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Abstract. Nonuniform illumination images suffer from degenerated details because of underexposure, overex-
posure, or a combination of both. To improve the visual quality of color images, underexposure regions should be
lightened, whereas overexposure areas need to be dimmed properly. However, discriminating between under-
exposure and overexposure is troublesome. Compared with traditional methods that produce a fixed demarca-
tion value throughout an image, the proposed demarcation changes as local luminance varies, thus is suitable
for manipulating complicated illumination. Based on this locally adaptive demarcation, a nonlinear modification is
applied to image luminance. Further, with the modified luminance, we propose a nonlinear process to reconstruct
a luminance-enhanced color image. For every pixel, this nonlinear process takes the luminance change and the
original chromaticity into account, thus trying to avoid exaggerated colors at dark areas and depressed colors at
highly bright regions. Finally, to improve image contrast, a local and image-dependent exponential technique is
designed and applied to the RGB channels of the obtained color image. Experimental results demonstrate that
our method produces good contrast and vivid color for both nonuniform illumination images and images with
normal illumination. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution
or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI
.26.5.053012]
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1 Introduction
In real life, the number of light sources is limited and various
objects can block out lights, thus light is usually accompa-
nied by shadows. Therefore, the illumination is not uniform
in the field of vision. A scene under nonuniform illumination
tends to appear extremely bright in some regions, while some
other regions succumb to the dark. However, a color image
produced by electronic equipment carries not only the inher-
ent reflectance characteristics of the scene but also the lights
irradiating on it. Consequently, the image of the scene that is
under nonuniform illumination usually suffers from under-
exposure and overexposure. To improve the degenerated
details caused by nonuniform illumination, many image-
enhancement algorithms have been published. These algo-
rithms can be roughly categorized as algorithms based on
the retinex theory,1 methods that apply nonlinear modifica-
tion to image luminance (note that, in this paper, “illumina-
tion” refers to a triplet image with the same size of the image
that is to be processed, and represents the brightness and
chrominance characteristics of the light condition of the
scene; “luminance” is a gray image that denotes the bright-
ness of the illumination; “intensity” means the pixel value in
a single channel of RGB space), and algorithms that are
devised in some transformed space.

In the first category, retinex theory was proposed to model
the visual perception mechanism of HSV. In general, a basic
idea is that the perceived brightness of an object in every

RGB channel is determined by the relative brightness
between it and its neighbors. Accordingly, there are two criti-
cal factors during the implementation of retinex theory: how
the relative brightness is computed using spatial compari-
sons, and how the neighbors are selected and combined.
In the literature, many variants of retinex have been pub-
lished. The pathwise retinex1 was first proposed, where
every pixel value is reset based on a set of random piecewise
linear paths. To mimic the visual surround of HVS, a large
number of paths are needed around every pixel, thus leading
to high computational cost.2 To cope with this, Marini
and Rizzi3 replaced the random paths by Brownian paths,
and Funt et al.4 implemented the random pathwise retinex
on a set of subsampled images. Further, motivated by the
two-dimensional (2-D) characteristic of visual surround,
Provenzi et al.5 used a set of 2-D random sprays to replace
one-dimensional paths. For a target pixel and a random spray
around it, the ratio of the target pixel to the maximum value
in the spray is computed. And finally, the target pixel is
renewed by the average of these ratios. However, this ran-
dom-spray retinex algorithm5 (RSR) is prone to induce white
noises at large uniform regions. In addition, the enhancing
effect of RSR is not obvious when the image contains
highly-bright pixels. These pathwise retinex1–4 and RSR5

algorithms select a set of neighbors and use the local maxi-
mum value as the referenced white points. The length of the
paths and diameter of the sprays can significantly influence
the results, and the optimal settings of these crucial param-
eters vary among different images. Recently, to reduce the
white noises induced by RSR, Gianini et al.6 proposed a
quantile-based implementation of retinex, where a weighted
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version of histogram was built at every target pixel and a
quantile was determined to be a referenced white point.
However, small quantiles caused the result image to be whit-
ish, while large quantile produces inadequate enhancement
for dark areas. In addition, Land7 proposed the center/
sound retinex, where a target pixel (center) is renewed by
its ratio to the weighted average of some neighbors (sur-
round). Later, Jobson et al.8 refreshed the center/surround
retinex with a Gaussian filter. The spatial spread scale of
the Gaussian filter should be set carefully: small scale pro-
duces good details at the cost of tonal information, and large
scale is not effective for contrast enhancement. To resolve
this problem, Jobson et al.9,10 proposed the multiscale retinex
(MSR) algorithm by averaging the output of three single-
scale retinex algorithms. However, because of the isotropic
characteristic of Gaussian kernel, center/surround retinex
algorithms tend to induce halo artifacts at high-con-
trast edges.

In retinex algorithms, spatial comparisons between a tar-
get pixel and its neighbors are implemented via division.
Different from retinex, in their work of automatic color
equalization (ACE), Rizzi et al.11 employed the weighted
average of the differences between the target pixel and neigh-
bors to renew every target pixel. Similar to the threshold
mechanism in pathwise retinex,1 the “difference” was trans-
formed nonlinearly into a fixed range. In every RGB chan-
nel, these differences can be positive or negative, and thus
local contrast is enhanced adaptively. ACE performs well
on underexposure and overexposure, but is prone to corrupt
large uniform areas and wash out colors. Further, to combin-
ing the advantages of ACE and RSR, Provenzi et al.12 pro-
posed a local fusion of them, called RACE algorithm, via the
2-D random spray that was first utilized in RSR.

In the second category, to enhance details for dark and
highly-bright regions, image luminance is estimated first
and then modified nonlinearly. In general, image luminance
can be roughly estimated based on some color space that
separates the brightness/lightness from chromatic compo-
nents, such as HSV and YCbCr spaces. Therefore, algo-
rithms in this category focus on the nonlinear modification
technique that is used for luminance modification. Some
authors tried to adjust global image luminance via histogram
modification.13,14 Although it is effective in handling global
dynamic range, histogram-based algorithms ignore the spa-
tial relations of pixels, and are prone to be affected by the
spikes in image histograms.

To enhance local contrast, Tao et al.15 proposed to
increase the luminance of dark pixels and decrease the lumi-
nance of highly bright pixels via an inverse sigmoid function.
Note that the demarcation between underexposure and over-
exposure was not defined precisely in Ref. 15. After dynamic
range compression, Tao et al.15 utilized the comparison
mechanism in MSR to enhance local contrast in luminance
channel. Finally, the enhanced color image was recon-
structed by preserving the hue and saturation information
of the original image. However, this color-restoration method
is apt to produce excessive colors for original dark regions.
Meylan and Susstrunk16 proposed to implement global lumi-
nance adaptation through a power function according to the
original average luminance. Then, the local contrast is also
enhanced based on the comparison mechanism of MSR.
However, due to the global luminance-adaptation procedure,

original highly bright areas are prone to be compressed
excessively. Based on the assumption that the expected
value of the enhanced luminance is half of the maximum
value in the full dynamic range, Schettini et al.17 modified
the traditional gamma correction via an automatic param-
eter-tuning technique for the gamma value. To avoid smooth-
ing across edges, Schettini et al.17 utilized the bilateral
filter18 instead of Gaussian filter, thus reducing halo artifacts.
Choudhury and Medioni19 utilized the V channel in HSV
space as image luminance, and designed a nonlinear trans-
formation based on logarithmic function. Underexposure and
overexposure were divided according to the proportion of
pixels that are smaller than 0.5 (the full dynamic range is
[0, 1]). Note that this division is fixed for the whole image,
thus is not suitable for images that have very small area of
underexposure or overexposure. In addition, the color-resto-
ration procedure in Ref. 19 is similar to that of Ref. 15 by
preserving original chromaticity, and this is prone to lead to
exaggerated colors at dark regions.

In addition, Meylan et al.20 proposed to consecutively
use two Naka–Rushton21 transformation for nonlinear adap-
tion. Since Naka–Rushton function can increase input val-
ues, it performs well on underexposure images. Inspired
by Meylan’s work,20 Wang and Luo22 intensively explored
the adaption mechanism of Naka–Rushton formula and
designed adaptive parameter settings for it, and obtained
an effective enhancement for underexposed image.
Furthermore, to enhance images with partially overexposure,
the symmetric version of Naka–Rushton formula (SNRF)
was proposed in Ref. 23 to pull up small intensities and
pull down large intensities in RGB channels.

Recently, using the frequency of local and nonlocal neigh-
boring pixels, Wang et al.24 proposed a bright-pass filter to
estimate image luminance. Further, to preserve the lightness
order while modifying luminance, they used a histogram
specification technique. However, due to the preservation
of lightness order, highly bright regions cannot be enhanced
adequately. For image luminance estimation, Shin et al.25

implemented Gaussian smoothing on the V channel, and
then combined the smoothed luminance with the original
one according to gradient information to eliminate smooth-
ing at edges. Thereafter, luminance was adjusted through
gamma correction, and global contrast was enhanced
through histogram modification. Since local contrast was
not boosted after gamma correction, the processed results
by Ref. 25 present moderate luminance but deficient
contrast.

In the third category, image enhancement was imple-
mented in some transformed space. That is to say, a
certain 2-D orthogonal transform is first performed on the
input image and then the transform coefficients will be
modified accordingly. These types of algorithms include
alpha rooting,26,27 logarithmic enhancement,28,29 and heap
transform.30 In Ref. 26, Grigoryan et al. proposed a multi-
frequency band alpha-rooting method, and combined it
with a two-dimensional discrete quaternion Fourier trans-
form for image enhancement. In Ref. 29, Panetta et al. sum-
marized the logarithmic-image-processing framework for
image enhancement.

In this work, to enhance images with nonuniform illumi-
nation, a local adaption approach is developed. First, to
estimate image luminance, a just-noticeable-difference
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(JND)-based low-pass filter is devised and implemented on
the Y channel of YCbCr space. Then, to separate underex-
posure from overexposure in the luminance image, a local
adaptive demarcation principle is proposed. Different from
the globally fixed demarcation value used by Tao et al.15

and Choudhury and Medioni,19 the proposed demarcation
changes as local luminance varies, thus adapting to compli-
cated luminance and helping to control the enhancement
degree for various regions in an image. According to this
adaptive demarcation, local luminance is modified by SNRF
to depress highly bright areas and light up dark areas. Next, a
color image will be reconstructed based on the enhanced
luminance and the original chromatic information. With
regard to color reconstruction, traditional methods15,19 that
preserve the original chromaticity are prone to exaggerate
colors at dark areas and depress colors at highly bright
areas. To cope with this, the proposed color-reconstruction
technique utilizes a power function of the ratio between
the enhanced luminance and the original one. Finally, a com-
pensation technique for local contrast is designed to improve
visual quality of the output color image. Experimental results
show that the proposed approach produces moderate details
and vivid colors.

The rest of the paper is organized as follows: the proposed
algorithm is detailed step by step in Sec. 2. Experimental
results and comparisons are presented in Sec. 3. Finally, con-
clusions are given in Sec. 4.

2 Image Enhancement via Nonlinear Mapping
Flowchart of the proposed approach is given in Fig. 1, and a
sample image with intermediate results is illustrated as well.
Precisely, our method consists of four steps: (1) in Y channel,
image luminance is estimated using a JND-based filter,
which preserves high-contrast edges while implementing
local smoothing; (2) to adjust local luminance adaptively,
the estimated luminance is modified by SNRF to pull up
underexposure and pull down overexposure; (3) for the
sake of natural colors, image color is reconstructed via an
exponential function based on the enhanced luminance,
original luminance, and original chromatic information;
(4) to compensate for the degenerated contrast after dynamic
range compression by SNRF in step 2, a local contrast com-
pensation technique is applied to the RGB channels of the
produced color image.

2.1 Luminance Estimation Using Just-Noticeable-
Difference-Based Filter

Accurate estimation of luminance from a color image is
complicated and difficult. Based on the assumption that

illumination is spatially smooth, Gaussian filter8–10,15 was
used for illumination estimation. However, these methods
are prone to induce halo artifacts at high-contrast edges due
to the smoothing across edges. To cope with this, many
researchers turned to devise locally adaptive filters, such as
bilateral filter,17,22,23 gradient-driven smoothing operators,19

and image-content-dependent smoothing techniques.16,24,25

The common starting point among these adaptive filters is
to decrease the smoothing degree at high-contrast edges.
In this section, we proposed an adaptive smoothing filter
based on the JND of pixel values. This filter does not depend
on the identification of high-contrast edges, by truncating
intensities of neighbors according to JND value of the center
pixel.

This work focuses on the nonuniform illumination prob-
lem, and is under an assumption that the illumination is
neutral and uncolored throughout the whole image. In addi-
tion, luminance is used here to denote the brightness of illu-
mination. Among existing color spaces, the Y channel in
YCbCr space is used as a coarse luminance. Mathematically,
the Y channel can be linearly transformed from RGB space
by

EQ-TARGET;temp:intralink-;e001;326;510Yði; jÞ ¼ 0.2989Rði; jÞ þ 0.578Gði; jÞ þ 0.114Bði; jÞ; (1)

where R, G, and B are the intensities of RGB channels,
respectively, and ði; jÞ represents pixel location in the
two-dimensional spatial space of an image.

JND refers to the value below, which any change cannot
be visually perceived by the HVS.31 Lin32 did a survey on the
computational models for JND including the model from
pixel domain. In luminance component, luminance adapta-
tion and texture masking were two major factors to be
considered for pixel-wise JND estimation33

EQ-TARGET;temp:intralink-;e002;326;380

PJNDði; jÞ ¼ TLði; jÞ þ Ttði; jÞ − CLtði; jÞ
· minfTLði; jÞ; Ttði; jÞg; (2)

where TLði; jÞ and Ttði; jÞ are the thresholds for luminance
adaptation and texture masking, respectively; CLtði; jÞ rep-
resents the overlapping effect, and 0 < CLtði; jÞ ≤ 1. In
detail, luminance-adaptation threshold TLði; jÞ is formulated
as34

Luminance
estimation using
JND-based filter

(Y channel)

Luminance
modification

based on SNRF
(Y channel)

Color image
reconstruction

(Y channel -> RGB)

Input
(RGB)

Output
Local contrast
compensation

(RGB)

Fig. 1 Flowchart of the proposed approach and intermediate results after the corresponding steps.
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EQ-TARGET;temp:intralink-;e003;63;752TLði; jÞ ¼

8>><
>>:

17

�
1 −

ffiffiffiffiffiffiffiffiffi
Lði;jÞ
127

q �
þ 3 if Lði; jÞ ≤ 127

3
128

h
Lði; jÞ − 127

i
þ 3 otherwise

;

(3)

where Lði; jÞ denotes the background luminance of the pixel
located at ði; jÞ, and can be computed by locally averaging
operation within a small (e.g., 3 × 3) neighborhood. Note
that, Eq. (3) implies that pixel intensities of a gray image
are in the range of [0, 255]. In Eq. (2), apart from
TLði; jÞ, the texture masking factor Ttði; jÞ can be estimated
after smooth, edge, and texture regions have been discrimi-
nated. For simplification, lightness adaptation can be consid-
ered as the dominant factor in JND estimation.32 Therefore,
the pixel-wise JND will be roughly estimated by TLði; jÞ in
this paper, which means

EQ-TARGET;temp:intralink-;e004;63;558PJNDði; jÞ ≈ TLði; jÞ: (4)

To preserve high-contrast edges while smoothing an
image via a weighted average of neighbors, an intuitive
idea is that a neighbor, which has a large numerical differ-
ence from the center pixel, should be carefully treated. For
ease of presentation, we call the neighbors that need to be
carefully treated as odd neighbors. Motivated by the intuitive
idea mentioned already, bilateral filter18 decreases the
weights for odd neighbors by multiplying the Gaussian ker-
nel in spatial domain with a Gaussian kernel in the range
domain. In this work, we devised an alternative method
that manipulates odd neighbors to be similar values with
the center pixel. Mathematically, the values of neighbors
will be truncated according to the corresponding JND
values of the center pixel. With regard to a center pixel,
its neighbors can be divided into three categories, and
their values will be truncated through

EQ-TARGET;temp:intralink-;e005;63;350QðB; AÞ ¼
8<
:

A − PJNDðAÞ ifðB − AÞ < −PJNDðAÞ
B if absðB − AÞ ≤ PJNDðAÞ
Aþ PJNDðAÞ if ðB − AÞ > PJNDðAÞ

;

(5)

where A denotes the luminance value of a center pixel, and B
represents the luminance value of a neighbor around pixel A.
The notation QðB; AÞ is the truncated output for a pixel
with the value of B when it acts as a neighbor of a pixel
A. In addition, PJNDðAÞ is the corresponding JND value
of pixel A, and is roughly computed using Eq. (4).

Based on the truncating mechanism in Eq. (5), image
luminance can be estimated to be the local weighted average
of JND-truncated neighbors. Consequently, this averaging
process can be implemented by assigning spatial Gaussian
weights to the JND-truncated neighbors, and the JND-
based filter is defined as
EQ-TARGET;temp:intralink-;e006;63;149

YJNDði; jÞ ¼
1

wði; jÞ
X

ðs;tÞ∈Ωði;jÞ
G½ði; jÞ; ðs; tÞ�

· Q½Yðs; tÞ; Yði; jÞ�; (6)

where ði; jÞ is the location of a center pixel, and ðs; tÞ denotes
an arbitrary pixel in the image. The output YJNDði; jÞ is the

adaptively smoothed luminance. The notation wði; jÞ is
the normalization factor, and Ωði; jÞ represents a specified
neighborhood of pixel ði; jÞ. The Gaussian weight
G½ði; jÞ; ðs; tÞ� is defined by

EQ-TARGET;temp:intralink-;e007;326;302G½ði; jÞ; ðs; tÞ� ¼ exp

�
−

1

2σ2s
½ði − sÞ2 þ ðj − tÞ2�

�
; (7)

where σs denotes the spatial spread of Gaussian kernel.
According to Eqs. (6) and (7), the estimated luminance of
pixel ði; jÞ equals to the Gaussian weighted average of its
JND-truncated neighbors. Note that, the JND-truncated
neighbors have similar values to the center pixel based on
Eq. (5). Therefore, the proposed JND-based filter can pre-
serve edges while smoothing an image. Figure 2 exhibits
the estimated luminance by Gaussian filter, bilateral filter,
and the proposed JND-based filter, respectively. As shown
in Figs. 2(c)–2(f), both bilateral filter and JND-based filter
preserve high-contrast edges effectively. Figures 2(e) and
2(f) are results of JND-based filter with different spatial
spreads, and these two images show little difference. Apart
from the spatial spread, the smoothing degree of bilateral fil-
ter is also determined by range spread. Figures 2(c) and 2(d)
are results of bilateral filter with different range spreads. In

Fig. 2 Comparison between several smoothing filters. (a) original
image, (b) result by Gaussian filter with the spatial spread of 4, (c) out-
put of bilateral filter where the spatial and range spreads are 4 and 25
(suppose that pixel value is in the range of [0, 255]), (d) output of bilat-
eral filter where the spatial and range spreads are 4 and 12, (e) result
of JND-based filter with the spatial spread of 4, and (f) result of JND-
based filter with the spatial spread of 8.
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Fig. 2(c), the range spread is larger than that of Fig. 2(d),
resulting a smoother image.

2.2 Adaptive Modification to Luminance
Within a luminance image, underexposure can be enhanced
by lighting up dark regions, and overexposure can be solved
by dimming pixels that are extremely bright. Inspired by
the above idea, we adopt the symmetric Naka–Rushton
formula (SNRF) proposed in our previous publication23 to
implement luminance modification. Precisely, SNRF is
derived from the original Naka–Rushton equation21 through
a symmetric transformation. The original Naka–Rushton
equation was defined as

EQ-TARGET;temp:intralink-;e008;63;605V ¼ L
LþH

; (8)

where L and V denote the input and output signal, respec-
tively. The parameter H controls the degree of adaptation.
For an image, the normalized Naka–Rushton equation can
be expressed as

EQ-TARGET;temp:intralink-;e009;63;520LNði; jÞ ¼
Lði; jÞ

Lði; jÞ þH
LMax þH

LMax

; (9)

where ði; jÞ denotes pixel location, and LMax is the maximum
intensity in the image L. Note that for a standard 24-bit color
image, pixel intensity is in the range of [0, 255]. When using
Eq. (9), pixel intensity needs to be rescaled into the range of
[0, 1] by the division L∕255. Being applied to an input with
the range of [0, 1], the normalized Naka–Rushton formula
has a upper convex curve, which implies that this formula
can be utilized for lighting up underexposure regions or pix-
els with small intensities. An illustrative example is shown in
Fig. 3 (see two curves with legend of “Naka–Rushton” for
details). In contrast, the formula that is symmetric with
Naka–Rushton formula about the point (0.5, 0.5) can be
used for dimming large intensities. Further, SNRF was for-
mulated by integrating these two formulas at a point that is

used as the demarcation between underexposure and overex-
posure. Being applied to a luminance image, SNRF was for-
mulated as

EQ-TARGET;temp:intralink-;e010;326;719Ysym ¼
(

Y
YþHlow

ðTþHlowÞ 0 < Y ≤ T

1− 1−Y
ð1−YÞþHhigh

½ð1−TÞþHhigh� T < Y ≤ 1
; (10)

where Y is the original luminance image and Ysym is the
modified luminance by SNRF. The parameter T represents
the pixel-wise demarcation between underexposure and
overexposure. The other two parameters, namely Hlow and
Hhigh, control the degree of adaptation produced by SNRF.
For saving space, the same location index ði; jÞ was omitted
from Y, Ysym, T, Hlow, and Hhigh in Eq. (10). A pixel Yði; jÞ
that is smaller than the corresponding demarcation Tði; jÞ is
treated to be underexposure. Otherwise, it is deemed to be
overexposure.

Figure 3 also illustrates several curves of SNRF with dif-
ferent parameters. For concise expression, it is assumed that
Hlow ¼ Hhigh ¼ H in Fig. 3. Comparing the two curves com-
posed of plus and dot, we can see that larger value of T leads
to larger global output. In addition, with a fixed T ¼ 0.6, the
curve of SNRF approaches to the line “output = input” as H
increases. In other words, the output Ysym increases as H
decreases when Y < T, and the opposite situation occurs
when Y > T.

To manipulate complicated luminance adaptively, the
demarcation T between underexposure and overexposure
is set to be pixel-wise. As for SNRF, smaller demarcation
T leads to larger output. Therefore, T is set to vary inversely
with local luminance to assign more increment to darker
regions. In addition, T also changes contrarily to global lumi-
nance to light up globally dark images. Mathematically, the
demarcation T is devised to be a transformed version of the
sigmoid function

EQ-TARGET;temp:intralink-;e011;326;360Tði; jÞ ¼ 1 − Ymedian

1þ expf10½YJNDði; jÞ − 0.7�g ; (11)

where Ymedian is the median intensity value in the input lumi-
nance image Y, and is used to represent global luminance.
The notation YJND is the estimated luminance by JND-
based filter in Sec. 2.1, and is utilized to measure local lumi-
nance. Curves of Eq. (11) with different values of Ymedian are
illustrated in Fig. 4 where the input is YJNDði; jÞ. In addition,
Fig. 5 exhibits a color image and its T image. It is shown that

Fig. 3 Curves with different parameters. The curves with the legend
of “Naka–Rushton” are those for Eq. (9). The curves with the legend of
“SNRF” are those for Eq. (10). Fig. 4 Curves of Eq. (11) with different Ymedian.
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original darker areas correspond to larger T values, and this
compels dark regions to be categorized as underexposure. In
contrary, original brighter regions correspond to smaller
T values.

In SNRF defined by Eq. (10), Hlow works in the first
case to control the adaptation degree for underexposure.
Moreover, it has been shown in Fig. 3 that the output of
SNRF varies inversely with Hlow. To revive underexposure
regions, larger increments need to be assigned to locally
darker pixels. In addition, severe underexposure also needs
obvious promotion. Based on the above analysis, Hlow is
formulated as

EQ-TARGET;temp:intralink-;e012;63;450Hlowði; jÞ ¼ YJNDði; jÞ þ 0.5Ymlow; (12)

where YJND represents local luminance. The notation Ymlow

denotes the mean value of pixels that are categorized to be
underexposure by the pixel-wise demarcation Tði; jÞ.

Different from Hlow, Hhigh serves as the adaptation factor
in the symmetric version of Naka–Rushton formula, i.e., the
second case in Eq. (10), for enhancing overexposure regions.
And Fig. 3 has shown that the output of SNRF changes
directly with Hhigh. Consequently, Hhigh is set as

EQ-TARGET;temp:intralink-;e013;63;329Hhighði; jÞ ¼ 2YJNDði; jÞ � ð1 − YmhighÞ; (13)

where Ymhigh represents the mean value of pixels that are cat-
egorized to be overexposure by the pixel-wise demarcation
Tði; jÞ. The value of Ymhigh gets larger if the overexposure
regions are brighter, and then obvious decrement will be
assigned to overexposure regions due to smaller Hhigh

values.
Substituting the elaborative parameter settings in

Eqs. (11)–(13) into SNRF in Eq. (10), an adaptive lumi-
nance-modification technique is obtained for enhancing
images that suffer from exposure problems. Further, to
improve the global contrast of the output of SNRF, histogram
of Ysym is linearly stretched into the range of [0, 1].

2.3 Color Image Reconstruction
With the modified luminance image, a color image will be
constructed in this section based on the chromatic informa-
tion of the original color image. At present, in many
works15,19,24,25 that modify the luminance channel, the
final color image was restored by strictly preserving the
original chromaticity using the following mechanism:

EQ-TARGET;temp:intralink-;e014;326;502

8>><
>>:

R 0ði; jÞ ¼ Rði; jÞ Y 0ði;jÞ
Yði;jÞ

G 0ði; jÞ ¼ Gði; jÞ Y 0ði;jÞ
Yði;jÞ

B 0ði; jÞ ¼ Bði; jÞ Y 0ði;jÞ
Yði;jÞ

; (14)

where Y 0 denotes the modified luminance and Y is the origi-
nal luminance. Notations R, G, and B represent the RGB
channels of the original color image, and R 0, G 0, and B 0
are the reconstructed RGB channels. However, the color-
construction process in Eq. (14) is prone to exaggerate the
color for underexposure regions, and depress the color of
overexposure regions. Consider an underexposure pixel
ði; jÞ in the original color image, its luminance has been
increased and we have Y 0ði; jÞ > Yði; jÞ. Mathematically,
the differences among the RGB triplet [Rði; jÞ, Gði; jÞ,
Bði; jÞ] will be enlarged by Eq. (14). Thus, compared to
the original color image, the chroma of ði; jÞ is magnified
and the color appearance is exaggerated. Figures 6(a) and
6(b) illustrate an input image and the reconstructed color
image via Eq. (14). Without loss of generality, the modified
luminance Y 0 used in Fig. 6 is processed by a general gamma
correction method rather than SNRF. The gamma value is
set to be 1þ Yði; jÞ − 0.7, and therefore pixels, which are
smaller than 0.7, will be promoted and others will be
dimmed. It is shown that in Fig. 6(b) the blue car and
green trees in the original dark regions suffer from color
distortion.

In addition Eq. (14), Ref. 17 utilized a linear combination
of the ratio and the difference between Y 0 and Y for color
reconstruction. The corresponding color-reconstruction out-
put is given in Fig. 6(c). It can be seen that the excessive
color of original dark regions was alleviated, but global con-
trast gets worse.

Inspired by the color-restoration mechanism in Eq. (14),
to alleviate the magnification of differences between RGB
triplets for underexposure regions and maintain the RGB
differences for overexposure regions, we propose to recon-
struct the color image by

Fig. 6 (a) original image, (b) color-reconstruction result by
Eq. (14), (c) color-reconstruction output by the method in Ref. 17,
and (d) color-reconstruction result by the proposed technique in
Eq. (15).

Fig. 5 A color image and its T image.
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EQ-TARGET;temp:intralink-;e015;326;752

8>>><
>>>:

R 0ði; jÞ ¼ Rði; jÞ
h
Y 0ði;jÞ
Yði;jÞ

i
1−sqrt½Rði;jÞ�

G 0ði; jÞ ¼ Gði; jÞ
h
Y 0ði;jÞ
Yði;jÞ

i
1−sqrt½Gði;jÞ�

B 0ði; jÞ ¼ Bði; jÞ
h
Y 0ði;jÞ
Yði;jÞ

i
1−sqrt½Bði;jÞ�

; (15)

where the operator sqrtð·Þ denotes the extraction of square
root. Compared with Eq. (14), the coefficients for RGB com-
ponents are revised by an adaptive exponent in Eq. (15). For
underexposure regions, we have Y 0 > Y, and the correspond-
ing coefficients in Eq. (15) change inversely to R, G, and
B values. In this case, for a pixel with the triplet ðr; g; bÞ,
if r > g > b, we can obtain the inequality that
1 < ðY 0∕YÞ1−sqrtðrÞ < ðY 0∕YÞ1−sqrtðgÞ < ðY 0∕YÞ1−sqrtðbÞ, and
thus the output color will not be excessively exaggerated.
On the contrary, for overexposure regions, we have Y 0 < Y,
and the corresponding coefficients in Eq. (15) have syn-
chrony changes to R, G, and B values. Therefore, according
to the above derivation, the reconstructed color for
overexposure regions will be revived. Result of the
color-reconstruction method in Eq. (15) is illustrated in

Fig. 7 Comparative example for local contrast compensation.
(a) Original color image, (b) intermediate result after Secs. 2.2 and
2.3, (c) result by applying Eq. (16) to the RGB channels of image
(b), and (d) result by applying Eq. (17) to the RGB channels of
image (b).

(a) CQE=1.77, EMEC=23.39 (b) CQE=2.55, EMEC=29.94 (c) CQE=1.33, EMEC=19.05

(d) CQE=2.15, EMEC=29.69 (e) CQE=1.69, EMEC=26.81 (f) CQE=1.71, EMEC=26.54

(g) CQE=2.63, EMEC=31.41 (h) CQE=2.17, EMEC=26.54 (i) CQE=2.57, EMEC=30.39

Fig. 8 Experimental results on an underexposure image. (a) Original image, and others are the results of
(b) MSRCR,10 which was implemented in the software “PhogoFlair” by NASA and TueView Imaing Co.,38

(c) RACE,12 (d) Ref. 20, (e) Ref. 24, (f) Ref. 25, (g) Ref. 35, (h) Ref. 23, and (i) the proposed approach.
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Fig. 6(d) where the color and global contrast are visually
appropriate.

2.4 Local Contrast Compensation
During the luminance-modification process in Sec. 2.2,
SNRF lights up small intensities and pulls down large inten-
sities in the luminance image, and therefore local contrast is
prone to be degenerated. In this section, local contrast will be
improved to produce vivid images. The basic idea for con-
trast enhancement is that a pixel should be increased if it is
larger than its neighbors, and should be decreased if it is
smaller than its neighbors. Based on this idea, pixel-wise
differences and ratios between the center pixel and its neigh-
bors were employed by ACE11 and retinex algorithms,12

respectively. In addition, Tao et al.15 utilized the comparison
mechanism in the center/surround retinex8–10 to improve
local contrast via an exponential function

EQ-TARGET;temp:intralink-;e016;63;565Oði; jÞ ¼ ½Iði; jÞ�Eði;jÞ; (16)

where Iði; jÞ is a gray image, e.g., luminance image or a
channel in RGB space, and the implicit pixel intensity is
in the range of [0, 1]. The exponent factor Eði; jÞ is defined
as

EQ-TARGET;temp:intralink-;e017;63;489Eði; jÞ ¼
�
F � Iði; jÞ
Iði; jÞ

�
p
; (17)

where the notation F represents a low-pass filter, and the
operator * denotes convoluting operation. With regard to

the filter F, Gaussian filter was used in Ref. 15, and bilateral
filter18 was used later in Ref. 23 to eliminate halo artifacts.
The parameter p controls the enhancing degree and is set into
the range of [0.5, 2] according to global standard deviation.
Mathematically, if a center pixel Iði; jÞ is smaller than the
weighted average of its neighbors, i.e., Iði; jÞ < F � Iði; jÞ,
the input intensity will be decreased. Otherwise, Eði; jÞ is
smaller than 1, and thus the input intensity will be increased
to some extent.

However, using Eq. (16) for contrast enhancement, dim
areas are prone to be exaggerated and bright areas cannot
be enhanced sufficiently. Figure 7(c) shows the output by
implementing Eq. (16) on Fig. 7(b), which is the processed
result after Sec. 2.3. In Fig. 7(c), details of the vines on the
wall are excessively enhanced and almost grayed out, espe-
cially in the lower right region of the image. On the other
hand, contrast between the sky and cloud is improved
slightly compared to Fig. 7(b). To solve these problems,
we propose to modify Eq. (16) by the symmetric formula
of it and obtain

EQ-TARGET;temp:intralink-;e018;326;532Oði; jÞ ¼
8<
: ½Iði; jÞ�

�
BF�Iði;jÞ
Iði;jÞ

�
2

if I ≤ BF � I
1 − ½1 − Iði; jÞ�

�
1−BF�Iði;jÞ
1−Iði;jÞ

�
2

otherwise
;

(18)

where BF denotes the bilateral filter, and BF � Iði; jÞ is used
to approximate the intensity level of neighbors. In Eq. (18), if
a center pixel is smaller than its neighbors, it will be

(a) CQE=1.38, EMEC=18.99 (b) CQE=2.10, EMEC=26.05 (c) CQE=1.09, EMEC=15.77

(d) CQE=1.86, EMEC=26.62 (e) CQE=1.15, EMEC=22.98 (f) CQE=1.25, EMEC=21.81

(g) CQE=2.02, EMEC=27.25 (h) CQE=1.76, EMEC=23.24 (i) CQE=2.12, EMEC=27.21

Fig. 9 Partial regions cropped from Fig. 8, respectively.
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decreased by the same technique as in Eq. (16). Otherwise,
the center pixel will be pulled up by the symmetric version of
Eq. (16). Figure 7(d) shows the output by implementing
Eq. (18) on Fig. 7(b). Compared to Fig. 7(c), details of the
vines are revived without extreme exaggeration. Moreover,
the contrast of original bright areas, e.g., sky and cloud, is
also improved properly.

3 Experimental Results
The proposed approach has been tested on images that
suffer from underexposure, overexposure, or both problems.
Comparisons have been made with some classic algorithms,
including the multiscale retinex algorithm MSRCR,10

RACE,12 which is a locally fused version of RSR5 and ACE11

algorithms, and an algorithm20 that used Naka–Rushton
formula for tone mapping. Moreover, the proposed approach
has also been compared with several recently proposed
algorithms: algorithms that emphasized naturalness preserva-
tion,24,25,35 the original SNRF algorithm,23 and the algorithm
using alpha rooting.26 Performances of image-enhancement
algorithms can be evaluated via some objective
measures26,36,37 that take colorfulness, contrast, or sharpness
into account. In this paper, the color-image-enhancement
(EMEC) measure26 and the color-quality-enhancement (CQE)
measure37 will be used for facilitating comparisons between
different enhancing results.

3.1 Enhancing Results for Underexposure Images
Figure 8(a) was provided by Gehler et al.,39 and it shows a
scene where the foreground is underexposed and the back-
ground is exposed properly. In Fig. 8, the CQE and EMEC
values are listed below every image. As shown in Fig. 8(b),
MSRCR brings good contrast, thus having large CQE and
EMEC values. However, it suffers from halo artifacts,
such as the edge between the trunk and background meadow-
land. In Fig. 8(c), the output color by RACE has been grayed
out slightly because RGB channels were processed sepa-
rately. In Fig. 8(d), Meylan’s algorithm20 sacrifices details
in the bright background because global luminance has
been increased via Naka–Rushton formula. Fortunately,
because details in original dark regions have been revived,
Fig. 8(d) has relatively large CQE and EMEC values.
Figure 8(e) gives the output of Ref. 24, and the original
dark foreground has been revealed clearly. However, observ-
ing the MacBeth-color-checker board in the lower right cor-
ner, color blocks are corrupted at their edges. Due to the
corruption of small/slight edges, Fig. 8(e) does not possess
large CQE and EMEC values. Figure 8(f) shows the result of
Ref. 25. However, details of the trunk are still buried in
underexposure, and contrast of the background is degener-
ated. This is mainly because that original luminance order
is strictly preserved. As illustrated in Fig. 8(g), the algorithm
in Ref. 35 produces natural background but dark foreground,
because the saliency map of the input image affects the

(a) CQE=0.47, EMEC=3.79 (b) CQE=0.48, EMEC=3.92 (c) CQE=0.51, EMEC=4.63

(d) CQE=0.49, EMEC=4.37 (e) CQE=0.5, EMEC=4.26 (f) CQE=0.48, EMEC=3.95

(g) CQE=0.64, EMEC=7.29 (h) CQE=0.59, EMEC=6.04 (i) CQE=0.72, EMEC=8.17

Fig. 10 Experimental results on an overexposure image. (a) Original color image, and others are the
results of (b) MSRCR,10,38 (c) RACE,12 (d) Ref. 20, (e) Ref. 24, (f) Ref. 25, (g) Ref. 35, (h) Ref. 23,
and (i) the proposed approach.
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output seriously. Note that, Fig. 8(g) shows good global
contrast, thus having large CQE and EMEC values. As
the output of Ref. 23, Fig. 8(h) shows clear details.
However, similar to Fig. 8(b), color shift occurs at the stones
and soil at the bottom of the image. Figure 8(i) exhibits the
result of the proposed algorithm, where details of the fore-
ground are revived clearly and the background is protected
from being washed out. Although the CQE and EMEC
values of Fig. 8(i) are slightly smaller than Fig. 8(g), the
details in Fig. 8(i) are better than Fig. 8(g), such as the
tree trunks.

For further comparisons, Fig. 9 shows the zoomed-in par-
tial regions cropped from Fig. 8, and the CQE and EMEC
values of these partial regions are also listed below the
images in Fig. 9. Comparing Figs. 9(g) with 9(i), their

(a) CQE=0.65, EMEC=5.93 (b) CQE=0.73, EMEC=6.92 (c) CQE=0.64, EMEC=7.11

(d) CQE=0.71, EMEC=8.5 (e) CQE=0.69, EMEC=6.89 (f) CQE=0.73, EMEC=7.02

(g) CQE=1.07, EMEC=12.87 (h) CQE=0.71, EMEC=8.23 (i) CQE=1.06, EMEC=11.81

Fig. 11 Experimental results on an overexposure image. (a) Original color image, and others are the
results of (b) MSRCR,10,38 (c) RACE,12 (d) Ref. 20, (e) Ref. 24, (f) Ref. 25, (g) Ref. 35, (h) Ref. 23,
and (i) the proposed approach.

Fig. 12 Partial regions, which are cropped from Figs. 11(g) and 11(i),
respectively.
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CQE and EMEC values are comparative, but image details
are more clear in Fig. 9(i).

3.2 Enhancing Results for Overexposure Images
Figure 10(a) shows an image where the color is slightly
washed out and contrast is depressed due to overexposure.
As demonstrated in Figs. 10(b) and 10(c), MSRCR and
RACE algorithms enhance image contrast slightly, but the
global luminance is still quite bright. Correspondingly, the
CQE and EMEC values in Figs. 10(b) and 10(c) are slightly
larger than Fig. 10(a). Output of Ref. 20 is shown in Fig. 10
(d), and it is rather overexposed because the Naka–Rushton
formula has been used to pull up pixel intensities globally.
Figure 10(e) gives the output of Ref. 24, and overexposure
has not been solved effectively, which also can be reflected
by the CQE and EMEC values. Shin et al.25 applied a histo-
gram-equalization procedure to the modified probability
density function of an image after gamma correction, thus
obtaining proper luminance in Fig. 10(f). However, they

used the method in Eq. (14) for color reconstruction, and
therefore image color is depressed. Consequently, the
CQE and EMEC values of Fig. 10(f) are still close to that
of Fig. 10(a). As shown in Fig. 10(g), the algorithm in
Ref. 35 modifies luminance effectively and produces good
contrast, but image color is dim because of the same reason
with Fig. 10(f). Reference 23 applied SNRF separately to
RGB channels, and the result is given in Fig. 10(h). It
can be seen that global luminance has been modified prop-
erly, but image contrast still needs improvement. At last, out-
put of the proposed algorithm is given in Fig. 10(i), which
shows proper luminance and promising contrast. Compared
with Figs. 10(b)–10(e), the luminance in Fig. 10(i) is more
suitable. Moreover, compared with Figs. 10(f) and 10(g),
which also have proper luminance, Fig. 10(i) shows more
vivid colors. Therefore, the CQE and EMEC values of
Fig. 10(i) are larger than others in Fig. 10.

Figure 11(a) demonstrates an image where contrast is
degenerated due to overexposure. As shown in Figs. 11(b)

(a) CQE=0.67, EMEC=11.60 (b) CQE=1.16, EMEC=15.62 (c) CQE=0.74, EMEC=10.43

(d) CQE=1.14, EMEC=17.46 (e) CQE=0.75, EMEC=11.43 (f) CQE=0.72, EMEC=11.50

(g) CQE=0.84, EMEC=13.70 (h) CQE=0.99, EMEC=14.69 (i) CQE=1.26, EMEC=17.26

Fig. 13 Experimental results on an image with both underexposure and overexposure. (a) original color
image, and others are the results of (b) MSRCR,10,38 (c) RACE,12 (d) Ref. 20, (e) Ref. 24, (f) Ref. 25,
(g) Ref. 35, (h) Ref. 23, and (i) the proposed approach.
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and 11(c), local contrast is improved slightly by MSRCR and
RACE. The results of Refs. 20 and 24 are illustrated in
Figs. 11(d) and 11(e) where the enhancing effects are not
visually obvious. Consequently, the CQE and EMEC values
of Figs. 11(b)–11(e) are not much larger than Fig. 11(a).
Compared with Figs. 11(d) and 11(e), the luminance of
the last four images in Fig. 11 is proper. However, the colors
of Figs. 11(f) and 11(g) are depressed due to their color-
reconstruction mechanism and tend to dim. In Fig. 11(h),
local contrast still needs to be improved, such as the contrast
between the sky and clouds. Figure 11(i) shows the result of
the proposed approach, and the image shows clear details
and good contrast without color distortion. It is shown
that the CQE values of Figs. 11(g) and 11(i) are comparative,
and Fig. 11(g) has larger EMEC value than Fig. 11(i). This is
because that Ref. 35 dimmed the image obviously and
obtains good local contrast in Fig. 11(g). However, image
color is also dimmed excessively in Fig. 11(g) and global
contrast is sacrificed. For instance, Figs. 12(a) and 12(b)
are cropped from Figs. 11(g) and 11(i), respectively. We
can see that the contrast in Fig. 12(b) is better.

3.3 Enhancing Results for Images with Both
Underexposure and Overexposure

Figure 13(a) shows an image with “a car in the sunset,” and is
gained by courtesy of Greenspun.40 The car is underexposed
and the sunset area is overexposed. Output of MSRCR is
given in Fig. 13(b) where details of the car are revealed
clearly. However, the forehead of the car suffers from halo
artifacts. As shown in Fig. 13(c), RACE promotes image
details in the dark regions, whereas image color is corrupted

because RGB channels are treated separately. The output of
Ref. 20 is illustrated in Fig. 13(d) where the sunset area
is degenerated because Naka–Rushton formula always
increases input intensities. Figure 13(e) shows the result
of Ref. 24, and global details have been improved effectively.
However, luminance of original dark areas has been
increased excessively, such as the bottom of the car. The
result of Ref. 25 is given in Fig. 13(f) where image lumi-
nance has been adapted successfully. However, image con-
trast still needs to be enhanced. For example, the contrast
between sky and cloud is rather inferior to the original
image in Fig. 13(a). In Fig. 13(g), image luminance is mod-
erate, but original dark regions under the car are exaggerated.
In addition, global image color is distorted and slightly tends
to red, such as the sky. Fig. 13(h) shows the output of
Ref. 23, and it shows clear details and good contrast.
However, image color is distorted because Ref. 23 applied
SNRF formula to RGB channels in parallel. For instance,

Fig. 15 Partial regions that are cropped from Figs. 14(g) and 14(i),
respectively.

(a) CQE=0.45, EMEC=7.08 (b) CQE=0.47, EMEC=8.54 (c) CQE=0.51, EMEC=7.73

(d) CQE=0.67, EMEC=7.45 (e) CQE=0.41, EMEC=6.66 (f) CQE=0.62, EMEC=7.02

(g) CQE=0.98, EMEC=9.32 (h) CQE=0.76, EMEC=7.94 (i) CQE=0.82, EMEC=10.35

Fig. 14 Experimental results on an image with both underexposure and overexposure. (a) original color
image, and others are the results of (b) MSRCR,10,38 (c) RACE,12 (d) Ref. 20, (e) Ref. 24, (f) Ref. 25,
(g) Ref. 35, (h) Ref. 26, which using alpha-rooting method, and (i) the proposed approach.
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the original red car slightly turns blue. Output of the pro-
posed approach is illustrated in Fig. 13(i). Compared with
the previous results in Fig. 13, Fig. 13(i) shows clear details
and good contrast without halo artifacts and color distortion.
Moreover, the CQE value of Fig. 13(i) is larger than other
images in Fig. 13. In addition, Fig. 13(i) has the second-larg-
est EMEC value among the images in Fig. 13, and its EMEC
value is a little smaller than Fig. 13(d). We can notice that the
clouds around the “sun set” area has been mainly washed out
in Fig. 13(d).

Figure 14(a) shows a scene that contains a spacecraft. The
bottom of the spacecraft is dark, and details of other areas are
slightly washed out due to overexposure. Output of MSRCR
is given in Fig. 14(b), and it shows good global contrast.
However, the original dark regions suffer from halo artifacts.
For instance, edges of the original dark bottom of the space-
craft are still dark and other regions of the bottom are
revealed. Figure 14(h) shows the result of an alpha-rooting
algorithm,26 and it has relatively large CQE value. Among
the images in Fig. 14, the outputs of Ref. 35 and the proposed
algorithm are more satisfying. In detail, Fig. 14(g) has the
largest CQE value, and Fig. 14(i) has the largest EMEC
value. For detailed comparison, partial regions of Figs. 14(g)
and 14(i) are illustrated in Fig. 15. It is shown in Fig. 15(b)

that the bottom of the spacecraft has been reviewed more
clearly by the proposed algorithm than Ref. 35.

3.4 Contrast Enhancement for Images with Normal
Exposure

Performance of the proposed approach and several algo-
rithms on under or overexposure images have been compared
in previous sections. In fact, when dealing with an image,
image processing algorithms do not know which exposure
problem the input image has. Consequently, even if the
input image has proper luminance, it will be modified as
well. Therefore, in this section, images with proper lumi-
nance are utilized as the input images show the performances
of different image-enhancement algorithms.

A colorful scenery taken under natural light is shown in
Fig. 16(a) where image luminance is proper and local
contrast needs to be enhanced. As shown in Figs. 16(b)
and 16(c), MSRCR and RACE improve local contrast
slightly and obtains natural color. Correspondingly, the
EMEC values of Figs. 16(b) and 16(c) are larger than
Fig. 16(a). The results of Refs. 20 and 24 are shown in
Figs. 16(d) and 16(e), respectively. However, local and
global contrast of Figs. 16(d) and 16(e) is even inferior to
the original image in Fig. 16(a). Therefore, the CQE and

(a) CQE=0.54, EMEC=7.41 (b) CQE=0.68, EMEC=9.36 (c) CQE=0.62, EMEC=8.57

(d) CQE=0.54, EMEC=8.14 (e) CQE=0.58, EMEC=7.66 (f) CQE=0.66, EMEC=9.27

(g) CQE=0.94, EMEC=13.64 (h) CQE=0.58, EMEC=8.81 (i) CQE=1.02, EMEC=15.30

Fig. 16 Experimental results on an image with normal exposure. (a) Original color image, and others are
the results of (b) MSRCR,10,38 (c) RACE,12 (d) Ref. 20, (e) Ref. 24, (f) Ref. 25, (g) Ref. 35, (h) Ref. 23, and
(i) the proposed approach.
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EMEC values of Figs. 16(d) and 16(e) are small. The algo-
rithm in Ref. 25 improves image contrast effectively, and the
output is given in Fig. 16(f). However, image color in
Fig. 16(f) is slightly dim, such as the distant forest at the
top-left part. The result of Ref. 35 is given in Fig. 16(g),
which has comparable contrast with Fig. 16(c). The output
of Ref. 23 is shown in Fig. 16(h) where image contrast is
unsatisfactory and image color turns slightly gray. This is
because that Ref. 23 implements SNRF for RGB channels

separately and the dynamic rang is compressed seriously
by SNRF for images with normal luminance. Figure 16(i)
gives the result of the proposed algorithm. Visually, it
shows better contrast and more vivid color when compared
with Figs. 16(b)–16(h). Moreover, the CQE and EMEC val-
ues of Fig. 16(i) are much larger than other images in Fig. 16,
and this confirms the effectiveness of the proposed approach.

Figure 17(a) shows a blond white woman wearing a red
hat and scarf, and the dominant color of the image is red. The

(a) CQE=0.68, EMEC=9.85 (b) CQE=0.76, EMEC=10.06 (c) CQE=0.74, EMEC=9.70

(d) CQE=0.86, EMEC=12.14 (e) CQE=0.70, EMEC=9.75 (f) CQE=0.72, EMEC=10.61

(g) CQE=1.15, EMEC=17.74 (h) CQE=0.78, EMEC=9.95 (i) CQE=1.24, EMEC=18.24

Fig. 17 Experimental results on an image with normal exposure. (a) Original color image, and others are
the results of (b) MSRCR,10,38 (c) RACE,12 (d) Ref. 20, (e) Ref. 24, (f) Ref. 25, (g) Ref. 35, (h) Ref. 23, and
(i) the proposed approach.
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result of MSRCR is given in Fig. 17(b), where color distor-
tion occurs. For instance, the hair and face, which are
surrounded by red hat and scarf, are slightly green. As illus-
trated in Fig. 17(c), RACE improves image contrast slightly.
Consequently, the CQE and EMEC values of Figs. 17(b) and
17(c) are not quite larger than Fig. 17(a). The results of
Refs. 20 and 24 are given in Figs. 17(d) and 17(e), and
both of the contrast in these two images need to be improved.
As shown in Fig. 17(f), the method in Ref. 25 enhances con-
trast effectively. However, Fig. 17(f) tends to darken slightly,
such as the eyes and red scarf. Figure 17(g) exhibits the out-
put of Ref. 35, and it is rather dark globally. Figure 17(h)
shows the result of Ref. 23, and the image color is washed
out globally due to the separate treatment of RGB channels.
Output of the proposed approach is given in Fig. 17(i).
According to the CQE and EMEC measures, the proposed
algorithm produces better result than other methods that
are involved in Fig. 17. In detail, compared with the previous
results in Figs. 17(b)–17(f), the proposed output shows better
contrast and color. For example, the face in Fig. 17(i) is much
clearer, and the textures on the hat and scarf are enhanced
more effectively than others.

4 Conclusion
In this work, we presented a local enhancement approach for
nonuniform illumination images where details are corrupted
by underexposure or overexposure. The proposed approach
modifies the luminance component of an image to light up
underexposure and darken overexposure. First, to estimate
the luminance component, pixel-wise JND values are inte-
grated with the Gaussian filter to preserve edges while
smoothing the Y channel in YCbCr space. Then, to discrimi-
nate between underexposure and overexposure, a pixel-wise
demarcation is devised based on local and global luminance
levels. For luminance modification, SNRF is employed to
increase underexposure pixels and decrease overexposure
pixels. Next, to reconstruct a natural color image, an expo-
nential technique is formulated to combine the modified
luminance with the original RGB components. Finally, to
improve local contrast that is prone to be degenerated
through luminance modification, a local-image-dependent
exponential method is designed and applied to the recon-
structed color image.

To validate the effectiveness of the proposed approach,
experimental tests were made on four types of images:
underexposure images, overexposure images, images with
both underexposure and overexposure, and images with nor-
mal exposure. Moreover, comparisons were made between
the proposed method and other solutions, including
retinex-based algorithms (MSRCR,10 RACE12), some recent
algorithms24,25,35 for tone mapping, an alpha-rooting
method26 and algorithms20,23 related to SNRF. Comparisons
between experimental results show that the proposed algo-
rithm has the merit of good contrast and vivid color for
enhancing nonuniform illumination images. In addition,
comparisons also demonstrate that the proposed algorithm
enhances contrast more effectively for images with normal
exposure.
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