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Abstract. Some spatial color algorithms, such as Brownian Milano retinex (MI-retinex) and random spray retinex
(RSR), are based on sampling. In Brownian MI-retinex, memoryless random walks (MRWs) explore the neigh-
borhood of a pixel and are then used to compute its output. Considering the relative redundancy and inefficiency
of MRW exploration, the algorithm RSR replaced the walks by samples of points (the sprays). Recent works
point to the fact that a mapping from the sampling formulation to the probabilistic formulation of the corresponding
sampling process can offer useful insights into the models, at the same time featuring intrinsically noise-free
outputs. The paper continues the development of this concept and shows that the population-based versions
of RSR and Brownian MI-retinex can be used to obtain analytical expressions for the outputs of some test
images. The comparison of the two analytic expressions from RSR and from Brownian MI-retinex demonstrates
not only that the two outputs are, in general, different but also that they depend in a qualitatively different way
upon the features of the image. © 2017 SPIE and IS&T [DOI: 10.1117/1.JEI.26.3.031206]
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1 Introduction
The retinex model by Land and McCann1,2 provides an
abstract model of the mechanism of color sensation, relying
on the observation that the color appearance at a point does
not depend only on its tristimulus value but rather on the
comparison among itself and other pixels. According to
the model, separately for each chromatic channel, a pixel
receives suitably filtered information about the brightness of
other image regions and determines a reference white value,
based on which its own brightness is eventually rescaled.

Variants of the algorithm have been developed, character-
ized by different ways of gathering information from the
region surrounding the target pixel (the pixel whose appear-
ance has to be computed). Several models use a process
based on repeated sampling. A model—from a family of ret-
inex variants called Milano retinex (MI-retinex)—uses
memoryless random walks (MRWs)3 (this is called hereafter
Brownian MI-retinex), whereas a computationally efficient
variant, random spray retinex (RSR)4—from the same fam-
ily—uses samples of points, called “sprays.” The Brownian
MI-retinex determines the white reference level for a target
pixel as the average of the collection of maxima, each
obtained by an MRW (starting from a random point of the
image and stopping the first time it encounters the target);
RSR determines the white reference level for a target pixel
as the average of the collection of maxima, each obtained
by a spray, sampled from the neighborhood of the target,
according to a given spatial intensity, decreasing with the dis-
tance from the target. The fact that both algorithms are based
on “samples of samples” represents a drawback, because it
entails the presence of statistical noise. When using the two
algorithms, one can limit the noise by increasing the number
of samples, but only at the expense of the computational
efficiency.

In recent works,5–7 we argued that the process—consist-
ing in drawing samples from the population of pixels’ and
then computing averages of intensity extrema—can be
replaced by the direct computation of suitable quantities
out of the whole population of the pixel intensities in the
image. This gave rise to two algorithms: ReMark,6 based on
Brownian MI-retinex and RSR-P,7 based on RSR. Those
algorithms compute the reference white for a target as the
weighted sum of the intensities of all the image pixels: the
weight represents the probability that the contributing pixel
becomes the maximum, respectively, of an MRW ending at
the target (in ReMark) and of a spray (in RSR-P). In ReMark,
this formalization entails representing the process as an
absorbing Markov chain and computing its absorption prob-
abilities; in RSR-P, this, more simply, involves computing
sampling distributions of the maxima out of the whole pixel
population.

In Ref. 7, the same approach used for RSR has been
applied to the visual contrast enhancement algorithm
STRESS;8 in the original algorithm formulation, both the
maximum and minimum of a spray are used to rescale the
input intensity value of a pixel, then the rescaled values from
all the sprays are averaged; the corresponding population-
based algorithm, called STRESS-P, computes the output as
a weighted sum over all the pixel pairs in the image, the
weight of a pair is the probability that it represents a mini-
mum–maximum pair for a spray.

Hereafter, we refer to those algorithms that prescribe to
enact the repeated sampling as “sampling-based models,”
and to those that compute the output based on the whole pop-
ulation of all the possible samples as “population-based
models.” Population-based approaches have the advantage
of yielding outputs that, by construction, are free from statis-
tical noise; more importantly, they provide further insight into
the respective sampling-based models. Indeed, sampling- and
population-based models are complementary to one another
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(in a sense, as a tree-view and a forest-view of a wooded
area). Sampling-based models allow researchers to clearly
specify fundamental mechanisms (furthermore they are
generally easier to implement); population-based models
are appropriate for reasoning about model comparisons and
lend themselves well to the design and tuning of model
approximations.9

In Ref. 7, the latter capability has been demonstrated by
the design of efficient approximations of RSR-P and
STRESS-P based on space quantization, whereas the former
has been demonstrated discussing the halo artifact formation
mechanisms in RSR-P and in an earlier population-based
algorithm, QBRIX.5

In the present paper, we review the above-mentioned con-
tributions and further develop the relationships among models.
Specifically, we probe the similarities and differences of
Brownian MI-retinex and RSR by building an analytical
expression for the ReMark and RSR-P output from a specific
test image. We observe that the choice of a radially symmetric
profile from which to draw the points cannot lead to a faithful
substitute for the random walks, for at least two reasons.

• The individual random walk starting from a chosen
point and ending at the target has a shape that is typ-
ically not radially symmetric around the target; thus
using a spray in place of a (two fixed ends) random
walk implies exploring the space according to different
geometries.

• The random walk in two-dimensional (2-D) cannot
take “jumps” from a point to another disconnected
point, whereas points in a spray can fall in any position
of the image (although with different probability). This
implies that the spatial comparisons follow different
rules. A random walk cannot compare two regions
characterized by different intensities if they are discon-
nected by an intervening region, without comparing
them also with the intervening region. This, in general,
changes the distribution of the spray maxima, eventu-
ally harmonically averaged to yield the white refer-
ence level.

Those two elements can in general produce differences
between the processing of Brownian MI-retinex and of
RSR, both in their sampling-based version and their popu-
lation-based version. Although those differences can go
unnoticed in the case of most natural images, on specific
test images the computation by the two algorithms yields sig-
nificantly different corrections.

In the present work, we develop this point using the pop-
ulation-based formalization, which can yield to analytic
expressions for the output, in specially simple cases. After
introducing RSR and RSR-P, we use Brownian MI-retinex
and RSR-P to compute analytically the value at a point of
a specific test image and highlight the differences. The com-
parison of the two analytic expressions shows not only that
the two outputs are, in general, different, but also that they
depend in a qualitatively different way from the features of the
image. This result points to the fact that RSR, more than an
efficient approximation of the BrownianMI-retinex, should be
more soundly considered as an algorithm on its own.

A couple of clarifications are in order, about the scope of
the present paper. Retinex is usually used in two ways: as
a computational model of human color sensation or as an

unsupervised image enhancer. For the first purpose, a careful
procedure of input and output calibration is necessary,
whereas for the second task, those phases are not required.
In the present work, we consider the use of retinex for image
enhancement; therefore, we disregard the issue of the cali-
brations. Furthermore, the present work does not cover the
comparison with the related retinex models based on varia-
tional methods such as Refs. 10 and 11.

The paper is structured as follows: first, we recall the def-
inition of Brownian MI-retinex and of ReMark; then, the def-
inition of RSR and RSR-P; finally, we compute analytically
their output for the central pixel of a specific test image and
show how the two definitions imply qualitatively relevant
differences in the output.

2 Memoryless Random Walks Samples and
Populations

Here, we describe the MRW sampling-based algorithm
Brownian MI-retinex and its corresponding population-
based version ReMark.

The original retinex algorithm was defined as consisting
in three components: the chromatic channel separation, the
reset mechanism, and the thresholding mechanism. The first
component is motivated by the observation that the human
visual system (HVS) operates through three independent
retinal-cortical subsystems, processing the low, middle,
and high frequencies of the visible spectrum, respectively;
algorithmically, this feature translates into the prescription
that each chromatic channel has to be processed independ-
ently of the others. The reset and thresholding mechanisms
are motivated by the observation that color sensation, and
consequently color appearance, is not based on the color
stimulus at the point, but rather on the relative spatial
arrangement of the stimuli in the observed scene;12 both
intensities and gradients take part into the determination of
the output. Each retinex system attenuates smooth changes in
intensity—arising for instance from gradients of the illumi-
nant—and enhances sharp changes, i.e., the edges; further-
more, each retinex system estimates the appearance of a
point by relating the value at the point to a “local reference
white” found within the image and rescales all the
intensities of the region with respect to that reference. Algor-
ithmically, in the original path-based formulation of retinex,
these observations were rendered by a “path-level” mecha-
nism, called “reset,” which would change the current refer-
ence white whenever the path exploring the image met a new
maximum, and by a “step-level” mechanism, called “thresh-
olding,” that would discount small intensity gradients found
along the path.

In addition to those well established elements, the early
retinex formulations contain components that have been
often reinterpreted and given different algorithmic formaliza-
tions. The process proposed in the early retinex formulations
consisted in a pixel (or region) sampling guided by a path
whose deterministic or random character varies from an
implementation to another. Some relevant variants defined
by means of path-based sampling are Brownian MI-retinex,3

termite-retinex (TR),13 energy-driven TR,14 and the algo-
rithm by Montagna and Finlayson.15

In Brownian MI-retinex,3 paths are defined as MRWs
starting from a randomly chosen pixel and stopping the
first time the path meets the target pixel.
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In addition to the formalizations of the paths, other defin-
ing elements contribute to the diversity of retinex variants;
the combination of mechanisms is also open to different
choices. For instance in Brownian MI-retinex, the quantity
computed along the path is used to update the target
pixel only; on the contrary, in the classical version by
Land and McCann1,2 and in the version by Montagna and
Finlayson,15 each pixel along the path is updated with the
information collected by the path up to that point.

2.1 Brownian MI-retinex
Let ið1Þ, ið2Þ, ið3Þ be the three chromatic channels of the input
color image ī with size ðnrow × ncolÞ, where nrow; ncol ∈ N
represent the number of rows and columns, respectively.
Each channel iðcÞ can be seen as a function iðcÞ∶
I → ½0; 1�, where I is the image support, i.e., the set of
spatial coordinates ðu; vÞ of image pixels, with u ∈
f1; : : : ; nrowg and v ∈ f1; : : : ; ncolg. Since the retinex algo-
rithms process the three channels independently, we drop the
apex c and from now on denote the channel function simply
by i, and the value of the function at a pixel of index p by
ip ≡ iðpÞ. The (single-channel) input image is thus given by
the pair ðI; iÞ.

We also denote the output channel function by
o∶I → ½0; 1� and its value at p by op ≡ oðpÞ; the (single-
channel) output image is given by the pair ðI; oÞ. We denote
the reference white level of a pixel p by wp ≡ wðpÞ and the
overall reference white level of a channel by w∶I → ½0; 1�;
the (single-channel) reference white image is given by the
pair ðI; wÞ.

All the algorithms described here work by computing the
output of a pixel at time, this pixel is called “target” and
indexed by τ; they compute, by various means, the reference
white level wτ and then compute the output as oτ ¼ iτ∕wτ.

In Brownian MI-retinex, the image exploration process is
based on repeated statistical sampling; each random walk,
connecting the random starting point to the target, provides
a sample of pixels; Brownian MI-retinex prescribes to com-
pute a synthesis quantity out of each path and eventually to
take an average of those synthesis quantities to determine the
output value at the target pixel. The synthesis quantity from
each sample is computed (in each chromatic channel) by
applying the reset and the thresholding mechanism to the
products of the ratios of intensities of subsequent pixels
along the path: the thresholding consists in forcing the ratio
to one when it is within some small threshold from the unit
and the reset consists in forcing the product of the ratios to
one whenever it exceeds one (for a formal account see
Ref. 6).

More formally, consider a “target pixel” τ ∈ I and a dis-
tinct pixel p ∈ I which we call the “initial reference pixel.”
A path γ connecting p to τ defines an (nþ 1) steps-long list
of pixels γt, where t indicates the path-step number

EQ-TARGET;temp:intralink-;sec2.1;63;166γ ≡ ðp ¼ γ0; γ1; : : : ; γt; : : : ; γn ¼ τÞ
and the corresponding list of pixel intensities, with it ¼ iðγtÞ.
Now indicated by rðtÞ, the ratio of the intensities it and it−1
of two consecutive pixels γt and γt−1 along the path, for
t > 0, i.e., rt ≡ it∕it−1. By convention, rð0Þ ≡ 1. If the
pixel at step t is darker than the one at (t − 1), this ratio
is less than 1.

The “threshold mechanism” is introduced by means of a
“threshold filter” θεð:Þ, defined for an argument z ∈ R as

EQ-TARGET;temp:intralink-;e001;326;730θεðzÞ ≡
�
1 if ð1 − εÞ < z < ð1þ εÞ
z otherwise

; (1)

where ε > 0 is a parameter of the model (its purpose is to
represent a level of contrast insensitivity of the HVS). The
threshold function removes smoother intensity changes but
maintains sharper intensity changes, e.g., the edges in the
image.

The “reset mechanism” is introduced through a function
ρðzÞ, which imposes a “cap” level 1

EQ-TARGET;temp:intralink-;e002;326;609ρðzÞ ≡
�
z if s < 1

1 otherwise
: (2)

Over the path, one can define of a “recursive path-
processing function” Ft of the path-ordered intensities,
which, at every step, applies the threshold filter to the current
intensity ratio, computes the new product θεðrtÞ × Ft−1 and
then applies the reset filter to the chain product of ratios; such
a function is defined as follows:

EQ-TARGET;temp:intralink-;e003;326;498Fε
t ¼

�
1 for t ¼ 0

ρ½θεðrtÞ × Fε
t−1� for 1 ≤ t ≤ n

: (3)

Due to the reset mechanism, it is granted that Fε
t ∈ ½0; 1�. The

contribution cðγÞ of a path γpτ of n steps to the output for a
target is defined as cðγÞ ¼ Fε

n. The output for a pixel is com-
puted by averaging this quantity over a large number of ran-
dom walks, starting from a large number of points sampled
all over the image.

Sometimes—since it has been observed3 that the suppres-
sion of gradients has a minor impact on the output from most
natural images—the Brownian MI-retinex model is imple-
mented without thresholding (we called this variant reset-
only Brownian MI-retinex). In that case, the computation
of the synthesis quantity out of a path can be shown to reduce
to the computation of the maximum intensity of the set of
pixels visited by the path.3 This quantity is averaged over all
the paths and used as a new reference white level for the tar-
get, with respect to which the input is rescaled. Hereafter, we
refer to the reset-only version of Brownian MI-retinex.

2.1.1 Reset-only Brownian MI-retinex

It is worth pointing out that applying the reset mechanism is
equivalent to enforcing a memory-loss to the path every time
it finds a new maximum: in the reset-only version, the value
contributed to the target for the computation of the reference
white level equals the intensity of the last reset point. Indeed,
the reset-only (i.e., ε ¼ 0) recursive function Ft ≡ Fε¼0

t , for
t > 0, takes the form

EQ-TARGET;temp:intralink-;e004;326;162Ft ¼ ρðrt × Ft−1Þ: (4)

Notice that in a path γpτ along which no reset takes place,
that expression implies a contribution
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EQ-TARGET;temp:intralink-;e005;63;752

cðγpτÞ ¼ Fn ¼ rn × Fn−1

¼
Yn
t¼1

rt ¼
Yn
t¼1

it
it−1

¼ in
i0

¼ iτ
ip

(5)

Furthermore, notice that in a segment of a path between
the steps tP > 0 and tQ along which no reset takes place, the
contribution cumulated is

EQ-TARGET;temp:intralink-;sec2.1.1;63;663

Yn
t¼1

rt ¼
YtQ

t¼tPþ1

it
it−1

¼ itQ
itP

:

In other words, in absence of reset, the contribution is always
the ratio between the first and the last intensity, which is
always less than or equal to 1:;for the reset to be trig-
gered—and the contribution to be reset to one—the ratio has
to become greater than 1, which means that itP is no longer
the maximum of the segment, but a new maximum has been
found. Hence, in the reset-only version of retinex, the reset
point is the point of the discovery of a new maximum by the
path.

Let us consider a path with at least a reset, in a path γ from
p to τ, along which the last reset takes place at step t ¼ R, the
above results imply a contribution

EQ-TARGET;temp:intralink-;e006;63;479cðγpτÞ ¼ 1 ×
Yn

t¼Rþ1

rt ¼
Yn

t¼Rþ1

it
it−1

¼ in
iR

¼ iτ
iR

: (6)

If one thinks of the path without reset of Eq. (5) as of a
path where the reset has been forced at the zeroth step, then
the output for pixel τ, computed over a collection of N ran-
dom paths ending at τ can be written as

EQ-TARGET;temp:intralink-;e007;63;386oðτÞ ≡ 1

N

X
γ

cðγÞ ¼ 1

N

X
γ

iτ
iR

; (7)

EQ-TARGET;temp:intralink-;e008;63;340 ¼ iτ

�
1

N

X
γ

1

iR

�
; (8)

where iR is the intensity of the latest reset point of the path, i.
e., the latest intensity maximum, i.e., the absolute path inten-
sity maximum. In short, the output is computed by multiply-
ing the input for the harmonic average of the path intensity
maxima. That harmonic average takes the role of reciprocal
of the white reference level wτ for the target.

Overall, the reset-only Brownian MI-retinex algorithm
works as follows:

1. Every pixel of the image is taken in turn as the target
pixel. The image is scanned systematically and every
pixel τ of the image becomes, at a given time, a target.

2. Given the target pixel τ, one chooses at random (usu-
ally uniformly at random) a starting point p (the initial
reference pixel) for a path.

3. Given the reference–target pair ðp; τÞ, one chooses at
random, according to a specific sampling procedure, a
path γ ∈ Γpτ, i.e., member of the family of paths con-
necting p to τ. The procedure consists in starting an
MRW from p and stopping the walk the first time it
meets τ.

4. Given the path γ, one gets the list of the “input” inten-
sities it ¼ iðγtÞ for t ∈ f0; 1; : : : ; ng.

5. The contribution to the output by a reference pixel p to
a target pixel τ “through the walk” γ is defined by the
maximum intensity imax

γ ¼ max iðγtÞ
6. The harmonic average of the paths’ intensity maxima

is taken

EQ-TARGET;temp:intralink-;sec2.1.1;326;669

1

wτ
¼

�
1

N

X
γ

1

imax
γ

�
:

7. The output is computed as oMIRretinex
τ ¼ iτ∕wτ.

2.2 ReMark
To provide a population-based translation of the reset-only
Brownian MI-retinex process, one has to weight the intensity
of each pixel by the probability that it becomes the maximum
of a reference-to-target path, then take the result as the white
reference level, to compute the output. In Ref. 6, the com-
putation of the relevant probability is accomplished by mod-
eling the joint process—consisting in MRW over the image
and in the path functional computation—as a suitable
Markov chain.

That chain allows to consider, at the same time, two levels
of description: the description of the walk displacement in
the 2-D geometric space of the image and the evolution
of the information carried by the walk (the maximum inten-
sity found up to the current step), which is represented as a
third dimension, as illustrated in Fig. 1. Notice that each reset
point of the walk (a point where the path has found a new
maximum of intensity) corresponds to a level jump in the
three-dimensional (3-D) representation: those points are
seen as sinks of the absorbing Markov chain by a level
and as sources by another. Notice also that the target is rep-
resented by different points, the distinct “target representa-
tives” are situated along the same vertical, if the path
meets one of those points, it stops and contributes to the
target the value of the intensity level on which it is walking.

By using the formalism of the absorbing Markov chains,
one can compute for every source point situated on its 2-D
coordinate and at its level of intensity, which is the proba-
bility that a random walk starting from there will be absorbed
in correspondence of a representative of the target. In prac-
tice, one aggregates the sources from the same starting level,
the 3-D absorbing Markov chain provides the fraction of the
population of walkers absorbed at each representative point,
that fraction is the sought weight. Weighting the reciprocal of
the absorption levels by that weight, one obtains the desired
reference white value for the target.

Formally, the Markov chain is defined by the tuple
ðS; T; Pð0ÞÞ, where S is the state space, T is the transition
matrix, and Pð0Þ is the initial probability distribution of the
walkers. As the discrete time steps t proceed, the distribution
of probability mass PðtÞ evolves; asymptotically for t → ∞ in
this Markov chain, on all the states, the mass will be zero,
except for those absorbing states that are associated to the
target τ; since there may be one such state for every level
ik, we indicate the array of the corresponding probabilities
by Pð∞Þ

k ðτÞ, for k ¼ 1; : : : ;M. The quantities Pð∞Þ
k ðτÞ are

the weights used by the algorithm to perform the weighted
harmonic average that yields the whiter reference level wτ.
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The whole absorbing Markov chain, described hereafter, is a
device aimed at computing Pð∞Þ

k ðτÞ.
State space S. The detailed structure of the Markov chain

depends on the input image ðI; iÞ, Consider the codomain of
ið·Þ and let ðikÞMk the list of the distinct values of intensity

present in the image, listed in increasing order (j > k ⇔
ij > ik). One can partition the set I of pixels into subsets
Ik ≡ fx ∈ I∶iðxÞ ¼ ikg, we call levels. The 3-D state
space S consists of M subspaces of dimension 2, as many as
the distinct intensity levels in the image

EQ-TARGET;temp:intralink-;sec2.2;326;697S ≡
[M
k

Sk:

Each subspace Sk is defined as follows:

EQ-TARGET;temp:intralink-;e009;326;637Sk ≡
[k
j¼1

Ij; (9)

i.e., the k’th subspace encompasses all the coordinates of
those pixels having intensity lower or equal to the k’th
level intensity. Each state s ∈ S is characterized by the coor-
dinates: s ∈ ðxu; xv; ikÞ. Thus, the number of states in S is of
the order of N ×M, where N is the number of pixels in the
original image and M is the number of distinct levels.

Transition matrix T. For the, rather lengthy, formal
description of the transition matrix T, we refer to Ref. 6;
for the present discussion, it is sufficient to rely on the illus-
tration provided by Fig. 1 and its caption.

Initial distribution Pð0Þ. The initial probability distribu-
tion depends on the source character of the states in S. A state
ðxu; xv; ijÞ is a source for a subspace Sj if and only if the
corresponding pixel has intensity ij, i.e., x ∈ Ij, it follows
(see also Fig. 1) that in the lowest subspace all the states are
sources, whereas in the other subspaces only a part of the
states are sources. The actual amount of initial probability
“mass” at a source, i.e., Pð0Þ

j ðsÞ ¼ Pð0Þðxu; xv; ijÞ, depends
on the sampling scheme UðxÞ [typically UðxÞ is uniform
over the image]

EQ-TARGET;temp:intralink-;e010;326;365Pð0Þ
j ðsÞ ¼ Pð0Þðxu; xv; ijÞ ¼

�
UðxÞ when iðxÞ ¼ ij
0 otherwise

:

(10)

This initial probability distribution of the population of
random walkers is made to evolve by the transition matrix T.

2.2.1 Algorithm

Given an input image ðI; iÞ, the algorithm has to

1. identify the distinct intensity levels present in the
image and create a list ofM (unique) values of inten-
sity ði1; : : : ; ik; : : : ; iMÞ,

2. identify the set of geometric coordinates correspond-
ing to each intensity value, the k’th intensity level is
the set Ik of geometric positions defined
as Ik ≡ fx ∈ I∶iðxÞ ¼ ikg,

3. for each level, Ik creates a 2-D subspace Sk ¼S
k
j¼1 Ij ⊆ I,

4. for each subspace, Sk determines the absorbing states
(reset points and target representatives) and build the
transition matrix Tk,

5. for each subspace, Sk initializes the statistical weights
Pð0Þ
k on that level’s sources to UðxÞ,

(a)

(b)

Fig. 1 An example random walk from the 2-D space representation
(a) to the 3-D Markov chain representation (b). In the reset-only
Brownian MI-retinex, the 2-D random walk carries the information
about the latest intensity maximum found in exploring the image.
Every time a new maximum is found, the carried information is
updated: the point of the image where the update takes place is called
reset point. This process can be modeled as a 3-D Markov process:
two dimensions are used to model the spatial diffusion, the third
dimension to model the carried value: reset points correspond to
upward transitions in the 3-D representation. Transitions can take
place only isotropically among first neighbors of the same level
and—at reset points—unidirectionally, from a coordinate of a level
to a coordinate of an upper level. The target pixel τ is pictured by
a vertical array of target representatives: each representative absorbs
and stops the walk. The fraction of walkers absorbed by target rep-
resentative located at a level i corresponds to the probability that that
level of intensity contributes to the target.
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6. for each subspace, Sk starting from k ¼ 1 up to
M − 1:

i. pass form the original basis to the canonical basis
of the absorbing Markov Chain (e.g., absorbing
states first),

ii. find the canonical form T̂k of Tk,
iii. extract from T̂k the transient-to-transient matrixQk

and the transient-to-absorbing matrix Pk,
iv. Sk ¼ ðI −QkÞ−1 and find the array m̂k ≡ Pð0Þ

k ·
ðSkPkÞ of the “absorbed mass for states of
level” k,

v. return to the original state basis obtaining, from m̂k,
the corresponding mk,

vi. for the “target absorbing state” set Pð∞Þ
k ðτÞ ¼

mkðxÞ,
vii. transfer the mass absorbed across the “nontarget

absorbing states” up to the level ix, for which the
pixel x is a source

EQ-TARGET;temp:intralink-;sec2.2.1;63;527Pð0Þðxu; xv; ixÞ ¼ Pð0Þðxu; xv; ixÞ þmkðxÞ;

7. for the top subspace, Sk with k ¼ M, attribute all
the mass to the target absorbing state, i.e., set
Pð∞Þ
M ðτÞ ¼ P

x∈IP
ð0Þðxu; xv; iMÞ,

8. the output of the loop (step 6) and the step 7 over
subspaces is the array of the weights Pð∞Þ

k ðτÞ (with
k ¼ 1; : : : ;M),

9. compute the weighted sum of the contributions from
the same level of the target k up to M

EQ-TARGET;temp:intralink-;e011;63;389

1

wðτÞ ¼
XM
j¼k

1

ij
Pð∞Þ
k ðτÞ; (11)

10. get the retinex output as

EQ-TARGET;temp:intralink-;e012;63;324oReMarkðτÞ ¼ iðτÞ
wðτÞ : (12)

The core computation in the algorithm consists in the
inversion of a large matrix, the so-called fundamental matrix
of the absorbing Markov chain, derived from the transition
matrix. Since the matrix is sparse (each state is connected
only to few neighbors), one can manage to process even large
images. Still, the computation of this exact mapping of
Brownian MI-retinex is rather expensive. Nonetheless, if
one aims at producing noise-free filtered images, the algo-
rithm, called ReMark, turns out to be more efficient than
the strictly MRW of Brownian MI-retinex3 (further details
in Ref. 6).

3 Spray Samples and Populations
The RSR4 algorithm builds on the modeling features formal-
ized by the reset-only Brownian MI-retinex and achieves a
higher efficiency, by trying to retain most of the qualitatively
desirable features of the path-based algorithm. Its corre-
sponding population-based version is called RSR-P. The key
observation of RSR is that one could replace the expensive

process of random walk generation by a more efficient
one. The Brownian MI-retinex process is inefficient in
two respects:

• the local search of the target can take a very long
time and

• while intermediate pixels can be visited several times,
they do not bring extra information about the path
maxima.

Provenzi et al.4 propose to substitute each random path by
a set of points—called “spray”—generated so as to loosely
mimic the path sampling, they choose to define the spray as a
set of points sampled from a “radially symmetric” probabil-
ity distribution, called “sampling profile” (formally, the proc-
ess corresponds to an isotropic nonhomogenous Poisson
point-sampling process with intensity decreasing as the dis-
tance from the target increases), see Fig. 2. In RSR, the local-
ity of the filtering is controlled by the speed of decrease of
the sampling profile as a function of the distance from the
target (for a recent variant of RSR, see also Ref. 16).

3.1 Random Spray Retinex
Given the input image, for each chromatic channel and for
each target pixel τ, the algorithm proceeds as follows:

(a)

(b)

Fig. 2 Schematic examples of (a) a sampling profile and of (b) spray.
In (b), the (blue) asterisks represent a bare spray, the (red) bullet in
(0, 0) represents the target position; altogether the markers represent
an augmented spray.
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a. Repeat N times the spray generation and processing
cycle (we use the index s to refer to a spray).

1. Sample n points from a neighborhood Ωτ of the
target according to a radially symmetric sampling
profile (see for example Fig. 2), obtaining an
n-point set.

2. Get the corresponding sample of n “intensities”
ι�s ≡ fikgnk¼1. We refer to this sample as “bare spray.”

3. Add the target τ to the point set and obtain an
(nþ 1)-point intensity set ιs ≡ ffiτg ∪ ι�sg, the
“augmented spray.”

4. Compute the maximum intensity ys of the aug-
mented spray ιs, i.e., ys ≡maxfiτ;maxkfikgnk¼1g.

b. After repeating N times, the steps 1 through 4 of
point a, one obtains a set of maxima fy1; y2; : : : ;
ys; : : : ; yNg. Compute the harmonic average of the
maxima

EQ-TARGET;temp:intralink-;e013;63;537

1

wτ
≡

1

N

XN
s¼1

1

ys
: (13)

The quantity wτ plays the role of “white reference
value” for τ.

c. Set the output value oRSRτ for the target pixel, rescal-
ing the input iτ by the white reference value

EQ-TARGET;temp:intralink-;e014;63;440oRSRτ ¼ iτ
wτ

: (14)

The sampling profile—a radially symmetric spatial prob-
ability density—can be assigned by providing a radial func-
tion, λðrÞ, typically a decreasing function of the argument r,
a standardized distance defined as rðτ; pÞ ¼ dðτ; pÞ∕D, i.e.,
as the ratio between the Euclidean distance dðτ; pÞ of a point
p from the target τ and the diagonal of the image,
D ¼ maxp 0;p 0 0∈Idðp 0; p 0 0Þ.

3.2 Random Spray Retinex-P
Given a target pixel, in principle the algorithm RSR-P com-
putes, for each pixel of the image, the probability that it
becomes the maximum of a spray that includes the target.
In practice, the algorithm proceeds by grouping first the pix-
els according to their intensity levels, then by computing the
intensity distribution of the bare spray maxima and finally
the distribution of the augmented spray maxima. For conven-
ience, the computation passes through the cumulatives of the
distributions. The detailed motivations of the steps of this
procedure can be found in Ref. 7.

A key element of the computation is the probability of
drawing a point of the sample from a specific level. This
can be obtained as follows. Given a sampling profile in
terms of λðrÞ and a target τ, the probability that a specific
pixel p is drawn at random can be computed through unnor-
malized weight ΛτðpÞ of p∶ΛτðpÞ ¼ λ½rðτ; pÞ�∕2πrðτ; pÞ;
the normalization value is Λtot

τ ¼ P
pΛτðpÞ and the proba-

bility PðpÞ of a pixel p is PðpÞ ¼ ΛτðpÞ∕Λtot
τ . The proba-

bility of an intensity level i can be obtained as follows:
the unnormalized weights ΛτðpÞ can be cumulated into a

histogram, where each intensity level corresponds to a
channel; the total unnormalized weight of the intensity i is
then

EQ-TARGET;temp:intralink-;e015;326;719hτðiÞ ≡
X

fp∈f1;: : : ;npixgjip¼ig
ΛðpÞ: (15)

Normalization yields the sought probability distribution

EQ-TARGET;temp:intralink-;e016;326;663fτðiÞ ¼ hτðiÞ∕
X
j

hτðjÞ: (16)

3.2.1 Algorithm

For each individual target pixel τ, the computation has to
undergo the following phases, passing through the compu-
tation, for each level i, of the probability βτðiÞ that the
level is the maximum of an n-point spray, then of the prob-
ability ατðiÞ that the level is the maximum of an augmented
spray centered in τ.

1. Computation of the reference pixels’ weight ΛτðpÞ
and histogram of the intensities hτ.

Let D be the size of the image diagonal. Set
hτðiÞ ¼ 0 ∀ i, then for each pixel p ∈ I:

• compute its Euclidean distance dðτ; pÞ from the
target,

• compute the standardized distance rðτ; pÞ ¼
dðτ; pÞ∕D,

• set ΛτðpÞ ¼ λ½rðτ; pÞ�∕2πrðτ; pÞ,
• set hτði ¼ ipÞ ¼ hτði ¼ ipÞ þ ΛτðpÞ.

2. Computation of distribution fτðiÞ and cumulative
FτðiÞ:
• compute Hτ ≡

P
ihðiÞ,

• ∀ i compute fτðiÞ ≡ hτðiÞ∕Hτ,
• compute the cumulative FτðiÞ of fτðiÞ.

3. Computation of the bare spray maxima distribution
βτðiÞ and cumulative BτðiÞ
• Compute the cumulative as BðiÞ ¼ ½FðiÞ�n.
• Compute the distribution for each intensity i > iτ

as

EQ-TARGET;temp:intralink-;e017;326;246βτðiÞ ¼ βτðilÞ ¼ ½FτðilÞ�n − ½Fτðil−1Þ�n: (17)

4. Compute the target weight as ατ ¼ BðiτÞ ¼ ½FðiτÞ�n.
5. Compute 1∕wτ as

EQ-TARGET;temp:intralink-;e018;326;178

1

wτ
¼ 1

iτ
ατ þ

X
i>iτ

1

i
βτðiÞ: (18)

6. Compute the output value oRSR-Pτ for the target pixel
as

EQ-TARGET;temp:intralink-;e019;326;110oRSR-Pτ ¼ iτ
wτ

: (19)
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4 Comparison of the Two Models Brownian MI-
retinex and Random Spray Retinex

4.1 Maxima of Paths and of Sprays
Consider an input image consisting in three concentric
regions C, A, and B each with a distinct intensity levels
iA ¼ a, iB ¼ b, and iC ¼ c as in Fig. 3. Let the level inten-
sities be ordered as follows: 0 < c < b < a. Notice that in the
input image, the lowest intensity—i.e., c—is associated to
the central disk C, the highest—i.e., a—is associated to the
middle ring A, whereas the intermediate—i.e., b—is associ-
ated to the outer region B. Let us indicate by jAj, jBj, and jCj,
respectively, the areas of regions A, B, and C, normalized to
1, i.e., such that jAj þ jBj þ jCj ¼ 1. We consider the prob-
lem of computing the intensity of the target pixel τ situated at
the center of the image, by means of RSR (through RSR-P)
and Brownian MI-retinex (through ReMark). We will show
that not only the two outputs oMIRetinexðτÞ and oRSRðτÞ are, in
general, different, but also that they depend in a qualitatively
different way from the parameters of the problem. The most
remarkable difference is that in MI-retinex the output is in-
dependent of the actual value of the level b (provided that, as
stipulated, a > b).

4.1.1 Brownian MI-retinex output

Indeed, in Brownian MI-retinex, no information about the
level of B can reach τ: every path starting from a pixel of
B undergoes a reset in region A before meeting τ. Thus,
any path from B will eventually carry the value a as a
path maximum. Taking into account, the fact that any
path starting from A will carry to τ the value a because
this is the global maximum of the image (paths from A
will undergo no reset), one has from Eqs. (11) and (12)
EQ-TARGET;temp:intralink-;sec4.1.1;63;389

oMIRetinexðτÞ ¼ iτ
1

wτ
¼ c

�
jAj 1

a
þ jBj 1

a

þ jCj
�
½1 −QðτÞ� 1

a
þQðτÞ 1

c

��

In the term with coefficient jCj, which represents the contri-
bution by the region C, the factorQðτÞ represents the ratio of

the paths starting from a point within C that meet τ before
meeting A (in the former case, it contributes 1∕c to the target,
in the latter, it contributes 1∕a). We postpone the computa-
tion of QðτÞ, the salient feature of the above expression is
that the value b “does not appear in the computation.”

4.1.2 Random spray retinex output

In RSR, the probability of a contribution from B depends on
the nonzero probability that in a spray of n points (centered
on the target τ) no point touches the region A and at least one
point touches region B, thus level b can contribute to the
output.

Let us compute the probabilistic weights αðaÞ, αðbÞ, and
αðcÞ (from where we dropped, for the sake of clarity, the
index of the target) by which the regions A, B, and C con-
tribute the quantities 1∕a, 1∕b, and 1∕c to the factor 1∕wτ.

Notice first that the bare spray and augmented spray have
the same maximum, since the target is at the absolute mini-
mum of the image, thus αðiÞ ¼ βðiÞ ∀ i.

Consider, furthermore, the probabilities fðaÞ, fðbÞ, and
fðcÞ, that an individual point drawn at random using the
radial sampling profile λ, falls in the areas A, B, and C,
respectively. Recall the cumulative function FðcÞ ¼ fðcÞ,
FðbÞ ¼ fðbÞ þ fðcÞ, and FðaÞ ¼ fðaÞ þ fðbÞ þ fðcÞ ¼ 1.
Recall Eq. (17) for the probability of a maximum at an inten-
sity i for a set of n points drawn independently from f. The
sought probabilistic weights are

EQ-TARGET;temp:intralink-;e020;326;450αðaÞ ¼ βðaÞ ¼ FnðaÞ − FnðbÞ ¼ 1 − ½1 − fðaÞ�n (20)

EQ-TARGET;temp:intralink-;e021;326;420αðbÞ ¼ βðbÞ ¼ FnðbÞ−FnðcÞ ¼ ½1− fðaÞ�n − fnðcÞ (21)

EQ-TARGET;temp:intralink-;e022;326;395αðcÞ ¼ βðcÞ ¼ FnðcÞ ¼ fnðcÞ: (22)

And finally

EQ-TARGET;temp:intralink-;sec4.1.2;326;358oRSRðτÞ ¼ iτ
1

wτ
¼ c

�
1

a
βðaÞ þ 1

b
βðbÞ þ 1

c
βðcÞ

�
:

4.1.3 Comparisons

We summarize the most relevant differences between
Brownian MI-retinex and RSR, emerging from the compari-
son of the above analytic results.

Segregation. The most relevant observation about the
above expression for oRSRðτÞ is that b does participate into
the determination of oRSRðτÞ, whereas it does not have any
explicit role in oMIRetinexðτÞ, that can be rewritten as
EQ-TARGET;temp:intralink-;sec4.1.3.1;326;215

oMIRetinexðτÞ ¼ c

�
1

a
fjAj þ jBj þ jCj½1 −QðτÞ�g þ 1

c
QðτÞ

�
:

In short, oMIRetinexðτÞ is independent of b, oRSRðτÞ depends
on b. This finding can be easily generalized, one could easily
demonstrate that when an image region is surrounded by a
topologically closed stretch A, of chromatic intensity a,
according to Brownian MI-retinex, it becomes insensitive
to any pixel of the image with intensity less than a.

Independence of Brownian MI-retinex from the geometry
of the top level. Let rC be the radius of the inner disk
(region C) and let rA be the radius of the outer border of

Fig. 3 A test input image for illustrating the qualitative difference
between the Brownian MI-retinex and the RSR filtering (see text).
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region A. Let us use a typical RSR sampling profile λðrÞ ∝
1∕ð1þ rÞη with η ≥ 1. In RSR, the statistical weight
associated to the area A, from Eq. (20), is βðaÞ ¼
1 − ½1 − fðaÞ�n, where the probability f is

EQ-TARGET;temp:intralink-;sec4.1.3.2;63;708fðaÞ ∝
Z

rA

rC

2πr
ð1þ rÞη dr:

It is clear that, in RSR, the direct contribution of the ring
A to the weight of 1∕a, i.e., βðaÞ, depends on rA and rB.

Let two distinct instances of the test image—whose struc-
ture is illustrated Fig. 3—be given, differing from one
another in the thickness of the ring A (of top intensity a):

• Let the first image have a ring A thicker and closer to
the center, enclosed by the circles of radii r 0C and r 0A.

• Let the second image have a ring A thinner and farther
from the center, enclosed by the circles of radii r 0 0C and
r 0 0A , e.g., with r 0 0C > r 0A

• Let, however, the area of the two rings be the same, i.e.,

EQ-TARGET;temp:intralink-;sec4.1.3.2;63;528πr 02A − πr 02c ¼ πr 0 02A − πr 0 02c ¼ jAj:

In BrownianMI-retinex, the direct contribution of the ring
A to the weight of 1∕a equals jAj, thus it is equal in the two
images and independent of the geometry of the area A (by
referring to the direct contribution, we mean that we are not
considering the contribution to the term 1∕a coming from B
and the fact that A precludes to the blocks from B the access
to τ). This contrasts with typical assumptions about the
dependence of the sensation on the geometry of the brightest
patches.17

On the contrary, in RSR, the two different rings will deter-
mine two distinct contributions from A: it is clear from the
above expression that fðaÞ depends not directly on the area
of the ring region A, but also on its geometry. It is worth
pointing out, in passing, that still, in RSR, the geometry
of the brightest patches is accounted for only in terms of dis-
tribution of the radial distances w.r.t. the target. More sophis-
ticated approaches can be devised to take into account more
complex dependencies,17–19 better accounting for the exper-
imental findings.

In short, Brownian MI-retinex and RSR treat differently
the set of pixels with intensity corresponding to the absolute
maximum; in Brownian MI-retinex, only its total surface
counts, whereas in RSR counts also its geometry.

5 Conclusions
Sampling-based retinex models and population-based reti-
nex models are complementary to one another. Original
insights into the modeled phenomenon can be provided
by each type of model individually and by their mutual com-
parison. In this paper, we compared the population-based
models of Brownian MI-retinex and RSR by deriving the
two corresponding analytic expressions of the output based
on a specific test image. The two expressions show that the
two outputs depend in a qualitatively different way from the
features of the image. With a specific test image, we high-
lighted two phenomena built-in into Brownian MI-retinex,
the segregation of regions surrounded by high chromatic

intensity closed areas, and the insensitivity to the geometry
of the top chromatic intensity level. Although RSR was born
as an efficient approximation of Brownian MI-retinex, the
two mentioned features highlight that the two algorithms
behave in qualitatively different ways. Nonetheless, the men-
tioned effects can go unnoticed, when processing natural
images.
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