square error (RMSE), and the peak signal-to-noise 

ratio (PSNR) for these four algorithms on the difference between two consecutive frames 

(64 × 64) in Fig. 5. The difference between the left and the middle images in Fig. 5 is shown 

on the right. We choose the measurement matrices to be randomized Bernoulli matrices with 

31 entries. The sampling rate (the number of measurements/the number of pixels) is changed 

from 6% to 35%. The comparison result is shown in Fig. 6, where the x-axis represents the 

sampling rate. When the number of measurements is small, nonconvex algorithms are 

unstable because they can easily be trapped at stationary points and the strategy for 

adaptively updating weights may not work so well. Overall, m-level is the most efficient and 

effective algorithm among all these four algorithms. Therefore, we choose m-level in our 

experiments in Sec. 3.

Though nonconvex algorithms are able to recover sparse signals accurately from a small 

number of linear measurements, there is still error due to the hardware noise and the 

modeling error. For example, there is noise in the measurements and the algorithms cannot 

recover the sparse signals exactly. In Fig. 7, we show the exact difference image between 

two frames on the left and compare it with that recovered using the nonconvex sorted ℓ1 on 

the middle. It is noticed that there are many isolated pixels with small nonzero values in the 

recovered difference image, and these pixels are supposed to have zero values. In order to 

improve this, we develop a simple and effective method to remove these pixels and update 

only the pixels in the areas with significant changes.

We apply the Sobel operator with a pair of 3 × 3 convolution masks on the recovered 

difference image to find the edges since the Sobel kernels compute the gradient with 

smoothing in both the horizontal and vertical directions. Then a threshold is selected to 

obtain a binary mask that indicates the pixels with large gradient values. However, it does 

not delineate the outline of the changing area of interest. Then the binary gradient mask is 

dilated using the vertical structuring element followed by the horizontal structuring element 

for a better outline. Because the mask shows only the edges of the difference image and the 

areas with significant changes are inside the edges, the whole areas with significant changes 

are obtained via filling the holes inside the edges using a flood fill operation via the 

MATLAB® function “imfill.” This method keeps the most significant changes and removes 

error on the difference image so as to reduce the reconstruction error in P-frames. Figure 

7(c) shows the performance of this postprocessing (denoising) procedure. The flow chart for 

this procedure is described in Fig. 8.
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Due to the frame difference sensing mechanism, the reconstruction error accumulates 

because every time we reconstruct P-frames using the difference between two consecutive 

frames. The error in the first P-frame is accumulated to the second P-frame. Therefore, the 

reconstruction of the first P-frame after I-frames is very important, and an improvement on 

this frame also improves following P-frames. On the other hand, if the number of P-frames 

between two consecutive I-frames is small, we can compute the difference image between 

the P-frame and the previous I-frame instead to avoid the accumulated error from previous 

P-frames.

The next numerical experiment shows that we can apply the simple denoising procedure to 

improve the reconstruction results of the first P-frame and all the P-frames after that. In this 

numerical experiment, there are five P-frames after one I-frame. In Fig. 9, all five P-frames 

are plotted. The first row has five ground true frames (P01 to P05). For the second and third 

rows, we show the reconstruction results using the difference image between two 

consecutive frames, and the reconstruction results using the difference image between P-

frames and the I-frame are shown in the fourth and fifth rows. The reconstruction results 

using m-level without the denoising step are shown in the second row (P11 to P15) and the 

fourth row (P31 to P35). The reconstruction results with the denoising step are shown in the 

third row (P21 to P25) and the fifth row (P41 to P45). The PSNR and RMSE values are shown 

in Tables 1 and 2. From both tables, we can see that the PSNR value is decreasing and the 

RMSE value is increasing for the five P-frames, if the difference images between two 

consecutive frames are used and the denoising step improves all P-frames, especially the 

first P-frame. However, if all the P-frames are compared with the I-frame, the improvement 

of the denoising step is large for all five P-frames. This numerical experiment suggests that 

we may choose to compare P-frames with the previous I-frame instead of the previous frame 

because the error in the previous P-frames will be accumulated.

The whole algorithm for P-frames reconstruction is depicted in Table 3. The steps (a) to (c) 

show the nonconvex sorted ℓ1 calculation process, while steps (d) to (e) demonstrate the 

edge-detection denoising procedure to reduce the error in the compressive video sensing.

3 Experiments

The projection measurement matrices can be implemented by spatial light modulators such 

as the digital micromirror device (DMD) and the liquid crystal on silicon. The DMD runs as 

fast as 32,000 Hz, and we use a DMD with 6000 Hz in the experiments. A DMD chip has 

several thousand microscopic mirrors arranged in a rectangular array on its surface. These 

mirrors correspond to the pixels in the image to be reconstructed. The mirrors can be 

individually rotated ±12 deg to an on or off state. These two states correspond to ±1 in the 

Bernoulli matrix. During the sampling process, the measurement matrix is sent to the DMD 

controller row by row. The matrices for P-frames are selected from the rear end of the matrix 

for the previous I-frame, e.g., if the previous I-frame measurement matrix is Φ ∈ ℝm×n, then 

the P-frame measurement matrix will be Φ(m – p + 1:m, :) ∈ ℝp×n with p ≪ m. During the 

experiments, the irradiator (THORLABS LIU850A) is 850 nm near the IR source, and a 

silicon photodiode (THORLABS FDS1010) is chosen as the receiver sensor.
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We validate the proposed nonconvex compressive video sensing system using two 

experiments: a linear moving object and a rotating object. In the first experiment with a 

linear moving airplane in Fig. 10, the frame rate is 10 fps. There is only one P-frame 

between two consecutive I-frames, i.e., t00, t02, …, t16 are I-frames, while t01, t03, ⋯, t17 are 

P-frames. The sampling ratios are 18% and 8.5% for I-frames and P-frames, respectively. 

The proposed system records the whole scene in real time.

The second experiment is to capture the rotation of a fan. As shown in Fig. 11, each blade is 

designed with a different length for easy identification. There are three P-frames between 

two consecutive I-frames, and each row in Fig. 11 shows one I-frame on the first column and 

three P-frames after the I-frame on the last three columns. The frame rate is 18 fps, and the 

sampling ratios are 20% and 9% for I-frames and P-frames, respectively.

4 Conclusions

Nonconvex compressive sensing algorithms require a fewer number of linear measurements 

to reconstruct a sparse signal than convex algorithms. In this work, the nonconvex sorted ℓ1 

approach is employed to reconstruct the difference images, which are sparse, and decrease 

the sampling rate. Furthermore, an edge-detection-based denoising step is applied to reduce 

the error on the difference image. Thus, it requires a smaller number of measurements 

compared to the conventional compressive video sensing. We tested our algorithm on the 

real-time video reconstruction in the experiments. Though the frame rate in the experiments 

is only 18 fps, it can reach up to 105 fps based on current DMD mirror speed (maximum 

32,000 Hz).
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Fig. 1. 
Light illumination in single-lens reflex cameras.

Chen et al. Page 13

J Electron Imaging. Author manuscript; available in PMC 2018 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Sparsity in videos.
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Fig. 3. 
Difference between two consecutive frames. The difference between the left and middle 

images is shown on the right. We can see that most pixels are unchanged in these two 

figures.
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Fig. 4. 
A frame sequence with one I-frame (reference frame) and three P-frames.

Chen et al. Page 16

J Electron Imaging. Author manuscript; available in PMC 2018 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Difference image of two consecutive frames; the difference between the left and middle 

images is shown in the right.
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Fig. 6. 
Comparison of four nonconvex algorithms for signal recovery at different sampling rates. 

Overall, the m-level is the most efficient and effective algorithm.
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Fig. 7. 
Frame difference recovery comparison: (a) ground truth, (b) recovery by nonconvex 

algorithm, and (c) after denoising.
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Fig. 8. 
Flow chart of denoising using image segmentation.
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Fig. 9. 
Accumulation error, ground true frames (P01 to P05), m-level without the denoising (P11 to 

P15), m-level with the denoising (P21 to P25), m-level directly to I-frame without the 

denoising (P31 to P35), m-level directly to I-frame with the denoising (P41 to P45).
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Fig. 10. 
Moving object video recording.
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Fig. 11. 
Rotating object video recording.
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Table 3

P-frames reconstruction algorithm.

Algorithm

Initialize x0, β, r and τ

for l = 1: maxit

a. Compute Kl

b. Update ωl

c. Apply one forward–backward iteration and check stopping rules.

end

d. Find the areas with significant changes

e. Reconstruct the P-frame by updating only the pixels values in the areas identified in the previous step.
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