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Abstract. Deep metric learning is an effective method for person reidentification. In practice, impostor samples
generally possess more discriminative information than other negative samples. Specifically, existing triplet-
based deep-learning methods cannot effectively remove impostors, because they cannot consider congeners
of impostor and it may produce new impostors when removing existing impostors. To utilize discriminative infor-
mation in triplets and make impostor and its congeners more clustering, we design oversymmetric and over-
asymmetric relationships and apply these two constraints to triplet and impostors’ congeners to train our deep
triplet-group network with original individual images rather than handcrafted features. Extensive experiments
with five benchmark datasets demonstrate that our method outperforms the state-of-the-art methods with
regards to the rank-N matching accuracy. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, includ-
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1 Introduction
Person reidentification (PR-ID) is a very important branch of
computer vision and has been widely used in many safety-
critical applications, such as video surveillance and foren-
sics. The basic task of PR-ID shown in Fig. 1 is to determine
whether or not two images from nonoverlapping cameras
show the same person of interest. However, in real-world
applications, there are many significant challenges for PR-ID
because an image pair of a person is usually captured by
different cameras with significantly different backgrounds,
levels of illumination, viewpoints, occlusions, and image res-
olutions. To overcome these issues, many PR-ID methods
have been proposed in recent years and can be generally
classified into two categories: feature representation1,2 and
metric learning methods.3,4 For feature representation meth-
ods, Schwartz and Davis1 proposed a high-dimensional
feature extraction algorithm. Baltieri et al.2 proposed a
view-independent signature method by mapping the local
descriptors extracted from RGB-D sensors on an articulated
body model. The pose priors and subject-discriminative fea-
tures were used to reduce the effects of viewpoint changes.5

Li et al.6 proposed a cross-view multilevel dictionary learn-
ing model to improve the representation power, which con-
tains dictionary learning at different representation levels,
including image level, horizontal part level, and patch
level. For metric learning methods, Cheng et al.3 introduced
a new and essential ranking graph Laplacian term, which can
minimize the intrapedestrian compactness and maximize the
interpedestrian dispersion. Li and Wang7 presented a method
that learns different metrics from the images of a person
obtained from different cameras. In addition, Jing et al.4

combined semicoupled low-rank discriminant dictionary

learning to achieve super-resolution PR-ID, and Li et al.8

also proposed for low-resolution PR-ID, which jointly learns
a pair of dictionaries and a mapping to bridge the gap across
lower and higher resolution images to incorporate positive
and negative pair information and using the projective dic-
tionary to boost PR-ID efficiency.

With the development of deep-learning methods, deep
representation learning has recently achieved great success
due to its highly effective learning ability. Several deep
PR-ID models achieve a great improvement in the accuracy,
such as deep metric learning (DML) for practical PR-ID,9 a
multitask deep network (MDN) for PR-ID,10 and a deep lin-
ear discriminant analysis of Fisher networks for PR-ID.11

However, existing deep-learning-based methods require
learning a deep metric network by maximizing the distance
among interclass samples and minimizing the distance
among intraclass samples simultaneously. These methods
do not effectively use the discriminant information among
different samples. Therefore, triplet-based PR-ID models
have been proposed to improve the efficiency of exploiting
discriminant information through three samples, including a
multiscale triplet CNN,12 distance metric learning with
asymmetric impostors (LISTEN),13 and a body-structure-
based triplet convolutional neural network.14

Although these triplet-based methods can improve the
performance of PR-ID, they did not consider constraint from
impostors' congeners samples (IC samples). As shown in
Fig. 2, some new impostors may be produced when remov-
ing existing impostors by existing impostor-based methods.
Therefore, how to alleviate effects of these samples is an
important problem on PR-ID.

1.1 Motivation
Research in Refs. 12–14 has demonstrated that triplet-based
methods can develop more discriminant information than*Address all correspondence to: Benzhi Yu, E-mail: yubzh_whut@163.com
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that in pairwise-based methods. However, existing triplet-
based methods cannot solve difficulties caused by IC sam-
ples, such as they are transformed to new impostors, or they
would be dispersed after projection. They cannot fully use
the different discriminant information contained in IC sam-
ples. To address this problem, two aspects are needed to be
considered in triplet-based methods. (i) Existing triplet-based
methods12–14 exploit information in impostors alone without
IC samples. (ii) Impostor and its congeners maybe dispersed
after projections, which must reduce the matching accuracy
for PR-ID. (iii) Most deep PR-ID models are limited to hand-
crafted features in images by DML instead of the convolu-
tion of original images.

1.2 Contributions
The major contributions of this study are summarized as
follows.

1. We propose a deep triplet-group network that fully
employs symmetric and asymmetric information
(DSAN) for triplets and IC samples (denoted as triplet
group), which learns a deep neural network by the
convolution of the original images of a person and
trains the network with a symmetric and asymmetric
constraint loss function to ensure the clustering effect
of impostor and its congeners and make them more
efficient and discriminable.

2. We design a triplet-group constraint objective function
that requires the distance between a negative pair to be

larger than that between a positive pair, and the distan-
ces between impostor and its congeners (denoted as
impostor-group) are minimized simultaneously.

3. We conduct a number of matching accuracy experi-
ments in this study. The experimental results show
that our DSAN approach outperforms various trip-
let-based methods and other deep-learning methods.

2 Preliminary Knowledge
The corresponding relationships between an impostor and its
relevant positive sample pair can be classified into two cases:
a symmetric correspondence relationship and an asymmetric
correspondence relationship (ACR). Given an impostor xk
and the corresponding positive sample pair hxi; xji, if xk
is an impostor of xi with respect to xj and an impostor of
xj with respect to xi, the corresponding relationship
between xk and hxi; xji is symmetric, as shown in Fig. 2(a).
Otherwise, the correspondence relationship is asymmetric, as
shown in Fig. 2(b). The ratio of impostors in some PR-ID
datasets is presented in Ref. 13, and we can see the impor-
tance of impostors for PR-ID. For the distance between two
samples hxi; xji, we compute the Euclidean distance dði; jÞ
as follows:

EQ-TARGET;temp:intralink-;e001;326;487

dði; jÞ ¼ kxi − xjk2F; (1)

where k � kF is the Fibonacci normalization.

2.1 Existing Triplet-Based Methods
The impostor-based metric learning method15–17 exploits the
impostors with a “normal” triplet constraint [i.e., for a triplet
hi; j; ki, it requires dði; jÞ < dði; kÞ, where dð�Þ is a distance
function], meaning that they cannot effectively remove the
impostors in the case of an ACR. For this reason, Zhu
et al.13 proposed LISTEN; it requires that dði; kÞ ≫ dði; jÞ
and dðj; kÞ ≫ dði; jÞ simultaneously. However, LISTEN
does not consider the relationship between dði; kÞ and
dðj; kÞ and other samples in a same class with k. This may
lead to producing another impostor when removing the
existing impostors, as in Figs. 2(a) and 2(b).

Fig. 1 Illustration of the basic task of PR-ID.

Fig. 2 Nonlinear projection of triplet samples and the desired status. hxi ; x j i is a positive pair while xk is a
impostor and Xk is a collection of samples in a same class with xk . X 0

k and x 0
k are projections of Xk and

xk , respectively.
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2.2 Our Overasymmetric and Oversymmetric
Relationship Constraints on Triplet

In our method, we transform the symmetric correlated
impostor and asymmetric correlated impostor (Fig. 2) in
two cases when an overasymmetric relationship (OAR)
and an oversymmetric relationship (OSR) meet on positive
pair and IC samples. Given a impostor xk with its congeners
Xk ¼ fx1k; x2k; · · · ; xNk

k g in a same class and the correspond-
ing positive sample pair hxi; xji, we want them to become the
desirable status as Fig. 2(c) regardless of their previous sta-
tus, which make dij a very short distance as much as pos-
sible, and dik and djk are very long distance as much as
possible. To some extreme degree, the correlation in a triplet
fi; j; kg can be considered as symmetric relationship because
dik and djk are extremely longer than dij. Meanwhile, we
make X 0

k be clustering to x 0
k for better classification in

class k to avoid circumstances in Figs. 2(a) and 2(b).

3 Proposed Method
We proposed our deep triplet-group network and a person
reidentification method for our proposed and details will
be described below.

3.1 Deep Triplet-Group Network
For our deep triplet-group network, we use a deep convolu-
tional network inspired by Schroff et al.18 The network archi-
tecture is outlined in Fig. 3. We use M þ 1 layers, where
the last layer is our OAR and OSR loss function. The
input of the network is the triplet samples with impostor’s
congeners, and for image xi, the output of the first layer
is h1i ¼ σðW1xi þ b1Þ, where W1 is the projection matrix,
b1 is the bias vector to be learned in the first layer of our
network, and σ is a nonlinear active function that is applied
in a component-wise manner. h2i ¼ σðW2h2i þ b2Þ, where
W2 is the projection matrix and b2 is the bias vector to
be learned in the second layer of our network. Similarly,
the output for the m’th layer (1 ≤ m ≤ M) is hmi ¼
σðWmhm−1

i þ bmÞ, and that for the top layer is

EQ-TARGET;temp:intralink-;e002;63;326 hMi ¼ σðWMhM−1
i þ bMÞ; (2)

where WM is the projection matrix and bM is the bias vector
to be learned in the top layer of our network.

According to Eq. (1), we compute the distance between
the outputs of the M’th layer from xi and xj as follows:

EQ-TARGET;temp:intralink-;e003;326;708

dðhMi ; hMj Þ ¼ khMi − hMj k2F; (3)

where hMi and hMj are the outputs of the network with inputs
of xi and xj, respectively.

To increase the image classification performance, we
expect all positive pair and IC-sample outputs through the
network will simultaneously satisfy the OAR and OSR con-
straints. Assume a desired status, the impostor xk should
leave xi and xj, a maximal distance simultaneously, and
we can consider there will be a symmetric relationship
between xi, xj, and xk. However, it is hard to meet this sym-
metric relationship in reality, and we develop this symmetric
relationship on a cluster center uk of impostor xk and its con-
geners (denoted impostor group as Xk), which could not only
maintain the asymmetric relationship in triplet but also
exploit some discriminative information in its congeners
to make impostor group more discriminative. In other
words, our developed strategy ensures Xk meets OAR con-
straint and OSR constraint between xi and xj. In our net-
work, for each triplet group hxi; xj; xki and congeners Xk
of xk, the outputs hhMi ; hMj ; hMk i and uMk satisfy the following
objective function:
EQ-TARGET;temp:intralink-;e004;326;455

min J ¼ kdðhMi ; uMk Þ − dðhMj ; uMk Þk2F
− kdðhMi ; uMk Þ − dðhMi ; hMj Þk2F
þ αdðhMi ; hMj Þ − βdðhMi ; hMk Þ; (4)

where uMk is the cluster center of all samples in class k,
including xk, and kdðhMi ; uMk Þ − dðhMj ; uMk Þk2F is the OSR
term. OSR term makes the distance between uk and xi
and the distance between uk and xj equal to meet OSR
constraint. kdðhMi ; uMk Þ − dðhMi ; hMj Þk2F is the OAR term.
OAR term makes the distance between uk and xi larger
than the distance between xi and xj to meet OAR constraint.
In addition, dðhMi ; hMj Þ is the intraclass term to minimize
the distance between samples in the same class, and

Fig. 3 Basic idea of our DSAN.
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−dðhMi ; hMk Þ is the interclass term to maximize the distance
between samples in different classes. α and β are the
balance parameters of dðhMi ; hMj Þ and dðhMi ; hMk Þ. Let
f ¼ fW1;W2; : : : ;WM; b1; b2; : : : ; bMg be the parameters
of our network. We formulate the following optimization
problem to maximize the margin between the all triplet
samples:

EQ-TARGET;temp:intralink-;e005;63;675

min
f

H ¼ g

� P
hi;j;ki∈T

J

�
þ γ

2

P
M
m¼1ðkWmk2F þ kbmk22Þ; (5)

where T is the collection of triplet-group samples, γ is a
parameter for balancing the contributions of different
terms, and gðaÞ is the generalized logistic loss function that
smoothly approximates the hinge loss function a ¼ maxða; 0Þ
and is defined as follows:

EQ-TARGET;temp:intralink-;e006;63;573

gðaÞ ¼ 1
ρ log½1þ expðρaÞ�; (6)

where ρ is the sharpness parameter. Details of our algorithm
are demonstrated in Algorithm 1.

3.2 Person Reidentification Method
For the image y of a pedestrian in probe from testing image
set, we use y as the input of our network with the learned
parameter f and obtain its deep feature representation hMy .
Then, we compute the distances between hMy and each
image in the gallery from testing image set by Eq. (3).
Finally, we choose the smallest distance in every distance,
including hMy , and obtain the label of the sample that has
the smallest distance with hMy as follows:

EQ-TARGET;temp:intralink-;e007;326;650

Labely ¼ arg min
c
ðy; xcÞ · 1 ≤ c ≤ C; (7)

where c is the class of xc and C is the total number of classes
in the training image set.

4 Experiments
We conducted extensive experiments using five widely used
datasets: CUHK03,19 CUHK01,20 VIPeR,21 iLIDS-VID,22

and PRID2011.23 Here, we compare the performance of
our approach with triplet-based state-of-the-art approaches.

4.1 Datasets and Experimental Settings
Experiments are conducted with one large dataset and four
small datasets. The large dataset is the CUHK03 dataset,
which contains 13,164 images from 1360 persons. We ran-
domly selected 1160 persons for training, 100 persons for
validation, and 100 persons for testing, following exactly
the same settings in Refs. 19 and 24. The four small datasets
are the CUHK01, VIPeR, iLIDS, and PRID2011 datasets.
For these four datasets, we randomly divided the individuals
into two equal parts, with one used for training and the other
for testing. Moreover, we created triplet collections follow-
ing the method by Schroff et al.18

To validate the effectiveness of our DSAN approach, we
compare the DSAN model with several state-of-the-art met-
ric-learning-based methods: keep it simple and straightfor-
ward metric learning (KISSME)25 and relaxed pairwise
metric learning (RPML).26 In addition, our DSAN model
was compared with several state-of-the-art deep-learning-
based methods: the improved deep-learning architecture
(IDLA),24 deep ranking PR-ID (DRank),27 and an MDN
(MTDnet).10 Moreover, our DSAN model was compared
with some state-of-the-art triplet-based networks: efficient
impostor-based metric learning (EIML),17 LISTEN,13 an
improved triplet loss network (ImpTrLoss),28 and a spindle
Net.29

4.2 Implementation Details
For evaluating our DSAN, we use TensorFlow30 framework
to train our DASN. Note that we used network configuration
as in Ref. 18. For all datasets, our network contains six con-
volutional layers, four max polling layers, and one fully con-
nected (FC) layers for each images. These layers configured
as below.(1) Conv: 7 × 7, stride = 2, feature maps = 64;
(2) Max pool 3 × 3, stride = 2; (2) Max pool 3 × 3, stride
= 2; (3) Conv:3 × 3, stride = 1, feature maps = 192;
(4) Max pool 3 × 4, stride = 2; (5) Conv:3 × 3, stride = 1,
feature maps = 384; (6) Max pool 3 × 3, stride = 2;
(7) Conv:3 × 3, stride = 1, feature maps = 256;
(8) Conv:3 × 3, stride = 1, feature maps = 256;

Algorithm 1 Our DSAN algorithm

Input: Training set X , number of network layers M þ 1, learning rate
μ, parameters α and β, and convergence error ε;

Output: Parameters Wm and bm , 1 ≤ m ≤ M .

Initialization: Initialize Wm and bm with appropriate values

for k ¼ 1;2; · · · ; K do

Compute the triple-group collection T

for l ¼ 1;2; · · · ; M do

Compute hl
i , h

l
j , and hl

k -group using the deep network.

end

for l ¼ M;M − 1; · · · ;1 do

Obtain the gradients according to backpropagation
algorithm.

end

for l ¼ 1;2; · · · ; M do

Update Wm and bm according to forward propagation
algorithm

end

Calculate Hk using Eq. (5).

If k > 1 and kHk − Hk−1k < ε, go to Return.

end

Return: Wm and bm , where 1 ≤ m ≤ M .
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(9) Conv:3 × 3, stride = 1, feature maps = 256; and (10) FC,
output dimension = 128.

For small datasets, we adopt an unsupervised image gen-
erating strategy31 to solve the problem of lacking training
samples. In detail, we use small dataset as source domain
and map 10,000 images in CUHK03 dataset into source
domain. This strategy makes the 10,000 images follow dis-
tribution of target small dataset. Then, we used these gener-
ated images to train our model and fine-tune with target small
datasets.

4.3 Results and Analysis
Table 1 shows our rank-1 matching accuracies, and Figs. 4–8
describe cumulative match characteristic (CMC) curves in
different ranks on five datasets. We will describe evaluations
on five datasets.

Table 1 Top-ranked matching rates (%) for five datasets.

Method CUHK03 CUHK01 VIPeR iLIDS PRID2011

KISSME 14.17 18.25 19.61 28.58 15.75

RPML 18.67 20.14 23.93 31.97 18.69

IDLA 54.74 65.00 45.90 58.15 43.18

DRank 45.75 70.94 38.37 52.82 45.67

MTDnet 74.68 77.50 45.89 41.04 32.03

EIML 20.18 21.34 22.04 21.75 18.06

LISTEN 23.71 32.77 39.62 32.81 53.75

ImpTrLoss 75.37 53.70 47.8 60.45 22.00

Spindle 88.5 79.9 53.8 66.3 67

DSAN 77.35 82.15 54.85 66.70 68.2
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Fig. 4 CMC curves of the average matching rates for the CUHK03
dataset.
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Fig. 5 CMC curves of the average matching rates for the CUHK01
dataset.
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Fig. 6 CMC curves of the average matching rates for the VIPeR
dataset.
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Fig. 7 CMC curves of the average matching rates for the iLIDS-VID
dataset.
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4.3.1 Evaluation with the CUHK03 dataset

The CUHK03 dataset contains 13,164 images of 1360
pedestrians captured by six surveillance cameras. Each iden-
tity is observed by two disjoint camera views. On average,
there are 4.8 images per identity for each view. This dataset
provides both manually labeled pedestrian bounding boxes
and bounding boxes automatically obtained by running a
pedestrian detector.32 We report results for both versions
of the data (labeled and detected). Following the protocol
used in Ref. 19, we randomly divided the 1360 identities
into nonoverlapping training (1160), test (100), and valida-
tion (100) sets. This yielded about 26,000 positive pairs
before data augmentation. We used a minibatch size of
150 samples and trained the network for 200,000 iterations.
We used the validation set to design the network architecture.
In Table 1 and Fig. 4, we compare our method against
KISSME, IDLA, MTDnet, ImpTrLoss and Spindle net,
and it is observed that DSAN outperforms these methods
with regards to the rank-1 matching accuracy except for
Spindle. We achieve a rank-1 accuracy of 77.35% with
the parameters α ¼ 0.35 and β ¼ 0.25.

4.3.2 Evaluation with the CUHK01 dataset

The CUHK01 dataset has 971 identities, with two images per
person for each view. Most previous papers have reported
results using the CUHK01 dataset by considering 486 iden-
tities for testing. With 486 identities in the test set, only 485
identities remain for training. This leaves only 1940 positive
samples for training, which makes it practically impossible
for a deep architecture with a reasonable size to not overfit if
trained from scratch with these data. One way to solve this
problem is to use a model trained with the transformed
CUHK03 dataset and then test the 486 identities of the
CUHK01 dataset. This is unlikely to work well since the
network does not know the statistics of the tests with
the CUHK01 dataset. In fact, our model was trained with
the transformed CUHK03 dataset and adapted for the
CUHK01 dataset by fine-tuning it with the CUHK01 dataset
with 485 training identities (nonoverlapping with the test
set). Table 1 and Fig. 5 compare the performance of our
approach with that of other methods. We used a minibatch
size of 150 samples and trained the network for 180,000

iterations. Our method obtains a rank-1 accuracy of
79.35% with the parameters α ¼ 0.15 and β ¼ 0.45, surpass-
ing all other methods individually.

4.3.3 Evaluation with the VIPeR dataset.

The VIPeR dataset contains 632 pedestrian pairs with two
views, with only one image per person for each view. The
testing protocol is to split the dataset in half: 316 pairs
for training and 316 pairs for testing. This dataset is
extremely challenging for a deep neural network architecture
for two reasons: (a) there are only 316 identities for training
with one image per person for each view, giving a total of just
316 positives, and (b) the resolution of the images is lower
(48 × 128 as compared to 60 × 160 for the CUHK01 data-
set). We trained a model using the transformed CUHK03
dataset and then adapted the trained model to the VIPeR
dataset by fine-tuning it with 316 training identities. Since
the number of negatives is small for this dataset, hard neg-
ative mining does not improve results after fine-tuning
because most of the negatives were already used during
fine-tuning. The results in Table 1 and Fig. 6 show that
DSAN outperforms the state-of-the-art methods by a large
margin. We used a minibatch size of 150 samples and trained
the network for 130,000 iterations. Our rank-1 accuracy is
49.05%, surpassing all other methods for the parameters α ¼
0.25 and β ¼ 0.15.

4.3.4 Evaluation with the iLIDS dataset

The iLIDS-VID dataset has 300 different pedestrians
observed across two disjoint camera views in a public
open space. This dataset is very challenging owing to the
clothing similarities among people, the lighting, and the
viewpoint variations across camera views. There are two ver-
sions: a static-image-based version and image-sequence-
based version, and we chose the static images for use in
our experiments. This version contains 600 images of 300
distinct individuals, with one pair of images from two camera
views for each person. We divided the set into 150 individ-
uals for training and the others for testing. In the iLIDS-VID
dataset, we also encounter a similar problem, as for the
CUHK01 and VIPeR datasets. We used the pretrained
model using the transformed CUHK03 dataset and fine-
tuned it for training with the iLIDS-VID dataset. From
Table 1 and Fig. 7, DSAN outperforms the state-of-the-art
methods. We used a minibatch size of 150 samples and
trained the network for 180,000 iterations. Our rank-1 accu-
racy is 62.55% for the parameters α ¼ 0.25 and β ¼ 0.15.

4.3.5 Evaluation with the PRID2011 dataset

This dataset has 385 trajectories from camera A and 749 tra-
jectories from camera B. Among them, only 200 people
appear in both cameras. This dataset also has a single hot
version, which consists of randomly selected snapshots.
The division and pretraining procedure is similar to that
for the iLIDS-VID dataset: half for training and the others
for testing. Furthermore, the transformed CUHK03 dataset
is used to pretrain and fine-tune with the PRID2011 dataset.
In our experiments, we used a minibatch size of 150 samples
and trained the network for 160,000 iterations. We obtained a
rank-1 accuracy of 55.86% with α ¼ 0.25 and β ¼ 0.15, and
the detailed results are presented in Table 1 and Fig. 8.
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Fig. 8 CMC curves of the average matching rates for the PRID2011
dataset.
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4.4 Discussion
In this section, we discuss several effects of OAR and OSR
constraints, clustering enter symmetric constraint, and
parameter analysis.

4.4.1 Effects of the OAR and OSR constraints

To evaluate the effects of the OAR and OSR constraints, we
perform experiments with three datasets with or without uti-
lization of the OAR and OSR constraints. The results
obtained using DSAN without the OAR or OSR constraint
are denoted as DSN and DAN, respectively. Table 2 reports
the rank-1 matching rates of DSAN, DSN, and DAN for the
five datasets. We can see that using OAR and OSR con-
straints improves the rank-1 matching rate by at least
3.55%, which indicates that our OAR and OSR constraints
can exploit some discriminative information that is useful for
PR-ID.

4.4.2 Effects of our clustering center symmetric
constraint

To evaluate effects of our clustering center symmetric con-
straint, we conduct several experiments without clustering
center symmetric constraint, which only use impostor into
triplet constraint denoted as DTN. Table 1 reports the top-
rank matching accuracy of our experiment and triplet-based
methods (LISTEN and ImpTrLoss). It can be shown that our
clustering center symmetric constraint improves by 7.081%
on average

4.4.3 Parameter analysis

In this experiment, we investigate the effect of parameters,
including α and β. Parameter α balances the effect of intra-
class term. Parameter β controls the effect of interclass term.
When one of the parameters is evaluated, the other is fixed as
the values given in evaluation of datasets.

We take the experiment on CUHK03 dataset as an exam-
ple. Figures 9 and 10 show the rank-1 matching rates of our
approach versus different values of α and β on CUHK03
dataset. We can observe that: (1) DSAN is not sensitive
to the choice of α in the range of [0.10, 0.30]; (2) DSAN
achieves the best performance when α and β are set as
0.35 and 0.25, respectively; and (3) DSAN can obtain rela-
tively good performance when β is in the range of [0.20,
0.30]. Similar effects can be observed on other datasets
(Besides, the training and testing time are described in
Table 3).

5 Conclusion
We have developed a deep triplet-group network by exploit-
ing symmetric and asymmetric information on clustering
center of impostor and its congeners. It differs from existing
methods in that it can use the OAR and OSR constraints to
exploit more discriminative information from the relation-
ships between positive samples and its impostor clustering
center. From the results of extensive experiments, we can
draw the following conclusions. (1) DSAN outperforms sev-
eral state-of-the-art DL-based methods in terms of the match-
ing rate. (2) With the designed OAR and OSR constraints,
DSAN can more effectively exploit discriminative informa-
tion. (3) There exists some useful information in impostor-
based clustering center, and the proper utilization of this
information can improve performance.

Table 2 Effects of the OAR and OSR constraints.

Method CUHK03 CUHK01 VIPeR iLIDS PRID2011

DAN 62.80 74.84 39.27 49.36 48.18

DSN 59.35 67.95 34.84 50.80 47.52

DSAN 77.35 82.15 54.85 66.70 68.2

Fig. 9 Rank-1 results of DSAN with different α on CUHK03 dataset.

Table 3 Training time and testing time.

Method DSAN CUHK01 VIPeR iLIDS PRID2011

Training 62.80 74.84 39.27 49.36 48.18

Testing 59.35 67.95 34.84 50.80 47.52

Fig. 10 Rank-1 results of DSAN with different β on CUHK03 dataset.
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