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Abstract. In computer vision, the epipolar geometry embeds the geometrical relationship between two views of
a scene. This geometry is degenerated for planar scenes as they do not provide enough constraints to estimate it
without ambiguity. Nearly planar scenes can provide the necessary constraints to resolve the ambiguity. But classic
estimators such as the 5-point or 8-point algorithm combined with a random sampling strategy are likely to fail in
this case because a large part of the scene is planar and it requires lots of trials to get a non-degenerated sample.
However, the planar part can be associated with a homographic model and several links exist between the epipolar
geometry and homographies. The epipolar geometry can indeed be recovered from at least two homographies or
one homgraphy and two non-coplanar points. The latter fits a wider variety of scenes, as it is unsure to be able to
find a second homography in the non-coplanar points. This method is called plane-and-parallax. The equivalence
between the parallax and the epipolar lines allows to recover the epipole as their common intersection and so the
epipolar geometry. Robust implementations of the method are rarely given and we encounter several limitations in
our implementation. Noisy image features and outliers make the lines not to be concurrent in a common point. Also,
off-plane features are unequally influenced by the noise level. We noticed that the bigger the parallax, the lesser the
noise influence. We therefore propose a new model for the parallax, that takes into account the noise on the features
location to cope with the previous limitations. We call our method the parallax beam. The method is validated on
the KITTI vision benchmark and n synthetic scenes with strong planar degeneracy. The results show that the parallax
beam improves the estimation of the camera motion in scene with planar degeneracy and remains usable when there
is not any particular planar structure in the scene.
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1 Introduction

Autonomous platforms have been studied extensively in the last two decades and with it their
area of application also increased. Grass-cutting or vacuum cleaning robot are already at work in
modern households. Today trials are taking place into supermarkets for shopping assistants, like
TwinswHeel or wiiGO. In another field, farming is concerned with the new autonomous tractor
prototype of Case IH. In the security area Segway has unveiled its Nimbo model, a patrol robot
detecting suspicious human behavior. The most well-known subject concerns self-driving cars,
which are already in action in California. The military is also active on the subject with autonomous
reconnaissance drones or self-driving vehicle for logistic convoys or road-clearance. We target
applications belonging to the domain of defense such as an extension of our Change Detection
project presented in Ref. 1. It helps detecting Improvised Explosive Devices (IEDs) for military
convoys. The aim is to facilitate and to speed up the road clearance procedure while ensuring a very
high detection rate. Nowadays steps are made in making the system able to navigate autonomously.
It would improve its performance, while reducing the risk of human casualties. As extensions, we
are also targeting patrolling and mule robots.
These applications have in common their faculty to locate themselves in an open-world and navi-
gate in it. For that purpose, different types of sensors are available to them. The Change Detection
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system already comprises a Global Navigation Satellite Systems (GNSS) chip and a monocular
camera. While the imaging sensor is a must-have for our system to detect IEDs, the GNSS data
proved itself not to be precise enough for the image registration and lacks reliability due to po-
tential jamming or due to weak signal reception in difficult conditions (urban, forest, indoor).
The other mentioned systems also make use of LiDAR sensors and Inertial Measurement Units
(IMUs). LiDARs perform well in structured environment, however its added value in flat envi-
ronments, where no structure is available not even an asphalt road, seems little. IMUs monitor
acceleration and angular rate to integrate the position and orientation of the vehicle. It requires
other sensors to compensate the accumulated drift as it is completely unaware of its surroundings.
For the moment, we focus on a single sensor application using a monocular camera, which has the
advantage of providing a lot of information at a low price. Our camera is tilted towards the ground
to maximize its visibility since threats are usually located on the ground level. This orientation also
makes sense in a navigation context as the information lies below the skyline and it also reduces
the risk of being blinded by the sun during sunrise or sunset.
Visual odometry is the process of recovering the trajectory of a camera from the video sequence it
records. Bundle adjustment is a widely used technique to do so.2–5 While these methods operate
on several views, they rely on two-view geometry for (re-)initialization. The initialization often
consists in estimating the epipolar geometry between the two frames.2–4 Ref. 2, 3 estimate the
essential matrix thanks to the 5-point algorithm6 or a variant of it. Ref. 4 uses the 8-point algorithm
to compute the fundamental matrix.7

In our conditions the ground plane is assumed to be dominant plane in the image. The motion
of the camera is then obtained by decomposing a homography and using the plane assumption to
select the correct decomposition. However, when there is a strong presence of vertical structures
in the scene, a wall for example, the assumption does not hold and the motion estimation fails.
Examples of such scenes are provided in Fig. 1 (bottom row), while the top row shows typical
scenes we encounter, hence justifying the need for a homography. To overcome the problem, the
epipolar geometry can be estimated through the fundamental or essential matrix. Their estimation
algorithms mentioned previously have the inconvenience of not handling well scenes with a strong
planar structure, because coplanar points do not provide enough constraint to uniquely determine
the epipolar geometry.7 Therefore, specific techniques are required for two-view geometry in
nearly planar or planar scenes.
The paper starts with a review of the strategies that deal with planar degeneracies in two-view
geometry. Sec. 3 continues on situating the contributions within our algorithmic chain and details
them. Finally, results validating our method are given in Sec. 4. The results are obtained on
synthetic and real data from the KITTI vision benchmark.8 Finally in Sec. 5 we conclude and give
the perspectives of the this work.

2 Two-view geometry and planar degeneracies

In the literature the presence of nearly planar scenes leads to two possible mathematical models to
describe the geometry between two views: the epipolar geometry and the homography. The first
one is the two-view model which is used in general and the homography is specifically used for
planar structures or when the point of view remains unchanged, i.e. only the orientation is varying.
The methods dealing with the nearly planar scenes are often making use of both models and we
could classify them in three categories depending on their use of the models.
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Fig 1 Encountered scenes. Top row: scenes where the use of a homography is necessary. Bottom row: a homography
can be used but our assumption to estimate the motion from it is incorrect.

1. Estimate both models independently and select the one which fits the scene better, Sec. 2.1.

2. Avoid the epipolar geometry to be estimated on a planar structure by using an homography
to assess the planarity of the data used for the estimation, Sec. 2.2.

3. Estimate the epipolar geometry using one or several homographies, Sec. 2.3.

2.1 Concurrent models estimation

The first category of methods use a competition between the two models, they are both estimated,
then compared according to a metric and only the best one is kept. An example of metrics for
model selection is the quantity of information needed to encode the model9 or a ratio between the
inliers subsets of the two models associated with a threshold to choose between the two.4 The main
critic that can be made for these methods is that both models are estimated in parallel and from
scratch to finally reject one, so half of the computation effort is wasted.

2.2 Detecting and avoiding planar degeneracies

The second category of methods tries to detect and avoid degenerate configurations while estimat-
ing the fundamental matrix. The BEEM algorithm10 relies on an efficient data exploration scheme
to escape degeneracies. It relies on the SIFT11 features and its extension to features like Harris
corners12 is not straightforward. We mention Harris corners because they appeared to be the best
approach for our application.13 Moreover, SIFT features are also not the best choice for real-time
systems. The QDEGSAC14 method is a variant of RANSAC15 testing the number of constraints
provided by the data with successive RANSAC loops, if less constraints are given and the same
result is obtained, then the initial data did not provide enough constraint, hence it is likely degen-
erated. It is however failing, when the data is indeed degenerated. In Ref. 16, the degeneracy is
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tested by successively testing motion models with decreasing degrees of freedom (DOF). If almost
the same inlier support is obtained by the model with less DOF, then the data is degenerated for
the previous. It has the advantage of dealing with the special cases of the pure translation, the pure
rotation and the no-motion, but four different models might need to be tested for a single image
pair. The DEGENSAC17 is also a RANSAC based approach, but instead of successive model esti-
mations, it detects the degeneracies within the RANSAC sample test. If one part of the sample test
is coherent with a homography, then the fundamental matrix is recalculated using the plane-and-
parallax principle,7 compared to the one obtained by the 7-point algorithm and finally the best one
is kept. A critic can be made regarding the computational effort, choosing the 7-point algorithm as
the entry point leads to minimum three fundamental matrices to test in each loop and four plus five
homographies in the worst case. The methods in this category do not allow to recover the camera
motion when the data are actually planar. Only the method in Ref. 16 comes near as it deals with
the pure rotation motion, which implies a homography. Unfortunately, it does not deal with motion
and planar case.

2.3 Exploiting planar degeneracies

The third category of methods recovers the epipolar geometry by exploiting the degeneracies from
scenes. They usually concentrate on scenes, in which several planes could be found. It would
mean that we have dominant plane in the image and the remaining part of the image is also planar
(Fig. 1 bottom right image). These methods do not perform any detection or avoidance step, the
degeneracy is in contrary plainly used. Among these methods a distinction can be made on whether
they rely on at least two homographies or only one. The most straightforward method consists in
a robust estimation of at least two different homographies from an image pair18 and use their com-
bined inlier sets to estimate the fundamental matrix. Alternatively, one can use the compatibility
equation7 between the homographies and the fundamental matrix to estimate its parameters. The
latter needs a proper normalization,19 otherwise it is unstable.20 Moreover, the two independently
estimated homographies are not necessarily compatible with the epipolar geometry21 leading to
inconsistent motions, i.e. two homographies can lead to different sets of epipolar lines, hence dif-
ferent motions. From the two homographies, a homology transferring the epipole onto itself can
also be built.22 The epipole corresponds then to the eigenvector associated with the unique eigen-
value, the two others being identical. However, with real noisy data, it is not guaranteed to have
two identical eigenvalues, then choosing the unique one becomes problematic. If it is not possible
to rely on finding two independent homographies, e.g. there is only one plane in the scene, the
epipolar geometry can still be recovered from a single homography and two off-plane points. In
Ref. 22 the author lists different least squares problems to recover the fundamental matrix from a
single homography, however nothing is said regarding outliers rejection and initial values for the
minimization. A closer look indicates that the epipole is needed to recover the fundamental ma-
trix from a single homography. The epipole is found using the plane-and-parallax approach,7, 19, 23

which in the given form presents several drawbacks. It treats all the parallax vectors identically,
but intuitively points that lie closest to the plane provide less reliable information. Additionally, it
is sensitive to noise, when off-plane points are scarce leading to incorrect epipole locations.

4



2.4 Toward a new approach dealing with planar degeneracies

Our application makes the presence of planar scenes recurrent. Therefore, the third category of
methods seems the most adapted as often an homography would suffice and we would like to
recover the epipolar geometry only when necessary. Most of the methods in this category rely
on finding several homographies associated with different planar structures, which is not a reliable
assumption in our case. We want to rely only on the homography that would normally be estimated
by our system and to reuse it as much as possible if it appears not to be sufficient. The plane-and-
parallax approach appears to be our candidate.
To overcome its limitations previously established, we introduce a new model for the parallax,
that we call the parallax beam. The parallax beam method provides a way to recover the epipolar
geometry when the off-plane data is scarce and it also has the advantage of taking into account the
noise level on the data combined with a reliability measure for the off-plane data. We will present
our method from the feature detection to the motion estimation with a focus on our parallax beam
model to recover the epipolar geometry and on the refinement step we use after it.

3 From a homography and parallax to motion parameters

3.1 System overview

To place the work within our processing chain, an overview of it is given in Fig. 2. The input
data are two images from the same scene and the camera has slightly moved between the two
shots. Then image features are detected and described in each image. The feature detection uses
a modified Harris corner detector,13 which ensures a homogeneous feature distribution over the
whole image. The description is made by the BRIEF descriptor and the features are matched based
on a Hamming distance between descriptors, while preserving the homogeneous distribution over
the image. A homography is robustly estimated over the feature correspondences using a modified
RANSAC procedure. Each RANSAC sample is tested for folding.24 If the test is passed, then the
standard Direct Linear Transformation algorithm is used to estimate the homography from four
correspondences.7 The validity of the model is tested by the symmetric projection error. The
homography is then refined on the biggest set of inliers and normalized.25 Afterwards a test on
the size of the set of inliers is performed. If the size is bigger than 90 % of the number of feature
correspondences, then the scene is considered planar. The motion of the camera is recovered from
the homography matrix.26 The correct solution is selected using the assumption of the ground
plane.
Otherwise, the scene is likely not to be planar and the homographic model does probably not
embed all the information from the image features. In that case, recovering the epipolar geometry
is of interest. To that end, we reuse as much as possible the results previously obtained and use
the estimated homography in a plane-and-parallax method to get an approximate position of the
epipole. The parallax model to locate the epipole is our first contribution and is referred as the
parallax beam model. From the epipole and the homography matrix, the fundamental matrix can
be estimated and decomposed to recover the camera motion. Once a rough translation and rotation
are available, they are refined using a nonlinear least-squares procedure.
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Fig 2 Flow chart of our method. This method robustly estimates the camera motion in the presence of planar degen-
eracies.

3.2 Parallax beam: a new parallax paradigm

The plane-and-parallax formulation7 estimates the fundamental matrix from image features, which
are partially coplanar. The coplanar ones are transfered from one image plane to the other by a
homography H. For the corresponding image features xi and x′i, we have x′i = Hxi if they are
on the homographic plane. For the ones not in the support of the homography, x′i 6= Hxi and
the line joining x′i and Hxi is designated here as the parallax line. This line and the epipolar line
through the feature x′i are theoretically the same.7 From the definition of epipolar lines, if at least
two of them are available, the epipole is at their intersection, as in Fig. 3(a). Given the epipole and
a homography matrix, we know from Ref. 7 that the fundamental matrix is recovered from:

F = [e′]×H. (1)
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(a)

Parallax line
Epipole (estimated)
Epipole
Image features x′i
Projected image features Hxi

(b)

Fig 3 (a) In a noise-free situation, the parallax lines all intersect at the position of the epipole. (b) The noise from the
corner detection and the estimation of the homography disrupt lines intersection.

3.2.1 Epipole from parallax lines: the standard approach

Using the plane-and-parallax principle on real data is less straightforward, imprecisions on the
image features detection and on the homography estimation result in parallax lines not having a
common intersection, as in Fig. 3(b). In the figure, the image features and the projected image
features have disrupted by a Gaussian noise of zero mean and a standard deviation of 0.17. The
presence of outliers in the data also adds difficulty to the task. The problem of finding the epipole
becomes the problem of finding the point, where most lines seem to converge. Besides the de-
scription of the plane-and-parallax in Ref. 7, we did not find a detailed version of the algorithm
dealing with outliers, so we propose the one in Algorithm 1, which is suggested by common sense
and uses standard techniques. From our experience, the method presents several limitations. First,

Algorithm 1 Epipole from parallax lines
while iteration < maxIteration do

Select 2 lines
Compute their intersection point
Count how many lines pass, within a given threshold, near the intersection point
if count > biggestCountSoFar then

Remember the intersection point and the lines passing near it
end if

end while
Apply a least-squares to find the closest point to the remembered lines

the epipole might not be estimated correctly, when there is an even number of lines that seems to
intersect in two different points, as in Fig. 3(b). Second, the parallax lines are not equally influ-
enced by the noise. The smaller the parallax size, the more the noise can change the orientation of

7



the line, but the lines are all considered in the same way to estimate the epipole. Third, the method
relies on a threshold defining the closeness to the intersection point and its value is difficult to set
meaningfully. The values between 10 and 100 pixels are usually good guesses, but it is quite scene
dependent to select an optimal value within these boundaries.

3.2.2 Parallax beam: Robust epipole estimation

To overcome these limitations, we propose our parallax beam paradigm, which relies on the fol-
lowing considerations:

1. the position of image features is corrupted with noise,

2. the projection of image features by H is corrupted with noise,

3. image features close to the homographic plane are less reliable than the farther ones.

When the position of the image features is corrupted with noise, the true position lies in the vicinity
of the detected point. Usually the noise is assumed Gaussian with a standard deviation σ. For the
sake of simplicity, we differ by considering a uniform circular noise around the detected image
feature depicted in Fig. 4(a). The uniform circular noise is defined by its radius r. Even though
the inner distribution is different, by taking r = 3σ we ensure that 99 % of the Gaussian values
fall within the circle boundaries. Since the method is intended to work on consecutive images, we
consider the distortion induced by the homography to be small enough so that the circular noise
can still apply on the projected feature. The circles around the image feature and its homographic
projection define a set of possible parallax lines, Fig. 4. The orientation of these lines is contained
between the two diagonal common tangents of the two circles. Therefore, by considering the
area between the tangents, that contains both circles, we have all the parallax lines that could be
obtained from our noisy feature points. This area is referred hereafter as the parallax beam. When
comparing with Fig. 4(b), we note that the parallax distance influences the opening angle of the
beam. The noise has more influence on an epipolar line obtained if the points x′i and Hxi are close
together.
The parallax beam is completely defined using the points m, t1 and t2 depicted in Fig. 5(a). m is
the middle of the segment [x′i, Hxi], t1 and t2 are the points of tangency through m. To get t1 and
t2, the origin is shifted to Hxi. In this coordinate frame, we write m = (xm, ym) and t1 = (x, y).
Because t1 is on the circle centered on Hxi and of radius r we have,

r2 = x2 + y2 (2)

From the Pythagorean theorem l2 = r2 + (x − xm)2 + (y − ym)2 and since xm2 + ym
2 = l2 and

Eq. 2 it induces,

x =
r2 − ymy
xm

(3)
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(a)

Uniform circular noise boudaries
Parallax line
Parallax line boundary
Image features x′i
Projected image features Hxi

x′i

Hxi

m

(b)

x′i

Hxi

m

Fig 4 A set of parallax lines can be generated from points within the circles, the black lines represent the boundaries
for the orientation of the parallax lines. (a) The distance between between x′

i and Hxi is 4 pixels. (b) The distance is
2 pixels, i.e. closer to the homographic plane.

(a)

Uniform circular noise boudaries
Parallax line boundary
Image features x′i
Projected image features Hxi

m

t1

t2

x′i

Hxi

r
l

(b)

p4

p3

p2

p1

m

u
v

x′i

Hxi

Fig 5 (a) Computing the boundaries of the parallax lines contained in the parallax beam. (b) The points pi correspond
to the four cases to test if a point lies within the parallax beam.

Eq. 3 is substituted into Eq. 2 to obtain a 2nd degree polynomial in y, whose roots are the y-
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coordinates of t1 and t2 provided that m lies outside the circle, i.e. l > r,

0 = y2l2 − y(2r2ym) + r4 − xm2r2

y =
r
(
rym ±

√
(rym)2 + (lxm)2 − (lr)2

)
l2

. (4)

The x-coordinate is obtained from y using Eq. 3. Finally, t1 and t2 must be shifted back to the
image origin by adding Hxi. Having m, t1 and t2, the two lines are defined and are now referred
as the beam boundaries.

21.8

7.2

14.3

1.9

Parallax beam
Epipole
Image features x′i
Projected image features Hxi

Estimated epipole
Intersection points

Fig 6 Intersection of the boundaries of the parallax beams to generate a mesh of intersection points. The epipole is
estimated as the centroid of the vertices defining the area of maximum overlap. The indicated values represent the size
of the parallax.

Finding the epipole from a set of parallax beams consists in finding where most of them overlap. To
do so, we intersect all the boundaries of the parallax beams, which generates a mesh of intersection
points, see Fig. 6. The intersection points define the vertices of polygons over which a fix number
of beams overlap. Finding the area of maximum overlap is done by finding the vertices, which are
in a maximum number of beams. Fig. 5(b) shows four points pi. They represent the four partitions
of the 2D-space made by the beam. The coordinates of the points pi are transformed in the basis
defined by u and v, which are straightforwardly obtained from m, t1 and t2. In this basis, a point
lying in the beam has its coordinates of equal sign. A test on the sign of the coordinates of the
vertices indicates, whether a point lies inside or outside the beam, see Table 1. The epipole is
finally defined as the centroid of the vertices of the polygon defining the area of maximum overlap.

At this step, we have defined our parallax beam model and how to recover the epipole from it. The
method is also working in the presence of outliers, in that case and once the epipole is estimated,
the inliers are defined as the image features, whose beam contains the epipole. Otherwise they are
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Table 1 Sign of a point coordinates in the (m,u,v) basis, if it is in or out of the parallax beam.
Point in Fig. 5(b) In/Out u-coordinate v-coordinate

p1 Out + -
p2 In - -
p3 Out - +
p4 In + +

(a)

21.8

7.2
14.3

1.9

Parallax line
Epipole
Image features x′i
Projected image features Hxi

Estimated epipole
(b)

21.8

7.2
14.3

1.9

Parallax beam
Epipole
Image features x′i
Projected image features Hxi

Estimated epipole

Fig 7 Image features locations are corrupted with a white Gaussian noise with σ = 0.17. (a) The standard parallax
method fails to estimate the epipole correctly. (b) Our parallax beam successfully retrieves an estimation of the epipole.
The number indicates the size of the parallax.

considered as outliers. Different size of parallax were used to generate Fig. 6 to highlight another
interest of the method. Since the diagonal tangents of both circles define the envelop of the parallax
beam, the opening of the beam, i.e. the angle between the tangents, also depends on the size of
the parallax. The smaller the size of the parallax, the more open is the parallax beam. This is
in accordance with the intuition that in the presence of noise, the points close to the homographic
plane are less reliable to estimate the epipole. We can see in Fig. 6 that the parallax beam generated
from a parallax of 1.9 pixels has a wider opening than the beam generated from the parallax of 21.8
pixels. Thus it provides a weaker constraint on the position of the epipole due to the bigger area
covered by the beam. Our new parallax beam paradigm brings then the following improvements:

• It models the noise on the image features by considering an uncertainty area around them.
This area is a uniform circular distribution of points from which a set of likely parallax lines
is derived. This set is represented by our parallax beam. We gave a key to relate the uniform
circular distribution to the classic Gaussian noise model.

• The reliability of the image features, depending on the distance to the homographic plane, is
included in the approach. The further, the more reliable because the noise has less influence.
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• It relies on a estimation of the standard deviation of the noise, which has more physical
meaning than the notion of nearness for the intersection of lines.

Finally, Fig. 7 illustrates the capacity of our approach compared to the standard line intersection
in the presence of noise. In that case the plane-and-parallax from the intersection of lines fails.
It actually has a 50 % chance of finding the correct epipole location depending on the order the
RANSAC trials. One could also filter the parallax lines to use based on the length of the parallax,
which would solve the problem in Fig. 7. However, such threshold would also remove small but
correct parallax, that our method is able to use but it grants it a smaller influence in the estimation
process.

3.3 Motion Refinement

The procedure proposed in the previous section to distinguish inliers from outliers does not guar-
antee a perfectly outlier-proof result. To refine either the essential matrix or the motion once
decomposed, it is common to apply a non-linear refinement on the parameters to estimate. How-
ever, if performed naively, this procedure performs poorly in the presence of outliers in the dataset.
We therefore propose a non-linear refinement step, which operates on the rotation and translation
parameters and that is robust to the presence of outliers in the observations.
The motion is composed of a rotation R and a translation t. Once the fundamental matrix has been
estimated, the motion between the two views can be recovered up-to-scale by the decomposition
of the essential matrix E.7 The essential matrix is the algebraic representation of the epipolar
geometry in the calibrated case and is related to F by

E = KTFK, (5)

where K is the calibration matrix containing the intrinsic parameters of the camera. The decom-
position of E give four solutions, among which only one satisfies the positive depth constraint,
requiring the scene to be visible from both camera poses. At this point a first estimation of the
camera motion depicted by the matrix Rini and the vector tini is available. To increase the pre-
cision on the motion recovery, the rotation and translation components need to be refined using
non-linear least-squares.
A standard approach to constraint the norm of the quaternion during the least-squares would make
use of the Lagrangian multipliers,27 but it has the drawback of increasing the number parameters
to estimate. On the opposite, the work of Ref. 28 makes use of the tangent hyperplan to the
hypersphere in R4 containing all the unit quaternions. It reduces the number of parameters to
be estimated from four to three while ensuring the unit norm constraint. More recently Ref. 29
achieved the same results by using the intersection of a ray from a reference pole to the quaternion
on the hypersphere. The quaternion is then represented by the intersection of the ray with the
equatorial plane. It has the advantage of avoiding the use of a SVD and having simple partial
derivatives. Concerning the translation, it has only two degrees of freedom, since the motion is
recovered up-to-scale. Therefore, the translation vector can be constrained to unit norm and the
parametrization of Ref. 29 is adapted to a 3D sphere and a 2D equatorial plane. Thus, we have a
minimal parametrization of the motion, three parameters for the rotation and two for the translation.
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The Sampson distance is the function to be minimized because of its accurate estimation of the
re-projection error and its small runtime.30

εSampson =
x′i

TExi√
(Exi)1

2 + (Exi)2
2 + (ETx′i)1

2 + (ETx′i)2
2
, (6)

with E = [t]×R and (Exi)j standing for the jth coordinate of the vector (Exi). Since the inliers
selection from Sec. 3.2.2 is a bit permissive, the data used as input for the nonlinear least-squares
estimation might still contain outliers. Therefore, a robust cost function should be used. Follow-
ing the conclusions of Ref.31, the Geman-McClure function is chosen for its good convergence
capability even with poor initial conditions,

ρ (ε) =
1

2

ε2

1 + ε2
. (7)

Although the Levenberg-Marquardt algorithm is the classic non-linear least squares solver in the
field of computer vision, the work of Ref. 32 reached the conclusion that the Powell’s dogleg
algorithm could be used to achieved the same precision with a reduced computational cost. The
algorithm used is described in Ref. 33 and the Jacobian matrices are computed analytically using
automatic differentiation to avoid the approximation and computational cost of finite differences.

4 Evaluation of the parallax beam method

4.1 Conditions of evaluation

The parallax beam method is compared with the plane-and-parallax algorithm given Alg. 1, the 5-
point algorithm6 and the 8-point algorithm.34 They are evaluated in a two-view configuration with
the camera 1 having the projection matrix P1 = K [I3|0] and the camera 2 having the projection
matrix P2 = K [R|t], where K is the intrinsic matrix, R is the rotation of the camera between the
two views and t is the translation of the camera between the two views. The methods are evaluated
on their ability to recover R and t. We evaluate them twice; the first evaluation is done on the
output of the above-mentioned methods and the second evaluation takes place after a refinement
step. For the parallax beam the refinement is the one proposed in the previous section. For the
others, we use the Levenberg-Marquardt, which is well known in computer vision. The two-step
evaluation allows use to evaluate the parallax beam independently from its refinement step. The
values of R and t recovered at each step are compared the ground truth values being Rgt and tgt.
The rotation error εR expresses the error between R and Rgt. We express the difference rotation
matrix Rdiff = RTRgt, which is the identity matrix if the two rotation matrices are equal. Using
the property of SO(3) that tr(R) = 1 + 2 cos(θ), εR is defined as:

εR = arccos

(
tr(Rdiff )− 1

2

)
.

εR corresponds physically to the angle of Rdiff of the axis-angle representation of a rotation in
3D.
The translation error εt expressed the error between t and tgt. In two-view geometry the translation
vector can only be recovered up-to-scale, therefore a metric including the norm is not suited. We
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are rather interested to evaluate if t points in the same direction as tgt. εt is then defined as:

εt = arccos

(
t · tgt
‖t‖‖tgt‖

)
and corresponds to the angle between the two vectors.

4.2 On general scenes from the KITTI Vision Benchmark

We use the KITTI vision benchmark8 sequences for visual odometry as the first 11 sequences have
a frame per frame ground truth. For each image of these sequences the camera pose is known, it is
therefore straightforward to have the motion of the camera between two images. The comparison
of the methods is performed on the sequences 00, 02, 03 and 10 and we use the first 500 images
of each sequences. The statistics are presented in Table. 2. Figure 8 presents graphically the
maximum error obtained for each method and for each sequence. We present the maximum error
instead of the mean because our main concern is the robustness.
From the curve representing the parallax beam, we can see that the method exhibits slightly higher
error than the 5-point algorithm and the parallax line method. However, the 8-point algorithm
appears to be more unstable than the other methods, as high errors on both translation and rotation
are occurring. When estimating the rotation component of the motion all the three methods behave
almost identically. On the other hand, the translation component the methods perform in a less
similar way, indeed the 5-point algorithm appears to be the best. Nevertheless, the parallax beam
and the parallax line lie close behind and can also provide reliable results for motion estimation.
However, the KITTI sequences do not provide scenes with strong planar degeneracy to prove the
interest of the parallax beam method. Nevertheless, the KITTI sequences proved our method to
be usable in generic scenes, where there is not any particular plane dominating the image content.
After analyzing the images, we notice that most of the time the homography used in the parallax
beam fits a virtual plane, i.e. it does not correspond to any physical plane in the scene. It relaxes
the constraint of having a well identify plane in the scene to use the parallax beam method, which
extends its scenarios of usage. Even though we still need to prove its interest compared to the
parallax line and the 5-point algorithm.

4.2.1 On synthetic scenes with strong planar degeneracies

In order to challenge the methods in scenes with strong planar degeneracies, we decided to use
a synthetic scene to be able to generate an accurate ground truth. The scene is composed of two
planes, one plane being the ground and the other one being a wall as shown in Fig. 9. The motion
between the camera P1 and P2 is taken from successive poses of a KITTI ground truth file. The
camera P1 has always the expression written in Sec. 4.1 and is rotated by 20◦ towards the ground.
We use the ground truth files of the KITTI vision benchmark to ensure that the motion is coherent
for a vehicle using the Ackermann steering geometry (car-like). We make four sequences, which
differ by the distance from the wall for P1:

d = 2.5 m : the camera P1 is close to the wall. There is a strong planar degeneracy as only a
small part of the ground is visible.

d = 5.0 m : in this position the wall and the ground are equally represented in the image, the
planar degeneracy is the weakest of the four sequences.
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Table 2 Statistics on εR and εt when estimating the camera motion on the KITTI sequences. The values are given in
degrees.

Method mean(εt) std(εt) max(εt) mean(εR) std(εR) max(εR)
Sequence 00
Before Refinement

Beam 2.17 2.07 20.97 1.52 2.0 7.9
5-point 2.24 1.72 12.94 1.48 2.02 7.83
8-point 7.75 29.69 179.03 1.89 8.22 179.57

Line 2.34 2.02 13.91 1.53 1.99 8.0
After Refinement

Beam 1.44 1.4 16.75 1.48 2.01 7.87
5-point 1.52 1.16 6.52 1.48 2.02 7.87
8-point 9.21 29.55 178.71 4.11 9.82 178.37

Line 1.38 1.19 7.88 1.48 2.02 7.88
Sequence 02
Before Refinement

Beam 2.16 2.07 20.97 1.52 2.0 7.9
5-point 2.25 1.72 12.94 1.48 2.02 7.83
8-point 7.77 29.72 179.03 1.9 8.23 179.57

Line 2.34 2.02 13.91 1.53 2.0 8.0
After Refinement

Beam 1.44 1.4 16.75 1.48 2.02 7.87
5-point 1.52 1.16 6.52 1.48 2.02 7.87
8-point 9.23 29.58 178.71 4.11 9.83 178.37

Line 1.38 1.19 7.88 1.48 2.02 7.88
Sequence 03
Before Refinement

Beam 1.6 1.35 10.88 0.96 1.09 6.51
5-point 1.91 1.49 13.85 0.92 1.1 6.66
8-point 9.25 33.24 179.71 2.08 13.87 179.9

Line 2.19 2.11 26.81 0.98 1.09 6.52
After Refinement

Beam 0.87 0.65 5.33 0.93 1.1 6.5
5-point 1.03 0.88 6.25 0.92 1.1 6.54
8-point 10.86 32.89 179.59 4.17 14.73 179.21

Line 0.88 0.65 5.25 0.93 1.1 6.51
Sequence 10
Before Refinement

Beam 2.16 2.07 20.97 1.52 2.0 7.9
5-point 2.25 1.72 12.94 1.48 2.02 7.83
8-point 7.77 29.72 179.03 1.9 8.23 179.57

Line 2.34 2.02 13.91 1.53 2.0 8.0
After Refinement

Beam 1.44 1.4 16.75 1.48 2.02 7.87
5-point 1.52 1.16 6.52 1.48 2.02 7.87
8-point 9.23 29.58 178.71 4.11 9.83 178.37

Line 1.38 1.19 7.88 1.48 2.02 7.88

d = 10.0 m : in this position the ground is the dominant plane, but the wall still represents around
25 % of the image.

d = 15.0 m : the camera P1 is relatively far from the wall. There is a strong planar degeneracy as
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Fig 8 Maximum error measured for the sequences of KITTI. The values are taken from the maximum error columns
of Table 2.

only a small part of the wall is visible.

For each distance, we run 500 motions. The data are corrupted to include 20 % of outliers and
Gaussian noise is added on the feature points location.
The statistics on εR and εt are given in Table 3. When the camera is close to the wall, the parallax
beam and the 5-point algorithm exhibit the best performances of the four methods. There is a
slight advantage for the parallax beam method but the results of the 5-point would be usable in a
real system. The parallax line and the 8-point algorithm fail to estimate the translation component
correctly, whereas the rotation is estimated with a precision which is similar to the other methods.
When the planar degeneracy is not strong and the planes are equally represented, all of the methods
exhibit similar overall performance. However, the parallax line fails sometimes and falls quite far
from the true translation. This behavior is not surprising as the method is usually said to be in
trouble, when there are several well represented planes in the image. The interest of the parallax
beam emerges as the camera is placed further from the wall and the planar degeneracy gets stronger.
In the d = 10.0 m, the parallax beam and the parallax line have the best performance, with a slight
advantage for the parallax beam. Even though the 5-point is providing a correct estimation most
of the time, it sometimes fails as shown by the maximum error on the translation. At the furthest
from the wall, d = 15.0 m, shown in Fig. 10, the parallax beam clearly detaches from the other
methods and shows to be the most robust. The difference of performance for the 5-point between
the d = 2.5 m and the d = 15.0 m cases is explained in Ref. 6, the algorithm is essentially
unaffected by planar degeneracy if the baseline created by the two views is perpendicular to the
plane, which is the case in the d = 2.5 m. The slightly better performance of the parallax beam
in the d = 2.5 m compared to the d = 15.0 m can be explained by the distance of the off-plane
points to the camera. When the wall is closed and only few ground points are visible, the ground
points are also close to the camera and therefore have a relatively bigger apparent motion than in
the d = 15.0 m case. In this case the off-plane points are the furthest from the camera and using
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the only the parallax information they might appear as closer to the homographic plane. We could
say that the d = 2.5 m is better conditioned than the d = 15.0 m.

ground

wall
d

h

Fig 9 Synthetic scene and camera pose for generating synthetic image features with a strong planar degeneracy; ref.
stands for refinement.
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Fig 10 Maximum error measured for the tested planar degeneracies. The values are taken from the maximum error
columns of Table 3. ⊥ stands for perpendicular, i.e. ⊥ to t means that the plane responsible for the degeneracy is
perpendicular to the translation vector of the camera. ‖ stands for parallel; ref. stands for refinement.

4.3 Summary of the results

The 5-point algorithm, the 8-point algorithm, the parallax line method and our proposed parallax
beam method were tested on the KITTI vision benchmark and on synthetic data with strong planar
degeneracies. In our results, the 8-point algorithm appeared to be the least stable algorithm. The
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Table 3 Statistics on εR and εt when estimating the camera motion on synthetic data. The values are given in degrees.
Method mean(εt) std(εt) max(εt) mean(εR) std(εR) max(εR)

Distance d = 2.5 m
Before Refinement

Beam 4.51 2.12 12.9 1.87 2.0 7.11
5-point 6.18 2.38 14.28 1.97 2.02 7.4
8-point 11.48 10.15 83.76 2.19 1.99 8.1

Line 14.52 9.21 63.92 2.45 1.97 8.28
After Refinement

Beam 3.81 2.2 12.4 1.84 2.01 7.11
5-point 3.91 2.27 13.65 1.89 2.07 7.45
8-point 11.41 9.87 82.27 2.28 2.09 13.5

Line 8.26 7.33 42.36 2.16 2.07 8.04
Distance d = 5.0 m
Before Refinement

Beam 1.3 1.03 4.77 1.77 2.05 6.93
5-point 1.52 1.08 5.71 1.77 2.05 6.96
8-point 2.2 1.3 7.91 1.77 2.05 7.02

Line 1.72 6.31 140.42 1.77 2.05 6.92
After Refinement

Beam 0.91 1.02 3.59 1.76 2.05 6.92
5-point 0.99 1.02 3.81 1.76 2.05 6.91
8-point 2.2 1.3 7.82 1.78 2.05 7.02

Line 1.27 8.03 179.07 1.76 2.05 6.91
Distance d = 10.0 m
Before Refinement

Beam 3.23 1.66 14.66 1.8 2.04 6.96
5-point 1.43 3.97 87.13 1.77 2.07 9.05
8-point 32.42 47.26 170.17 2.39 2.12 8.55

Line 2.36 1.82 26.9 1.79 2.06 6.98
After Refinement

Beam 1.7 1.47 9.41 1.78 2.05 6.99
5-point 1.07 3.99 87.13 1.77 2.07 9.05
8-point 31.72 47.01 170.17 3.7 6.15 53.18

Line 1.2 1.71 28.55 1.77 2.06 7.0
Distance d = 15.0 m
Before Refinement

Beam 8.92 4.92 33.79 1.93 1.97 7.59
5-point 5.69 19.14 88.6 2.07 2.4 10.16
8-point 38.8 45.4 165.6 2.63 2.1 8.76

Line 21.81 7.2 42.14 2.46 1.99 7.96
After Refinement

Beam 2.7 4.1 31.38 1.8 2.02 6.92
5-point 5.4 19.21 88.56 2.07 2.4 10.16
8-point 38.53 45.7 165.96 3.64 4.66 30.95

Line 16.47 21.44 93.22 2.52 2.44 10.75

parallax line as given in Alg. 1 appeared to perform correctly most of the time, but we were able
to verify one recurring critic of the literature saying that it might not perform correctly in the
presence of several well distributed planes. It also appeared not to be very robust, when the planar
degeneracy is strong. In that case, the 5-point algorithm performed better, especially if the camera
is going towards the dominant plane of the scene. However, the 5-point algorithm proved to fail,
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when the planar degeneracy occurs otherwise. The parallax beam appeared to work correctly in
generic scenes, even though a bit behind the 5-point algorithm but still usable. In these scenes, the
constraint of having a planar structure for the homography appeared not to be important as it is
often a purely mathematical plane that is used. When the planar degeneracy is strong, the parallax
beam surpasses the other methods.
To conclude the comparison of the four methods, we propose trajectories made using only two-
view geometry to illustrate once more the interest of the parallax beam, they are presented in
Fig. 11. The moving platform starts in a car park and turn into an underground tunnel. The
parallax beam is the only one estimating a correct trajectory. The 8-point is the worst of the four,
the 5-point fails few times when the scene is very degenerated. The parallax line fails also, when
the scene is very degenerated because it has too little parallax to exploit.

Parallax beam
Parallax lines
8-point
5-point

Fig 11 Trajectories obtained by using two-view geometry to illustrate the behavior of the four methods on a real image
sequence.

5 Conclusion

We proposed the parallax beam to estimate the camera motion in two-view geometry. The method
is designed to cope with the drawbacks of the standard plane-and-parallax approach. We have
shown, that the parallax bean handles well scenes with strong parallax degeneracy and by extension
when little parallax is present. In addition, it did not exhibit the instability the standard approach in
the presence of equally distributed planes. It has even shown acceptable performances in general
scenes (from KITTI), where planes are not dominant. Compared to most of the existing methods
based on the homography model, the parallax beam only requires to estimate one and to have few
off-plane points, which is less limiting than estimating two homographies.
With the parallax beam method we are confident that we can initialize our coming bundle adjust-
ment processing in all the situations we encounter. This will allow the bundle adjustment process
to be initialized whenever our system has to perform autonomously.
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Stéphane Bazeille is an Assistant Profes-
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