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Abstract. Recently, binary descriptors have attracted significant attention due to their speed and low memory
consumption; however, using intensity differences to calculate the binary descriptive vector is not efficient
enough. We propose an approach to binary description called POLAR_MOBIL, in which we perform binary
tests between geometrical and statistical information using moments in the patch instead of the classical inten-
sity binary test. In addition, we introduce a learning technique used to select an optimized set of binary tests with
low correlation and high variance. This approach offers high distinctiveness against affine transformations and
appearance changes. An extensive evaluation on well-known benchmark datasets reveals the robustness
and the effectiveness of the proposed descriptor, as well as its good performance in terms of low computation
complexity when compared with state-of-the-art real-time local descriptors.
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1 Introduction

Augmented reality (AR) aims to insert virtual information
into the real world. This information should be accurately
aligned with the real images and failure to do so can result
in pose estimation and pattern recognition problems. Recent
computer vision advances offer great potential to AR appli-
cations. However, one of the main drawbacks of the AR
localization and tracking systems is the high complexity
of computing, matching, and storing the large amount of
feature-point descriptors that are used for describing and
tracking real scenes. Most of the proposed AR systems
use floating-point descriptors.! Recently, binary descriptors
have provided good performance in terms of computational
complexity and required memory; however, they still suffer
from inaccuracy and low efficiency compared with their
floating-point competitors.>>

In this paper, we propose a robust local binary descriptor
for which we have performed binary tests between geometric
moments, instead of traditional intensity binary tests, for
each subregion in the patch. This new descriptor offers
a high distinctiveness level.

The remainder of this paper is presented as follows: Sec. 2
presents the motivation and the main contributions. Section 3
provides related work. Section 4 describes our proposed
approach. In Sec. 5, we evaluate the proposed detector
descriptor and compare other proposed approaches. Section 6
concludes the paper.

2 Motivation and Contributions

In general, binary descriptors use a single image property,
such as intensity differences or gradient directions, to build
a description. The result is an insufficient description
of image features; furthermore, building high-dimensional
feature descriptions with binary descriptors increases

computational complexity and generates redundant and
correlated descriptions.

To avoid such drawbacks, it is preferable to create multi-
criteria local descriptions and find a compromise between
the description dimensions and the high computational
complexity.

This work is an extended version of our IEEE ISMAR
2014 publication,* in which we introduced the concept of
binary description based on geometric moment comparison
and presented the first version of MOBIL descriptor.

In this paper, the main contributions are as follows:

* We provide a broader view of the existing literature.

* We propose an improved keypoint detection technique
based on the adaptive and generic accelerated segment
test (AGAST)’ and Shi-Tomasi® detectors by taking
advantage of computing the AGAST binary decision
trees, then refining the detected keypoints using the
Shi-Tomasi cornerness metric.

e We introduce POLAR_MOBIL, a moments-based
binary descriptor, in which we concatenate the descrip-
tion of both Cartesian and log-polar patch images.

* We apply a bit selection strategy to pick the best binary
tests that will lead to both low correlation and high
distinctiveness.

3 Related Works

Several local feature descriptors that provide well matching
probability have been proposed in literature. Scale-invariant
feature transform (SIFT)’*® is the most popular descriptor; it
consists of a gradient orientation histogram obtained from
difference of Gaussian points; however, there are drawbacks
in terms of computation time and memory. Mikolajczyk and
Schmid’ compared the performance of 10 recent descriptors,
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and they advocate their gradient location and orientation
histogram (GLOH), which is an extension of the SIFT
descriptor. It outperforms SIFT and other descriptors in
the sense that it increases robustness and distinctiveness. The
speeded up robust features descriptor (SURF)!? was inspired
by SIFT. The main contribution of SURF is that it overcame
SIFT’s main weakness, its computational complexity and
the resulting low execution speed.

Variants of the SIFT descriptor have been proposed in
order to reduce computation time, for example, principal
components analysis (PCA)-SIFT,'! which applies PCA to
the normalized gradient patch instead of using SIFT’s
smoothed, weighted histograms. Mortensen et al.'* com-
bined a local SIFT descriptor with a global context vector
similar to shape contexts to resolve ambiguities that can
occur locally when an image has multiple similar regions.
Some other variants of SIFT have also been proposed.'*™'

Tola et al.'® proposed an efficient descriptor with a daisy
configuration derived from SIFT and GLOH. It has proven to
be well suited for sparse matching but not for efficiency.
Google’s research laboratory has also invented its own
descriptor called compact normalized Gabor sampling®
that is based on Gabor wavelets of varying scale and orien-
tation drawn from a variant grid around interest points.
Inspired by Weber’s law, Chen et al.>' proposed a local
descriptor called the Weber local descriptor. Alcantarilla
et al.>” proposed a multiscale two-dimensional (2-D) feature
detection and description algorithm called KAZE that detects
and describes 2-D features by means of nonlinear diffusion
filtering. Yan et al.”® recently proposed a local feature
descriptor called monotonic invariant intensity descriptor
(MIID), which uses spectral embedding and nonsubsampled
contourlet transform. However, Yan et al. used the Laplacian
matrix to construct their MIID descriptor, which does not
meet the real-time requirement.

These approaches use floating-point descriptors, i.e., they
are computationally expensive in terms of time and memory;
therefore, binary descriptors were introduced to optimize
computation resources. The first binary descriptor proposed
was binary robust independent elementary features (BRIEF).>*
It uses simple binary tests between pixels in a smoothed
image patch and random predetermined locations. BRIEF
demonstrated a high recognition rate with low computational
complexity during the description building and matching
processes; however, rotation is variable. Oriented FAST and
rotated BRIEF (ORB)? introduced rotated BRIEF (rBRIEF),
which uses a learning strategy to recover from the loss of
variance in steered BRIEF. The rBRIEF method demonstrates
variance and correlation improvements over the steered
BRIEF. Wang et al.?® proposed an improved ORB descriptor
that is applied to license plate localization in complex scenes.

The binary robust invariant scalable keypoints descriptor
(BRISK)?” uses a hand-constructed sampling pattern com-
posed of concentric rings with more points on outer rings.
The BRISK descriptor divides point pairs into two groups:
long-distance pairs and short-distance pairs. It calculates
the characteristic pattern direction using long-distance pairs
and computes the descriptor using intensity comparisons of
short-distance pairs after rotation and scale normalization.
Baroffio et al.”® proposed BRISKOLA, an optimized version
of BRISK for low-power advanced RISC machine architec-
tures. Inspired by the human visual system, fast retina

keypoint®® uses the learning strategy of ORB with a DAISY-
like sampling pattern. This sampling pattern uses overlapping
concentric circles with more points on inner rings. Each circle
represents a sensitive field, where the image is smoothed
with its corresponding Gaussian kernel.

Ledoux et al.** proposed the color local binary pattern
(LBP), an extension of the LBP that takes the vector infor-
mation of color into account due to a color order. This
descriptor is very sensitive to noise, which makes it adapted
to texture classification. Shang et al.*! proposed a local
derivative quantized binary pattern descriptor, in which they
quantized the intensity differences between the central pixels
and their neighbors for the detected local affine covariant
regions. However, this proposed descriptor is not suited
for real-time applications due to the applied quantization
technique.

Levi and Hassner’” recently introduced the learned
arrangements of three patch codes (LATCH) binary descrip-
tor; LATCH compares the intensity of three subregions,
which called the anchor and its two companions, in the
patch to produce a single bit of the descriptor. The similarity
comparison between the anchor subregion and the other two
subregions is given by their Frobenius norm. The LATCH
descriptor offers high recognition rate. However, it is slower
than most of the binary descriptors with the same size. Parker
et al.*® proposed a CUDA version of the LATCH binary
descriptor in order to accelerate the descriptor extraction
using expensive graphics processing units.

These techniques only use the intensity to build their
descriptors, which leads to loss of information. The local
difference binary descriptor (LDB)** used in addition the
first-order gradient to improve the description quality, but
despite that, its sensitivity to viewpoint changes and noise
is significant. A quantitative comparison and evaluation for
feature descriptors can be found in Refs. 35-37.

Computation of geometric moments is another popular
technique that is used to describe image features. Moments
have been used successfully in many applications, as they
can capture both appearance and shape characteristics
of an image region.’®*" Their ability to fully describe an
object also makes them a powerful tool in computer vision
applications.

In this work, we propose an alternate binary descriptor
that achieves a computational speed and robustness similar
to state-of-the-art binary descriptors, yet offers much higher
distinctiveness when compared with them. We use the
geometric properties of a patch’s subregions instead of the
intensity when performing the binary test in order to achieve
high quality from our descriptor.

4 Proposed Approach

4.1 Keypoint Detection

Obtaining stable keypoints are an essential step for every
feature-based computer vision process. Recently, corner
detection became the most useful technique due to its good
performance in terms of repeatability and processing time. A
corner is defined as the intersecting point of two connected
straightedge lines. Mathematically, it refers to the point at
which two dominant but different gradient orientations
exist."!

Generally, corner detection methods can be further
divided into three classes
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¢ (Classical gradient-based corner detection based on
gradient calculation.

¢ Template-based corner detection based on the compari-
son of pixels. Recently, templates have been combined
with machine-learning techniques, i.e., decision trees,
for faster corner detection.

¢ Contour-based detection based on the results of con-
tour and boundary detection. It relies on the prediction
of edge responses to identify corners.

As a template-based corner detection technique, the
fast accelerated segment test (FAST)* detector represents
a breakthrough in high-speed corner detectors. It is based on
the accelerated segment test (AST), which is a modification
of the smallest univalue segment assimilating nucleus* cor-
ner detector. The AST classifies a candidate point p (with
intensity /,) as a corner if n contiguous pixels in a circle
of radius 3 around p are all brighter than 7, + 7 or all darker
than I, — ¢, with ¢ being a predefined threshold. Each corner
is then given a score s, defined as the largest threshold
for which p can be classified as a corner. A decision tree
is then applied to accelerate the candidate point classifica-
tion. FAST enhanced repeatability** increases the thickness
of a circular template in order to increase the stability of
detected corners; however, this makes it slower compared
with FAST.

The AGAST detector’ is based on the AST that was
developed for FAST by Rosten et al. The difference is
that in the AGAST detector, the way the decision trees for
the AST is built and used has been significantly improved,
and being generic, the decision trees do not have to be
adapted to new environments. The FAST-like detectors do
not provide multiscale detection; therefore, ORB calculates
a multiscale image and applies FAST to every scale. The
detected points were refined by Harris corner measure;*
however, duplicate points with different pyramid levels have
been detected as nonmaximum suppression is not used
between the scales.

Meanwhile, Leutenegger et al.”’ proposed the BRISK
detector, which uses the AGAST corner detector refined
by a FAST cornerness score. The BRISK detector identifies
keypoints in a scale-space pyramid and performs nonmaxi-
mum suppression between the pyramid levels. Despite the
good performance achieved by the BRISK detector, it still
suffers from a lack of precise and effective cornerness
measurements as it is very hard to use discrete cornerness
measurements to satisfy the requirement of nonmaximum
suppression. In addition, the learning process might cause
database-dependent problems, so the general performance of
machine-learning-based methods needs to be improved.

In order to achieve the invariance against the scale
changes crucial for high-quality keypoints, we had to calcu-
late a nine-level scale pyramid with the factor of /2 (square
root of two) between each two levels. We then had to
apply the AGAST five to eight (five decision trees for eight
pixels mask) detector for each level in order to extract the
maximum high-speed keypoints (Fig. 1).

Subsequently, the extracted keypoints were refined in
order to select those that were more stable. For each detected
keypoint, we calculated the Shi-Tomasi cornerness score
R = min(4;, 4,) to check if the detected keypoint was a cor-
ner within the fixed threshold. The Harris corner detector

Scale

Cornerness score (R)

Fig. 1 Scale pyramid keypoint detection. Once the keypoints are
extracted from each level by AGAST, we apply the Shi-Tomasi
cornerness metric to refine the detected keypoints for each level.
After that, we compare the keypoint positions for each two adjacent
levels to remove the redundant points with the minimum score.

defines eigenvalues as A; and 1,. We selected only the
local extrema cornerness score in order to remove the
redundant keypoints extracted from each scale level. To this
end, we applied an optimization algorithm to compare the
extracted keypoint positions for every two adjacent levels,
and we removed the redundant points having the minimum
Shi-Tomasi score. In Sec. 5.1, we describe the implementa-
tion and the evaluation of our proposed detection technique.

4.2 POLAR_MOBIL Descriptor

As most of the photometric changes, such as lighting/con-
trast changes, blurring, and image noises, can be removed
by computing the difference between two subregions, local
binary descriptors are becoming widely used in computer
vision; however, the use of intensity differences may lead
to a lack of discrimination.

In this paper, we propose an alternative binary descriptor
in which we perform binary tests between subregion
moments, instead of the classical intensity-based binary test,
in order to increase descriptor distinctiveness.

Our proposed descriptor relies on two main ideas

¢ Performance of binary tests between the geometric
moments of the patch subregions.

¢ Calculation of the moment differences for both
Cartesian and log-polar images of the patch and
concatenate the resulting descriptive vectors.

Image moments have attracted researchers’ attention for
several decades, as a powerful tool to describe the content of
an image. Moments have been used in many areas of com-
puter engineering research, such as pattern recognition*®*’
and computer vision,*** with significant results. Hu*" was
the first to introduce image moments for classification
problem solving by using the geometrical, central, and
normalized image moments.

In general, moments describe numeric quantities at some
distance from a reference point or axis. Moments are com-
monly used in statistics to characterize the distribution of
random variables. The use of moments for image analysis is
straightforward if we consider a binary or gray-scale image
segment as a 2-D density distribution function. Moments
may be used in such cases to characterize an image segment
and extract properties of the intensity distribution.
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Fig. 2 Extraction and sampling both (a) the Cartesian
r=(1/2)Lx/2=23.

Hu states that the 2-D moments for an N X M image
I(x,y) can be defined by

M—1N-1
m,, = xPyi(x,y), ¢))
y=0

=

where p, g =0, 1, 2.

In order to build our descriptor, we took a square image
patch p from around the detected keypoint with length
L = 32 pixels. Then, we divided it into 4 X 4 equally sized
grid cells (subregions). We obtained 16 subregions with
8 x 8 pixels each.

On the other hand, we took a circular image patch from
around the same detected keypoint with radius r = (1/2)L X
/2~ 23 pixels and we constructed its log-polar image.
We subsequently cropped the exterior region of the mapped
log-polar image to obtain a square image patch with length
L’ = 32 pixels. This later has been divided also into 4 x 4
equally sized grid cells, with 8 X 8 pixels each. Figure 2 illus-
trates this procedure. We note that several experimental tests
have been carried out in order to choose the adequate size of

patch and (b) log-polar patch, where L = L' = 32,

the patches and the number and the size of the subregions
(grid cells).

Then, we calculated the first-order moments (m;q and
mg;) and the second-order moments (m,, and mg,) for
each grid cell in both Cartesian and log-polar patches (see
Fig. 3), where:

* The first-order moments (g, mg;) were used to locate
the centroid (center of gravity) of a region, and

* The second-order moments (c, mgy,) were used to
determine the principal axes of the pixel distribution
given in the image.

We then performed a binary test 7 on each pair of grid
cells (x and y) in the Cartesian patch and then in the log-
polar patch using the defined moments above as follows:

if [m,,(x m
T[mm@),mpq(y)]:{l 1 (x) > 11, ()]

0 otherwise
For all (p,q) € {(0,1),(1,0),(0,2), (2,0)}. 2)

Log-Polar mapping

0

' 0
g Concatenation 1
@ ¢ Mgy ¢ of binary tests o
Ziifh C.l(llwd;d into Moment’s calculation for each 1

gnd cells grid cell and binary test between
each pair of cells.

p 0 —
Mgy (Mg | Moy +

0

¥y 8 |

Biaywesce |

f i r Concatenation

of binary tests
Mgy | Mo | iy

of the patch divided
into 4x4 grid cells

Moment’s calculation for each
grid cell and binary test between

pair of cells.

Fig. 3 The POLAR_MOBIL descriptor architecture.
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At the end of this step, we obtained two binary vectors for
both Cartesian and log-polar patches as shown in Fig. 3.
These two vectors are finally concatenated to obtain a full
description of the given patch p. We can generalize, there-
fore, the POLAR_MOBIL descriptor as

n/2 4
MOBIL(p) = Y > " 274 {z[m g (x), mpy (v)]}
i=0 j=0
+ i 22]%{7 (X)), m, ()]}
i=n/2 j=0

For cach (p. ¢) € {(0.1). (1.0). (0.2)(2.0)}, 3)
where 7 is the number of binary tests in both the Cartesian
and log-polar images of the patch p. The resulting binary
vector then has n X 4 bits.

In order to make our descriptor invariant to an in-plane
rotation, we computed a dominant orientation for every
image patch, and then aligned the patch to its dominant
orientation before computing its descriptor. Many dominant
orientation estimation methods can be used. Here, we imple-
mented the intensity moments-based method®' for its effi-
ciency and robustness.

We calculated the moments for the entire patch intensity
using Eq. (1). The centroid intensity of the patch can be
defined as

myy m
C= (—‘Oﬂ) 4)
Moy Moo
In general, the intensity centroid of a patch is offset from its
geometric center. Because of this, we constructed a vector

from the geometric center O to the intensity centroid C. The
orientation of the patch can be given as: 8 = tan~! (m;, m,).

4.3 Picking the Best of POLAR_MOBIL

Our descriptor generates a high-dimension bit string
[(all possible tests in each patch: 120) X (moments: 4) X
(Cartesian and log-polar: 2) = 960 bits], which increases re-
source consumption in terms of processing time and storage.
Moreover, high-dimension descriptive vectors may contain
highly correlated bits that reduce the discriminative ability of
the descriptor. For this end, we applied a binary test-selection
strategy, which is a modified version of the learning
technique used by ORB. In order to both reduce the high

(1002 =Ono

. > (0100)2 = (4)10

se (1011)2 = (11)10

Y

imimioimicici~icimicioi~]

v

Fig. 4 Conversion of the binary vectors to decimal vectors.

Mean values in decimal

o

40 80 120 160 200 240
Matrix rows

Fig. 5 The mean values of the 240 matrix rows. We can see that
the correlated binary test is far from the center (7.5).

dimensionality of this descriptor and to enable us to select
the moment’s binary tests that would lead to high variance
and low correlation.

To accomplish this, we took a large set of images. We
used the Caltech256 dataset®” that consists of 30,607 images,
and we extracted an average of 100 patches (with size of

Algorithm 1 Moments binary test selection.

Input:
- The k x n matrix of learned patches, where its values are in [0, 15]

- Thresholds ¢4, & for selecting the mean and the variance,
respectively

- k' =32x2 =64 : the number of rows to be selected
Output:

- |: a set of selected binary test indices.

Begin:

1. For each row /i in the matrix, calculate the mean m; and the
variance v;.

2. Sort the rows in increasing order of the absolute value of their
means —7.5.

3. i=1; Initialize I;

4. while |[m; — 7.5| < ¢4, do:
a. If(lvi—21.25| <e&,), then put i in |
b. If the size of | achieves k', then go to step 5
c. If (i = k), then readjust ¢; and &,, go to step 3
d. i++

5. End while.

6. Terminate the learning function and output I.

End.
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Fig. 6 Example of image sets from the Mikolajczyk benchmark.
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Fig. 7 Comparison of the repeatability between the of POLAR_MOBIL, SURF, ORB, BRISK, and
AGAST detectors, using Mikolajczyk benchmark. Each group (1/x) in the horizontal axis indicates
the matching result of image 1 to image x, where x =2, 3, 4, 5, 6, in the related image set.

Table 1 Mean detection time for 500 keypoints of POLAR_MOBIL
detector and detectors and SURF, ORB, BRISK, and AGAST
detectors.

Detectors Detection time (ms)
SURF 72.63
ORB 8.37
BRISK 412
AGAST 1.87
POLAR_MOBIL 3.76

32 x 32 pixels) from each image (~3M patches at all). Then,
we calculated their descriptors by POLAR_MOBIL.

Then, for each binary vector, we grouped together each
four (4) successive bits (four bits given from the four
moments at each binary test). Moreover, we converted the
4 bits to the decimal equivalent [i.e., (1001), = (9)0]-

Table2 Mean description time for the state-of-the-art descriptors and
the POLAR_MOBIL descriptor.

Descriptors Time per description (ms)
SIFT 3.121
SURF 1.488
BRISK 0.072
A-KAZE 0.094
ORB 0.146
LDB 0.139
LATCH 0.437
MOBIL 0.127
POLAR_MOBIL 0.123
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Therefore, we obtained decimal vectors with dimension of
960/4 = 240, and their values are between 0 and 15 as
shown in Fig. 4.

Subsequently, those decimal vectors formed k X n matrix,
where k = 2 % 120 = 240 is the total number possible binary
tests for both Cartesian and log-polar patches, and #» is the
total number of trained patches (~3M). We then calculated
the mean and the variance for each row. Figure 5 shows the
plotted mean values.

Selecting uncorrelated tests refers to selecting rows that
are of uniform distribution, i.e., their means are close to
7.5 (Fig. 5), and their variances should be near to 21.25,
according to the equation of discrete uniform distribution
variance: V = (n? — 1)/12 (for proof, see Ref. 53).

Scale and Rotation changes (Boat)
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40
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20
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1/5 1/6
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|

i

T2 13 1/6
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1/3
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12
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Recognition rate (%)

The following algorithm (Algorithm 1) details this
approach.

Once the learning technique was applied, we noticed that,
for the Cartesian image patch, most of the horizontal long-
distance tests were removed. One explanation is that as the
patch was rotated to its dominant orientation, it appeared
horizontally homogenous. For the same reason, long-distance
vertical tests in the log-polar patch were also removed.

5 Implementation and Test

We have implemented our proposed detector-descriptor
using the Visual Studio 2013 environment, with OpenCV
2.4.4, running on an Intel® Core™ i3 3.20 GHz processor.

Compression jpeg (UBC)

100
90 f
80
70
60
50
40
30
20
10

: 1/4 1/6 ::

Matching pairs

: 1/2 1/3 1/5

Lighting changes (Leuven)
100

..1/(..5 i

15

1/4
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. 1/3
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BRISK
ELDB
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B MOBIL

B POLAR_MOBIL

Fig. 8 Comparison of the recognition rates for the POLAR_MOBIL, MOBIL, LDB, ORB, BRISK, SURF,
and LATCH descriptors, using Mikolajczyk benchmark. Each group (1/x) in the horizontal axis indicates
the matching result of image 1 to image x, where x =2, 3, 4, 5, 6, in the related image set.
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We also performed different types of tests in order to evaluate
the POLAR_MOBIL performance.

For the evaluation step, we conducted extensive experi-
ments on different public image datasets including:
Caltech256,°* Fountain-P11,* and Mikolajczyk bench-
mark,” this later became a standard benchmark for evaluating
keypoints detectors and descriptors. It offers five different
transformation types represented by eight image sets. Each
one contains six images that depict an increasing degree of
a specified image transformation. Figure 6 shows the five
transformations with one image set each.

5.1 Detector Evaluation

In order to evaluate the POLAR_MOBIL detector perfor-
mance and compare it with the other proposed detectors, we
used the repeatability metric® that represents the ability to
detect the same point in the scene under viewpoint and light-
ing changes and subject to noise. It can be calculated using

Trees 1/3
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We calculated the repeatability of our proposed detector
under viewpoint and lighting changes, and we compared
it with recent well-known detectors. Figure 7 shows that
the POLAR_MOBIL detector performs much better than
the ORB and BRISK detectors when changing illumination,
and it is slightly better for scale and rotation sequences.

On the other hand, we measured the detection time
for detectors tested above and POLAR_MOBIL detector
(Table 1). The mean detection time of the tested detectors is
measured for extracting 500 keypoints from different image
sets. All the descriptors are executed on the same images,
under the same configuration as described in Sec. 5.

As illustrated in Table 1, POLAR_MOBIL performs
slightly better than BRISK detector, and better ORB and
SURF. However, AGAST detector is faster because our
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0 005 01 015 02 025 03 0,35
1- precision

UBC 1/3

T T T T
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0
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1- precision
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Fig. 9 Recall versus 1-precision curves for POLAR_MOBIL, LDB, ORB, BRISK, and SURF, given by the

matching result of the pairs 1/3 (matching images 1 to 3) of six different image sets of the Mikolajczyk
benchmark.
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detector uses in addition Shi-Tomasi cornerness measure for
refinement.

5.2 POLAR_MOBIL Descriptor Performance Test

In this section, we present a set of test results for the
POLAR_MOBIL descriptor, and we compare it to other
state-of-the-art descriptors.

First, we calculated the average description time for single
feature, and we compared it to other feature descriptors.
Table 2 shows that the POLAR_MOBIL descriptor has a
lower construction time than the ORB and LDB descriptors
and a significantly better time than SURF. In addition,
POLAR_MORBIL is faster than our first version of MOBIL
descriptor.*

The average description time is calculated more than 5000
image features from different datasets. All the descriptors
compared are executed on the same images and with the
same configuration as described in the beginning of Sec. 5.

The first results that we achieved (Fig. 8) demonstrate
that, compared with state-of-the-art descriptors, the POLAR _
MOBIL descriptor results in a higher recognition rate than
the other descriptors for both scale and rotation and view-
point changes. (The recognition rate is the number of correct
matches divided by the total number of matches.)

We also calculated the recall versus 1-precision curves
in order to compare the matching results of our POLAR_
MOBIL descriptor with other well-known descriptors.
Therefore, we took the matching pair 1/3 (i.e., matching
images 1 to 3) from six different image sets in the Mikolajczyk
dataset. Then, we tuned from 0 to 255, the matching threshold
applied on the Hamming distance in order to discard bad
matching results. We measured each time the recall and the

0,03
Wall 1/4

0,025
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0,015

0,01

Relative frequency

0,005

NN

0 —
0 32 64 96 128 160 192 224 256

Hamming distance

0,03

0,025 Trees 1/4
0,02

0,015

0,01

Relative frequency

0,005

0 —
0 32 64 96 128 160 192 224 256
Hamming distance

Relative frequency

Relative frequency

precision of the evaluated descriptors. A robust descriptor
should offer high precision at any given recall.

Note that the recall is defined as the number of correctly
returned matches divided by the total number of correct
matches. The precision is the number of correctly returned
matches over the total number of returned matches. A
distinctive description should offer high precision at any
given recall. The results shown in Fig. 9 demonstrate that
POLAR_MOBIL performs significantly better than SURF
and ORB, especially for illumination and affine transforma-
tion changes.

On the other hand, in order to evaluate the discriminative
power of the POLAR_MOBIL descriptor, we applied our
descriptor on pairs of images and analyzed the distance
between the matching pairs (Hamming distances).
Therefore, we took the pairs 1/4 (i.e., matching images
1 to 4) for each of wall, leuven, trees, and boat image
sets from the Mikolajczyk dataset. Then, we calculated the
matching distance and plotted the distribution of Hamming
distances between the different image pairs. Figure 11
shows the obtained Hamming distances distribution (the
histograms are normalized). The correct matches are in
green, and the mismatches are in red. We note that the maxi-
mum possible Hamming distance for POLAR_MOBIL is
256 bits.

As illustrated by the graphs in Fig. 10, most of the curves
of the matched pairs and the nonmatched pairs are distinctly
separated, which means that the correct matches are easily
distinguished from the mismatches. This can validate the
high recognition rate of the POLAR_MOBIL descriptor
shown in Fig. 8. Figure 11 shows some obtained matching
results, for POLAR_MOBIL descriptor with different image
datasets.
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o
o
N
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Fig. 10 Distributions of Hamming distances, matching pairs of points are in green, and nonmatching
pairs are in red. We see that for most of the pairs, the curves are distinctly separated except in wall

pairs, where the curves are partially overlapped.
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(©)

Fig. 11 Some examples of POLAR_MOBIL descriptor with different types of transformations. (a) illumi-
nation changes, (b) viewpoint changes, and (c) occlusions.

6 Conclusion

In this paper, we have presented a new way to describe image
patches using binary description. In our descriptor, we
have introduced geometric information as binary tests to
enhance robustness and distinctiveness. We have applied this
descriptor to both Cartesian and log-polar image patches in
order to create a more robust binary descriptor for affine
transformations.

The initial results achieved were very positive, showing
that its performance and efficiency are comparable to other
popular features descriptors. Our tests demonstrate that this
description technique provides more robustness and distinc-
tiveness, especially for affine transformations and viewpoint
changes. This new approach has given us new ideas for
improving the performance and efficiency of the proposed
POLAR_MOBIL descriptor that we hope to implement in
the near future.
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