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Abstract. Several different implementations of the Retinex model have been derived from the original Land and
McCann’s paper. This paper aims at presenting the Milano-Retinex family, a collection of slightly different
Retinex implementations, developed by the Department of Computer Science of Universitá degli Studi di
Milano. One important difference is in their goals: while the original Retinex aims at modeling vision, the
Milano-Retinex family is mainly applied as an image enhancer, mimicking some mechanisms of the human
vision system. © 2017 SPIE and IS&T [DOI: 10.1117/1.JEI.26.3.031207]
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1 Introduction
Edwin Land’s Retinex theory is a model of human color
vision.1 Retinex theory is reviewed in a paper in a “Retinex
at 50” special section called “Retinex at 50: color theory and
spatial algorithms.”2 This model uses three independent
channels (each one related to a different type of cone) to cal-
culate color sensations. Land and McCann3 used a model of
vision as the core of image processing algorithms that mimic
human vision.

As an example, Land and McCann modeled lightness sen-
sations in Land’s “black and white Mondrian” experiment
(Fig. 1).3 Here, an achromatic Mondrian is placed under a
gradient of illumination, darker at the top and more intense
at the bottom. The gradient of illumination was carefully
placed to control the light coming from the two different
papers at the tips of the two arrows (Fig. 1). The upper
paper patch had a high reflectance in dim illumination,
while the dark reflectance paper in the bottom had higher
illumination. The gradient in illumination was smooth
and was difficult to notice. The change in illumination
was as large as the change in reflectances. The top high-
reflectance paper in dim light had the same luminance as
the low-reflectance paper in bright light.

Land’s experiment asked observers about the appearance
of the two identical stimuli of Fig. 1. The observers reported
the sensation near-white at the top and the sensation near-
black at the bottom.

The challenge was to describe a computational algorithm
that could predict the appearance of all areas in the black and
white Mondrian, computing different observer responses to
identical input stimuli.

Figure 2 is an example of how spatial content can influ-
ence the appearance. When the change in luminance is a gra-
dient, then the change in appearance, associated with digits
160 and 200, is small (Fig. 2, top right), but just noticeable.
When the change in luminance is an edge, then the same
change luminance (from 160 to 200) is large (Fig. 2, bottom
right).

2 Retinex Model
Retinex has been designed as a model for predicting the
above described differences in local sensation. It is a model
of human vision: the idea was to make better reproductions
by incorporating an algorithm that mimics vision. Land,
McCann, and colleagues did extensive measurements of
appearance in a wide variety of scenes where appearances
did not correlate with luminances.5

The idea at the base of Retinex, a contraction of the words
retina and cortex, is that these two parts of human body,
which compose our vision system, realize a robust adjust-
ment to compensate for the high photometric and colorimet-
ric variability of the world around us. This is realized by
spatial comparisons within the various areas of the visual
input. Such comparisons are modeled as a series of ratios
and multiplications among near and far areas. They write,
“This multiplication can be done in a variety of ways.
The simplest is to generate a series of paths [. . . ] The oper-
ation along each path takes the ratio of two adjacent points
and multiplies it by the ratio of the next pair of points along
the path.”6 An example of Retinex computation relative to
the target presented in the introduction is shown in Fig. 3.
A Retinex elementary piece of computation is a ratio
among two adjacent pixels, e.g., along the path shown in
Fig. 3. This ratio propagates through the image with a sub-
sequent series of multiplications. These operations are called
“ratio chain.” Even if this is not the case of the example
shown in Fig. 3, according to the values found along the
path, the ratio chain can overtake the unitary value. In
this case, a reset to one is applied and the chain restarts
from this value. This happens when an area lighter than
the starting one is encountered. When we include this mecha-
nism we refer it as “ratio-product-reset.” Reset is a funda-
mental operation that characterizes Retinex.

In some Retinex works, a threshold mechanism along the
ratio chain is discussed and used: if the ratio does not differ
from the unit more than a certain threshold, the ratio is set
equal to 1. After many tests, threshold has been proved not to
be essential; thus, we only mention it and suggest that read-
ers refer to Ref. 4 (p. 298–299).
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Retinex always underlined its experimental origin and
its clear goal of modeling vision: “We are not implying
that the visual system computes its lightness response in
the manner of a digital computer, i.e., one ratio and product
at a time. The model described in this paper is one of the
many embodiments using the ratio-multiplication process.

It is the description of a digital two-dimensional computation
for testing the processing principles.”6 There are many var-
iants derived from the Retinex model by Land and McCann.
A general overview is given in the work by McCann,7 at the
Retinex at 50 workshop.

Since the main goal of Retinex is to model human vision,
they paid particular attention to the calibration of both the
input and the output values. This is a mandatory procedure,
described in a McCann et al. paper6 and Ref. 4 (p. 70–71).
However, since the Retinex model was the first attempt to
model human vision computationally, it had a noticeable suc-
cess; as a consequence of this success, its goal extended from
modeling vision to enhancing images, such as the Milano-
Retinex family, presented here [for a more complete descrip-
tion, see Ref. 4 (p. 324–328)]. Moving from modeling vision
to image enhancement results in different needs about input
and output calibration and different measures of success.4,8

3 Milano-Retinex
At the base of Retinex computation is the idea, presented
above, of performing spatial comparisons among areas of
the visual input (image) and computing a chain of ratio-prod-
uct-reset. The ratio-product reset mechanism is also the
common core of the Milano-Retinex family. Although the
basic computation at each elementary iteration is the same,
the way it is applied through the image generates differences.

3.1 Milano-Retinex Origin and Its Differences
The Milano-Retinex family started in 19939 with the publi-
cation of the graduation thesis of one of the authors. The
main difference between this version and the original
Retinex is presented in Fig. 4 on an example path: the

Fig. 1 Black and white Mondrian (Ref. 4 p. 71).

Fig. 2 Sensation difference between a gradient and an edge with the
same values (Ref. 4, p. 298).

Fig. 3 Retinex processing over the black and white Mondrian.
(Refs. 4, 5, p. 295).
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Fig. 4 The difference between (a) the original Retinex and (b) Milano
Retinex.
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original Retinex with the red arrows and Milano-Retinex
with the green arrows.

Each arrow indicates a ratio-product-reset-average proc-
ess. In the original Retinex, it takes place at each step
along the path and it is used to change the output values rel-
ative to all the pixels traveled by the path. The calculated
value of the average is stored at the traveled pixel, to be
used the next time that a path crosses that pixel. The reset
process occurs many times along the path, particularly at
the beginning of the calculation. Every ratio-product-reset
contributes to the output [Fig. 4(a)].

The Milano-Retinex does not change the pixels traveled
by the path. It stores the ratio-product information along the
entire path from a starting pixel to the pixel of interest at the
end of the path and changes only this last pixel value with the
result of the chain of ratios-product-reset. The final value of
the target pixel is the average of all the ratio-chains computed
along every other path ending in the pixel of interest.

The original Retinex and Milano-Retinex share the same
core, but the different way of implementing it results in
important differences: the sampling of the input values
(image), the normalization due to reset operation, and the
average to form the final output (Ref. 4, p. 293–337). The
ratio-product-reset is performed at each step, as well as
the original Retinex, but the fact that the computed value
is used to change only the last pixel gives the paths a different
meaning. Now the output [green arrow in Fig. 4(b)] is the
ratio of the pixel of interest to the pixel with maximum
value found along the path.

Milano-Retinex clearly shows its redundancy, making the
entire path computation only for a single contribution to
the final pixel. The advantage of this redundancy is that it
is easier to formalize the implementation of the basic mecha-
nism along the path.10 On a more general level, path role
can be now seen as the search for the local channel maxima,
necessary for the normalization of the last pixel in the path.
This search needs to be nonexhaustive, otherwise Milano-
Retinex ends up as a standard global Von Kries channel
normalization.

3.2 Milano-Retinex Formalization
Marini and Rizzi11 described the Retinex model through the
following equations

EQ-TARGET;temp:intralink-;e001;63;276LðiÞ ¼ 1

N

X
k

li;jk ; (1)

where

EQ-TARGET;temp:intralink-;e002;63;215li;jk ¼
X
x∈path

δ log

���� Ixþ1

Ix

����; (2)

and

EQ-TARGET;temp:intralink-;e003;63;160δ ¼
(
1 if log

��� Ixþ1

Ix

��� > Threshold

0 otherwise
: (3)

LðiÞ is the computed lightness of a pixel i in a given chro-
matic channel. i is the end-point of a set paths, while jk is the
starting point of a generic k’th path. Ix is the input image
value at the pixel x, while Ixþ1 is at the subsequent pixel

xþ 1 along the path. δ represents the threshold mechanism
that can be skipped in the implementation (see above com-
ments). In this early Milano Retinex paper,11 the reset oper-
ation is not included in the equation but is only presented in
the implementation description. Provenzi et al.10 presented a
mathematical description of Milano Retinex, now with the
reset mechanism included in the equations.

EQ-TARGET;temp:intralink-;e004;326;675LðiÞ ¼ 1

N

XN
k¼1

Ynk−1
tk¼1

δkðRtkÞ: (4)

δk∶Rþ → Rþ, k ¼ 1; : : : ; N are functions defined by

EQ-TARGET;temp:intralink-;e005;326;612δkðR0Þ ¼ 1 (5)

and for tk ¼ 1; : : : ; nk − 1

EQ-TARGET;temp:intralink-;e006;326;571

δkðRtkÞ ¼

8>>>>>>><
>>>>>>>:

Rtk if 0 < Rtk ≤ 1 − ϵ

1 if 1 − ϵ < Rtk < 1þ ϵ

Rtk if 1þ ϵ ≤ Rtk ≤
1þϵQtk−1

mk¼0
δkðRmk

Þ
1Qtk−1

mk¼0
δkðRmk

Þ if Rtk >
1þϵQtk−1

mk¼0
δkðRmk

Þ

:

(6)

This formalization describes the Milano-Retinex ratio-
product-reset chain computation but not the way that it is
spatially performed using path or alternative methods.

3.3 Milano-Retinex Family
Milano Retinex evolved mainly with changes in the image
sampling method. This originated a family of algorithms
grouped together, as shown in Fig. 5. Here we want to
present a descriptive overview of its members with their
main differences to have a bird’s-eye view of the genesis
and approaches beyond each one of them. For more technical
details, we ask readers to refer to the cited works.

For the sake of completeness, Fig. 5 also contains ACE
for automatic color equalization,12–15 an algorithm that does
not derive directly from Retinex but is an indirect product of
the research on it. ACE substituted the random path search
with a complete scan of all the pixels in the image, realizing a
local behavior with a distance function and the dependency
from image content with a contrast amplification function.
The main problem of considering all the pixels in the com-
putation of each single pixel is the overall computational
cost. To speed-up the computation time, some accelerated
implementations have been devised,16–18 some together
with a variational version.19,20

In the following, a brief description of the members of the
Milano-Retinex family is presented.

To have a visual idea of Milano Retinex filtering, a couple
of examples are shown in Fig. 6.

3.4 Brownian Path
Since the very beginning, the study of Retinex at the
University of Milano has been centered on the characteriza-
tion of the image exploration, initially studying pathwise
methods. Initial tests using very simple linear paths showed
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Fig. 5 The Milano Retinex family.

Fig. 6 Two examples of Milano-Retinex filtering. (a) original image, (b) the result of the filtering with
STRESS, (c) original image, and (d) result of filtering with RSR.
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that the characteristics of the path sampling could heavily
influence Retinex output.

These preliminary tests lead to the first algorithm of the
family, named Brownian Retinex,21 where Brownian paths
are generated with the midpoint displacement technique.
The choice of Brownian paths was made to avoid directional
bias that generates unwanted shadows and, at the same time,
to realize an easy way to sample over a wide area.

To save on computational time, an LUT and a multilevel
version were devised in 2002.22 Initial interest was on color
constancy23,24 and color normalization.25

Since this is a Milano Retinex, which updates only the
final pixel of the path, Brownian paths do not have to sample
the whole image, thus avoiding a global normalization. On
the contrary, Montagna and Finlayson realized a way to gen-
erate Brownian paths with the constraint of exploring all the
pixels in the image, in this case, applied on the original
Retinex.26

3.5 Spray Sampling
A noticeable quantum leap in computational costs arrived in
2007 with random spray Retinex (RSR).27 Since in Milano
Retinex only the pixel with maximum value found along the
path counts, RSR substituted the Brownian paths with a ran-
dom sampling made with a spray of points around the pixel
to be computed. This simplification clearly shows the role of
sampling and originated other probabilistic formulations (see
Sec. 3.7). The random path exploration aims at finding the
pixel with maximum value for every path that is independent
from the path itself. This is substituted with the maximum
value of pixels in the spray that is used as a local white
to rescale the original pixel value.

Spray points generation uses polar coordinates; since the
angular distribution of points is isotropic, when the radius
increases, the density of pixels decreases.

To lower the noise, RSR uses N sprays; therefore, a final
average between the spray contributions is computed.

We would like to note here that the noise problem has
been addressed in the works of Banić et al.,28,29 who devel-
oped light random spray Retinex (LRSR) in 2013 and smart
light random memory spray Retinex (SLRMSR) in 2015.
LRSR is able to remove the noise from the resulting image,
reducing the high computation cost of RSR. SLRMSR is a
further improvement that uses memory sprays to decrease the
number of per-pixel operations of LRSR to a constant; then
the algorithm reduces the halo effect present in LRSR and
implements a different remapping of image intensities, for
a better result.

From the mix of ACE and RSR originated RACE,30

where the two approaches are mixed due to a spray-based
implementation of ACE.

A variant of RSR is STRESS, spatio-temporal Retinex-
inspired envelope with stochastic sampling.31 The idea of
STRESS is to calculate the local maxima (reference white,
like RSR) and the local minima (reference black) for each
pixel for each chromatic channel and then stretch the
pixel values accordingly.

STRESS is implemented in GIMP (GNU Image
Manipulation Program) from the version 2.8. A variational
version is presented in Ref. 32.

3.6 Image Driven Search
The idea of paths is preserved in termite Retinex (TR).33 In
this implementation, the creation of paths is not completely
random, they are realized by a swarm of agents, called “ter-
mites,” that consider image contrast as a positive variable for
influencing the path generation. Moreover, termites traveling
along a path leave a trace called “poison” to avoid the use of
previsited points in the generation of the next path.

Thus, an artificial termite at the pixel chooses to move to
an adjacent pixel that does not currently belong to its work-
ing memory with a probabilistic method that considers the
amount of poison of the pixels and the bilateral distance
between them, with two parameters weighting the impor-
tance of the poison versus the closeness, which is directly
related to the brightness of the pixel. If all the surrounding
pixels have the same probability, one pixel is drawn ran-
domly with uniform probability. In TR, the memory is the
taboo list of the k’th termite, which contains the coordinates
of the pixels that the termite has already visited. The poison
is implemented as the inverse of pheromone; once a termite
has transited on a pixel, the quantity of the relative poison is
updated. This is the first work that implements a path gen-
eration dependent on the image content. The idea is that
some areas are more relevant than others in the formation
of the final visual sensation. The same approach is exploited
by swRSR and ETR. In swRSR (spatially weighted RSR),34

the spray sampling is weighted by a figure of distance. In
ETR (energy-driven path search for TR),35 the paths are com-
puted as local minima of an energy functional, depending on
the image gradient. In this way, ETR defines the paths
through global mathematical conditions, not by step-by-
step procedures as implemented, for instance, in TR.

3.7 Statistical Models
Approximate probabilistic models of spray sampling based
on quantiles are the base of QBRIX,36 with its global and
local versions, and probabilistic models of sampling realized
with random walks represented as reward Markov process
are the base of remark.37

The key idea underlying QBRIX is that the sampling pro-
cedure used by RSR can be replaced by an equivalent one.
The value computed by the RSR procedure corresponds, in
statistical terms, to an estimator for the mean of the sampling
maximum distribution (SMD); QBRIX consists of an alter-
native procedure that directly computes the SMD mean,
based on the high percentile values of the pixels population.
From a series of tests on a wider set of images, the authors of
QBRIX found that a quantile between 95 and 99 leads to the
most satisfactory results.

To implement a local behavior, we devised an alternative
algorithm, named local QBRIX. Local QBRIX aims at using
the same quantile approach as QBRIX, computing the local-
ity by means of a distance-based weighting approach. The
proposed strategy consists of computing a pixel-based refer-
ence white that changes according to the relative positions
and intensities of all the pixels in the image, in relation to
the target pixel.

Remark is the formalization of Retinex with absorbing
Markov chains.37 It passes from the path-sampling basic
algorithm to the probabilistic representation of the corre-
sponding diffusion process, solving the problem of sampling
noise. Remark starts from the corresponding Retinex analytic
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model, accounting for the combined effects of path-function,
path sampling process, and starting-point sampling process.
Then, implementing a numerical solution, it computes the
output brightness of a pixel based on the solution of a simple
sparse linear system. The output of the random walk sam-
pling algorithm and the Markov chain-based algorithm
can be controlled by few model parameters.

Finally, RSR-P and STRESS-P38 are two probabilistic for-
mulation of RSR and STRESS, respectively. In RSR-P, the
contribution of a spray to a target is computed by independ-
ently sampling n points and recording the reciprocal of the
maximum. The quantity thus defined changes from spray to
spray. Averaging N of such reciprocals is equivalent to com-
puting an estimate of the sampling mean of such a random
variable. In STRESS-P, a similar consideration holds. Both
RSR-P and STRESS-P use samples from the population of
sprays to estimate an average quantity; however, the whole
population of sprays is available since it can be derived from
the sampling function and can be computed directly, in a
deterministic way. In the case of RSR-P, the sampling dis-
tribution of the maxima can be obtained by computing the
probability that a given pixel becomes the maximum of a
spray; in the case of STRESS-P, the relevant sampling dis-
tribution can be obtained by computing the probability that
a pair of pixels form a minimum-maximum-pair of a spray
and then summing over all the pairs yielding the same
contribution.

4 Conclusions
This paper presents a brief overview about the Milano
Retinex family. they all belong to the spatial color algorithms
family8 and go from the initial Brownian version to the more
recent probabilistic formulations. Here, we introduce the
differences in comparison to the original Retinex formulation
and the rationale between the many Milano-Retinex variants.
The main difference regards their goals: while the original
Retinex model aims at predicting color sensation, the
Milano-Retinex family is mainly applied to image enhance-
ment, mimicking some mechanisms of the human vision sys-
tem. They share the same basic mechanisms, but their
different implementations lead to important differences:
the way they sample the image, the effects of the reset
mechanism, and the final averaging process for calculating
the new pixel value.
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